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Abstract

We focus on the learning of generalized neural
policies for Relational Markov Decision Processes
(RMDPs) expressed in RDDL. Recent work first
converts the instances of a relational domain into
an instance graph, and then trains a Graph At-
tention Network (GAT) of fixed depth with pa-
rameters shared across instances to learn a state
representation, which can be decoded to get the
policy [Sharma et al., 2022]. Unfortunately, this ap-
proach struggles to learn policies that exploit long-
range dependencies – a fact we formally prove
in this paper. As a remedy, we first construct a
novel influence graph characterized by edges cap-
turing one-step influence (dependence) between
nodes based on the transition model. We then de-
fine influence distance between two nodes as the
shortest path between them in this graph – a feature
we exploit to represent long-range dependencies.
We show that our architecture, referred to as Sym-
bolic Influence Network (SYMNET3.0), with its
distance-based features, does not suffer from the
representational issues faced by earlier approaches.
Extensive experimentation demonstrates that we
are competitive with existing baselines on 12 stan-
dard IPPC domains, and perform significantly bet-
ter on six additional domains (including IPPC vari-
ants), designed to test a model’s capability in cap-
turing long-range dependencies. Further analysis
shows that SYMNET3.0 automatically learns to
focus on nodes that have key information for rep-
resenting policies that capture long-range depen-
dencies.

*Equal Contribution

1 INTRODUCTION

Recent work has shown the successful application of neural
models for the task of automated planning [Hafner et al.,
2018, Groshev et al., 2018]. Of particular interest are rela-
tional domains – which are characterized by objects, predi-
cates, and a first-order transition model. These are typically
represented in the form of a Relational Markov Decision
Process (RMDP) [Boutilier et al., 2001], where grounding
an RMDP with a set of objects results in a specific prob-
lem instance. A state is represented by an assignment to the
groundings of predicates, referred to as state variables. Mul-
tiple different languages have been proposed to represent
RMDPs, the popular ones being Relational Dynamic influ-
ence Diagram Language [Sanner, 2010] (RDDL) and Prob-
abilistic Planning Domain Definition Language [Younes
et al., 2005] (PPDDL), with our focus in this work being
the former 1. Given an RMDP expressed in RDDL, the goal
then is to learn a single generalized policy that is applicable
to any instance of the domain. Recent works [Garg et al.,
2019, 2020, Sharma et al., 2022] have made progress in
this direction, showing that it is possible to train a neural
model on smaller instances, which generalizes to (unseen)
instances from the same domain.

Existing approaches convert a given instance into an in-
stance graph where nodes represent object tuples 2, and
edges represent influence based on the transition model 3. A
Graph Attention Network (GAT) is used to compute node
embeddings in this graph, and the state embedding is typi-
cally computed as a combination of node embeddings along
with an aggregation function such as maxpool applied over
them. A decoder network takes the state representation and
gives a distribution over actions in the current state, result-
ing in a policy. Though this approach has met with initial
success, some important problems remain. The key one that

1other approaches using PPDDL are discussed in related work
2a tuple of objects appearing as argument of some predicate
3additional nodes and edges are created representing singleton

objects and their connections to object tuples that they are part of
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we tackle in this paper is that of capturing long-range depen-
dencies. For instance, consider the problem of navigating in
a large grid where the objective is to reach a cell designated
as the goal starting from the current location of the agent.
Assume that each non-goal (non-agent) cell has an identical
set of features, and the node embeddings are learned using
a GAT with d layers. Then, consider the goal being in the
middle of the grid, and two different states s1 and s2, such
that robot is to the left of the goal in s1 and to the right in
s2 at a distance 2d+ 1. Then, ignoring any edge effects, the
score for any given action (say ’left’) will be identical in
the two states. This is because any node in the network has
view either of the robot or the goal, but not both. Further,
one can establish a one-to-one mapping between the node
embeddings in the resulting states, hence taking any aggre-
gate function which is permutation invariant will result in
identical state embeddings. Since the optimal actions in s1
and s2 are different, i.e., left and right respectively, there
is no way for the model to learn the optimal policy in this
case. We formally prove this deficiency for existing architec-
tures. Increasing GAT depth d is not a solution either, due to
blow-up in the number of parameters and other learnability
issues with long-distance message passing [Li et al., 2018,
Wu et al., 2020, Alon and Yahav, 2021].

As a remedy, we propose constructing a novel graph, re-
ferred to as the influence graph, whose nodes represent state
variables, and two nodes are connected by an edge if they
can influence each other in one step, based on the transition
model. Intuitively, the distance between two nodes in the
influence graph represents the minimum number of steps it
would take for the influence of one node to reach the other
via the transition dynamics of the model. The pairwise dis-
tances thus computed in the influence graph can be useful
features for capturing long-range dependencies. We show
that the addition of these distance-based features gives the
model the representational power to capture long-range de-
pendencies for a large class of problems. Our architecture
referred to as Symbolic Influence Network (SYMNET3.0)4,
builds on Sharma et al. 2022, and adds distance-based fea-
tures at every node in the instance graph to capture the
long-range dependencies. A multi-head attention is used for
learning to focus on relevant nodes based on these features
resulting in a distance-aware state representation, enabling
our model to capture long-range dependencies. The result-
ing state is then decoded to get the policy as before.

