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ABSTRACT

Deep learning models are vulnerable to privacy attacks due to their tendency to
memorize individual training set examples. Theoretically-sound defenses such as
differential privacy can defend against this threat, but model performance often
suffers. Empirical defenses may thwart existing attacks while maintaining model
performance but do not offer any robust theoretical guarantees.
In this paper, we explore a new strategy based on the concept of plausible deniability.
We introduce a training algorithm called Plausibly Deniable Stochastic Gradient
Descent (PD-SGD), which aims to provide both strong privacy protection with
theoretical justification and maintain high performance. The core of this approach
is a rejection sampling technique, which probabilistically prevents updating model
parameters whenever a mini-batch cannot be plausibly denied. This ensures that
no individual example has a disproportionate influence on the model parameters.
We provide a set of theoretical results showing that PD-SGD effectively mitigates
privacy leakage from individual data points. Experiments also demonstrate that
PD-SGD offers a favorable trade-off between privacy and utility compared to
differential privacy (i.e., DP-SGD) and empirical defense methods.

1 INTRODUCTION

Deep learning models (LeCun et al., 2015) have become integral components of many contemporary
technological applications, ranging from image (Obaid et al., 2020) and speech recognition (Zhang
et al., 2018) to natural language processing (Deng & Liu, 2018). Their ability to uncover complex
patterns in data and provide high predictive accuracy has driven broad acceptance and deployment
across multiple industries. However, the pervasive usage of deep learning raises significant security
and privacy issues. Privacy attacks, such as membership inference attacks (Shokri et al., 2017; Ye
et al., 2022; Carlini et al., 2022), have been shown to exploit vulnerabilities, compromising the
confidentiality of the model’s training data.

Protecting privacy while maintaining model performance is a major challenge. Current defense
strategies are such that practitioners have to choose between strong privacy guarantees and high
model utility. Approaches based on differential privacy (DP) (Dwork, 2006) offer strong mathematical
privacy guarantees. When applied to machine learning, these approaches usually consist of clipping
and adding large amounts of noise to the gradients (Abadi et al., 2016) during training, but this often
results in drastic degradation of model performance. On the flip side, empirical defense strategies
such as Adversarial Regularization (Nasr et al., 2018), SELENA (Tang et al., 2022) often preserve
performance but come without mathematical justification that privacy is protected and thus may
ultimately prove to be highly vulnerable to future (yet-to-be-discovered) attacks.

In response to these challenges, this work aims to bridge the gap between robust theoretical privacy
guarantees and practical performance. We introduce a novel training algorithm called Plausibly
Deniable Stochastic Gradient Descent (PD-SGD), which takes inspiration from the principle of
plausible deniability (Bindschaedler et al., 2017). Unlike existing approaches, PD-SGD seeks to offer
a novel method for private learning without compromising performance.

The innovation at the core of the proposed learning algorithm is an efficient privacy test, which
inspects potential gradients from mini-batches before they are used to update the model parameters.
This privacy test enforces that anomalous gradients — those that are not plausibly deniable — will be
discarded, thereby eliminating the leakage that may otherwise result from such updates.
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The paper first discusses the theoretical foundations of the PD-SGD approach, including its design and
the privacy guarantees it offers. The proposed approach is then evaluated experimentally, comparing
its performance and trade-offs with those of existing methods such as DP-SGD and empirical defenses.
Results demonstrate that PD-SGD offers a superior privacy-utility trade-off compared to alternatives.

2 BACKGROUND & RELATED WORKS

2.1 DEEP LEARNING

In this paper, we consider supervised models to predict a target label/value in a set Y for an example
given features in a set X . The model is a function f : X → Y that is parameterized by a vector θ
of trainable parameters. The model is trained using a dataset D of n data points (xi, yi), i ∈ [1, n]
where xi ∈ X and yi ∈ Y and solving for the vector θ that minimizes the loss function L(·) on D.

To (approximately) solve this optimization problem, we can use Stochastic Gradient Descent
(SGD) (Gower et al., 2019) or one of its many variants (Haji & Abdulazeez, 2021). We focus
on mini-batch SGD which we refer to as (vanilla) SGD. In each iteration, the algorithm partitions
the training set into (roughly) equal-sized mini-batches, randomly picks a mini-batch, and updates
the parameters according to the mini-batch’s gradient. Specifically given a mini batch Bj , we let
gj = ∇θL(θ,Bj) ∈ Rk denote the gradient of the loss on Bj with respect to the model parameters
θ ∈ Rk. The update at step t is therefore: θt = θt−1 − ηgj , where η is the chosen learning rate.

2.2 MEMBERSHIP INFERENCE ATTACKS

Membership inference attacks (MIAs) have been extensively studied in recent years (Shokri et al.,
2017; Salem et al., 2018; Yeom et al., 2018; Sablayrolles et al., 2019; Long et al., 2020; Choquette-
Choo et al., 2021; Carlini et al., 2022; Ye et al., 2022; Matsumoto et al., 2023; Bertran et al., 2023;
Zarifzadeh et al., 2024). These are privacy attacks where the adversary aims to determine if a specific
example was included in a target model’s training set. Specifically, given a specific target example
(x, y), the adversary seeks to discern between two competing hypotheses:

• H0 (“non-member” or “out”): (x, y) /∈ D, or
• H1 (“member” or “in” or ‘): (x, y) ∈ D.

Membership inference attacks were first introduced by Shokri et al. (2017), employing shadow
models trained on data similar to the target’s to emulate its behavior and generate attack data. Recent
works like Ye et al. (2022) propose different attack variants aim to reduce adversarial uncertainty to
improve attack effectiveness. Carlini et al. (2022) propose a Likelihood Ratio Attack while advocating
focusing on increasing true positive rates at low false positive rates.

2.3 DEFENSES

Table 1: Comparison between defense methods: We compare our proposed PD-SGD with other defense
methods from privacy and utility.

Method Privacy Utility
AdvReg (Nasr et al., 2018) Empirical High
SELENA (Tang et al., 2022) Empirical High
DP-SGD (Abadi et al., 2016) Provable Low
PD-SGD(Ours) Provable High

There exist numerous defenses against privacy attacks in general and membership inference attacks
in particular. Some of these defenses provide provable guarantees, whereas others only provide
empirical mitigation.

Defenses with a provable guarantee. Some defenses provide a formal privacy guarantee. This is
the case for the most widely-used technique called Differentially Private Stochastic Gradient Descent
(DP-SGD— Abadi et al. (2016)), which provably satisfies differential privacy (Dwork et al., 2006).
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DP-SGD updates the model parameters iteratively like SGD, except that it bounds privacy leakage
through (1) per-example clipping and (2) noise addition. Each mini-batch gradient is computed as the
average over the batch’s per-example gradients, but the per-example gradients are first clipped to
have bounded l2-norm. This ensures that each example has a bounded influence on the mini-batch
gradient that decreases with the size of the mini-batch. Further, the mini-batch gradient is noised with
isotropic Gaussian noise before being used to update the parameters.

Given a clipping threshold C > 0, the noisy gradient is:

ḡj =
1

L

∑
i

gj,i ·min(1,
C

||gj,i||
) +N (0, σ2C2I) ,

where L is the number of examples in the mini-batch, gj,i is the gradient vector of example i in batch
Bj , and σ is the noise level.

