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Summary
In this work, we investigate means of reducing the computation costs for learning online

to adapt morphology-aware learning policies to specific target morphologies. Morphology-
aware learning is a paradigm which attempts to learn several optimal policies across agent
embodiments in a single neural network. A limitation of prior works have been focusing on
end-to-end finetuning to adapt these policies to a target morphology. We address this gap by
exploring parameter efficient techniques used successfully in other domains such as computer
vision or natural language processing to specialize a policy. Our results suggest that using as
few as 1% of total learnable parameters as the pre-trained model, we can achieve statistically
significant performance improvements.

Contribution(s)
1. We conduct an extensive series of experiments to compare the effects of parameter-efficient

finetuning methods in the morphology-aware policy learning setting.
Context: Prior works which include transfer learning experiments have generally focused
on end-to-end finetuning or else at most consider low-rank adapter layers (LoRA), a form
of delta weight learning, as part of their experiments (Octo Model Team, 2024). When
LoRA has been used, experiments have only been conducted only in the behavioral cloning
setting. This is a limitation in the literature because a wide variety of parameter-efficient
techniques have been investigated in other fields such as prefix tuning in large language
models (Li & Liang, 2021) and direct-finetuning in computer vision (Lee et al., 2023).

2. We are the first work to successfully learn policies using prefix tuning methods in the rein-
forcement learning settings.
Context: Prefix tuning has been almost exclusively investigate in supervised learning set-
tings such as natural language processing (Li & Liang, 2021), computer vision (Nie et al.,
2023), or continual learning (Wang et al., 2022). The closest related to our work is Liu et al.
(2024) who investigate prefix tuning techniques in the imitation learning setting and across
tasks as opposed to agent morphology.

3. Our experiments reveal a number of trends in the morphology-aware policy setting. Gener-
ally we find that both input-adapter and prefix tuning methods converge to behaving similar
to tuning the decoder head of the base model. Prefix tuning is particularly sensitive to hyper-
parameter choices where some configurations notably affect performance at the beginning
of training and never recover. Generally, more parameters are always beneficial to improv-
ing policy performance in the tasks we considered.
Context: Other such prescriptive research has been done in computer vision or language
when investigating different PEFT techniques. The work of Lester et al. (2021) demon-
strated the potential of prefix tuning over a number of factors including prompt initializa-
tion and number of prompt tokens. The work of Liu et al. (2022) highlights the benefits of
injecting prompts in multiple layers in transformers. The work of Lee et al. (2023) suggests
that intelligent layer different types of domain shifts in computer vision.
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Abstract
Morphology-aware policy learning is a means of enhancing policy sample efficiency by1
aggregating data from multiple agents. These types of policies have previously been2
shown to help generalize over dynamic, kinematic, and limb configuration variations3
between agent morphologies. Unfortunately, these policies still have sub-optimal zero-4
shot performance compared to end-to-end finetuning on morphologies at deployment.5
This limitation has ramifications in practical applications such as robotics because fur-6
ther data collection to perform end-to-end finetuning can be computationally expensive.7
In this work, we investigate combining morphology-aware pretraining with parameter8
efficient finetuning (PEFT) techniques to help reduce the learnable parameters neces-9
sary to specialize a morphology-aware policy to a target embodiment. We compare10
directly tuning sub-sets of model weights, input learnable adapters, and prefix tuning11
techniques for online finetuning. Our analysis reveals that PEFT techniques in conjunc-12
tion with policy pre-training generally help reduce the number of samples to necessary13
to improve a policy compared to training models end-to-end from scratch. We further14
find that tuning as few as less than 1% of total parameters will improve policy perfor-15
mance compared the zero-shot performance of the base pretrained a policy.16

1 Introduction17

Learning agents that can reuse knowledge across tasks demonstrate improved sample efficiency and18
better learning capabilities (Reed et al., 2022; Driess et al., 2023; Deng et al., 2023). Deep reinforce-19
ment learning (RL), despite its potential, faces significant challenges when applied to multiple tasks20
due to its sensitivity to even minor environmental variations and sample inefficiency (Henderson21
et al., 2018; Du et al., 2020). Prior research suggests that even subtle dynamic or kinematic differ-22
ences can notably affect policy performance (Chen et al., 2018; Schaff et al., 2019). This brittleness23
and inefficiency create substantial barriers when developing versatile agents that can adapt to new24
scenarios. Morphology-aware learning is one means of enabling knowledge transfer across different25
physical agent configurations. Morphology adaptation techniques can improve policy robustness26
and sample efficiency by explicitly accounting for agent embodiments.27

