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Abstract

We propose NODE-GAMLSS, a framework for scalable uncertainty modelling
through deep distributional regression. NODE-GAMLSS is an interpretable at-
tention based deep learning architecture which models the location, scale, and
shape (LSS) dependent on the data instead of only the conditional mean en-
abling us to predict quantiles and interpret the feature effects. We perform
a benchmark comparison based on simulated and real datasets with state-of-
the-art interpretable distributional regression models, demonstrating the supe-
rior quantile estimation, accuracy and interpretability. The code is available at
https://github.com/AnFreTh/NodeGAMLSS

1 Introduction

Regression analysis traditionally focuses on estimating the conditional mean of a response variable
given the explanatory variables. Generalized Additive Models (GAMs) Hastie and Tibshirani are
popular interpretable additive mean regression models using smooth functions of covariates. Recently,
Agarwal et al. introduced Neural Additive Models (NAMs), which enhance predictive accuracy
by utilizing a feedforward neural network for each feature, thereby maintaining interpretability.
Chang et al. developed Neural Oblivious Decision Ensembles (NODE-GAM), which adapt the
NODE architecture by Popov et al. to a GAM, maintaining predictive accuracy while preserving
interpretability.

While these are powerful mean prediction models, they do not capture the full conditional distri-
bution of the response. This is problematic when quantifying uncertainty is crucial, such as with
heteroskedasticity or heavy-tailed distributions. The forumlation of Generalized Additive Models for
Location, Scale, and Shape (GAMLSS) Rigby and Stasinopoulos [2005] introduced distributional
regression which extend GAMs to model other parameters of the response, such as variance or skew-
ness, as functions of the explanatory variables. mBoostLSS [Hofner et al., 2016] offers alternatives
with shrinkage and variable selection.

Other methods for distributional modelling include conditional transformation models Hothorn et al.
[2013], quantile Koenker [2005], and expectile regression [see Newey and Powell, 1987, Kneib et al.,
2023]. Recent advancements present deep distributional models such as XGBoostLSS März [2019]
and LightGBMLSS März [2023], which extend boosting algorithms Chen and Guestrin [2016], Ke
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et al. [2017] into a probabilistic framework, though at the cost of interpretability. NAMLSS Thielmann
et al. [2024] provides feature level interpretability and leverages flexible scalable feature functions
like MLPs and Transformers within the NAM framework. NODE-GAMLSS integrates the NODE-
GAM architecture for distributional regression by predicting the conditional distributional parameters.
These parameters are then optimized with a loss function, thereby offering an interpretable and
scalable framework for capturing the distributional properties of the response variable.

Figure 1: An oblivious decision tree (left) with all nodes at the same depth using identical features
and thresholds with the input feature being passed at every depth. For each feature, multiple trees
form a layer that are stacked together, with the respective input feature passed through every layer
(right). The output of an ensemble is the sum of the weighted average of all the trees for a feature,
which are then applied the respective activation. The additivity constraint here prevents overfitting.

2 Methodology

Suppose we are given covariates X = {(x1i, x2i, · · · , xJi)}ni=1 representing J input features
x1,x2, · · · ,xJ with each xj ∈ Rn and the target y = {yi}ni=1. We assume y ∼ D(θ(X)),
where θ(X) = (θ(1), θ(2), · · · , θ(K)) are K parameters of the response distribution D. We model
the dependence of the k distributional parameters as

θ(k) = η(k)(β(k) +

J∑
j=1

z
(k)
j (xj))

where β(k) is the intercept, zj are feature functions, η(k) are activation functions. The function zj
consists of L layers, each with I differentiable Oblivious Decision Trees (ODTs) of depth c handling
both real and vector-valued inputs, enabling scalable training by processing data in batches. All nodes
in a tree share the same feature function, and nodes at the same depth use identical input features
and thresholds (Figure 1). Each ODT in layer l of depth c compares c selected features of an input
x ∈ Rd against thresholds bc, using feature function F : Rd → R where d = n+ l − 1. The output
h(x) is the inner product ⊙ of a response vector R ∈ R2c with the results of these comparisons:

h(x) = R⊙

(
C⊗

c=1

[
σ (F (x) ≤ bc)
σ (F (x) > bc)