Models trained this way achieve (ε, δ)-differential privacy, where ε > 0 is the privacy budget.
However, models’ prediction accuracy often suffers significantly due to the impact of the noise
(Dörmann et al., 2021) and gradient clipping (Chen et al. (2020); Qian et al. (2021); Koloskova
et al. (2023)). Careful tuning of hyperparameters, and (or) use of techniques such as data aug-
mentation (De et al., 2022) is critical to obtain the favorable utility, especially when the amount
of training (or fine-tuning) data is limited (Tobaben et al., 2023). Another drawback is increased
training time, and larger memory requirements, although recent research attempts to mitigate these
issues (Bu et al. (2022); Beltran et al.).

Empirical defenses. To address the problem of low utility while still effectively thwarting member-
ship inference, several empirical defense mechanisms have been proposed. These include Adversarial
Regularization (AdvReg) (Nasr et al., 2018), SELENA (Tang et al., 2022), and so on. We select
AdvReg and SELENA because they are well-known and widely used as baselines (Tang et al., 2022;
Aerni et al., 2024). These defense mechanisms are applied at training time like DP-SGD.1

These approaches typically employ strategies such as regularization to lower the attack score, or
applying knowledge distillation to mitigate the attacks. While these empirical defense mechanisms
can preserve the model utility and offer some level of privacy protection, they lack provable theoretical
guarantees. Consequently, it is unclear to what extent they truly eliminate sensitive information
leakage or the degree to which they will be effective against future attacks, especially adaptive attacks.

To the best of our knowledge, no existing defense mechanism simultaneously offers a provable
theoretical guarantee and maintains good model utility. Our proposed method, PD-SGD, is designed
to help bridge this gap (see Table 1).

2.4 PLAUSIBLE DENIABILITY

It is often said that differential privacy provides plausible deniability. This makes sense on the basis
that differential privacy ensures that the probabilities of any output on neighboring datasets (datasets
that differ in exactly one example) are tightly bounded in terms of the privacy budget ε.

Plausible deniability as a formal privacy notion was proposed by Bindschaedler et al. (2017) in the
context of synthesizing tabular microdata. In their setting, they repeatedly select a single row of a
database as a “seed” and use it to probabilistically produce a new synthetic row similar to it. The
problem is that this procedure may not preserve privacy since the process statistically ties the synthetic
to the seed. To get around this issue, the authors formalize the notion of plausibility deniability.

Informally, a synthetic is plausibly deniable if we can find that in the original database, more than T
(integer parameter) alternative rows could have led to generating the synthetic with similar probability.
This similarity in probability is determined by a ratio bounded by some α > 1, assuming those rows
have been (as a counterfactual) selected as seed. To enforce this constraint, a privacy test using
rejection sampling is defined. The test ensures that if a synthetic is ever produced that does not meet
the plausibility deniability constraint, it will be thrown away. With some additional randomization of
this test, this procedure can be made to yield (ε, δ)-differential privacy.

1There are inference time defenses such as MemGuard (Jia et al., 2019). We do not consider them, since we
propose a training time defense.
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3 PLAUSIBLE DENIABILITY FOR DEEP LEARNING

We propose a new formulation of plausible deniability that can be applied to SGD training at the
level of mini-batches. To enforce plausible deniability, we implement a privacy test on the potential
gradient updates from a mini-batch. If a mini-batch includes one or more examples that yield an
implausible gradient (with respect to other mini-batch’s gradients), we reject this gradient — we do
not use it to update the model parameters.

3.1 THE ANATOMY OF PRIVACY LEAKAGE

A root cause of privacy leakage in deep learning — the kind that membership inference attacks exploit
— is the disproportionate impact of including a single example in the dataset onto the model. For
instance, imagine an iteration of SGD where we have selected a batch B and computed its gradient
vector g. We can consider the counterfactual of having selected a batch B′ = B ∪ {(x, y)} that
includes some example (x, y). The crucial observation is that the gradient vector g′ for B′ may be
completely different than g, even if the batch B is large. For instance, g′ may point in the opposite
direction, i.e., g′ = −g, or g′ ⊥ g, or even g′ = 0. There is no guarantee that adding any example
to any batch will not arbitrarily distort the gradient. The consequence for data privacy is that if the
adversary observes this, directly or indirectly (through the model parameters), then they can infer
membership of (x, y).

DP-SGD avoids this problem by using per-example gradient clipping. In this work, we take a
different approach. Instead of trying to constrain the change in the gradient that would result from
adding/removing any example, we seek to detect those batches with gradients that are not plausibly
deniable. We can think of such batches are “anomalous” compared to other batches, and we can
simply discard any potential parameter updates based on them.

3.2 PRIVACY NOTION AND PRIVACY TEST

We propose to update the model parameters only if the gradient gi is plausibly deniable, i.e., if it
is not too dissimilar to the gradients of some other mini-batches. To formalize this, we first need
to add isotropic Gaussian noise to the gradient vector g as g̃ = g + Z, where Z ∼ N (0, σ2I).
Note that adding noise to the gradient in SGD is a well-known technique that has benefits for
convergence (Neelakantan et al., 2015; Ziyin et al., 2022). In our case, this allows us to view each
(noisy) mini-batch gradient g̃ as a random variable. Given this, we can define the probability that a
given fixed gradient vector g̃ is plausibly obtained from any mini-batch gradient gi, and from there
the concept of a plausibly deniable gradient update.
Definition 1. Let B1, . . . , Bm be disjoint mini-batches and g1, . . . , gm be their associated gradient.
Let Bs be the chosen “seed” batch with associated gradient gs. We say that batch Bs is (α, σ, T )-
plausibly deniable if there are at least T > 1 distinct batches Bi with i ∈ [1,m] that satisfy:

α−1 ≤ p(g̃s − gs)

p(g̃s − gi)
≤ α , (1)

where g̃s = gs + Z for Z ∼ N (0, σ2I). Here σ > 0, α ≥ 1, T > 1 are privacy parameters.

Now let α = exp (γ) for some γ > 0 and p(·) denotes the probability density function (pdf) of
N (0, Iσ2). We will often think of γ as the privacy parameter (instead of α).

When we take the log of pdf, it is easy to see that Eq. (1) is equivalent to testing if:

|logpdf(Z)− logpdf(g̃s − gi)| ≤ γ , (2)

which is easily testable for all batches’ gradients gi for i = 1, 2, . . . ,m since the log-pdf of isotropic
Gaussian can be computed efficiently.

3.3 ALGORITHM

Algorithm 1 provides a description of the proposed method. We initialize θ0 randomly and iterate for
up to S learning steps. In each step, we randomly partition the training data D into m roughly equal
batches B1, . . . , Bm. But unlike SGD, we only pick a single seed batch Bs among them uniformly at
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Algorithm 1 Plausibly Deniable Stochastic Gradient Descent (PD-SGD)

Input: Training dataset D, number of batches m, number of training steps S, loss function L(·),
privacy test parameters (γ, T ).
Initialize: θ0 randomly
for i = 1, 2, . . . , S steps do

Randomly split D into {B1, . . . , Bm} // Equal size batches
Pick seed batch Bs uniformly at random
gs ← ∇θL(θi−1, Bs) // Compute gradient on seed batch
g̃s ← gs + Z where Z ∼ N (0, σ2I) // Compute noisy gradient
τcount ← 0
θi ← θi−1

for j ∈ [1,m] do // Privacy test and parameter updates
gj ← ∇θL(θi−1, Bj) // Compute gradient on batch Bj

τj ← 1|logpdf(g̃s−gs)−logpdf(g̃s−gj)|≤γ // Is gradient plausible?
τcount ← τcount + τj
if τcount ≥ T then // Enough plausible alternative batches?

