
FMTK: A Modular Toolkit for Composable Time
Series Foundation Model Pipelines

Anonymous Author(s)
Affiliation
Address
email

Abstract

Foundation models (FMs) have opened new avenues for machine learning applica-1

tions due to their ability to adapt to new and unseen tasks with minimal or no further2

training. Time-series foundation models (TSFMs)—FMs trained on time-series3

data—have shown strong performance on classification, regression, and imputation4

tasks. Recent pipelines combine TSFMs with task-specific encoders, decoders, and5

adapters to improve performance; however, assembling such pipelines typically6

requires ad hoc, model-specific implementations that hinder modularity and repro-7

ducibility. We introduce FMTK, an open-source, lightweight and extensible toolkit8

for constructing and fine-tuning TSFM pipelines via standardized backbone and9

component abstractions. FMTK enables flexible composition across models and10

tasks, achieving correctness and performance with an average of seven lines of11

code. https://anonymous.4open.science/r/FMTK-4F9612

1 Introduction13

Time Series Foundation Models (TSFMs), such as MOMENT [6], Chronos [2], and TimesFM [4],14

have emerged as powerful pre-trained architectures for a variety of downstream tasks, including15

forecasting, classification, and imputation. While these models serve as fixed backbones trained16

on large-scale temporal data, effective task specialization often requires integrating additional com-17

ponents: input encoders to structure raw data, task-specific decoders to generate predictions, and18

increasingly, parameter-efficient adapters (e.g., LoRA [8]) to enable lightweight fine-tuning.19

This modular design space, though conceptually flexible, has resulted in a fragmented and ad hoc20

implementation landscape. For example, models such as PaPaGei [13] and Mantis [5] require the21

development of extensive custom pipelines for simple comparison with state-of-the-art models.22

Moreover, models like Moment [6] offer distinct modes for different tasks (e.g., forecasting versus23

classification), which restricts the reuse of the same powerful backbone for a diverse set of downstream24

tasks during runtime. As a result, three key challenges emerge. 1 First, the absence of a unifying25

abstraction across encoders, backbones, adapters, and decoders significantly increases the engineering26

burden and inhibits systematic exploration of architectural variants. 2 Second, the lack of modular27

encapsulation complicates the attribution. It becomes difficult to isolate and measure the contribution28

of individual components to the overall performance of the model. 3 Third, evaluation practices29

vary widely across studies. Minor differences in data pre-processing, training regimes, or decoder30

heads can lead to substantial discrepancies in reported results, thereby undermining reproducibility.31

Although existing time series libraries such as sktime [10], Darts [7], tsai [12] and GluonTS [1]32

support classical and deep learning pipelines, they do not address the emerging need for composable,33

FM-centric evaluation. To this end, we introduce FMTK: an open-source, lightweight, and extensible34

Time Series Foundation Model Toolkit for constructing, fine-tuning and benchmarking modular35

TSFM pipelines.36
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Figure 1: Modular abstraction of pipeline construction using FMTK: The framework allows
instantiating pipelines by pairing an FM with interchangeable components. Users can dynamically
select and load components, specify trainable parts (e.g., decoder), and benchmark pipelines in
a unified interface. We illustrate two example configurations using the same FM: (top) encoder-
decoder-adapter-tuned pipeline with E1, A1 and D2; (bottom) encoder-decoder tuned with E3 and
D3.

Contributions: Our contributions can be summarized as follows:37

1. FMTK proposes a standardized API for TSFM pipelines that defines a common grammar for38

connecting FM backbones with external encoders, fine-tuning adapters and decoders.39

2. FMTK provides reference implementation of commonly used configurations and supports multiple40

time series tasks under consistent evaluation settings.41

3. By decoupling architectural components and enforcing standardized execution semantics, FMTK42

facilitates reproducible experimentation and controlled comparison across a rapidly growing space43

of TSFM-based systems.44

2 Design45

To address the challenges outlined earlier ( 1 – 3 ), the design of FMTK is guided by three core princi-46

ples: composability, usability, and reproducibility. Composability is achieved through standardized47

interfaces for encoders, backbones, adapters, and decoders, enabling seamless interchangeability48

and systematic exploration of pipeline configurations. Usability is prioritized through a lightweight49

and declarative API that abstracts away engineering complexity, making it possible for both domain50

experts and non-specialists to experiment with modular TSFM pipelines without extensive prior51

familiarity with FM internals. Finally, to promote reproducibility, the toolkit enforces consistent52

pre-processing, component integration, evaluation routines, and monitoring capabilities, allowing53

researchers to conduct controlled comparisons and ablation studies under uniform conditions.54