])
,
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where σ is the entmoid, ⊗ is outer product. For tree i in layer l, the feature function Fli(x) is:

Fli(x) =

d∑
j=1

xj ·Gij +
1∑l−1

l̂=1

∑I
î=1 gl̂ii

l−1∑
l̂=1

I∑
î=1

hl̂̂i(x)gl̂iial̂ii

Here, Gi = entmaxα (Fi/T ), glîi = GiGî, and al̂ii are attention weights that focus on specific
trees. The temperature T anneals to zero, forcing Gi to become one-hot, making glîi = 1 only when
Gi = Gî thus acting as an additive model. Outputs from previous layers become inputs to the next.
For an input x, the layer inputs xl are

x1 = x, xl =
[
x, h1(x1), . . . , h(l−1)(x(l−1))

]
for l > 1. The final prediction is given by

z(k)(x) =
1

LI

L∑
l=1

I∑
i=1

hl
i(x

l)wli.

To ensure the constraints of D, the model is adapted to a Location, Scale and Shape (LSS) framework,
where the output is passed through the activation η(k), which transforms the parameters. We minimize
the sum of the negative log likelihood of the predicted distribution with respect to the observed values:
l(θ) =

∑n
i=1 − log(L(θ|yi)). Since h is differentiable, the model is trained end-to-end using

backpropagation and gradient descent Kingma and Ba [2017].

3 Experiments

Feature interpretability and interactions: NODE-GAMLSS offers feature-level interpretability
enabling visual analysis illustrated for the California housing dataset in Figure 2.

Figure 2: The rows display raw mean and variance predictions respectively. The left plots illustrate
single feature effects for longitude, latitude and median age, with pink bars indicating normalized
data density. The right plots highlight the interaction effects of longitude and latitude. The model
excels in capturing jagged functions, evident in the sharp price jumps around San Francisco and Los
Angeles. The second row shows decreasing variance in areas further from large cities.

Real world data: We compare our model against state-of-the-art interpretable distributional mod-
els—NAMLSS, GAMBoostLSS, and GAMLSS. NODE-GAMLSS outperforms benchmarks (Pace
and Barry [1997], Nash et al. [1995], Lantz [2013]) achieving the lowest NLL, MSE and MAE (in
Table 1) indicating better model fit and predictive accuracy.
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Table 1: Comparison on real datasets using a normal response

Dataset Model NLL MSE MAE

Abalone

NODE-GAMLSS 0.951 ± 0.024 0.492 ± 0.044 0.494 ± 0.022
NAMLSS 1.078 ± 0.079 1.076 ± 0.098 0.787 ± 0.036
GAMLSS 1.056 ± 0.034 0.483 ± 0.032 0.501 ± 0.017

GAMBoostLSS 0.998 ± 0.031 0.536 ± 0.046 0.732 ± 0.032

California

NODE-GAMLSS 0.726 ± 0.023 0.314 ± 0.011 0.392 ± 0.004
NAMLSS 0.785 ± 0.047 0.758 ± 0.051 0.654 ± 0.026
GAMLSS 0.917 ± 0.020 0.366 ± 0.015 0.442 ± 0.004

GAMBoostLSS 1.025 ± 0.182 0.420 ± 0.011 0.648 ± 0.009

Insurance

NODE-GAMLSS 0.556 ± 0.147 0.151 ± 0.027 0.226 ± 0.024
NAMLSS 0.653 ± 0.057 0.655 ± 0.069 0.568 ± 0.040
GAMLSS 0.732 ± 0.048 0.253 ± 0.024 0.503 ± 0.024