θi ← θi−1 − η g̃s // Update model parameters with g̃s
Break

end if
end for

end for

random. We then compute the gradient vector of the loss with respect to the model parameters under
seed batch Bs, which results in gs, and add isotropic Gaussian noise with scale σ on it to obtain noisy
gradient g̃s.

Evaluating the privacy test involves the computation of the other batches’ gradients. For this, we
count the number of unique batches that satisfy Eq. (2). We compare this quantity to the threshold
T > 1. If the quantity is greater than or equal, then we update the model parameters θi with the noisy
gradient g̃s (and exit the inner loop early). Otherwise, the update is never applied (keep θi = θi−1)
(i.e., we discard the update) and continue to the next step.

Privacy-Utility Tradeoff. Rejections of the privacy test drive the privacy (and utility) of the model.
In particular, if the test never rejects any candidate gradient updates, then Algorithm 1 is equivalent to
(vanilla) SGD. Informally, we expect utility to be maximized when the rejection rate is near 0, and we
expect privacy to increase as rejection rates increase. Critically, the privacy test must reject precisely
those gradients from batches that would leak private information (e.g., those that would increase the
vulnerability to membership inference). We show theoretically why this is guaranteed to happen in
the next section. We also demonstrate experimentally that this happens in practice in Section 5.

Algorithmic Complexity. Compared to SGD, Algorithm 1 only performs at most a single update
of model parameters in each step. This update only occurs if the privacy test passes and it requires
computing up to m batches’ gradients. Checking Eq. (2) is reasonably efficient in practice so the main
computational bottleneck is the gradients’ computations. However, observe that when the rejection
rate is expected to be low, the algorithm will often not need to compute all m batches’ gradients to
pass the test. In experiments (supplementary materials) we find that although PD-SGD is slower than
SGD, it is often much faster than DP-SGD for a single training step, in large part because it does not
require calculating per-example gradients.

4 THEORETICAL JUSTIFICATION: WHY DOES PD-SGD PROTECT PRIVACY?

So far, we described the PD-SGD algorithm and explained its privacy test. The premise is that if we
only ever apply parameter updates based on batch gradients’ that are plausibly deniable, then privacy
is protected. Viewed through this lens, Algorithm 1 provides an intuitive guarantee.

In this section, we go beyond this intuition and show that the privacy test provably prevents those
updates that would leak private information.

5
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4.1 WHY DO (SOME) BATCHES PASS THE PRIVACY TEST?

The privacy test rejects gradient updates that are not plausibly deniable. In the following, we show
that batches with gradients that have a large l2 norm compared to other batches’ gradients are rejected
with overwhelming probability. The reason for this is the deep mathematical connection between the
Gaussian distribution and the l2-norm, which has been explored in other contexts (Figueiredo, 2001;
Evans & Stark, 2002; MacKay, 2003). More precisely, the probability of passing the test decreases
exponentially as a function of increasing l2 distance to the closest other batch’s gradient.

Consider a seed batch Bs, its associated gradient gs, and another batch Bi with gradient gi. Recall
that a noisy candidate gradient g̃s = gs + Z is plausibly deniable with respect to batch Bi iff Eq. (1)
holds. In other words, we denote plausibility (of g̃s with respect to some gi) as the probability
that Eq. (1) holds:

q(s, i) = Pr

[
α−1 ≤ p(g̃s − gs)

p(g̃s − gi)
≤ α

]
,

where the probability q(s, i) is taken over the randomness of Z ∼ N (0, σ2I). This probability only
depends on batches Bs and Bi. The following result shows that it only depends on the l2-distance
between the two gradients, i.e., ||gs − gi||2.
Lemma 1. For any seed batch with gradient gs and any mini-batch with gradient gi, let d =
||gs − gi||22. The probability that Eq. (1) holds depends only d and we have:

q(d) = q(s, i) = Pr

(
Y ∈

[
d− γ̃

2σ
√
d
,
d+ γ̃

2σ
√
d

])
, (3)

where Y ∼ N (0, 1) and γ̃ = 2σ2γ.

Lemma 1 shows that q(d) is exactly the probability that a standard normal variable takes a value in
[ d−γ̃

2σ
√
d
, d+γ̃

2σ
√
d
] where γ̃ = 2σ2γ. We provide a proof in Appendix B.

Intuitively, for a≫ b > 0 the probability Pr(a− b ≤ Y ≤ a+ b) can be reasonably approximated as
2bϕ(a) where ϕ(·) is the standard normal pdf, and thus the probability falls exponentially fast with a.

The following results derived from tail bounds on Lemma 1 show that plausibility falls off exponen-
tially fast with the l2-norm d whenever d is sufficiently large with respect to γ̃. This immediately
implies that any highly anomalous candidate gradient (i.e., gradient with large l2-norm to all other
mini-batch gradients) will be rejected with high probability.
Lemma 2. For any seed batch with gradient gs and any mini-batch with gradient gi, and let d be
defined as in Lemma 1. If d > 2σ2γ, we have that:

q(d) < Cd,γ,σ · exp
(
−
[
d2 + γ̃2

8dσ2

])
. (4)

where Cd,γ,σ =
√
2dσ√
π
·

exp
(γ
2

)
d− γ̃

−
(d+ γ̃) · exp

(
−γ

2

)
((d+ γ̃)2 + 4σ2d)

.

We defer the proof of Lemma 2 to Appendix B. We also provide a simple upper-bound in Corollary 1
which is also in Appendix B.

4.2 PRIVACY GUARANTEES & PARAMETER TUNING

Recall from Section 3.1 that privacy leakage results from including examples that distort the gradient.
Lemma 2 implies that privacy leakage is guaranteed to be mitigated in the following sense. Any
example causing a large distortion to the batch gradient, if included, will result in a failure to pass the
privacy test with a high probability.

To see this observe the following. Consider an example within a batch that has a highly distorting
impact on this batch’s gradient g⋆s compared to the batch’s gradient without this example gs, i.e.,
||g⋆s − gs||22 is large. If g⋆s is also anomalous with respect to all other mini-batch gradients, i.e.,

6
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Figure 1: Normalized Distance d∗ for varying σ and γ under different q(d). We observe that for a fixed
probability of passing the test q(d), the larger the product of σ and γ the larger the normalized distance d∗ can
be, meaning that more anomalous batches pass the privacy test. Note that d∗ =

√
d/k where k is the dimension

of the gradient vector (we set k = 7680 for this case).

d = mini ||g⋆s − gi||22 ≥ ||g⋆s − gs||22, then, the probability of passing the privacy test with threshold
T (assuming T > 1) is at most (m− 1)q(d) by union bound.

Further, by tuning γ and σ, we can make q(d) arbitrarily small and therefore (in principle) eliminate
the privacy leakage of any example. However, the relationships between d, σ and γ are complex.
There is a tradeoff between σ and γ in terms of satisfying Eq. (1). Informally, for a fixed γ, the
probability decreases exponentially with the ratio d

σ2 . So if d is large then a large noise scale is
required for plausibility (in which case privacy leakage is eliminated from the large noise). Conversely,
with a small noise scale even relatively small deviations d are not plausible.

To provide intuition and guide parameter tuning, we plot the minimum d such that q(d) is at most
some δ > 0 as a function of γ and σ. This is shown in Fig. 1 for δ = 0.05 and δ = 10−5, which plots√
d/k, where k is the dimension of the gradient vector (i.e., g ∈ Rk) that used here for normalization.