Morphology-aware policy learning incorporates agent morphology knowledge by representing em-28
bodiments as graphs processed through GNNs (Scarselli et al., 2009) or transformers (Vaswani et al.,29
2017). Representing agents as graphs is valuable because it enables policies to represent agents with30
changing limb configurations, and thus varying action spaces (Wang et al., 2018; Huang et al., 2020;31
Kurin et al., 2021). Research has focused on effective graph structure utilization through adjacency32
matrices (Hong et al., 2022; Li et al., 2024), feature grouping (Trabucco et al., 2022; Xiong et al.,33
2023; Sferrazza et al., 2024), and geometric symmetries (Chen et al., 2023). Morphology-aware34
learning can improve sample efficiency as supported by theoretical sample bounds in multi-task35
learning (Brunskill & Li, 2013; Maurer et al., 2016; D’Eramo et al., 2020; Bohlinger et al., 2025),36
with empirical results suggesting policies optimized over morphology distributions outperform spe-37
cialized ones (Gupta et al., 2022; Xiong et al., 2023). Applications include autonomous robot design38
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(Pathak et al., 2019; Luck et al., 2020; Yuan et al., 2022) and large-scale control models (Bousmalis39
et al., 2024; Open X-Embodiment Team, 2024; Octo Model Team, 2024).40

Unfortunately, deploying morphology-aware policies on new embodiments continues to be chal-41
lenging because of the employment of computationally inefficient transfer learning techniques. Prior42
works suggest that pre-training morphology-aware policies provide better policy initialization when43
transferring, but additional finetuning is necessary to elicit optimal performance on new morpholo-44
gies (Gupta et al., 2022; Xiong et al., 2023; Furuta et al., 2023). These works have focused mainly45
on end-to-end finetuning algorithms, which can be computationally intensive for larger monolithic46
policies. In resource-constrained settings like robotics (Huai et al., 2019; Neuman et al., 2022),47
reducing further computation for learning is referable for transferring policies.48

In this work, we investigate parameter-efficient finetuning (PEFT) algorithms as a solution to im-49
prove policy transfer performance with reduced computational resources. PEFT algorithms use50
subsets of a model’s parameters to finetune a pre-trained neural network or otherwise introduce a51
small set of new learning parameters that specialize to a target task (Dong et al., 2023; Kirk et al.,52
2023). The latter approach is more flexible because approaches can be input-learnable parameters53
that do not directly change the pre-trained model (Tsai et al., 2020). Researchers have shown that54
PEFT methods work well on large networks in natural language tasks (Li & Liang, 2021) and in55
computer vision problems (Lee et al., 2023) while reducing additional computation costs to perform56
gradient updates on a small set of PEFT parameters compared to the entire model. Closely related57
to our work is the work of Liu et al. (2024), who investigate PEFT methods in continual imitation58
learning. Our research is different as we deal with morphology transfer and evaluate PEFT methods59
with deep RL, which presents other challenges from supervised learning.60

In summary, the primary contribution of our work is the analysis of several PEFT techniques for61
morphology-aware policy transfer. Our results demonstrate that it is generally achievable to sub-62
stantially reduce the total parameters used and achieve statistically measurable improvement over63
zero-shot performance, even with strong initial zero-shot performance. Using even 1% total learn-64
able parameters relative to the base model’s total parameter count leads to measurable performance65
improvement while significantly reducing learning computation costs compare to end-to-end fine-66
tuning. As part of our work, we show how input-learnable PEFT algorithms preserve strong zero-67
shot capabilities as a performance floor and consistently outperform these initial capabilities as train-68
ing progresses, making them particularly suitable for online reinforcement learning scenarios with69
limited data collection opportunities. This research has potential in real-world applications like70
robotic learning. Our results provide practical guidelines for researchers to determine which PEFT71
techniques best balance sample efficiency, computational requirements, and performance gains for72
their specific deployment settings.73