GAMBoostLSS 0.644 ± 0.068 0.269 ± 0.028 0.518 ± 0.028

Table 2: Comparison of quantile estimation metrics

Model CRPS Quantile Score Coverage Probability

NODE-GAMLSS 0.2536 ± 0.0101 0.1301 ± 0.0013 0.956 ± 0.013
NAMLSS 0.3224 ± 0.0202 0.1654 ± 0.0028 0.932 ± 0.012
GAMLSS 0.2795 ± 0.0132 0.1433 ± 0.0032 0.914 ± 0.025
GAMBoostLSS 0.3469 ± 0.0154 0.1780 ± 0.0082 0.895 ± 0.053

Quantile estimation: Our model captures the full conditional distribution, enabling quantile estima-
tion illustrated for the California housing dataset as shown in Table 3 achieving the lowest quantile
score and CRPS, and the highest coverage. Figure 3 compares performance across quantiles.

Feature learning: We simulate x1, x2 ∼ U(−5, 5) and define f1(x) = sin(x), f2(x) = 2x,
f3(x) = x2, f4(x) = ex such that y ∼ N (f1(x1) + f2(x2), f3(x1) + f4(x2)). The effects learnt by
NODE-GAMLSS shown in Figure 4 clearly capture the shapes of the original functions.

Distribution modelling: We synthetically generate n = 3000 observations with J = 5 features
from Normal, Poisson, Lognormal, and Gamma distributions (see Appendix A.5). NODE-GAMLSS
achieves state-of-the-art performance, matching NAMLSS on both count and continuous data.

Table 3: Comparison of negative log-likelihood for multiple distributions

Model Gamma Normal Poisson Lognormal
NODE-GAMLSS 0.833 ± 0.072 1.422 ± 0.027 1.375 ± 0.024 1.514 ± 0.033
NAMLSS 0.827 ± 0.076 1.442 ± 0.048 1.386 ± 0.035 1.504 ± 0.033
GAMLSS 1.064 ± 0.033 1.432 ± 0.039 1.383 ± 0.005 1.535 ± 0.068
GAMBoostLSS 3.132 ± 0.284 1.491 ± 0.011 1.379 ± 0.045 1.524 ± 0.021

Acknowledgments and Disclosure of Funding

Funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) within
project 450330162 is gratefully acknowledged.

4 Limitations

A crucial aspect in applying our proposed method, as well as other distributional methods, is selecting
the appropriate distributional assumptions. Hence this approach necessitates some understanding
and domain knowledge of the data distribution. Also rather than minimizing an error measure, our
method primarily uses the negative log likelihood, a strictly proper scoring rule Lakshminarayanan
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Figure 3: NODE-GAMLSS outperforms other models, with the lowest pinball loss (left), minimal
QCD for most quantiles (middle), and the lowest Winkler scores (right).

Figure 4: Feature effects learnt for 20 individual runs.

et al. [2017], minimized in expectation if and only if the conditional density matches the underlying
data distribution Hastie et al. [2001].

5 Conclusion and Future Work

NODE-GAMLSS presents a significant advancement in uncertainty modelling via distributional
regression, providing interpretability of covariate effects and exceptional predictive accuracy. These
qualities make NODE-GAMLSS highly suitable for applications in high-risk domains, where un-
derstanding and mitigating uncertainty is crucial. Using other types of flexible distributions like
mixture density networks Seifert et al. [2022] or normalizing flows Papamakarios et al. [2021] are
apparent extensions. Multivariate responses conditionally dependent on covariates can be modeled
using a copula-based approach for NODE-GAMLSS that would significantly improve the general
applicability. While initially designed for tabular data, NODE-GAMLSS can be naturally extended
to handle multimodal data by integrating components such as a CNN or Transformers as feature
networks for image and text input respectively.
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A Benchmark Details

We use the same data-preprocessing, model specifications and initializations for all the experiments.
For the experiments on real world data, quantile estimation and distribution modelling above, a 5-fold
cross-validation is performed, with results reported as the mean and standard deviations across all
metrics and datasets.