We observe that (as expected) we require larger d∗ for the same σ and γ for q(d) < 10−5 compared
to q(d) < 0.05. Moreover, for a fixed q(d), the normalized distance d∗ appears to grow with the
product of σ and γ. This is consistent with Lemma 2, which suggests that the asymptotic behavior is
driven by the product σ2γ. Furthermore, when tuning the privacy parameters, exploring combinations
of σ and γ such that σ2γ remains roughly constant is a sensible strategy.

5 EXPERIMENTS

5.1 SETUP

We use three of the most commonly used datasets for evaluating membership inference attacks
(Shokri et al., 2017; Ye et al., 2022; Tang et al., 2022) and DP-SGD (De et al., 2022; Bao et al., 2024):
CIFAR-10, CIFAR-100 and Purchase-100. For the models, we fine-tune ViT-B-16 for CIFAR-10 and
CIFAR-100 following few-shot settings in (Tobaben et al., 2023) using 500 shots for CIFAR-10 and
1000 for CIFAR-100, linear model for Purchase-100, and Wide ResNet16-4 for CIFAR-10 training
from scratch. We use the Privacy Meter toolbox 2 for the implementation of membership inference
attacks. From it, we use the Population Attack (P-Attack), Reference Attack (R-Attack), Shadow
model Attack (S-Attack) based on Ye et al. (2022) and Carlini et al. Attack (C-Attack) based on
Carlini et al. (2022). We employ these four widely used attacks to comprehensively evaluate empirical
privacy leakage and make fair comparisons between different methods. Note that our goal here is not
to use the most exotic or recent attack, but to establish a fair empirical comparison between different
defense methods, and thus we use a well-understood set of popular recent membership inference
attacks. We provide more details in Appendix C.
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Table 2: Evaluations for PD-SGD: We evaluate PD-SGD on three datasets with four different attacks. We report
the average results and standard deviation among three independent runs. We can observe that PD-SGD can
achieve a better privacy-utility trade-off than other empirical defense mechanisms and DP-SGD.

Dataset Method Test acc P-Attack R-Attack S-Attack C-Attack

CIFAR-10

Non-private 96.09% (±0.02%) 0.57(±0.01) 0.69(±0.01) 0.56 (±0.01) 0.37% (±0.03%)
AdvReg 95.96% (±0.06%) 0.56 (±0.01) 0.59 (±0.01) 0.55 (±0.00) 0.31% (±0.01%)
SELENA 96.01% (±0.04%) 0.55 (±0.00) 0.51 (±0.01) 0.56 (±0.02) 0.33% (±0.02%)

PD-SGD (param setting 1) 96.18% (±0.06%) 0.54 (±0.01) 0.49 (±0.01) 0.55 (±0.01) 0.27% (±0.02%)
PD-SGD (param setting 2) 94.73% (±0.07%) 0.53 (±0.01) 0.49 (±0.01) 0.53 (±0.01) 0.20%(±0.03%)

DP-SGD (ε = 1) 68.97% (±0.11%) 0.52(±0.01) 0.50(±0.01) 0.52(±0.01) 0.17% (±0.01%)
DP-SGD (ε = 4) 93.53% (±0.07%) 0.54 (±0.01) 0.56 (±0.02) 0.54 (±0.01) 0.20% (±0.03%)
DP-SGD (ε = 8) 94.22% (±0.09%) 0.54 (±0.00) 0.59 (±0.01) 0.54 (±0.01) 0.23% (±0.02%)

CIFAR-100

Non-private 74.22% (±0.03%) 0.73(±0.01) 0.68(±0.01) 0.73(±0.01) 0.38% (±0.03%)
AdvReg 72.08% (±0.03%) 0.70(±0.01) 0.68(±0.01) 0.72(±0.01) 0.33% (±0.02%)
SELENA 68.46% (±0.04%) 0.63(±0.00) 0.60(±0.01) 0.65(±0.01) 0.19% (±0.02%)

PD-SGD (param setting 1) 72.56% (±0.06%) 0.67(±0.01) 0.62(±0.01) 0.64(±0.01) 0.18% (±0.02%)
PD-SGD (param setting 2) 68.79% (±0.05%) 0.62(±0.01) 0.59 (±0.01) 0.62 (±0.01) 0.14% (±0.02%)

DP-SGD (ε = 1) 4.46% (±0.13%) 0.50 (±0.01) 0.50(±0.00) 0.50 (±0.01) 0.10% (±0.01%)
DP-SGD (ε = 4) 18.37% (±0.06%) 0.50(±0.00) 0.50 (±0.01) 0.51 (±0.01) 0.12% (±0.02%)
DP-SGD (ε = 8) 27.12% (±0.05%) 0.51 (±0.01) 0.52 (±0.01) 0.51 (±0.01) 0.13% (±0.03%)

Purchase-100

Non-private 68.56%(±0.12%) 0.76(±0.01) 0.78(±0.01) 0.77(±0.01) 0.12%(±0.02%)
AdvReg 57.56%(±0.07%) 0.70(±0.01) 0.70(±0.01) 0.66(±0.01) 0.08%(±0.02%)
SELENA 64.31% (±0.09%) 0.63(±0.00) 0.73(±0.01) 0.66(±0.01) 0.07%(±0.01%)

PD-SGD (param setting 1) 64.83% (±0.05%) 0.63(±0.01) 0.72(±0.01) 0.64(±0.01) 0.06% (±0.01%)
PD-SGD (param setting 2) 61.16% (±0.07%) 0.61(±0.01) 0.59(±0.02) 0.60(±0.01) 0.06% (±0.01%)

DP-SGD (ε = 1) 22.51% (±0.22%) 0.53(±0.01) 0.54(±0.01) 0.54(±0.00) 0.04% (±0.01%)
DP-SGD (ε = 4) 43.46% (±0.15%) 0.56(±0.01) 0.55(±0.01) 0.56(±0.01) 0.07%(±0.02%)
DP-SGD (ε = 8) 47.61% (±0.12%) 0.56(±0.00) 0.56(±0.01) 0.56(±0.01) 0.08% (±0.01%)

Table 3: Evaluate PD-SGD on ResNet-like model with Training from scratch: Train WRN-16-4 from scratch
with PD-SGD on CIFAR-10. We can observe the same thing: PD-SGD achieves a better privacy-utility trade-off
than other defense mechanisms.

Method Test acc P-Attack R-Attack S-Attack C-Attack
Non-private 87.22% (±0.13%) 0.60 (±0.01) 0.60 (±0.01) 0.58 (±0.01) 0.22% (±0.03%)

AdvReg 75.38% (±0.09%) 0.53 (±0.00) 0.54 (±0.01) 0.53 (±0.01) 0.19% (±0.02%)
SELENA 81.04% (±0.07%) 0.53 (±0.01) 0.53 (±0.01) 0.53 (±0.01) 0.19% (±0.01%)

PD-SGD (param setting 1) 82.22% (±0.11%) 0.53 (±0.01) 0.52 (±0.01) 0.51 (±0.01) 0.19% (±0.01%)
PD-SGD (param setting 2) 79.69% (±0.25%) 0.53 (±0.00) 0.50 (±0.01) 0.51 (±0.01) 0.15% (±0.01%)

DP-SGD (ε = 1) 26.53% (±0.48%) 0.50 (±0.00) 0.49 (±0.01) 0.50 (±0.01) 0.07% (±0.02%)
DP-SGD (ε = 4) 55.46% (±0.28%) 0.50 (±0.01) 0.49 (±0.01) 0.50 (±0.01) 0.10% (±0.01%)
DP-SGD (ε = 8) 63.31% (±0.15%) 0.51 (±0.01) 0.50 (±0.00) 0.51 (±0.01) 0.13% (±0.02%)

5.2 EVALUATIONS

We evaluate the utility and privacy of our proposed methods and other defense mechanisms. We
primarily evaluate utility using the trained models’ test accuracies, although we include results on
computational overhead in Appendix D.1. We evaluate privacy using our selected set of four different
membership inference attacks, namely P-Attack, R-Attack, and S-Attack, and C-Attack. For the first
three, we report the attack AUC score. For C-Attack we report TPR at 0.01% FPR as advocated for
by Carlini et al. (2022).