Similar to earlier works [Garg et al., 2020, Sharma et al.,
2022], we operate in the offline planning setting and train
SYMNET3.0 by imitation learning using the data gener-
ated from an online planner PROST [Keller and Eyerich,
2012]. Our extensive experimental evaluation shows that
(a) we are competitive with existing baselines on 12 IPPC
domains which do not necessarily require capturing long-

4The code for SYMNET3.0 and the RDDL instance generators
can be found at https://github.com/dair-iitd/symnet3

range dependencies for learning the optimal policy, and (b)
we are significantly better on 6 new domains (4 of them
being IPPC variants) specifically designed to test the ef-
ficacy of the models when long-range dependencies need
to be exploited for learning a good policy. Specifically, in
the latter case, SYMNET3.0 performs better than its closest
competitor SYMNET2.0 in all domains with a gain of 18%
relative performance in the aggregate metric. Further anal-
ysis reveals that the influence-layer of SYMNET3.0 learns
to focus attention on key nodes in the network central to
capture the long-term dependencies.

2 BACKGROUND

2.1 RELATIONAL MARKOV DECISION
PROCESSES USING RDDL

Relational Dynamic influence Diagram Language [Sanner,
2010] (RDDL) defines a first-order Relational Markov Deci-
sion Process (RMDP) in two parts, 1) a domain description
that represents the object types (C), state-fluent predicates
(SF ), non-fluent predicates (NF ), action predicates (A),
first-order transition functions (T ) and first-order reward
functions (R); and 2) an instance description that represents
a specific instance of the domain by describing its ground
objects (O), initial state (s0), discount factor (γ) and horizon
(H). State-fluents are predicates that can change over time,
whereas, non-fluents are predicates whose values are fixed
for a given instance but can vary from instance to instance.
Together they form the set of state predicates (SP ). Ground-
ing a predicate implies replacing each argument of the pred-
icate with an object-tuple having type-consistent objects.
Grounding state predicates forms a set of state-variables
(SPO), and grounding action predicates forms the set of
ground actions (AO). A state is defined as an assignment to
all state-variables, denoted by s ∈ PS(SPO), where PS is
the power set. We denote the set of object tuples appearing
in state-fluents as OSF . The set of object tuples for which
either a numeric non-fluent is defined or a true boolean
non-fluent is defined is denoted as ONF . Let Ar denote
the maximum arity of any Predicate in SP . Throughout
the paper, we denote any (state-fluent or non-fluent) ground
predicate P (u1, ...uk) as P (⟨u⟩) where ⟨u⟩ = ⟨u1, ...uk⟩ is
an object tuple.

Each instance has an underlying Dynamic Bayesian Net-
work (DBN) capturing its transition dynamics, which is a
bipartite graph with (i) a set of nodes for each state-variable
and each ground action at time t and (ii) a set of nodes for
each state-variable at time t+ 1 and a reward node. There
exists an edge from a node in the first node-set (i.e., at time
t) to a node in the second node-set (i.e., at time t+ 1) if the
value of the former affects the value of the later [Mausam
and Kolobov, 2012].

A sequence of works [Bajpai et al., 2018, Garg et al., 2019,



2020, Sharma et al., 2022] learns generalized neural policies
for RDDL RMDPs. All these works have their limitations:
Torpido [Bajpai et al., 2018] can not transfer across instance
size, TrapsNet [Garg et al., 2019] only handles domains
with limited state and action predicate arities, and Sym-
Net [Garg et al., 2020] ignores most non-fluents leading to
generalization limitations. We build on the most recent of
these, SYMNET2.0 [Sharma et al., 2022], that improves on
SymNet (described in the next section).

2.2 SYMNET2.0

Instance-Graph(s): SYMNET2.0 converts a given instance
into a set of graphs each referred to as an instance-graph,
each having two types of nodes, (i) singleton object nodes:
for each object o ∈ O, a node o is added to all graphs. (ii)
object-tuple nodes: for each unique object-tuple, i.e., for
each ⟨u⟩ ∈ OSF ∪ONF , a node ⟨u⟩ is added to all graphs.
We will use n to denote a node corresponding to either an
object or an object-tuple. There are three types of graphs that
capture different types of interactions among state-variables
via edges that are created as follows,

1. DBN-based graph (Gd): An edge is added between
nodes ⟨u⟩ and ⟨v⟩ if there is a state-fluent P (⟨u⟩) that
affects another state-fluent Q(⟨v⟩).

2. Action-based graphs ({Ga1, ..., Ga|A|}): An edge is
added to graph Gai between nodes ⟨u⟩ and ⟨v⟩ if there
is a state-fluent P (⟨u⟩) that affects another state-fluent
Q(⟨v⟩) via action ai.

3. Position-based graphs ({Gp1, ..., Gp|Ar|}): A bidirec-
tional edge is added between a singleton object node
o and an object tuple node ⟨u⟩, in the graph Gpi, if o
comes at position i of object tuple ⟨u⟩.