A.1 Data preprocessing

All numerical variables are scaled between 0 and 1 using MinMaxScaler, and all categorical fea-
tures are one-hot encoded. We implement minor quantile smoothing (quantile_noise=0.001),
leveraging one of the key strengths of NODE-GAMLSS in modelling jagged shape functions. For
implementing distributions not having the entire real line as the support, it is essential to maintain the
original support. We do not transform responses in such cases (e.g. Lognormal, Poisson or Gamma).

A.2 Model specifications

The NODE-GAMLSS model is configured with the following parameters:

• Model Structure: The model employs a total of 75 trees (num_trees=75, denoted
as I), each with a depth of 3 (tree_depth=3, denoted as C). It comprises 2 layers
(num_layers=2, denoted as L) without additional tree dimensions (addi_tree_dim=0).
The feature sampling per tree is set to 50% (colsample_bytree=0.5). The attention
embedding dimension is set to 8 (dim_att=8).

• Optimization and Regularization: We use the Adam optimizer where the learning rate is
initialized at 0.001 (lr=0.001) with a batch size of 2048 (batch_size=2048). Although
L2 regularization is omitted l2_lambda=0, dropout is applied with a rate of 0.3 on the last
layer (last_dropout=0.3), while no output dropout is used (output_dropout=0).

• Learning Rate Scheduling: The optimization process includes a learning rate de-
cay mechanism, where the learning rate (lr=0.01) is warmed up over 100 steps
(lr_warmup_steps=100) and decays every 300 steps (lr_decay_steps=300). Addi-
tionally, the learning rate is annealed over 2000 steps (anneal_steps=2000).

• Training Procedure: Early stopping is implemented after 2000 steps without improvement
(early_stopping_steps=2000). The training will continue for a maximum of 20,000
steps (max_steps=20000) or up to 20 hours (max_time=20 \times 3600), whichever
occurs first. The last 5 checkpoints are saved (n_last_checkpoints=5) to ensure stability.

• Reproducibility: To ensure reproducibility, a random seed 1377 is used (seed=1377).

A.3 Initializations

The initialization of selection logits, thresholds, response values, and temperature parameters is
handled as follows:

• Selection Logits: Each feature selection logit F ∼ U(0, 1) is initialized with a uniform.
• Response: The response values R ∼ N (0, 1) are initialized as a Gaussian.
• Threshold initialization parameter: The threshold initialization parameter β determines

the distribution of the initial thresholds. If β = 1, the initial thresholds will have the same
distribution as the data points. If β > 1 (e.g., 10), the thresholds will be closer to the
median of the data values. If β < 1 (e.g., 0.1), the thresholds will approach the minimum or
maximum of the data values.

• Thresholds: The thresholds b are initialized using random percentiles of the data, calculated
as b ∼ 100× B(β, β), where B denotes the Beta distribution.

• Threshold cutoff temperature: The cutoff temperature, denoted by τ ∈ R+, is set to 1 by
default. This parameter is used to scale the temperatures within the model.

• Temperature: The logarithmic temperatures are initialized to ensure that all bin selectors
fall within the linear region of the sparse-sigmoid function. This is done by computing a
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specific percentile of the absolute differences between feature values and their corresponding
thresholds. The chosen percentile is given by min(τ, 1) and the scaling factor is max(τ, 1).

– τ > 1.0: A margin is created between data points and the sparse-sigmoid cutoff value,
ensuring that all points are mapped within

(
0.5− 0.5

τ

)
and

(
0.5 + 0.5

τ

)
.

– τ < 1.0: A portion of the data points corresponding to (1 − τ) will fall into the flat
region of the sparse-sigmoid function. For example, if τ = 0.9, 10% of the points will
be mapped to either 0.0 or 1.0.

– τ = 1.0: This represents a balanced scenario where the data points are neither com-
pressed nor expanded relative to the sparse-sigmoid cutoff.