We use two sets of hyperparameters for PD-SGD. Parameter setting 1 is designed to optimize utility
while maintaining reasonable privacy, while parameter setting 2 prioritizes better privacy at the cost
of lower accuracy. Appendix E provides full details of the parameter settings.

Table 2 shows the results. We observe that PD-SGD, particularly with parameter setting 1, achieves
comparable utility to non-private setting with a 96.15% test accuracy on CIFAR-10 and maintains
robust performance on CIFAR-100 and Purchase-100, though slightly lower than some non-private
baselines. Notably, PD-SGD exhibits stronger membership inference attack resilience than empirical
defenses, with C-Attack performance being among the lowest recorded.

Furthermore, PD-SGD provides a favorable privacy-utility tradeoff even in cases where privacy
is paramount (parameter setting 2). For instance, there is only approximately 7% decrease in test
accuracy to obtain a reduction in attack AUC of nearly 0.16 for Purchase-100, compared to the
non-private baseline.

Overall, findings show that PD-SGD achieves a superior trade-off between privacy and utility,
surpassing empirical defenses. Compared to DP-SGD, the method sometimes provides good or better

2https://github.com/privacytrustlab/ml_privacy_meter
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Figure 2: Privacy-Utility Trade-off for different methods : We train WRN-16-4 on CIFAR-10 from scratch
with different defense methods. We can observe that PD-SGD provides a better Privacy-Utility trade-off than
all other defense methods. Note that Attack Advantage is computed as 2 × (Balanced Attack Accuracy − 0.5).

Table 4: Impact of Privacy Test and Noise: We keep all hyperparameters the same, only changing the threshold
T to control the privacy test. ✓means the presence of noise or the application of a privacy test, × means the
absence of these components, and ⊗ represents the use of random rejection for gradient updates instead of
standard privacy testing.

Method Noise Privacy Test Test acc P-Attack R-Attack S-Attack C-Attack
Non Private × × 96.08% 0.56 0.68 0.56 0.35%
Only Noise ✓ × 94.99% 0.54 0.57 0.55 0.30%

Only Privacy Test × ✓ 96.01% 0.55 0.56 0.56 0.32%
Random Rejection ✓ ⊗ 94.78% 0.55 0.54 0.54 0.28%

PD-SGD ✓ ✓ 94.70% 0.53 0.48 0.53 0.20%

membership privacy but with higher test accuracy. For instance, PD-SGD provides both higher test
accuracy and better MIA defense than DP-SGD for ε = 8 for CIFAR-10.

To demonstrate the generalizability of PD-SGD across different model architectures, we extend
our evaluation to a ResNet-like architecture by training a Wide ResNet (WRN-16-4) model from
scratch on the CIFAR-10 dataset. Table 3 shows the results. In this table, PD-SGD also exhibits a
superior privacy-utility trade-off compared to alternative defense mechanisms. Notably, PD-SGD with
parameter setting 1 achieves a test accuracy of 82.14%, surpassing other privacy-preserving methods
such as SELENA (81.03%) and AdvReg (75.34%). Moreover, PD-SGD achieves a significantly
lower vulnerability to membership inference attacks. In particular, the R-Attack AUC score shows a
marked decrease from 0.60 to 0.51 with parameter setting 2 of PD-SGD.

We illustrate the privacy-utility tradeoff between methods visually in Fig. 2. The x-axis shows the
attack advantage and the y-axis shows the test accuracy for the WRN-16-4 model trained on CIFAR-
10. Compared to DP-SGD, PD-SGD provides higher test accuracy for the same attack advantage.
Compared to empirical defenses, a major advantage of PD-SGD is that it offers a way to navigate the
tradeoff (through the privacy parameter) and not (only) a fixed point on the privacy-utility landscape.

6 ABLATION STUDY: WHY DOES PD-SGD WORK?

In this section, we perform a set of ablation experiments to examine the effect of each component
within PD-SGD. We also explore why PD-SGD effectively protects privacy.

In Appendix D, we explore trade-offs between the privacy parameters, discuss parameter tuning, and
provide additional experiments such as computation time per training step.

6.1 HOW PRIVACY TEST AND NOISE HELPS DEFEND MIA?

Compared to (vanilla-)SGD, PD-SGD includes two components: (1) noise addition to the seed batch’s
gradient, and (2) a plausible deniability-based privacy test. We create a set of principled experiments
to isolate the effect of these two components.

9
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Figure 3: Rejection rate for anomalous and normal batches. Rejection rate for the anomalous batch increases
to close to 100% as the proportion of poisoned examples increases while the rate for normal batches remains
stable. This suggests that, as desired for privacy and utility, only those gradient updates that may cause privacy
leaks are rejected.

• Only Noise: we set the threshold T = 1, guaranteeing the privacy test will always pass.
• Only Privacy Test: use privacy test normally, but update parameters using the un-noised gradient.
• Random Rejection: seed batches’ gradients are randomly rejected at the same rate as PD-SGD.

Table 4 shows the results. Adding noise to the gradient without the privacy test does not effectively
defend against membership inference. The R-Attack success rate decreases substantially, but there is
no substantial decrease for P-Attack, S-Attack, and C-Attack. Similarly, if the privacy test is used
but the gradient is un-noised or if updates are randomly rejected, we again see no major decrease
in membership inference attack success rates. By contrast, PD-SGD exhibits the largest effect in
mitigating membership inference attacks. The R-Attack success rate drops further to 0.48, and other
attack vectors like P-Attack, S-Attack, and C-Attack are similarly reduced.

These results demonstrate that it is the combination of both noise addition and privacy test that results
in the observed privacy protection of PD-SGD.

6.2 REJECTION OF ANOMALOUS BATCHES

How do we know that PD-SGD rejects gradient updates from anomalous batches and only those from
anomalous batches? We intentionally generate anomalous batches to evaluate this by flipping the
labels of a subset of examples (“poisoned examples”) and grouping them into a single batch with
other normal samples. We ensure that throughout training the poisoned examples are in the same
“anomalous” batch. We then collect the rejection rates when the anomalous batch is the seed and
when other batches are the seed, for varying proportion of poisoned examples.

Results are shown in Fig. 3, where we observe that for normal batches remain consistently low,
as expected and desired. This means that the privacy test does not discard updates unnecessarily.
However, when the anomalous batch is selected as seed, the rejection rate increases significantly and
quickly plateaus near 100% as the proportion of poisoned examples increases. This indicates that
PD-SGD effectively identifies and rejects anomalous batches, preventing the model parameters from
being updated in such cases.