2 Background74

2.1 Contextual Markov Decision Process75

Morphology-aware policy learning can be understood as a form of contextual Markov decision pro-76
cess (CMDP) (Hallak et al., 2015). A CMDP is characterized by a distribution C, where for c ∼ p(C)77
we have an induced tuple M(c) = (Sc,Ac, pc(s′|s, a), r, pc(s0)). For each c, Sc is a finite set of78
states, pc(s0) represents the initial state distribution, and Ac is a finite set of actions. The state tran-79
sition probability function, pc(s′|s, a) = Pr(st+1 = s′ | st = s, at = a; c), defines the probability80
of transitioning from state s to state s′ when action a occurs. The reward function, rc(s, a, s′), rep-81
resents the immediate value of transitioning from s to s′ due to a. A policy π : S × C → P(A) is a82
mapping from states and contexts to a probability distribution over actions, where π samples actions83
a ∼ π(s, c) to transition following pc(s′|s, a). For a given CMDP, the objective is to maximize the84
expected sum of rewards over the distribution of contexts,85

π⋆(s, c) = argmax
π∈Π

Ep(c)[Gc],
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where Gc = Epc(τ)[
∑T

t=0 γ
tr(st, at)] is the expected cumulative reward for a given context with86

discount factor γ ∈ [0, 1). We only consider the finite horizon case where the tasks will termi-87
nate after T ∈ N+ steps, and pc(τ) = pc(s0)

∏T
t=0 π(st, c)Pc(st+1|st, at) is the distribution over88

trajectories in the environment.89

Our work focuses on continuous action and state spaces, a ∈ Rl(c) and s ∈ Rl(c)×ds

, where l(c) ∈90
N+ are the number of limbs in the morphology and ds ∈ N+ are state features, This differs from91
typical CMDPs which usually assume a fixed dimensionality of states and actions. Similarly, we will92
have context sequence c ∈ Rl(c)×dc

which contains the limb adjacency matrix, link dynamic values93
(mass, friction, etc.), and link kinematic information (e.g. joint limits and values) which represent94
the tangible aspects of a morphology .95

2.2 Transformers96

An essential component of the morphology-aware policies in previous works are transformer models97
(Gupta et al., 2022; Xiong et al., 2023). We treat our data as an observation sequence o ∈ Rl×d98
with l ∈ N+ limb embeddings with d ∈ N+ features. Each token oi = [si; ci] contains limb-99
level state and context variables of a morphology for i ∈ [1, 2, ..., l]. We project observations using100
morphology-independent linear transformations that map limb-specific features to a shared embed-101
ding space ō = LN(oW embed + W position[1 : l]), where W embed ∈ Rd×h is a linear projection102
operation that transforms the input features to the hidden dimension h ∈ N+. W position ∈ RL×h103
represents the positional embeddings up to some assumed max sequence length L ∈ N+, where only104
the first l columns of W position are used. LN refers to the LayerNorm function (Ba et al., 2016).105

The major component of transformers are the self-attention mechanism, which generates weighted106
combinations of the sequence ō, f(ō) = softmax(ϵQKT )V. We call Q = ōWQ, V = ōWV ,107
and K = ōWK the query, key, and value, respectively, and ϵ = 1/

√
h is a constant cho-108

sen to prevent the dot products from causing extremely peaked softmax distributions. The soft-109
max operator, which converts vectors of real numbers to vectors of probabilities, softmax(o)i =110
exp (oi)/

∑l
j=1 exp(oj), defines the weight each vector oi contributes. The parameter set W attn =111

{WQ,WV ,WK} ∈ {Rh×h,Rh×h,Rh×h} are linear projections. We learn these parameters with112
gradient descent while optimizing the loss function during training. Self-attention is followed by a113
residual connection between f(ō) and ō is passed to a nonlinear model to form transformer layer114
Ti(ō) = W outσ(W in(LN(ō+ f(ō))) + LN(f(ō)) + ō, where W out,W in ∈ Rh×h, and ReLU is115
our activations σ.116

3 Efficient Morphology Transfer Learning117

This section discusses our work investigating the efficacy of PEFT algorithms for morphology-118
aware online RL. We first describe the Metamorph framework, which is included here because all119
pretrained policies we use are trained using this framework. We then describe the formalization of120
our PEFT problem for online RL. We end with discussion on specific classes of PEFT techniques121
considered in this work.122

3.1 Metamorph Framework123

Metamorph is morphology-aware learning framework that is an instantiation of the CMDP formu-124
lation we described in Section 2. In Metamorph, a policy is trained over a set of 100 training125
morphologies.1 Each morphology c induces an observation sequence o = [o1,o2,o3, ...,ol(c)] for126
each time step. To account for varying l(c) ∈ N+ between morphologies the policy is a transformer127
(Section 2). The transformer encoders hidden representations h ∈ Rl(c)×h with h ∈ N+ hidden fea-128
tures per limb. Actions are predicted with a multi-layer perceptron per limb as ai = gθ(hi), where129

