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Abstract

Foundation models (FMs) have opened new avenues for machine learning applica-
tions due to their ability to adapt to new and unseen tasks with minimal or no further
training. Time-series foundation models (TSFMs)—FMs trained on time-series
data—have shown strong performance on classification, regression, and imputation
tasks. Recent pipelines combine TSFMs with task-specific encoders, decoders, and
adapters to improve performance; however, assembling such pipelines typically
requires ad hoc, model-specific implementations that hinder modularity and repro-
ducibility. We introduce FMTXK, an open-source, lightweight and extensible toolkit
for constructing and fine-tuning TSFM pipelines via standardized backbone and
component abstractions. FMTK enables flexible composition across models and
tasks, achieving correctness and performance with an average of seven lines of
code. https://github.com/umassos/FMTK

1 Introduction

Time Series Foundation Models (TSFMs), such as MOMENT [6]], Chronos [2]], and TimesFM [4]],
have emerged as powerful pre-trained architectures for a variety of downstream tasks, including
forecasting, classification, and imputation. While these models serve as fixed backbones trained
on large-scale temporal data, effective task specialization often requires integrating additional com-
ponents: input encoders to structure raw data, task-specific decoders to generate predictions, and
increasingly, parameter-efficient adapters (e.g., LoRA [8]) to enable lightweight fine-tuning.

This modular design space, though conceptually flexible, has resulted in a fragmented and ad hoc
implementation landscape. For example, models such as PaPaGei [[13]] and Mantis [5] require the
development of extensive custom pipelines for simple comparison with state-of-the-art models.
Moreover, models like Moment [6] offer distinct modes for different tasks (e.g., forecasting versus
classification), which restricts the reuse of the same powerful backbone for a diverse set of downstream
tasks during runtime. As a result, three key challenges emerge. (1) First, the absence of a unifying
abstraction across encoders, backbones, adapters, and decoders significantly increases the engineering
burden and inhibits systematic exploration of architectural variants. (2) Second, the lack of modular
encapsulation complicates the attribution. It becomes difficult to isolate and measure the contribution
of individual components to the overall performance of the model. (3) Third, evaluation practices
vary widely across studies. Minor differences in data pre-processing, training regimes, or decoder
heads can lead to substantial discrepancies in reported results, thereby undermining reproducibility.

Although existing time series libraries such as sktime [10], Darts [7], tsai [[12]], and GluonTS [1]
support classical and deep learning pipelines, they do not address the emerging need for composable,
FM-centric evaluation. To this end, we introduce FMTK: an open-source, lightweight, and extensible
Time Series Foundation Model Toolkit for constructing, fine-tuning and benchmarking modular
TSFM pipelines.
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Figure 1: Modular abstraction of pipeline construction using FMTK: The framework allows
instantiating pipelines by pairing an FM with interchangeable components. Users can dynamically
select and load components, specify trainable parts (e.g., decoder), and benchmark pipelines in
a unified interface. We illustrate two example configurations using the same FM: (top) encoder-
decoder-adapter-tuned pipeline with E1, Al and D2; (bottom) encoder-decoder tuned with E3 and
D3.

Contributions: Our contributions can be summarized as follows:

1. FMTK proposes a standardized API for TSFM pipelines that defines a common grammar for
connecting FM backbones with external encoders, fine-tuning adapters and decoders.

2. FMTK provides reference implementation of commonly used configurations and supports multiple
time series tasks under consistent evaluation settings.

3. By decoupling architectural components and enforcing standardized execution semantics, FMTK
facilitates reproducible experimentation and controlled comparison across a rapidly growing space
of TSFM-based systems.

2  Design

To address the challenges outlined earlier (1)-(3)), the design of FMTK is guided by three core princi-
ples: composability, usability, and reproducibility. Composability is achieved through standardized
interfaces for encoders, backbones, adapters, and decoders, enabling seamless interchangeability
and systematic exploration of pipeline configurations. Usability is prioritized through a lightweight
and declarative API that abstracts away engineering complexity, making it possible for both domain
experts and non-specialists to experiment with modular TSFM pipelines without extensive prior
familiarity with FM internals. Finally, to promote reproducibility, the toolkit enforces consistent
pre-processing, component integration, evaluation routines, and monitoring capabilities, allowing
researchers to conduct controlled comparisons and ablation studies under uniform conditions.