2.1 Components55

These design principles manifest in FMTK through a modular architecture centered around four56

key components as shown in Figure 1. Encoders transform raw time series into representations57

compatible with the foundation model. These may perform format conversion, context windowing,58

dimentionality reduction or domain-specific preprocessing. FMTK allows interchangeable encoders59

to support diverse inputs. Foundation Model Backbone (FM) refers to a pre-trained, frozen or60

partially frozen TSFM that produces task-agnostic latent features. FMTK supports FMs like Chronos,61

Moment, and TimesFM, by providing a common I/O interfaces. Adapters are lightweight modules62

for efficient adaptation to new tasks or domains without full backbone fine-tuning. FMTK currently63

supports methods such as LoRA enabling selective training. Decoders are task-specific heads (e.g.,64

for forecasting, classification) that operate on FM outputs. They may range from simple MLPs to65

more complex attention-based or partially fine-tuned heads.66

2.2 Pipeline Abstraction67

To support flexible experimentation, FMTK exposes a unified Pipeline abstraction, which allows68

any valid combination of encoder, backbone, adapter, and decoder modules. As illustrated in69

Figure 1, different configurations traverse distinct paths through the component graph depending on70

the intended usage pattern. We demonstrate via two use-cases how the system handles component71

integration, fine-tuning and execution behind the scenes, allowing both novice users and expert72
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Chronos Moment PaPaGei-S

Task Decoder Base FMTK Base FMTK Base FMTK

Regression (MAE)
Systolic BP (PPG-BP)

Ridge
15.84 15.82 15.99 15.99 15.65 15.65

Diastolic BP (PPG-BP) 9.43 9.56 8.88 8.88 8.98 8.98
Heart Rate (PPG-BP) 9.04 9.04 5.24 5.24 6.32 6.32

Classification (Acc %)
Heartbeat (ECG5000) SVM – 93.15 93.42 94.02 – 89.88

Forecasting (MAE)
Energy (ETTh1) MLP – 0.76 0.43 0.54 – 0.83

Table 1: MAE and Accuracy comparison between baseline and FMTK across regression, classification,
and forecasting tasks using Chronos-large, Moment-large, and PaPaGei-S backbones with Ridge,
SVM and MLP decoder.

researchers to build, train, and evaluate pipelines with minimal overhead. (More details provided in73

Appendix A)74

Use-Case 1 (simple usage): Chronos backbone can be combined with SVM decoder to enable75

Heartbeat Classification task. FMTK allows this by attaching the decoder through add_decoder()76

and restricting training to the decoder via train(parts_to_train=[...]).77

Use-Case 2 (advanced usage): The Moment backbone can support diverse downstream tasks, such78

as PPG monitoring and Energy Forecasting, through a shared representation. PPG monitoring is79

supported by attaching a regression MLP decoder, linear encoder, and LoRA adapter to the backbone,80

while Energy Forecasting is supported by attaching an MLP decoder alone. After fine-tuning as81

explained in Use-Case 1, toolkit enables adaptive switching between distinct paths at runtime via82

load_encoder(), load_adapter() and load_decoder().83

2.3 Runtime Metrics and Benchmarking Support84

In addition to traditional accuracy-based or MAE-based evaluation, FMTK supports the collection of85

runtime metrics for pipeline benchmarking. For each experiment, the framework logs:86

1. Memory Utilization: Peak GPU/CPU memory usage during inference and training.87

2. Training and Inference Time: Wall-clock time for each training phase and prediction batch.88

3. Component Loading Overhead: Time to load and switch between components at runtime.89

4. Energy Consumption: Optional support for energy profiling using compatible hardware monitors.90

These measurements facilitate holistic comparisons between pipeline variants and promote repro-91

ducibility by modularizing system-level bottlenecks and trade-offs.92

3 Evaluation93

We implement FMTK in approximately 1.6k lines of Python code, leveraging PyTorch 2.7.1 for model94

execution and integration with widely used transformer and fine-tuning libraries [11]. All experiments95

are conducted on a Linux system equipped with an NVIDIA A100 GPU, using Python 3.10.18 and96

CUDA 12.6. FM backbones are sourced from publicly available repositories: Chronos and Moment97

are retrieved via HuggingFace, while Papagei is initialized from locally downloaded checkpoints.98

We have performed three types of tasks regression, classification and forecating using PPG-BP [9],99