1We explicitly mention training on 100 morphologies because that is done in the original paper. Any number of training
morphologies can be used in practice.
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g : H → A is a mapping from hidden representations to actions. Here, ai ∈ R while hi ∈ Rh. Hav-130
ing a token per limb enables a metamorph policy to adapt to varying limb configurations in practice.131
The policy πθ(o) is optimized using Proximal Policy Optimization (Schulman et al., 2017).132

We chose to use this framework because it uses transformer-based policies as the morphology-aware133
policy. Several PEFT techniques we consider in this paper are designed specifically for use with134
transformer models. The framework code is open sourced, making it accessible to researchers to135
reproduce our results and compare other PEFT techniques in potential future work. Several works136
have also built off this repository to improve the base-architecture design (Xiong et al., 2023; 2024).137

3.2 Problem Formulation138

We assume access to a trained policy π(s, c ; θ⋆) with optimized parameters θ⋆ on the RL objective139
over an empirical distribution p(Ĉ) morphology distribution. For a new morphology c̄ ∼ p(C), we140
optimize ϕ⋆ to maximize the cumulative reward objective,141

ϕ⋆ = argmax
ϕ

Eπ(s,c̄ ;θ⋆∪ϕ)[Gc̄(s)],

where the new parameters are optimized only for the specific morphology c̄. We hypothesize that142
learning a small set ϕ will perform measurably better than the base policy’s zero-shot performance,143
Eπ(s,c̄ ;θ⋆∪ϕ⋆)[Gc̄(s)] > Eπ(s,c̄ ;θ⋆)[Gc̄(s)] where |ϕ| ≪ |θ|. Deep RL policies require immense144
computation to learn and for real world systems (e.g. robotics) could require immense physical145
resources to collect data. Learning policies that adapt to morphology can help mitigate the compu-146
tation costs by aggregating optimal policies into a single model improving sample efficiency.147

Unfortunately, a generalist policy may not elicit the optimal performance of a target morphology148
due to these generalization capabilities. For real-world applications, it is likely necessary that base149
model components continue to learn to maximize task performance. Reducing the total necessary150
learnable parameters is thus significant to achieving this result because, at deployment, it may not be151
feasible to access sufficient computation resources to perform learning updates. These limitations152
motivate the potential of PEFT solutions, which are applicable in varying resource limitations when153
deploying these policies.

Figure 1: A visualization of the various PEFT techniques considered in this paper. Different tech-
niques will interact with the frozen base model in different ways.

154

3.3 Parameter Efficient Finetuning Across Morphologies155

We group PEFT approaches as either direct, input, or prefix adaptation techniques. Direct adaptive156
PEFT approaches modify some subset of the weights ϕ ⊆ θ⋆ or else add learnable delta weights157
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Ŵ = W + ∆W . Input-adaptive PEFT approaches perform some transformation of the inputs to158
elicit the optimal performance in the model. Prefix tuning prepends a learnable sequenes of tokens159
to each input sequence. We visualize the various types of PEFT algorithms considered in Figure 1.160
One of the important considerations of this work is that we want policies161

We consider tuning subsets of θ⋆ for direct adaptive PEFT learning, which we itemize in Appendix A162
and to provide their identifier in experimental results. Layer 5 represents directly tuning the final163
transformer layer to compliment observations for prefix tuning results. For attention and nonlinear164
transformer layers, we used low-lank adapters (LoRA) (Hu et al., 2022), to learn ∆W ∈ Rh1×h2

=165
AB, where A ∈ Rh1×r and B ∈ Rr×h2

are low-rank matrices of rank r ∈ N+ to reduce learnable166
weights for the weight dimensions h1 ∈ N+, h2 ∈ N+. We describe LoRA initialization details in167
the Appendix B.168

For input-adaptive PEFT approaches, we consider learning an extra input adapter layer. We consider169
an input adapter layer that modifies the policy observation as h : Rdc → Rdc

, so that policy uses170
modified inputs a ∼ πθ⋆(h(o)). We consider two variations of the function h where one is a171
direct nonlinear transform h(o) = Houtσ(Hino) or else a nonlinear transformation with a residual172
connection h(o) = o+Houtσ(Hino), with learnable weights ϕ = {Hin, Hout}. We use a hidden173
layer size of 256 units. The input adapter transforms observations to elicit better performance from174
a frozen model.175