Node features: SYMNET2.0 adds node features in each
graph as (i) For each predicate P (⟨u⟩) ∈ SF ∪NF , a fea-
ture is added to node ⟨u⟩. (ii) For each unparameterized
predicate Q ∈ SF ∪ NF , a feature is added to all nodes.
(iii) For each node, a one-hot encoding representing the type
of the node is added. For object-tuple ⟨u⟩ = ⟨u1, ..., uk⟩,
type(⟨u⟩) = (type(u1), ..., type(uk)). The values for fea-
tures corresponding to SF and NF come from the current
state and the RDDL descriptions, respectively.

Node Embeddings: Next, SYMNET2.0 computes node
embeddings for each of these graphs by using a Graph At-
tention Network (GAT) [Veličković et al., 2018]. Each graph
is passed through an independent GAT with fixed neighbor-
hood size. The node embeddings from each graph are then
merged into a single node embedding as ∀v ∈ V, ne(v) =
concat(neGd

[v], ..., neGp|Ar| [v]), where V is the set of all
nodes. To capture the complete state, a global embedding
is also computed as ge = maxpoolv∈V (ne[v]). The set
of node embeddings, along with the global embeddings,
represent the state-representation.

Next, a set of action decoders is created for each action type,
denoted by {AD1, ..., AD|A|}. For a global action ac and
for a ground action ac(⟨o⟩), where o = (o1, ..., ok), that
affects a set of state-variables Pa(⟨o⟩), the score is given as,

score(a(o)) =ADtype(a)

(
ne[o1], ..., ne[ok], ge,

maxpoolP∈Pa(⟨o⟩)(ne[args(P )])
)

(1)

score(ac) =ADtype(ac)(ge) (2)

Here, args(P ) returns the arguments of predicate P . The
scores of all actions are then normalized to get a policy. For
training, imitation learning is used where the data is gener-
ated using the state-of-the-art online planner PROST [Keller
and Eyerich, 2012].

3 TECHNICAL CONTRIBUTIONS

The organization of this section is as follows. We first high-
light the deficiencies of SYMNET2.0 in representing long-
range dependencies. We then present the architecture for
SYMNET3.0 which addresses these limitations by incorpo-
rating the notion of distance-based features.

3.1 LIMITATIONS OF SYMNET2.0

We note that SYMNET2.0 uses fixed depth GAT, each node
can only access information in its immediate neighborhood
and ignores the information beyond its field of view. The
only way to have information access beyond the field of view
is through global embedding. However, SYMNET2.0’s max
pool-based global embedding is a commutative operation
that ignores the structure of the graph. Hence, if we swap
node embeddings of any two nodes, SYMNET2.0 will not be
able to identify this change leading to sub-optimal policies.
Next, we will explain this formally.

Theorem 1. Let G be an instance graph with two nodes n1

and n2 representing object-tuples of state-variables, having
identical 2d hop neighborhoods. Let s1 be some state where
n1 and n2 are distinct nodes having node features f1 and
f2, respectively, such that f1 ̸= f2. Let s2 be another state
where the node features of n1 and n2 are swapped with each
other, and the remaining node features are same as in s1.
Let the state-representation (set of node embeddings and
maxpool global embedding) be computed by using a GAT
of fixed-depth d. Then, the state-representations of s1 and
s2 will be the same and we refer to s1 and s2 as symmetric
states with respect to nodes n1 and n2.

Proof (Sketch). Only the nodes in the d hop neighborhood
of n1 and n2 notice the swap, and as their neighborhoods
are identical, there is a one-to-one correspondence between
node embeddings before and after the swap. Node embed-
dings of all nodes outside the d hop neighborhood of n1



and n2 will be unchanged. Next, a commutative function
like maxpool will return the same value before and after
the swap. Hence the set of node-embeddings and global
embedding that formulate the state-representations remains
unchanged.

Theorem 2. In reference to Theorem 1, let there be two sin-
gleton nodes oi and o′i whose features have been swapped in
symmetric states s1, s2. Let ac1 = AC(o1, ...oi, ..., ok) be
an action applicable in s1 and ac2 = AC(o1, ..., o

′
i, ..., ok)

be an action applicable in s2, that differ only in the argu-
ments oi and o′i. Further, if Pac1 \ {oi} = Pac2 \ {o′i}, then,
the action score assigned by SYMNET2.0 to ac1 and ac2
will be the same.

Proof (Sketch). As node-embeddings of oi and o′i are the
same, the action scores for ac1 and ac2 will be the same.

Corollary 1. The action score assigned by SYMNET2.0 to
any global action is the same in both s1 and s2.

Proof (Sketch). The score for a global action (Eqn. 2) is a
function of only ge, and as from Theorem 1 ge is the same
for s1 and s2; hence the score will remain the same.

Theorem 1 and Corollary 1 imply that, when all actions are
unparameterized, SYMNET2.0 can not represent policies
that need to differently treat states s1 and s2 that are identi-
cal to each other, except for the features of n1 and n2 being
swapped with each other in s1 and s2.