ECG5000 [3], and ETTh1 [14] datasets.100

We assess the capabilities of FMTK along three dimensions aligned with its design goals: (i) usability101

and interface simplicity; (ii) architectural adaptability across tasks and components; and (iii) per-102

formance benchmarking. Together, these evaluations aim to characterize the extent to which FMTK103

facilitates reproducible, modular experimentation in the TSFM landscape.104

3.1 Usability and Interface Simplicity105

FMTK prioritizes usability through a set of intuitive APIs. Users can compose, fine-tune and execute106

complex pipelines via a small number of method calls, abstracting away internal implementation107

details. To validate FMTK, we first replicate the PPG-based physiological monitoring benchmark108
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Decoder Chronos Moment PaPaGei-S

SVM 93.15 94.02 89.86

KNN 91.64 92.71 86.91

LR 58.37 92.02 89.51

RF 91.26 91.80 87.53

MLP 90.26 93.00 75.55

HC Task EF Task

Metric Base FMTK Base FMTK

Time (s)
Finetune 10.83 11.15 50.38 50.20
Predict 0.03 0.03 0.04 0.04

Peak Memory (MB)
Finetune 563.11 569.17 804.86 779.08
Predict 562.62 562.62 797.07 740.80

Energy (J)
Finetune 892.52 923.19 16718.41 16689.45
Predict 7.84 8.14 16.56 16.86

Table 2: (left) Accuracy of Chronos-large, Moment-large, and PaPaGei-S backbone with multiple
decoders for Heartbeat Classification task. Table 3: (right) Performance comparison of FMTK using
the Moment-base backbone with SVM and MLP decoders for Heartbeat Classification (HC) and
Energy Forecasting (EF), respectively. Fine-tuning time is measured over the entire train dataset,
while prediction time is measured per batch.

from the PaPaGei repository [13], which includes tasks such as predicting systolic/diastolic BP and109

heart rate. As shown in Table 1, our standardized pipeline matches the baseline results, achieving an110

error rate within 1% of the original implementation across all prediction tasks and FM backbones.111

In addition, FMTK simplifies the exploration of novel architectural combinations. For instance,112

constructing a complex pipeline that combines the Moment backbone with a custom encoder, an MLP113

decoder, and a LoRA adapter for fine-tuning requires only seven lines of code (see Appendix A for114

details). This demonstrates the toolkit’s core design principle: new components can be implemented115

by sub-classing simple abstract classes and are immediately interoperable within the Pipeline116

interface, enabling rapid and systematic experimentation.117

3.2 Architectural Adaptability118

One of the central design goals of FMTK is to enable modular experimentation across different119

architectural choices. To demonstrate this, we first show how a single backbone can be paired120

with various decoders. As shown in Table 2, the Chronos, Moment and PaPaGei backbone can be121

seamlessly combined with diverse decoders such as an SVM, MLP, KNN, Logistic Regression (LR)122

or Random Forest (RF) for Heartbeat Classification task. Furthermore, FMTK simplifies the process123

of repurposing the entire pipeline for different tasks and backbones with minimal code changes. For124

instance, Table 1 presents results for both Heartbeat Classification and Energy Forecasting tasks125

using the Chronos, Moment and PaPaGei backbones, all implemented within our unified toolkit126

using non-traditional components. FMTK successfully accommodates a rich diversity of components127

and tasks, fulfilling its core design goal of composability. Notably, the table demonstrates novel128

compositions, even beyond default use-cases, as in the case of Chronos and PaPaGei.129

3.3 Performance Benchmarking130

To validate that the modularity and ease of use in FMTK come at an acceptable computational cost, we131

conduct an extensive performance analysis comparing our toolkit with the baseline implementations.132

We used Moment-Base model with SVMDecoder for Heartbeat Classification, and with MLPDecoder133

for Energy Forecasting task. As shown in Table 3, FMTK incurs a minimal ∼3% overhead for134

fine-tuning and prediction time across both tasks. It achieves a ∼7% reduction in peak inference135

GPU memory for the Energy Forecasting task, with negligible memory overhead during training.136

Furthermore, the toolkit exhibits an energy consumption comparable to the baseline implementation.137

4 Conclusion138

This work introduces FMTK, a lightweight yet extensible toolkit for modularizing, composing, and139

benchmarking time series foundation model pipelines. By decoupling architectural components and140

unifying evaluation semantics, FMTK lowers the barrier to rigorous, reproducible experimentation141

across a rapidly expanding design space. While instantiated for time series tasks, the framework142

is broadly applicable to any foundation model workflow exhibiting an encoder–backbone–decoder143

structure, offering a template for systematic evaluation across modalities. For future work, we are144

expanding this toolkit to support other types of foundation models, adapters and add support for145

runtime optimizations.146
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Appendices192

A Implementation Details193

A.1 Code Example for a Modular Pipeline194

The following code Listing 1 demonstrates how FMTK can be used to construct a complex pipeline. It195

loads the Moment backbone, adds a custom encoder, attaches an MLP decoder, and applies a LoRA196

adapter for the heart rate prediction task using the PPG-BP dataset.