2.1 Components

These design principles manifest in FMTK through a modular architecture centered around four
key components as shown in Figure |l} Encoders transform raw time series into representations
compatible with the foundation model. These may perform format conversion, context windowing,
dimentionality reduction or domain-specific preprocessing. FMTK allows interchangeable encoders
to support diverse inputs. Foundation Model Backbone (FM) refers to a pre-trained, frozen or
partially frozen TSFM that produces task-agnostic latent features. FMTK supports FMs like Chronos,
Moment, and TimesFM, by providing a common I/O interfaces. Adapters are lightweight modules
for efficient adaptation to new tasks or domains without full backbone fine-tuning. FMTK currently
supports methods such as LoRA enabling selective training. Decoders are task-specific heads (e.g.,
for forecasting, classification) that operate on FM outputs. They may range from simple MLPs to
more complex attention-based or partially fine-tuned heads.

2.2 Pipeline Abstraction

To support flexible experimentation, FMTK exposes a unified Pipeline abstraction, which allows
any valid combination of encoder, backbone, adapter, and decoder modules. As illustrated in
Figure |1} different configurations traverse distinct paths through the component graph depending on
the intended usage pattern. We demonstrate via two use-cases how the system handles component
integration, fine-tuning and execution behind the scenes, allowing both novice users and expert



Chronos Moment PaPaGei-S

Task Decoder Base FMTK Base FMTK Base FMTK
Regression (MAE)

Systolic BP (PPG-BP) 15.84 15.82 15.99 15.99 15.65 15.65
Diastolic BP (PPG-BP) Ridge 9.43 9.56 8.88 8.88 8.98 8.98
Heart Rate (PPG-BP) 9.04 9.04 5.24 5.24 6.32 6.32

Classification (Acc %)

Heartbeat (ECG5000) SVM - 93.15 93.42 94.02 - 89.88
Forecasting (MAE)
Energy (ETTh1) MLP - 0.76 0.43 0.54 - 0.83

Table 1: MAE and Accuracy comparison between baseline and FMTK across regression, classification,
and forecasting tasks using Chronos-large, Moment-large, and PaPaGei-S backbones with Ridge,
SVM and MLP decoder.

researchers to build, train, and evaluate pipelines with minimal overhead. (More details provided in
Appendix [A)
Use-Case 1 (simple usage): Chronos backbone can be combined with SVM decoder to enable

Heartbeat Classification task. FMTK allows this by attaching the decoder through add_decoder ()
and restricting training to the decoder via train(parts_to_train=[...]).

Use-Case 2 (advanced usage): The Moment backbone can support diverse downstream tasks, such
as PPG monitoring and Energy Forecasting, through a shared representation. PPG monitoring is
supported by attaching a regression MLP decoder, linear encoder, and LoRA adapter to the backbone,
while Energy Forecasting is supported by attaching an MLP decoder alone. After fine-tuning as
explained in Use-Case 1, toolkit enables adaptive switching between distinct paths at runtime via
load_encoder (), load_adapter() and load_decoder ().

2.3 Runtime Metrics and Benchmarking Support

In addition to traditional accuracy-based or MAE-based evaluation, FMTK supports the collection of
runtime metrics for pipeline benchmarking. For each experiment, the framework logs:

1. Memory Utilization: Peak GPU/CPU memory usage during inference and training.

2. Training and Inference Time: Wall-clock time for each training phase and prediction batch.

3. Component Loading Overhead: Time to load and switch between components at runtime.

4. Energy Consumption: Optional support for energy profiling using compatible hardware monitors.

These measurements facilitate holistic comparisons between pipeline variants and promote repro-
ducibility by modularizing system-level bottlenecks and trade-offs.

3 Evaluation

We implement FMTK in approximately 1.6k lines of Python code, leveraging PyTorch 2.7.1 for model
execution and integration with widely used transformer and fine-tuning libraries [[11]. All experiments
are conducted on a Linux system equipped with an NVIDIA A100 GPU, using Python 3.10.18 and
CUDA 12.6. FM backbones are sourced from publicly available repositories: Chronos and Moment
are retrieved via HuggingFace, while Papagei is initialized from locally downloaded checkpoints.
We have performed three types of tasks regression, classification and forecating using PPG-BP [9],
ECGS5000 [3], and ETTh1 [14] datasets.