Example: Consider the deterministic Navigation domain
where a robot has to locate a goal in a 2D-grid (say
23 × 23) with no obstacles. Let the Boolean predicate
robot_at(x,y) denote whether the robot is at location
(x, y) or not (See supplement for the RDDL domain descip-
tion). Let us assume SYMNET2.0 uses GATs with depth 2.
Let the goal be at location lg = (10, 10). Consider a state s1
that has the robot at location l1 = (5, 10) and another state
s2 where the robot is at location l2 = (15, 10). In either of
these states, no node in the network has a view of both the
goal and the agent location. Further, it is easy to see due to
symmetry, there is one to one correspondence between node
embeddings in s1 to the node embeddings in s2, resulting
in identical global embeddings computed via maxpool. The
above theorems state that SYMNET2.0 considers both s1
and s2 as the same and hence, results in decoding of the
identical action in both these states. In other words, it has
no way to represent the optimal policy, which corresponds
to taking ’move right’ action in s1 and ’move left’ action in
s2.

3.2 SYMNET3.0: INCORPORATING INFLUENCE

We next present our model Symbolic Influence Network
(SYMNET3.0), which addresses some of the issues faced by

SYMNET2.0. Intuitively, SYMNET2.0 fails to represent cer-
tain desirable policies since its view is limited by the depth
of the underlying GAT. Two nodes that are more than 2d
distance away, with d being the depth of GAT, do not share
any neighborhood and hence, have no way to propagate
relevant information to each other. Further, maxpool being
a permutation invariant operation has no way to capture the
relative ordering of nodes in the network. A combination of
these issues results in the learning of sub-optimal policies. A
natural way to address this would be to simply increase the
depth of the GAT. But unfortunately, this leads to blow-up
in the number of parameters, potentially causing overfit-
ting. Another approach would be to consider a GAT with
parameters tied across layers [Palm et al., 2018] but that still
requires passing messages for a long distance, potentially
resulting in learnability issues as observed by Zambetta and
Thangarajah [2022].

Motivated by these shortcomings, we take a different ap-
proach and ask the following question: "Since we have full
knowledge of the transition model, is there a way to apriori
encode some information in the network which would break
the symmetry of states which should actually be different
from each other?" Presumably doing so would also help us
in learning policies which can discriminate between such
similar looking states based on a fixed depth GAT. One way
to encode such information would be to capture the distance
between two nodes in a graph, where the nodes represent
state variables (predicates), and edges represent transitions
from one state variable to another, via an action. We note
that this may not be possible to do it on the original instance
graph, due to presence of a larger number of additional
nodes (e.g., singletons) making it too dense, and unsuitable
for capturing such a notion of distance.

In the navigation example, this kind of graph would capture
the underlying grid structure, since robot can move in either
direction in one step via the transition model. This means
that if the model is given access to this distance information
as a feature, it could represent policies not earlier repre-
sentable by SYMNET2.0, e.g., in our navigation domain,
it is better to move in the direction, which minimizes the
distance to the goal. In general, some other complicated
function of the distance could also be learned, as we show in
our experiments. Next, we formally introduce the notion of
influence distance followed by changes to the SYMNET2.0
architecture to exploit the distance-based features.

3.2.1 Influence Graph and Influence Distance

To succinctly represent the influence among state-variables
of a given instance I , we define an influence graph IG as
follows: (a) There is a node for each state-variable P (⟨u⟩)
in IG, and (b) There is a directed edge (P (⟨u⟩), Q(⟨v⟩))
if state-variable P (⟨u⟩) affects the state-variable Q(⟨v⟩) in
the following time step based on the transition model in the



Figure 1: Figure shows the three-step process of SYMNET3.0 for policy prediction. The instance graph and influence graph
are representative of the Navigation domain (See supplement for domain description). The instance graph has nodes for
object-tuples ((xi, xj), (yi, yj), (xi, yj), xi, yi) and the influence graph has nodes for predicates (R(xi, yj) denoting the
robot_at predicate). In the case of SYMNET2.0, only instance-graph is present.

DBN. Intuitively, the influence graph removes the notion
of time from the nodes present in the DBN and captures
dependencies among the state-variables. In the Navigation
domain, it will have nodes for robot_at state-variables
and edges for each neighboring cell (see Fig 1)

Definition 1. Given an Influence Graph IG, we define influ-
ence distance between two nodes n1, n2 ∈ IG, as the length
of the shortest path from n1 to n2 in IG.

Note that a distance of k between nodes P (⟨u⟩) and Q(⟨v⟩)
implies that it takes at least k time steps for state-variable
P (⟨u⟩) to influence state-variable Q(⟨v⟩). Since the influ-
ence distance is computed in the influence graph, which
is based on the transition model, in general, it will be the
distance between two nodes in a directed graph. Next, we
describe how this influence distance is incorporated in the
SYMNET3.0 architecture to learn the desirable policies.

3.2.2 SYMNET3.0 Architecture

We use the same instance graph as used in SYMNET2.0
i.e., it has the same set of nodes, edges, and input features,
modulo one important distinction. As SYMNET2.0 has mul-
tiple adjacencies in its instance graph, on large instances,
the memory requirements become too high, leading to an
out-of-memory error. As a simple remedy, we use a single
adjacency (in both SYMNET2.0 and SYMNET3.0), but with
edge-types where each edge-type represents the original ad-
jacency it comes from. Therefore, there will be 1+|A|+|Ar|
edge types corresponding to all the original instance graphs.