Prefix-tuning is a PEFT approach where a set of learnable tokens are pre-pended to the input se-176
quence to elicit desired outputs from the model (Li & Liang, 2021). These prefixes are a se-177
quence ϕ = [w1,w2, ...,wm] of m ∈ N+ tokens, where wi ∈ Rh is a vector. These tokens178
are then pre-pended to the observations oprefix = [ϕ;o1,o2, ...,ol(c)] and otherwise processed nor-179
mally by the transformer layers. Tokens optionally can be pre-pended deeper in the model (e.g.,180
oprefix
l = [ϕ;T l(ol−1)] for layer l > 1) or multiples prefix sets can be used (e.g., ϕ = {ϕ1, ϕ2, ..., ϕl}181

would be learnable prefixes for each layer).182

4 Experiments183

(a) Flat Terrain (b) Variable Terrain (c) Obstacle Avoidance

Figure 2: Locomotion environments. Diagrams are reproduced from Gupta et al. (2022).

This research aims to evaluate the efficacy of PEFT approaches for online learning on target mor-184
phologies. These experiments strive to address the following research questions: (1) How effectively185
does each PEFT learning approach compare between each other and end-to-end finetuning? (2)186
What is the relationship between the total number of learnable parameters and the performance187
when adapting to target morphologies? (3) What are the relevant factors for using prefix tuning and188
LoRA in online reinforcement learning? Our results contribute to understanding the efficacy of189
these approaches in online learning, and can help guide future research developing PEFT algorithms190
for morphology-aware policy transfer. As part of our experiments, we also compare to learning a191
policy from scratch to determine whether or not if pretraining does help policy transfer.192

We report experimental findings on the efficacy of different forms of parameter-efficient finetuning193
in morphological transfer. We use three locomotion tasks that differ in the terrain types shown in194
Figure 2; these include a flat surface, randomized variable terrain, and rectangular obstacle avoid-195
ance. Each task’s reward function emphasizes running as fast as possible to the right. To evaluate196
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Morphology 1 Morphology 2 Morphology 3 Morphology 4 Morphology 5 Morphology 6

Figure 3: The six testing morphologies used in our evaluation. For morphologies with similar visual
embodiments, they had different dynamic and kinematic values. Morphology numbers correspond
to those shown in relevant results.

the PEFT techniques, we randomly sampled six morphologies from the Metamorph test dataset197
(Gupta et al., 2022). We visualize the testing morphologies in Figure 3 which include four unique198
limb configurations and two sets of varying kinematic and dynamic differences. We evaluate PEFT199
techniques on eighteen environment-morphology combinations.200

As mentioned in Section 3, we generate our pre-trained models using the Metamorph framework201
with default hyperparameters (Gupta et al., 2022). We train five base models using one hundred202
training morphologies for ten million time steps for each environment. We then apply each PEFT203
approach with the pre-trained models on the six test morphologies for five million timesteps each.204
We repeat experiments for five random seeds for every set of PEFT hyperparameters we report. For205
each seed, we use one of the pre-trained models without replacement. We use the same learning206
hyperparameters for the pre-training phase, except we do not use Dropout in the transformer em-207
bedding. Previous research shows that Dropout is helpful for Metamorph pre-training (Xiong et al.,208
2023), but in preliminary evaluations, we found Dropout was not helpful for finetuning models.209

4.1 Best Performances Across Methods210

In this section, we report results towards answer our first two research questions on the efficacy of211
different PEFT techniques. We report results in Figure 4 which shows the performance of different212
PEFT techniques. We normalize cumulative rewards by the initial zero-shot performance of each213
policy after training and average across the six testing morphologies. The x-axis shows percent-214
age of learnable parameters to the base-models original parameter counts. We include the original215
cumulative reward scores by best PEFT hyperparameter configuration in Appendix C.216

Our results reveal a number of notable trends across PEFT approaches. An interesting finding sug-217
gests that morphology-pretraining utility is dependent on task complexity. On the flat terrain tasks,218
learning from scratch is comparable to end-to-end finetuning but between variable terrain or ob-219
stacle avoidance learning-from-scratch performs substantially worse. Across morphologies, results220
suggest that the best input-learnable configurations behave similarly to directly tuning the input Em-221
bedding and Decoder, suggesting some equivalence between the two approaches for the model sizes222
used in our experiments. Interestingly, we observed substantial performance improvements tuning223
just the fifth transformer block, suggesting that if direct model access is possible and a more gen-224
erous computation budget is available, this layer substantially influences the policy performance.225
When possible, our results suggest more learning parameters are generally favorable given end-to-226
end finetuning results.227