7 CONCLUSIONS

We proposed PD-SGD, a new approach for private learning without compromising performance.
PD-SGD is based on a rejection sampling approach using a privacy test. Theoretical and experimental
results demonstrate that PD-SGD provides a superior privacy-utility trade-off compared to both
existing methods with provable privacy such as DP-SGD and empirical defenses. This makes PD-
SGD a promising solution for enhancing privacy protection in practical deep-learning applications.

10
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privacy when deploying machine learning is important because it has the potential to substantially
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work suggests that the privacy benefits of some technical approaches may not be shared equally
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A SYMBOLS

Table 5: Table of Symbols.

Symbol Meaning Where
(x, y) Individual Example From Training Set Section 2.1
θ Model Parameter Vector — θ ∈ Rk Section 2.1
Bi SGD Mini-Batch i Section 3.2
gs Gradient (of the Loss wrt θ) of Batch i Section 3.2
Bs Chosen “Seed” Batch Section 3.2
gs Gradient of Seed Batch Section 3.2
g̃s Noisy Gradient (of Seed Batch) Section 3.2
σ Privacy Parameter — Noise Scale Section 3.2
Z Gaussian Noise — N (0, σ2I) Section 3.2
γ Privacy Parameter — Log-PDF Threshold Section 3.3
T Privacy Parameter — Plausible Batches Threshold Section 3.3
γ̃ (Half-)Width of Acceptance Region — γ̃ = 2σ2γ Section 4.1
d Squared l2 Distance of Gradients Between Seed and Batch i — d = ||gs − gi||22 Section 4.1
q(d) Probability that Eq. (1) holds for a given d Section 4.1

B PROOFS

We now prove Lemma 1.

Proof of Lemma 1. Consider the ratio of probabilities bounded by Eq. (1) and expand using the
Gaussian PDF. We get:

p(g̃s − gs)

p(g̃s − g)
=

exp
(
−(2σ2)−1

∑k
j=1 Z

2
j

)
exp

(
−(2σ2)−1

∑k
j=1(Zj + (gs,j − gi,j))2

)
= exp

−(2σ2)−1
k∑

j=1

[
Z2
j − (dj + Zj)

2
]

= exp

−(2σ2)−1

−d− 2

k∑
j=1

djZj

 ,

where dj = gs,j − gi,j and d =
∑k

j=1 d
2
j = ||gs − gi||22.

Plugging this into the inequality, taking the log and some reorganization we get that the candidate
gradient is plausibly deniable with respect to gi iff:

− γσ√
d
≤
√
d

2σ
+

k∑
j=1

dj√
d

Zj

σ
≤ γσ√

d
.

Since Zj ∼ N (0, σ2), the summand for j is distributed as N (0, d−1d2j ). Further, since the sum of
i.i.d. Gaussian random variable is distributed a Gaussian random variable with the sum of the means
and the sum of the variance, we recognize that Y =

∑k
j=1

dj√
d

Zj

σ ∼ N (0, 1).

Thus reducing the plausibility of a candidate gradient to:
√
d

2σ
− γσ√

d
≤ Y ≤ γσ√

d
+

√
d

2σ
, (5)

and further to
d− 2γσ2

2σ
√
d
≤ Y ≤ d+ 2γσ2

2σ
√
d

(6)
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where we have used symmetry so that −Y has the same distribution as Y .

Therefore, Y needs to be within a band of width γ̃

σ
√
d

around
√
d/2σ where γ̃ = 2σ2γ, which

completes the proof.

The proof of Lemma 2 relies on the following standard normal upper and lower tail bounds:
Lemma 3. Let X ∼ N(0, 1). For t > 0, we have:

t

t2 + 1
(
√
2π)−1 exp (−t2/2) < Pr(X > t) < (t

√
2π)−1 exp (−t2/2) .

Note that tighter bounds are available (Cook (2024); Duembgen (2010)).

Proof of Lemma 2. Let a =
√
d

2σ and b = γσ√
d

. We have from Lemma 1 that q(s, i) = Pr(a − b ≤
X ≤ a+ b) for X ∼ N(0, 1). Thus:

q(s, i) = Pr(X > a− b)− Pr(X > a+ b)

<
1

(a− b)
√
2π

e−(a−b)2/2 − (a+ b)

((a+ b)2 + 1)
√
2π

e−(a+b)2/2

=
1√
2π

[
1

a− b
e−(a−b)2/2 − (a+ b)

(a+ b)2 + 1
e−(a+b)2/2

]

=
e

−(a2+b2)
2

√
2π

[
eab

a− b
− (a+ b)

(a+ b)2 + 1
e−ab

]
.

Substituting back a and b in terms of d, σ, γ yields the result.

The following corollary of the lemma provides a simple upper bound whenever d > γ̃.
Corollary 1. Let d ≥ γ̃

f for some 0 < f < 1. Then:

q(d) <
e−( d

8σ2 + γ2σ2

2d )

√
2πd

2σ

[
eγ/2

1− f
− e−γ/2

2 + f

]
(7)

Proof of Corollary 1. Let d ≥ 2γσ2 which implies a− b ≥ 0. When d increases, a increases but b
decreases. So, we can bound a− b and a+ b as follows:

Suppose b ≤ fa where 0 ≤ f < 1 and a > 1, then
1

a− b
≤ 1

a(1− f)

a+ b

(a+ b)2 + 1
≥ 1

a(2 + f)
Based on this, we can get:

q(s, i) <
e

−(a2+b2)
2

√
2π

[
eab

a− b
− (a+ b)

(a+ b)2 + 1
e−ab

]

<
e

−(a2+b2)
2

√
2πa

[
eab

1− f
− e−ab

2 + f

]
.

Observe that ab = γ/2, a2 = d
4σ2 , b

2 = γ2σ2

d

So:

q(s, i) <
e−( d

8σ2 + γ2σ2

2d )

√
2πd

2σ

[
eγ/2

1− f
− e−γ/2

2 + f

]
.
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C EXPERIMENTS SETUP

C.1 DATASETS

We use the three of the most commonly used datasets for evaluating membership inference attacks
(Shokri et al., 2017; Ye et al., 2022; Tang et al., 2022) and DP-SGD (De et al., 2022; Bao et al., 2024).

CIFAR-10 (Krizhevsky et al., 2009) contains 60,000 images with 10 classes. We use 50,000 as the
full training set and 10,000 as the test set as most papers do. Each example has three RGB channels
and size 32× 32 pixels. For fine-tuning tasks, we only use 500 data samples for training and 30,000
for training from scratch.

CIFAR-100 is a well-known benchmark in the field of computer vision, also collected by Krizhevsky
et al. (2009). CIFAR-100 contains 60,000 color images, each with a resolution of 32× 32 pixels. It
is more complex than the CIFAR-10 dataset; the images are organized into 100 distinct classes. The
dataset allocation includes 50,000 images for training purposes and 10,000 for testing. For finetuning
task, we only use 1000 data samples for training and the rest of training data examples are used
for MIA evaluation. For training from scratch, we use 25,000 data samples as the same setting in
Zarifzadeh et al. (2024).

Purchase-100 is based on Kaggle’s “acquire valued shoppers” challenge3 and processed and simpli-
fied as introduced in Shokri et al. (2017). The dataset contains shopping records for thousands of
individuals and includes 197,324 data entries. For training, we use 25,000 samples and the rest for
testing. For MIAs, we use 25,000 samples from test set as shadow dataset.