To compute node-embeddings in SYMNET3.0, we use a
three-step process (Figure 1), (i) Compute initial node-
embeddings using a fixed-depth pre-process GAT, (ii) com-
pute influence distance among nodes and incorporate it

as a feature in instance graph, and (iii) combine initial
node-embeddings and distance feature to get final node-
embeddings using a fixed-depth post-process GAT. We pro-
vide the details below.

Pre-Processing: The information about an object-tuple is
provided either as state fluents or non-fluents or both. In the
instance graph, the non-fluent based nodes are connected
to singleton nodes which are in turn connected to the state
fluent based nodes; hence to collate the information on the
state variable nodes, we need an initial message-passing
step. To compute the initial node-embeddings (ne), we use
a single Graph Attention Network [Veličković et al., 2018]
called pre-process GAT (GATpre) that can incorporate edge
types as,

αh
ij = softmaxNi

(LRelu(aT [Wh
1 fi||Wh

1 fj ||Wh
2 eij ]))

ne[i] = ||Hh=1

∑
j∈Ni

αh
ijW

h
3 fj (3)

Here, fi and Ni denote the features and one-hop neighbours
of node i. eij is the one-hot encoding of each edge type. H
and || denote the number of attention heads and concate-
nation operators, respectively. In our experiments, we use
GATpre of depth 2 as this is the minimum number of mes-
sage passing steps required for information from non-fluent
nodes to reach the state fluent nodes.

Incorporating Influence: Since the influence-distance is
defined over state-variables, whereas each node in the in-
stance graph is either an object or an object-tuple, we have to
first define a mapping from the influence-distance to nodes
of instance graph, which is followed by computation of
distance feature based influence-embeddings (see below).

1. For two nodes i, j ∈ OSF in the instance graph, we define
dij as the minimum influence distance between any two



state-variables mapped to these nodes. We normalize dij by
dividing it by the maximum value of dij for that instance.
Note that computation of dij is a static process, done once
for each instance. Then, we introduce a novel layer called
influence-layer, with the goal of capturing the notion of the
distance of each node from other nodes (like the goal node
in the navigation domain). Since we do not know which
nodes are relevant, we use an attention mechanism to figure
this out. The influence-embeddings (ie) are thus computed
as, ∀i, j ∈ OSF

βh
ij = softmaxOSF

(LRelu(aT [Uh
1 ne[i]||Uh

1 ne[j]||Uh
2 dij ]))

∀i ∈ OSF , ie[i] = ||Hh=1

∑
j∈OSF

βh
ij dij (4)

2. For any other remaining node k in the instance graph,
ie[k] = ||Hh=10.

Intuitively, in equation block 4, each state-variable object-
tuple node i assigns a weight βh

ij based on the information
on i and j, and how far away they are in the influence space.
Further, to diversify the long-range information localiza-
tion, we encourage our attention heads to assign different
weights to different nodes. For this, during training, we add
a loss term that maximizes the KL divergence between at-
tention scores (βh

ij) of any two random attention heads of a
randomly sampled node i ∈ OSF .

State-Representation: We update the node-embeddings
using influence-embeddings and a post-process GAT as,
ne[i] = GATpost(ne[i] || ie[i]) and compute a global em-
bedding as ge = maxpooli∈V ne[i]. The use of distance
features provides nodes in SYMNET3.0 with the capability
to focus on some key nodes and learn node-embeddings
that break the symmetry induced by fixed-depth GAT as in
SYMNET2.0.

Action Decoding: Similar to SYMNET2.0, we compute ac-
tion scores using a set of action decoders {AD1, ...AD|A|},
and take softmax over all scores to get the policy.

3.3 REPRESENTABILITY

Theorem 3. SYMNET3.0 can represent all policies that
SYMNET2.0 can represent.

Proof (Sketch). SYMNET3.0 subsumes SYMNET2.0 as
each node can write an 0 vector as its influence-embedding,
rendering the weights that process ie inactive, thus reducing
SYMNET3.0 to SYMNET2.0.

Theorem 4. For a node n in the influence graph, let L(n, k)
denote the multi-set of node features of nodes that are ex-
actly k hops away from node n in the influence graph. In
reference to theorem 1, given the features of nodes n1 and
n2, if there exists a k > 0 such that L(n1, k) ̸= L(n2, k),

then, given a sufficiently powerful attention function SYM-
NET3.0 has the power to learn the parameters that break
the symmetry induced between s1 and s2 which have the
features of nodes n1 and n2 swapped. [see Supplement for
a proof sketch]

Theorem 5. In reference to Theorem 4, let there be
two singleton nodes oi and o′i whose features have been
swapped in states s1 and s2, making these states symmet-
ric to each other with respect to oi and o′i. Let ac1 =
AC(o1, ...oi, ..., ok) be an action applicable in s1 and
ac2 = AC(o1, ..., o

′
i, ..., ok) be an action applicable in

s2, that differ only in the arguments oi and o′i. Further,
if Pac1 \ {oi} = Pac2 \ {o′i}, then, SYMNET3.0 has the
power to assign different action scores to ac1 and ac2.