• Attention: The query and the key for the attention blocks are set to 0 and the selection logits
are sampled with a uniform U(0, 1).

• Weights: The weights w are Glorot initialized using a Xavier Uniform distribution with the
default gain set to 1.

A.4 Competing model training specifications

To ensure a fair and consistent comparison across different models, we align the configurations of
our model with those of NAMLSS, GAMLSS, and GAMBoostLSS wherever possible. Each model
was configured for the respective response distribution when comparing. Both the neural models
NODE-GAMLSS and NAMLSS were configured with identical learning rates, batch sizes, optimizers
and activation functions. For NAMLSS, we adopted the hyperparameters as specified in Table 9 of
Thielmann et al. [2024], using the first proposed architecture and all feature functions were modeled
as Multi-Layer Perceptrons (MLP). For the GAMLSS model, we used the default hyperparameters
provided in the GAMLSS R package. In cases where the RS solver failed to converge, CG solver
Green and Cole [1992] was used. In the case of GAMBoostLSS, the primary hyperparameter we
configured was mstops=500 but the model often encountered difficulties due to rank deficiency in
the data. GAMBoostLSS includes boosting approaches based on GAMs and GLMs and we selected
the boosting method yielding the highest log-likelihood.

A.5 Simulated data generation

We consider J = 5 features with n = 3000 observations across synthetic datasets generated from
Normal, Poisson, Lognormal, and Gamma distributions, to demonstrate the performance on both
count and continuous data. The features x1, x2, x3, x4, and x5 are independently sampled from a
uniform distribution U(0, 1). Two parameters θ1 and θ2 are computed as:

θ1 =
21

20
|x3|+ 3 cos

(
3

2
x2

)
− 2x5 − 0.2ex1 − x2

4,

θ2 = exp
(
−0.004x4 + (x1 − 0.2)2 − 1.5x2

)
+ 0.0005x5 − 0.2x3,

followed by the transformations θ1,positive = log(1 + eθ1) and θ2,positive = log(1 + eθ2) which are
used to generate response variables y based on different distributions:

• Poisson: y ∼ Poisson(θ1,positive).

• Normal: y ∼ Normal(θ1,
√

θ2,positive).

• Gamma: y ∼ Gamma(θ1,positive, θ2,positive).

• Lognormal: y ∼ Lognormal(log(θ1,positive),
√
θ2,positive).

B Objective measures

We detail the objective measures used for evaluating the performance of our model, focusing on
deviance metrics, negative log-likelihoods for the distributions, and parameter constraints enforced
through activation functions.

B.1 Deviance metrics

Beyond metrics like MSE, MAE, we require the following metrics to evaluate quantile estimates.

9



B.1.1 Quantile Score (QS)

The Quantile Score for a given quantile τ is defined as:

QSτ (y, F̂ ) =
1

n

n∑
i=1

[τ · (yi − q̂τ,i) · I(yi ≥ q̂τ,i) + (1− τ) · (q̂τ,i − yi) · I(yi < q̂τ,i)]

where yi is the observed value, q̂τ,i is the predicted τ -th quantile, and I(·) is the indicator function.

B.1.2 Continuous Ranked Probability Score (CRPS)

The CRPS by Gneiting and Raftery [2007] is defined as:

CRPS(y, F̂ ) =

∫ ∞

−∞

[
F̂ (x)− I(y ≤ x)

]2
dx

where F̂ is the cumulative distribution function (CDF) of the predicted distribution, and I(y ≤ x) is
the indicator function that equals 1 if y ≤ x and 0 otherwise.

B.1.3 Pinball Loss (PL)

The Pinball Loss Koenker and Bassett [1978] for a given quantile τ is defined as:

PLτ (y, q̂τ ) = |τ · (y − q̂τ ) · I(y ≥ q̂τ ) + (1− τ) · (q̂τ − y) · I(y < q̂τ )|

where q̂τ is the predicted τ -th quantile.