C.2 MODELS

Vit-B-16 are pre-trained on the LAION-2B dataset (Schuhmann et al., 2022). We obtain the model
from Open Clip4 and add a linear layer as a classification head. We only fine-tune this last layer and
freeze the weights of other layers. We utilize this model for CIFAR-10 and CIFAR-100 fine-tuning
tasks.

Wide ResNet (WRN) (Zagoruyko & Komodakis, 2016) is a popular variant of the ResNet (Residual
Network) model (He et al., 2016). The architecture increases the number of channels in convolutional
layers (width) rather than the number of layers (depth). We use WRN-16-4 in experiments which is
also commonly used in many DP-SGD related work (Bao et al., 2024; De et al., 2022; Sander et al.,
2023). We train the model from scratch on CIFAR-10. We use WRN-28-2 for training from scratch
on CIFAR-100.

Linear model is commonly used for tabular data such as Purchase-100. We use this one-layer linear
model for experiments on Purchase-100.

C.3 SETUPS

We implemented PD-SGD using PyTorch. For DP-SGD, we use Opacus (Yousefpour et al., 2021).
For other empirical defense mechanisms, we reproduce them using SELENA’s (Tang et al., 2022)
original code-base5. For membership inference attack, we use the Privacy Meter toolbox 6. From it,
we use Population Attack (P-Attack), Reference Attack (R-Attack), Shadow model Attack (S-Attack)
based on Ye et al. (2022) and Carlini et al. Attack (C-Attack) based on Carlini et al. (2022). We
employ these four widely used attacks to comprehensively evaluate empirical privacy leakage and
make fair comparisons between different methods. Note that our goal here is not to use the most
exotic or recent attack, but to establish a fair empirical comparison between different defense methods,
and thus we use a well-understood set of popular recent membership inference attacks.

3https://kaggle.com/c/acquire-valued-shoppers-challenge/data
4https://github.com/mlfoundations/open_clip
5https://github.com/inspire-group/MIAdefenseSELENA
6https://github.com/privacytrustlab/ml_privacy_meter/tree/

173d4ad80f183ae6e1867b2793dfffe0633107d0
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Table 6: Computational Time per step: We measure the GPU time for SGD, DP-SGD, and our proposed
PD-SGD for one step with the same model and the same amount of data. We report the average time among 3
steps. For CIFAR-10 (Finetuning), we use Vit model and for CIFAR-10 (From scratch), we train WRN-16-4
from scratch. We can observe that although PD-SGD is slower than SGD, it takes less time than DP-SGD.

Dataset Method Time (ms)

CIFAR-10 (Finetuning)
DP-SGD 18.86 (±0.08)
PD-SGD 7.70 (±0.10)

SGD 0.49 (±0.03)

CIFAR-10 (From scratch)
DP-SGD 2492.11 (±8.06)
PD-SGD 1780.16 (±15.72)

SGD 344.47 (±0.20)

Details for Attacks: We keep the same attack setting for all defense mechanisms for a fair compar-
ison. For all datasets, other than the part we used for training the target models, the rest of training
samples are used as shadow datasets for shadow models or reference models. For all shadow models
or reference models, we sample the same amount of data samples as target dataset for training. We
use 8 shadow models for S-Attack, R-Attack and C-Attack. For the C-Attack, we use the online
version of it and adopted from privacy meter.7 When evaluating attack, we always use balanced
evaluation dataset (50% member and 50% non-member). When reporting (balanced) accuracy, we
always select the threshold with the highest attack accuracy.

Details for Defenses: We keep the same parameter setting for all other empirical defense mecha-
nisms as SELENA’s original code-base. For DP-SGD, we set the clipping threshold to 1 and use the
same batch size as PD-SGD and SGD. We also perform a hyperparameter search to identify the best
learning rate for every run.

D ADDITIONAL EXPERIMENTS

D.1 COMPUTATIONAL TIME MEASUREMENT

We evaluate the running time of PD-SGD for one training step. We conduct experiments using
CIFAR-10 by fine-tuning the ViT model, following the same setup as described for Table 2. We also
train the WRN-16-4 model from scratch following the same setting in Table 3. The time is averaged
over three consecutive steps taken from the middle of the training process. For comparison, we
also measure the time of standard SGD and DP-SGD under the same conditions. The results are
summarized in Table 6. As demonstrated, PD-SGD is noticeably slower than standard SGD but
notably faster than DP-SGD for a single training step. However, the total training time also depends
on the algorithm’s convergence rate, which we leave the analysis of for future work.

D.2 UNDERSTANDING PARAMETERS OF PD-SGD

Table 7: Impact of γ

γ Test Acc Reject Rate Best Attack
1 92.78% 99.54% 0.52
2 94.70% 30.31% 0.53
3 94.71% 13.70% 0.56
4 94.74% 5.78% 0.57
6 94.80% 2.25% 0.59

Table 8: Impact of σ

σ Test Acc Reject Rate Best Attack
0.1 17.19% 99.95% 0.52

0.15 96.02% 0.15% 0.54
0.2 95.70% 0.03% 0.55
0.4 93.67% 0.00% 0.55
1.0 85.23% 0.00% 0.56

Table 9: Impact of T

T Test Acc Reject Rate Best Attack
1 64.78% 0.00% 0.76
2 64.81% 10.17% 0.75
3 64.76% 18.86% 0.71
5 62.66% 84.68% 0.64
7 3.21% 99.90% 0.50

Recall that PD-SGD has three parameters — σ, γ, and T — that control the privacy-utility trade-off.
In this section, we discuss how these parameters impact the performance of PD-SGD.

7https://github.com/privacytrustlab/ml_privacy_meter/tree/
173d4ad80f183ae6e1867b2793dfffe0633107d0/benchmark
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We first fine-tune the ViT model on CIFAR-10 with different γ values while keeping all other
parameters fixed. The results are presented in Table 7. We observe that as γ decreases, the model’s
test accuracy experiences a slight decline. However, the Best Attack AUC diminishes substantially.
Notably, when γ decreases from 2 to 1, even though the Best Attack AUC decreases slightly, the
reject rate increases sharply to 99.54%, and the test accuracy drops to 92.78%. This suggests that
γ = 2 may be the optimal choice for this parameter setting.

We perform similar experiments with different σ values and present the results in Table 8. We observe
that when σ is large (i.e., σ > 0.2), the gradients can easily pass the Privacy Test, but the Best Attack
AUC remains high, and the model fails to achieve good test accuracy due to the large noise introduced
during training. When σ is relatively small, although some gradients are rejected, it provides better
defense performance (lower Attack AUC). However, if σ is too small, such as 0.1, under the same γ
and T , it becomes very difficult for gradients to pass the privacy test, resulting in low test accuracy.

We also test different T values while keeping all other parameters fixed. We train the linear model on
Purchase-100 and present the results in Table 9. We observe that as T increases, it becomes harder
for gradients to pass the privacy test. Consequently, the reject rate increases, test accuracy decreases,
but better defense performance is achieved (lower Attack AUC).

Therefore, based on these tables and results, we find that the observations corroborate our findings
in Fig. 1. This demonstrates that PD-SGD can provide a wide range of privacy-utility trade-offs
through different parameter settings. On the other hand, to achieve a better privacy-utility trade-off, it
is advisable to tune all three parameters together rather than adjusting only one parameter.