Proof (Sketch). From theorem 4 SYMNET3.0 can learn dif-
ferent node-embeddings of oi and o′i thus having the power
to give different action scores for ac1 and ac2.

4 EXPERIMENTS

We design our experiments for answering three research
questions. (i) How well does SYMNET3.0 handle the long-
range influence problem in comparison to SYMNET2.0?
(ii) How do these models compare on domains that do not
have long-range dependences? (iii) Can we identify SYM-
NET3.0’s strengths and limitations?

4.1 EXPERIMENTAL SETUP

Previous works [Garg et al., 2020, Sharma et al., 2022] have
experimented with twelve IPPC 2011 and 2014 domains.
Our preliminary analyses indicated that most of those do-
mains do not require solving the long-range dependence
problem: either the instances are too small, or policies are
too localized. So, we use these domains to answer question
(ii) above. We additionally create six new domains, which
we name as LR domains, that necessitate recognizing the
long-range influences for computing good solutions.

Domains: We now briefly describe the new LR domains
(see supplement for further details on all domains),

1) Deterministic Navigation (DNav): A robot in a 2D-grid
has to reach a far away goal cell in a minimum number of
steps. A reward of -1 is given at every time step and 0 on
reaching the goal.
2) Stochastic Corridor Navigation (StNav): This is a vari-
ant of IPPC’s Navigation domain. Given a 2D grid, a robot
has to reach a goal location, but it can die with a certain
probability at each cell, except the bottom and the topmost
rows are safe. The robot and goal locations are sampled
randomly in the bottom and top rows, respectively. There
is a single randomly sampled safe vertical corridor from
bottom to top. The IPPC Navigation is a special case of



Model SRecon Pizza DNav StWall EAcad StNav Mean
PROST 0.34 0.09 0.94 0.69 0.37 0 0.41
SYMNET2 0.47 0.26 0.55 0.27 0.9 0.03 0.41
SYMNET3-KL 0.68 0.62 0.84 0.33 0.87 0.08 0.57
SYMNET3+KLD 0.62 0.58 0.91 0.38 0.92 0.15 0.59
SYMNET3+KL 0.61 0.18 0.95 0.35 0.91 0.05 0.51

Table 1: Comparison of SYMNET3.0 with the baselines on 6 LR domains (bold denotes the best-performing neural model)
.

Model Tam Traffic Sys Skill Nav TT Recon Elev Acad CT GoL Wild Mean
PROST 0.86 0.91 0.76 0.84 0.00 0.03 0.59 0.91 0.64 0.34 0.32 0.57 0.56
SYMNET2 0.90 0.88 0.79 0.82 0.54 0.78 0.35 0.92 0.83 0.81 0.62 0.78 0.75
SYMNET3-KL 0.91 0.85 0.81 0.81 0.53 0.70 0.42 0.87 0.73 0.8 0.76 0.79 0.75
SYMNET3+KLD 0.90 0.85 0.83 0.77 0.85 0.67 0.29 0.71 0.78 0.78 0.61 0.77 0.73
SYMNET3+KL 0.90 0.85 0.82 0.70 0.71 0.74 0.24 0.91 0.80 0.80 0.41 0.18 0.67

Table 2: Comparison of SYMNET3.0 with the baselines on 12 IPPC domains (bold denotes best-performing neural model)

StNav where the safe corridor is always the first column.
3) Extreme Academic Advising (EAcad): A variant of
IPPC’s Acad, EAcad has a set of courses arranged in a di-
rected acyclic graph with some courses as program require-
ments that the agent has to complete in order to complete
the degree. The probability of completing a course without
completing all its pre-requisites is very low. Therefore, in
the optimal policy, a course should be taken only if it is an
ancestor of some far-away program requirement.
4) Safe Recon (SRecon): In this modification of IPPC’s
Recon, there is 2D-grid with multiple objects, and the robot
has to locate an object to apply a tool to get a reward. The
action may damage the object, so it may need to locate and
try on the next object.
5) Pizza Delivery (Pizza): This is a new domain, in which a
robot in a 2D-grid has to pick pizza from one of the outlets
and deliver it to a customer in the shortest time in a windy
(stochastic) environment. The robot should choose an outlet
that minimizes the total distance, rather than going to the
closest one.
6) Stochastic Wall (StWall): Another new domain, where
a robot has to reach a goal location in a 2D grid, where
the grid contains either a horizontal or a vertical wall. Each
cell in the wall has a high death probability except for one
randomly selected safe passage in between. An agent has to
locate the safe passage in the wall and reach the goal.

Training Details: In the spirit of domain-independent gen-
eralized planning, we use a single architecture (with fixed
hyperparameter setting) on all domains, and the validation
set is used only for early stopping. For each LR domain,
we generate 1000 training, 100 validation, and 200 test in-
stances with size (#state-fluents) increasing from train to val-
idation to test instances. And for standard IPPC domains, we

generate 200 training, 10 validation, and 40 test instances.5.
See the supplement for details on the instance sizes.

Similar to SYMNET2.0, we use state-of-the-art online plan-
ner PROST and generate 30 trajectories for each training
instance, and train using imitation learning on the first 300
transitions . As PROST is a sampling-based solver, it can
end up taking different actions for the same state; we remove
this ambiguity by choosing the most frequent action for each
state. We train for 48 hours for each of the 6 new domains
and for 24 hours each on the 12 IPPC domains. Each check-
point is evaluated on validation instances, and we pick the
one with the best average reward on the validation instances.