B.1.4 Winkler Score (WS)

The Winkler Score Winkler [1972] for an interval [ui, li] is given by:

Wα =
1

n

n∑
i=1


(ui − li) +

2
α (li − yi), if yi < li

(ui − li), if li ≤ yi ≤ ui

(ui − li) +
2
α (yi − ui), if yi > ui

B.2 Log-likelihoods

While the choice of loss can depend on the specific task, negative log-likelihood (NLL) is often
preferred for uncertainty modelling [Lind et al., 2024]. Below, we detail the Log-likelihoods for the
distributions currently implemented in NODE-GAMLSS.

B.2.1 Normal distribution

log
(
L
(
µ, σ2 | y

))
= −n

2
log
(
2πσ2

)
− 1

2σ2

n∑
i=1

(yi − µ)
2

Here, µ ∈ R is the location parameter, and σ ∈ R+ is the scale parameter.

B.2.2 Poisson distribution

log(L(λ | x)) =
n∑

i=1

[xi log(λ)− λ− log (xi!)]

Here, xi are non-negative integers, and λ ∈ R+ is the rate parameter.
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B.2.3 Inverse Gamma distribution

log(L(α, β | y)) = −n(α+ 1)log y − n log Γ(α) + nα log β −
n∑

i=1

βy−1
i

Here, α > 0 is the shape parameter and β > 0 is the scale parameter.

B.2.4 Beta distribution

log(L(α, β | x)) =
n∑

i=1

[(α− 1) log xi + (β − 1) log(1− xi)]− n logB(α, β)

Here, α > 0 is the first shape parameter and β > 0 is the second shape parameter.

B.2.5 Dirichlet distribution

log(L(α | x)) = log Γ

(
k∑

i=1

αi

)
−

k∑
i=1

log Γ(αi) +

k∑
i=1

(αi − 1) log xi

Here, αi > 0 are the parameters of the distribution, which must be positive, and xi ≥ 0 are the
observations, which must be non-negative and sum to 1.

B.2.6 Gamma distribution

log(L(α, β | x)) = nα log β − n log Γ(α) + (α− 1)

n∑
i=1

log xi − β

n∑
i=1

xi

Here, α > 0 is the shape parameter and β > 0 is the rate parameter.

B.2.7 Lognormal distribution

log(L(µ, σ | x)) = −n

2
log(2π)− n log σ −

n∑
i=1

log xi −
1

2σ2

n∑
i=1

(log xi − µ)2

Here, µ ∈ R is the location parameter and σ > 0 is the scale parameter. The observations xi > 0 are
positive.

B.2.8 Student’s T distribution

log(L(ν, µ, σ | x)) =
n∑

i=1

log

[
Γ
(
ν+1
2

)
√
νπσΓ

(
ν
2

) (1 + (xi − µ)2

νσ2

)− ν+1
2

]
Here, ν > 0 is the degrees of freedom, µ ∈ R is the location parameter, and σ > 0 is the scale
parameter.

B.2.9 Negative Binomial distribution

log(L(r, p | x)) =
n∑

i=1

[log Γ(xi + r)− log Γ(xi + 1)− log Γ(r) + r log(1− p) + xi log p]

Here, r > 0 is the number of successes, 0 < p < 1 is the probability of success, and xi are counts.

B.2.10 Categorical distribution

log(L(θ | x)) =
n∑

i=1

k∑
j=1

xij log θj

Here, θj ≥ 0 are the probabilities for each category, which must be non-negative and sum to 1, and
xij is an indicator variable that is 1 if observation i is in category j, and 0 otherwise.
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C Activation Functions

The common parameter constraints we come across are positivity which is implemented using the
softplus(x) = log(1 + ex). For the categorical distribution, the probabilities must be normalized
which is done using softmax. For instance, consider the Normal distribution: the location parameter
θ(1) = µ ∈ R is unrestricted, whereas the scale parameter θ(2) = σ ∈ R+ must be positive. To
enforce this positivity constraint, we use the Softplus activation function for θ(2). Consequently, our
transformed parameter predictions are: µ̂ = θ̂(1) = η(1)(θ̃(1)) = θ̃(1) and σ̂ = θ̂(2) = ln(1 + eθ̃

(2)

)

D Illustrative Results

We illustrate some additional use cases of our model visually and present some further benchmarks.