Table 10: Impact of batch size on Purchase-100 and CIFAR-10

Dataset Batch size Test Acc Reject Rate Best Attack

Purchase-100

1024 0% 100% 0.5
2048 60.10% 88.94% 0.62
3072 64.76% 10.41% 0.73
4096 64.80% 9.06% 0.74
5120 64.73% 0% 0.77

CIFAR-10

1024 60.24% 55.85% 0.51
2048 74.35% 37.63% 0.51
3072 80.40% 20.07% 0.53
4096 80.59% 14.07% 0.53
5120 81.57% 7.41% 0.54

D.3 UNDERSTANDING BATCH SIZE IN PD-SGD

The batch size plays an important role in terms of privacy. There are extreme edge cases that are
unrealistic where the batch size is the entire training set or the batch size is a single example. For
more realistic batch sizes there are several tradeoffs and ultimately the behavior depends also on the
chosen privacy parameters.

We conduct experiments on Purchase-100 and CIFAR-10 to further understand the batch size in
PD-SGD and report results in Table 10. Results indicate that as batch size increases, the rate of
deniability typically decreases—larger batches more easily pass the privacy test (for fixed privacy
parameters) due to the averaging effect you described across different datasets. However, this does
not necessarily translate into better privacy protection, as the potential for individual sample contri-
butions to still be inferred remains.

Moreover, we found that adjusting other parameters—e.g., σ, γ, and threshold can help mitigate
these effects, maintaining a balance between utility and privacy across varying batch sizes. For ex-
ample, for the batch size = 1024, if we double the γ, we can decrease the reject rate to 56.98% and
achieve a test accuracy of 63.87% with Best Attack AUC of 0.68.
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Figure 4: Distribution of data samples’ successful update Histogram of all training data samples’ successful
update. The average count is 107.53 (±10.27) and the min and max are 72 and 148, respectively.

These results underscore the importance of carefully tuning all parameters in relation to batch size
to uphold robust privacy guarantees while preserving utility.

Table 11: Evaluate PD-SGD on CIFAR-100 for training from scratch

Method Test Acc P-Attack R-Attack S-Attack C-Attack
Non-Private 56.27% 81.71% 81.91% 81.85% 0.37%

PD-SGD(param 1) 53.63% 58.80% 52.81% 57.46% 0.15%
PD-SGD(param 2) 47.07% 54.27% 50.56% 50.00% 0.12%
DP-SGD(ε = 8) 18.24% 52.29% 49.58% 51.03% 0.11%

D.4 TRAIN FROM SCRATCH ON CIFAR-100

We used small training set sizes for these experiments to ensure the resulting models would be vulner-
able to MIA so that it would be clear if the desired level of protection was indeed achieved. However,
we also included other experiments in our paper where we used much larger training set sizes (e.g.,
Table 3). In addition, we conducted further experiments using a larger subset of CIFAR-100. We
follow the experiment setting in Zarifzadeh et al. (2024) which trains a WRN-28-2 from scratch on
25k samples of CIFAR-100. We show the results in Table 11. It can be observed that PD-SGD can
successfully defend different MIA attacks for example Attack AUC is decreased significantly from
around 81% to 54% by using param setting 2 of PD-SGD. Compared to DP-SGD, PD-SGD provides
much better utility.

D.5 FREQUENCY OF EXAMPLES USED OF PD-SGD

Since PD-SGD works by rejecting implausible gradient updates, some training set examples may be
used more frequently to update parameters than others. To investigate this, we record the successful
update counts for each data sample in the training set in a case where parameters are set to achieve
roughly 15% reject rate. We show this distribution in Fig. 4. We can observe that as expected there is
a range of update frequencies. However, no training set example is used fewer than 72 times, so no
example is systematically excluded from influencing the final model.
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Table 12: Impact of Clip Threshold of DP-SGD

Clip Threshold Test Acc P-Attack R-Attack S-Attack C-Attack
0.1 93.49% 0.54 0.56 0.54 0.18%
1 93.56% 0.54 0.56 0.54 0.18%

10 93.54% 0.54 0.57 0.54 0.20%

Table 13: Hyperparamters setting for experiments in Table 2 and Table 3

Dataset Param setting σ γ T Step Reject Rate

CIFAR-10 1 0.1 40 2 20000 27.78%
2 0.3 2 3 20000 30.31%

CIFAR-100 1 0.1 50 3 20000 44.08%
2 0.2 10 3 20000 46.35%

Purchase-100 1 0.01 1000 3 100000 3.91%
2 0.01 750 3 100000 87.76%

CIFAR-10 (for Table 3) 1 0.01 40000 3 100000 1.06%
2 0.02 7000 3 100000 3.70%

CIFAR-100 (for Table 11) 1 0.01 100000 3 10000 0.49%
2 0.01 9000 3 10000 32.81%

D.6 IMPACT OF CLIP THRESHOLD OF DP-SGD

To further investigate the impact of the clipping threshold in DP-SGD on privacy protection, we fixed
all other parameters and varied the clipping threshold, as shown in Table 12. We can observe that
even though the clip threshold changes, the model’s utility and privacy are almost the same. However,
during these experiments, we do find that if the clip threshold is changed, the learning rate also needs
to be tuned properly to get the optimal utility. It makes sense that the impact on privacy of the clipping
threshold should not be substantial since in DP-SGD the noise added to the gradient is scaled by the
clipping norm.

E PRIVACY HYPERPARAMETERS TUNING

Table 13 shows the hyperparameters settings we used for Table 2 and Table 3.

There are two broad strategies for tuning the privacy (hyper)parameters: (1) leverage the theoretical
insights from Section 3.1; or (2) rely on empirically successful heuristics.

Theory-based strategy: As explained in Section 3.1, by tuning σ and γ, we can make q(d) arbitrarily
small. If we have a desired bound on d, then we can find combinations of σ and γ that achieve the
desired effects (e.g., see Fig. 1). This can for example be done through a grid search.

Empirical strategy: Alternatively, we found that the following two-steps strategy is easy to follow
and yields good trade-offs. Step 1: tune the noise σ to achieve acceptable utility, ignoring the privacy
test. This helps determine an upper limit for utility. Step 2: tune γ and the threshold T , which allows
for fine-grained control over the privacy-utility trade-off. We used this two-step sequential tuning
approach in our experiments.

A useful heuristic while tuning γ and T is to monitor the rejection rate. However, note that there
exists favorable trade-offs for a wide-range of rejection rates, and a useful rule of thumb is therefore
only to avoid extreme values (e.g., 0% — no privacy guarantee; 100% — no utility / full privacy).

F LIMITATIONS & FUTURE RESEARCH

PD-SGD provides favorable privacy-utility tradeoffs compared to alternative methods both empirical
and DP-SGD. It also provides a guarantee that anomalous batches are provably rejected with high
probability. However, it is not meant as a direct replacement for DP-SGD, since the guarantees are
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different. Working within the differential privacy framework is advantageous due to properties such
as composition and post-processing.

Note that we intend our technique to mostly be used in a centralized learning environment where
adversaries only observe the final model weights (or run inference with the trained model as a black
box). We assume that the full training transcript (i.e., gradient updates, intermediate updates, whether
the privacy test passes) is not accessible to the adversary. This assumption may prevent PD-SGD
from being used in some settings such as federated learning.

PD-SGD has the advantage of providing better utility. It also starts a promising direction of future
research in learning mechanisms that use privacy tests to enforce desirable properties. Further explo-
ration of the theoretical properties such as composition, bounds on membership inference success
rates, fairness considerations; and practical implications of PD-SGD is left for future work.
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