We assess the capabilities of FMTK along three dimensions aligned with its design goals: (i) usability
and interface simplicity; (ii) architectural adaptability across tasks and components; and (iii) per-
formance benchmarking. Together, these evaluations aim to characterize the extent to which FMTK
facilitates reproducible, modular experimentation in the TSFM landscape.

3.1 Usability and Interface Simplicity

FMTK prioritizes usability through a set of intuitive APIs. Users can compose, fine-tune and execute
complex pipelines via a small number of method calls, abstracting away internal implementation
details. To validate FMTK, we first replicate the PPG-based physiological monitoring benchmark



HC Task EF Task
Metric Base FMTK Base FMTK
Decoder  Chronos Moment  PaPaGei-S
Time (s)
SVM 93.15 94.02 89.86 Finetune 10.83 11.15 50.38 50.20
KNN 91.64 9271 3691 Predict 0.03 0.03 0.04 0.04
Peak Memory (MB)
LR 38.37 92.02 89.51 Finetune 563.11 569.17 804.86 779.08
RF 91.26 91.80 87.53 Predict 562.62  562.62 797.07 740.80
MLP 90.26 93.00 75.55 Energy (J)
Finetune 892.52  923.19 16718.41 16689.45
Predict 7.84 8.14 16.56 16.86

Table 2: (left) Accuracy of Chronos-large, Moment-large, and PaPaGei-S backbone with multiple
decoders for Heartbeat Classification task. Table 3: (right) Performance comparison of FMTK using
the Moment-base backbone with SVM and MLP decoders for Heartbeat Classification (HC) and
Energy Forecasting (EF), respectively. Fine-tuning time is measured over the entire train dataset,
while prediction time is measured per batch.

from the PaPaGei repository [[13]], which includes tasks such as predicting systolic/diastolic BP and
heart rate. As shown in Table[I] our standardized pipeline matches the baseline results, achieving an
error rate within 1% of the original implementation across all prediction tasks and FM backbones.
In addition, FMTK simplifies the exploration of novel architectural combinations. For instance,
constructing a complex pipeline that combines the Moment backbone with a custom encoder, an MLP
decoder, and a LoRA adapter for fine-tuning requires only seven lines of code (see Appendix [A]for
details). This demonstrates the toolkit’s core design principle: new components can be implemented
by sub-classing simple abstract classes and are immediately interoperable within the Pipeline
interface, enabling rapid and systematic experimentation.

3.2 Architectural Adaptability

One of the central design goals of FMTK is to enable modular experimentation across different
architectural choices. To demonstrate this, we first show how a single backbone can be paired
with various decoders. As shown in Table 2, the Chronos, Moment and PaPaGei backbone can be
seamlessly combined with diverse decoders such as an SVM, MLP, KNN, Logistic Regression (LR)
or Random Forest (RF) for Heartbeat Classification task. Furthermore, FMTK simplifies the process
of repurposing the entire pipeline for different tasks and backbones with minimal code changes. For
instance, Table [T| presents results for both Heartbeat Classification and Energy Forecasting tasks
using the Chronos, Moment and PaPaGei backbones, all implemented within our unified toolkit
using non-traditional components. FMTK successfully accommodates a rich diversity of components
and tasks, fulfilling its core design goal of composability. Notably, the table demonstrates novel
compositions, even beyond default use-cases, as in the case of Chronos and PaPaGei.

3.3 Performance Benchmarking

To validate that the modularity and ease of use in FMTK come at an acceptable computational cost, we
conduct an extensive performance analysis comparing our toolkit with the baseline implementations.
We used Moment-Base model with SVMDecoder for Heartbeat Classification, and with MLPDecoder
for Energy Forecasting task. As shown in Table 3, FMTK incurs a minimal ~3% overhead for
fine-tuning and prediction time across both tasks. It achieves a ~7% reduction in peak inference
GPU memory for the Energy Forecasting task, with negligible memory overhead during training.
Furthermore, the toolkit exhibits an energy consumption comparable to the baseline implementation.