D.1 Further Benchmarks

We perform 5-fold cross-validation and benchmark our model using the Bike Sharing Fanaee-T
[2013] and German Socio-Economic Panel 1994-2002 datasets Winkelmann and Boes [2006]. We
apply a Poisson distribution for the Bike Sharing dataset and a Lognormal distribution for the German
dataset based on the response values.

Table 4: Comparison on real datasets

Dataset Model NLL

Bike Sharing

NODE-GAMLSS 25.613 ± 5.739
NAMLSS 29.176 ± 11.307
GAMLSS 36.004 ± 9.608

GSOEP9402

NODE-GAMLSS 250.768 ± 25.342
NAMLSS 282.131 ± 19.421
GAMLSS 300.182 ± 9.789

As shown in Table 4, NODE-GAMLSS demonstrates substantially better values of the NLL demon-
strating a superior ability to learn the shape of the response using the covariates. The GAMLSS
model often faces convergence issues with both the RS as well as the CG solver and hence averaging
is not done across all five folds. GAMBoostLSS does is not able to execute due to rank deficiency
issues.

D.2 Uncertainty modelling and probabilistic forecasts

The main goal of NODE-GAMLS is uncertainty modelling. In Figure 5, we use a ridge plot to
visualize the predicted uncertainties on a subset of 15 datapoints from the California housing dataset.
We can visually see that NODE-GAMLSS exhibits greater certainty around the true values compared
to the other models as evidenced by the low Winkler scores in Table 2. This can also be used to
provide a probabilistic forecast, enabling the derivation of various quantities of interest. Figure 6
illustrates a subset of 15 predictions, showcasing the model’s ability to estimate different quantiles.

D.3 Feature Importance and Interpretability

The model computes the feature importance as the weighted average of the absolute value of the
response weighted by the counts of each unique value in the purified data.
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Figure 5: Distributional predictions for California housing dataset.

Figure 6: The red dots show the true median housing values (standardized and normalized), while
the boxplots visualise the predictions of the proposed model for the 25% and 75% quantiles of the
predicted distribution.
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Figure 7: Individual and two way feature importances for the California housing dataset using the
proposed model showing that the latitude, income and longitude are the most important features for
predicting the house value.

Figure 8: Shows the mean effects predicted by the model for the covariates and two way interaction
effects. The model correctly captures the increase in housing value with an increase in the number of
bedrooms, income and households and the negative effect with population along with the effect on
two way interactions.
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Figure 9: Shows the raw variance effects predicted by the model for the covariates and two way
interaction effects. The model correctly captures a sharp decrease in variance with an increase in
income before it increases again.

15


	Introduction
	Methodology
	Experiments
	Limitations
	Conclusion and Future Work
	Benchmark Details
	Data preprocessing
	Model specifications
	Initializations
	Competing model training specifications
	Simulated data generation

	Objective measures
	Deviance metrics
	Quantile Score (QS)
	Continuous Ranked Probability Score (CRPS)
	Pinball Loss (PL)
	Winkler Score (WS)

	Log-likelihoods
	Normal distribution
	Poisson distribution
	Inverse Gamma distribution
	Beta distribution
	Dirichlet distribution
	Gamma distribution
	Lognormal distribution
	Student's T distribution
	Negative Binomial distribution
	Categorical distribution


	Activation Functions
	Illustrative Results
	Further Benchmarks
	Uncertainty modelling and probabilistic forecasts
	Feature Importance and Interpretability