1 lora_config = LoraConfig(r=64, lora_alpha=32, target_modules=["q", "v"], lora_dropout=0.05)
2 P=Pipeline(MomentModel(model))
3 P.add_decoder(MLPDecoder(cfg={'input_dim':1024,'output_dim':1,'hidden_dim':128},load=True)
4 P.add_encoder(LinearChannelCombiner(cfg={num_channels=3,new_num_channels=1}, load=True)
5 P.add_adapter(lora_config)
6 P.train(dataloader_train,parts_to_train=['encoder','decoder','adapter'],cfg=task_cfg['train_config'])
7 y_test,y_pred=P.predict(dataloader_test,cfg=task_cfg['inference_config'])

Listing 1: Example to setup pipeline abstraction attaching Moment Backbone with MLP decoder,
Linear channel encoder and LORA adapter for heart rate prediction task using PPG Dataset.

197

A.2 Standardized Interface for Integrating Customized Components198

To integrate new components and enable modular composition in the time-series foundation-model199

(TSFM) pipeline, we adopt a single, minimal interface shared by encoders, backbones, and decoders200

(Listing 2 (left)). Each component minimally implements the BaseModel interface: preprocess adapts201

inbound tensors to the component’s expected format (shape/device/dtype/reduction) and postprocess202

standardizes the outbound representation for the next stage. This separation isolates model-specific203

code from pipeline composition, allowing components to be swapped without code changes in the204

pipeline abstraction. For example as shown in Listing 2 (right), the Chronos backbone receives205

inputs shaped [B,C,L]. Internally, the model operates on a flattened view [B*C,L], which is produced206

in the preprocess. Chronos returns embeddings [B,E,L] (where E is the token/feature dimension);207

postprocess reshapes these to [B,C,E,L] so that downstream decoders (e.g., the MLP decoder in Listing208

2 (right)) can consume a consistent, a channel aware representation. This standardized boundary209

ensures that alternative encoders/backbones/adapters/decoders can be composed interchangeably210

within the same pipeline.211
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class BaseModel:
def __init__(self, cfg):

"""
Loading model
"""

def preprocess(self, batch):
"""
Match the shape and preprocess
before sending it to model.
Args:

batch
Returns:

batch
"""

def postprocess(self,embedding):
"""
Postprocess the embedding to
standard shape for next component
Args:

embedding
Returns:

embedding
"""

def forward(self, batch):
"""
Method for forward pass for
one batch
Args:

batch
Returns:

embedding
"""
...

def trainable_parameters(self):
"""
Get trainable paramters
out of model
Returns:

Iterable[torch.nn.Parameter]
"""
...

# Encoder
class LinearChannelEncoder(BaseModel):

def __init__(self,cfg):
"""
Dimentionality reduction using
linear layer from number of
input channel to
number of output channel.
"""

def preprocess(self, batch):
"""
Preprocessing it to acceptable
input dimension [B,C,L]
"""

def postprocess(self,embedding):
"""
Postprocess the embedding to
standard shape for
foundation model [B,C,L]
"""

# Backbone wrapper
class ChronosBackbone(BaseModel):

def __init__(self, cfg):
"""
Loading Chronos
"""
...

def preprocess(self, batch):
"""
Preprocessing it to acceptable
input dimension [B*C,L]
"""
...

def forward(self, batch):
"""
One forward pass through
preprocess, backbone and
postprocess
"""
...

def postprocess(self, embedding):
"""
Postprocess the embedding to
standard shape for
decoder [B,C,T,L] | [B,C,L]
"""
...

# Decoder
class MLPDecoder(BaseModel):

def __init__(self, cfg):
...

def preprocess(self, batch):
"""
Preprocessing it to acceptable
input dimension [B,L]
based on cfg
"""
...

Listing 2: (left) Common interface description for encoder, backbone and decoders. (right) Example
illustrating the pre-processing and post-processing steps involved in integrating a Linear channel
encoder, Chronos backbone, and MLP decoder into a unified pipeline.
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