Comparison Algorithms: For SYMNET3.0, GATpre and
GATpost have depth 2 each, and there are 10 attention-
heads in the influence-layer for all domains (supplement has
further details). We use the loss function Limit − λLKL,
where Limit and LKL denote the imitation, KL-based loss
and λ is a hyperparameter. We implement three variations:
firstly SYMNET3.0-KL where λ = 0, and SYMNET3.0+KL
where λ = 0.1. Our eventual goal is indeed to create one
planner that can work for all domains. To this end, we de-
velop a third variation, SYMNET3.0+KLD where we keep
λ = 0.1 for first 2000 training batches and then linearly
decay λ from 1 to 0 in the next 1000 batches. We compare
SYMNET3.0 with SYMNET2.0, the existing state-of-the-art
model for this task. For fair comparison, we use a 4 depth
GAT to match SYMNET3.0’s total depth. In addition we
also report results of PROST in its default setting. We note
that a direct comparison is not meaningful, as PROST uses
interleaved planning and execution, whereas other models
are offline planners.

As mentioned in Section 3, for both SYMNET2.0 and SYM-

5Code released at https://github.com/dair-iitd/symnet3



Figure 2: (a) Shows the color-coded locations of a 23× 23 instance of the DNav do-
main where R and G are the robot and goal. Fig. (b) and (c) show the 2D t-SNE plot
for node embeddings of the grid locations for SYMNET2.0 and SYMNET3.0+KL.

Figure 3: The attention map of the
influence-layer in the Pizza domain
for the R node.

NET3.0, we use edge-types in one instance-graph, rather
than having multiple instance-graphs. This allows both mod-
els to avoid high memory requirement issues on larger in-
stances. We tried the original SYMNET2.0 setting of multi-
ple instance graphs, but it does not scale to large instances.
We also tried dynamically varying the GAT depth propor-
tional to the instance size in SYMNET2.0, but this also leads
to training issues due to high computational requirements
(as observed earlier [Zambetta and Thangarajah, 2022]).

Evaluation metric: Following SYMNET2.0, for a given do-
main, we calculate a relative performance score for a method
m on an instance i as, α(m, i) = Vm(i)−Vrand(i)

Vmax(i)−Vrand(i)
∈

(−∞, 1], where Vm(i) and Vrand(i) denote method m’s and
random policy’s reward, respectively. And, Vmax(i) denotes
the best reward by any method on instance i. Here, a value
of 0 marks the random policy score, and 1 implies the best
performance across all methods on all runs. Next, we cal-
culate α(m) = 1

|Itest|
∑

i∈Itest
α(m, i), which is method

m’s score averaged over all test instances (Itest). Finally,
we report α(m) averaged over 5 independent runs.

5 RESULTS

Tables 1 and 2 show our results where each (i, j)th entry
gives the α value of ith model on the jth domain. The
bold numbers show the best-performing neural method. The
results for PROST are in gray as it is not a direct comparison.
The last column reports the average over all domains.

Long Range Domains: Table 1 shows that all varia-
tions of SYMNET3.0 outperform the improved baseline
SYMNET2.0 on all 6 new LR domains on the mean ag-
gregate metric with a margin of +10 α(m) points for
SYMNET3.0+KL, +16 for SYMNET3.0-KL, and +18
for SYMNET3.0+KLD. Interestingly, SYMNET3.0+KLD

outperforms SYMNET2.0 on all 6 LR domains. Interest-
ingly, SYMNET3.0+KLD is able to achieve a score of
+15 on StNav, where PROST and SYMNET2.0 fail to
give any meaningful policy, highlighting the inherent diffi-
culty of the domain. Similarly, for Pizza domain, PROST
again fails to perform well, and both SYMNET3.0-KL and

SYMNET3.0+KLD get a score of greater than +55 as com-
pared to SYMNET2.0’s +26.

IPPC Domains: SYMNET3.0-KL performs at par with
SYMNET2.0 on the IPPC domains. However, overall, SYM-
NET3.0+KL’s performance drops in comparison to SYM-
NET2.0, specifically on Skill, GoL, and Wild domains. We
hypothesize that as the training data increases, it should
perform at par with SYMNET2.0and we leave this analysis
for future work.

Use of KL divergence loss: In general, we note that us-
ing KL-based loss improves performance in some domains.
However, having a KL-based loss doesn’t give better perfor-
mance consistently across all domains. We hypothesize that
this is because the KL loss enforces a strong inductive bias,
where all attention heads must focus on different nodes in
the graph. Hence, in the case of domains without long-range
dependency, it could lead to attention on irrelevant nodes
causing overfitting. We also observed in certain domains
that sometimes the KL loss could lead to convergence prob-
lems during training. The investigation of this phenomenon
is left for future work. The overall performance of unified
model SYMNET3.0+KLD is best among all baselines for
LR domains, and marginally lower than SYMNET2.0 for
IPPC domains suggesting that the SYMNET3.0+KLD archi-
tecture is robust across multiple types of domains.