4 Conclusion

This work introduces FMTK, a lightweight yet extensible toolkit for modularizing, composing, and
benchmarking time series foundation model pipelines. By decoupling architectural components and
unifying evaluation semantics, FMTK lowers the barrier to rigorous, reproducible experimentation
across a rapidly expanding design space. While instantiated for time series tasks, the framework
is broadly applicable to any foundation model workflow exhibiting an encoder—backbone—decoder
structure, offering a template for systematic evaluation across modalities. For future work, we are
expanding this toolkit to support other types of foundation models, adapters and add support for
runtime optimizations.
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Appendices

A Implementation Details

A.1 Code Example for a Modular Pipeline

The following code Listing[I|demonstrates how FMTK can be used to construct a complex pipeline. It
loads the Moment backbone, adds a custom encoder, attaches an MLP decoder, and applies a LoORA
adapter for the heart rate prediction task using the PPG-BP dataset.

lora_config = LoraConfig(r=64, lora_alpha=32, target_modules=["q", "v"], lora_dropout=0.05)
P=Pipeline (MomentModel (model))

P.add_decoder (MLPDecoder (cfg={'input_dim':1024, 'output_dim':1, 'hidden_dim':128},load=True)
P.add_encoder(LinearChannelCombiner (cfg={num_channels=3,new_num_channels=1}, load=True)
P.add_adapter(lora_config)
P.train(dataloader_train,parts_to_train=['encoder', 'decoder', 'adapter'],cfg=task_cfg['train_config'])
y_test,y_pred=P.predict(dataloader_test,cfg=task_cfg['inference_config'])

Listing 1: Example to setup pipeline abstraction attaching Moment Backbone with MLP decoder,
Linear channel encoder and LORA adapter for heart rate prediction task using PPG Dataset.

A.2 Standardized Interface for Integrating Customized Components

To integrate new components and enable modular composition in the time-series foundation-model
(TSFM) pipeline, we adopt a single, minimal interface shared by encoders, backbones, and decoders
(Listing 2| (Ieft)). Each component minimally implements the BaseModel interface: preprocess adapts
inbound tensors to the component’s expected format (shape/device/dtype/reduction) and postprocess
standardizes the outbound representation for the next stage. This separation isolates model-specific
code from pipeline composition, allowing components to be swapped without code changes in the
pipeline abstraction. For example as shown in Listing [2] (right), the Chronos backbone receives
inputs shaped [B,C,L]. Internally, the model operates on a flattened view [B*C,L], which is produced
in the preprocess. Chronos returns embeddings [B,E,L] (where E is the token/feature dimension);
postprocess reshapes these to [B,C,E,L] so that downstream decoders (e.g., the MLP decoder in Listing
[2] (right)) can consume a consistent, a channel aware representation. This standardized boundary
ensures that alternative encoders/backbones/adapters/decoders can be composed interchangeably
within the same pipeline.



# Encoder
class LinearChannelEncoder (BaseModel) :

def __init__(self,cfg):
nnn
Dimentionality reduction using
linear layer from number of
tnput channel to
number of output channel.
nnn
class BaseModel:
def __init__(self, cfg): def preprocess(self, batch):
nnn nmunn
Loading model Preprocessing it to acceptable
nn input dimension [B,C,L]
nnn
def preprocess(self, batch):
nn def postprocess(self,embedding) :
Match the shape and preprocess B
before sending it to model. Postprocess the embedding to
Args: standard shape for
batch foundation model [B,C,L]
Returns: e
batch
nnn
# Backbone wrapper
. . class ChronosBackbone(BaseModel) :
def Riitprocess(self,embeddlng). def __init__(self, cfg):
nmnn
Postprocess the embedding to .
standard shape for next component ﬁﬂfdzng Chronos
Args:
embedding def preprocess(self, batch):
Returns: .
. embedding Preprocessing it to acceptable
input dimension [B*C,L]
def forward(self, batch):
nnn A
Method for forward pass for def iiﬁward(self, batch) :
Zzzs?atch One forward pass through
batch p;:irigzzz; backbone and
Returns: 5”” P
embedding
def postprocess(self, embedding):
nnn
def trainable_parameters(self): Postprocess the embedding to

mwn

Get trainable paramters
out of model
Returns:

Iterable[torch.nn.Parameter]
nmnn

standard shape for
decoder [B,C,T,L] | [B,C,L]

mwmn

# Decoder

def

def

class MLPDecoder (BaseModel) :

__init__(self, cfg):

preprocess(self, batch):

nmunn

Preprocessing it to acceptable
input dimension [B,L]

based on cfg

mmn

Listing 2: (left) Common interface description for encoder, backbone and decoders. (right) Example
illustrating the pre-processing and post-processing steps involved in integrating a Linear channel
encoder, Chronos backbone, and MLP decoder into a unified pipeline.
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