Model selection based on validation reward: Further,
when we select the best among SYMNET3.0’s variations
based on the validation set, we notice that for both IPPC and
LR settings, this model gives a slight boost in the overall
performance in comparison to the earlier best model. Addi-
tionally, SYMNET3.0 marginally outperforms SYMNET2.0
in the IPPC setting (see Supplement for results).

5.1 INSIGHTS

Visualizing node embeddings: Figure 2 shows the node em-
beddings of the locations of a DNav instance of size 23×23
as computed by SYMNET3.0+KL and SYMNET2.0. Each
grid location is color-coded (Figure 2(a)) and is marked as a
circle in Figure 2(b) and (c) where its 2-dimensional t-SNE



embedding is used as the circle’s location. SYMNET3.0’s
node-embeddings retain the structure of a 2D grid. In com-
parison, SYMNET2.0 does not exhibit any such structure.

Visualizing influence-layer: Figure 3 shows an instance
of the Pizza domain with 3 pizza outlets (P), one customer
(C), and a robot (R). Figure 3 shows the attention map (βij)
of the influence-layer, averaged over all heads where i is
the node with the robot (R). We observe that SYMNET3.0
automatically learns to assign a high attention score to the
key nodes having information of Pizza outlets (P) and the
customer (C). This provides deeper insight into the learned
policy. Further, we observe that in this instance, the learned
policy by our model is the one that takes the robot to the P,
which minimizes the total distance to C. We observe similar
qualitative behavior for other domains (see supplement).

6 RELATED WORK

Generalized Planning: Earlier works for learning gen-
eralized policies for relational planning focus on learn-
ing generalized features that can be transferred across in-
stances [Fern et al., 2003, Guestrin et al., 2003, Mausam and
Weld, 2003]. Recent works try to learn generalized policies
using deep neural networks for both PPDDL [Toyer et al.,
2018, Ståhlberg et al., 2022a,b] and RDDL [Issakkimuthu
et al., 2018, Garg et al., 2019, 2020, Sharma et al., 2022].
Ståhlberg et al. [2022a,b] argue that the policies that can not
be written in two variable counting logic can not be repre-
sented using Graph Neural Networks. They also highlight
the problem of long-range dependencies; however, they do
not propose any solution. ASNet [Toyer et al., 2018] also fo-
cuses on PDDL (rather than RDDL), and has a tight coupling
with an online planner to learn generalized neural policies
for PPDDL. PPDDL and RDDL differ in their modeling
choices; for example, PPDDL provides an explicit goal state
definition, whereas RDDL does not. Neural solvers for both
of these depend heavily on these facts; for example, ASNet
relies on the availability of a goal state. Further, automati-
cally converting a domain from one to another would first
require grounding the representation, losing the first-order
semantics. Hence, it is difficult to have a direct comparison.
Another work by Silver et al. [2021] learns to predict ob-
jects’ importance with the goal of pruning the number of
objects. However, their target is to speed up planning rather
than generalize and hence not directly comparable to ours.

To the best of our knowledge, work by Issakkimuthu et al.
[2018] was the first to learn policies using neural networks
for RDDL RMDPs; however, they do not learn generalized
policies. A sequence of works [Bajpai et al., 2018, Garg
et al., 2019, 2020, Sharma et al., 2022] learns generalized
neural policies for RDDL RMDPs.

General Graph Neural Network techniques: Skip
connections-based approaches like JK-net [Xu et al., 2018]

focus on improving the learnability when the depth of the
GNN is increased but do not affect the representation prob-
lem of long-range dependence. Another approach is to use
hierarchical GNNs based on Pooling approaches like Diff-
pool [Ying et al., 2018] that stack blocks of message passing
and pooling blocks. However, these approaches select and
deselect nodes to be grouped together based on a learned
score and hence alter the notion of distance among nodes
– a notion critical in the planning problems. Moreover, to
handle size transfer, an architecture with a varying number
of message passing and pooling blocks are needed to han-
dle large instances. Hence, for any fixed-sized hierarchical
GNN, there is always a large enough instance such that the
given network does not have the capacity to capture all the
long-range dependencies.

7 CONCLUSION AND FUTURE WORK

We have studied the problem of capturing long-range de-
pendencies in neural architectures for learning policies in
RDDL RMDPs. We have proposed SYMNET3.0, which
defines the novel notion of influence graph defined over
state variables, with edges representing transitions between
them. The distance in the influence graph is incorporated
as a feature in the instance graph, to represent long range
dependencies, and the corresponding policies are learned
using a multi-headed attention architecture. Extensive ex-
perimentation shows that our approach is competitive on 12
IPPC domains, and does significantly better on six domains
designed to test long range dependencies, in comparison
with SOTA baselines.

One of the limitations of our work is the dependence on
an existing planner to generate training dataset for imita-
tion learning. Integrating SYMNET3.0 with RL for learning
generalised policies is a direction for future work. Another
potential limitation is that we only consider pairwise dis-
tances between nodes - it may not capture policies which
simultaneously depend on distances among a set of nodes;
this is another direction for future work. Applying our ap-
proach to the PPDDL-based RMDPs is also a direction for
future work.
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