4.2 Ablation of LoRA and Prefix Tuning228

In this section, we report results comparing different hyperparameter choices for LoRA and Prefix229
approaches to address our third research question. We include additional results in Appendix D. The230
reported results represent the consistent behaviours observed between the evaluations in each envi-231
ronment. Figure 5b shows the results of using LoRA in either the nonlinear transformations (MLP)232
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Figure 4: Percentage of trainable ratios to total base model parameters vs achieved normalized re-
sults. Results suggest total learnable parameters are a contributing factor in final policy performance.

or attention layer (Attn.) of the fifth transformer layer. The results show that across morphologies233
for a single layer’s full rank matrices are necessary. Applying LoRA to the nonlinear transformation234
is preferable for adaption to elicit optimal performance, but results suggest that directly tuning a235
single layer can be better to avoid introducing more learning parameters.236

Prefixing tuning results have more nuanced conclusions. We consider three major factors for ef-237
fective prefix usage: (1) the number of tokens, (2) the injection layer, and (3) comparing token238
initialization approaches. Each factor has been shown to substantially impact performance (Ding239
et al., 2023; Li & Liang, 2021). For (3), we propose a second pretraining stage to learn morphology-240
aware tokens. This second stage repeats the Metamorph training but keeps the base model frozen241
while learning the tokens.242

We generally observe that more learnable parameters are beneficial, such as by increasing the num-243
ber of tokens used (see Figure 5a), which agrees with our other findings previously discussed. In our244
experiments, a complication with prefix tuning is that introducing un-trained tokens can negatively245
impact policy zero-shot performance. When the base model is not trained jointly with the prefix,246
it introduces noise initially, which impacts zero-shot performance. This problem is largely missed247
in supervised learning applications because performance is evaluated after training. In contrast, we248
care for performance during training especially because it’s preferable policies have strong initial249
performance for real-world systems to avoid consequences of poor-performing policies (e.g., dam-250
age to the hardware). We conducted experiments adding 50 prefix tokens as input before different251
transformer blocks to investigate their impact on learning performance. We compared different to-252
ken initializations, including zero vectors, small Gaussian noise (N(0, 1 × 10−4)), or pretraining253
tokens, as described previously. We show learning curves in Figure 6. We include results when254
learning from scratch to highlight the value of pretraining for sample efficiency.255

Generally, we observed that the initial zero-shot performance is often negatively affected by zero256
or random initialization approaches, especially when introducing prefix tokens to the earlier trans-257
former layers. This result suggests that deep layers are less sensitive to the base models’ pertur-258
bations and better steer feature representations for target morphologies. Interestingly, pre-trained259
prompting embeddings significantly improved policy performance during learning compared to260
other initialization approaches, especially on Morphology #3, which we found most PEFT ap-261
proaches struggled to learn. This demonstrates that prefix initialization can mitigate loss in zero-shot262
performance during finetuning in online learning..263
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(a) Number of randomly initialized prefix tokens (b) Lora in different layers of fifth transformer block.

Figure 5: Ablation studies on prefix tokens and LoRA in variable terrain.

Figure 6: Choice of initialization and injection layers of prefix tuning in variable terrain. Initial
zero-shot results of E2E learning are plotted to compare affect of prefixes.

5 Conclusions and Future Work264

In this paper, we have investigated the impact of PEFT approaches for finetuning morphology-265
aware policies. We demonstrate that in most cases, one should train as many parameters online266
as possible to elicit the best performances of a pre-trained policy. Our analysis reveals that many267
PEFT approaches provide substantial benefits in deeper layers, so tuning the final transformer block268
is likely effective for policy finetuning. In scenarios where directly finetuning the base model is269
difficult, learnable inputs perform similarly to tuning either the input embeddings or decoder layers270
of the transformer-based policy.271

There are several promising future research directions to extend our findings. One crucial factor,272
particularly for prefix tuning, is the scale of the model. Many reported successes of PEFT approaches273
are on models with tens of millions to billions of parameters (Li & Liang, 2021). In this work, we274
used relatively small models (∼3.5 million parameters at most between policy and value function275
in PPO). We also focused on vanilla transformer architectures used in Metamorph, but researchers276
have proposed variations for morphology-aware policies (Trabucco et al., 2022; Xiong et al., 2023).277
Given the promise of PEFT techniques in RL, we see much potential for future development in278
PEFT development for online learning.279
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Broader Impact Statement280

Although our work has focused on the positives of input adapter and prefix tuning techniques, there281
are potential non-desirable consequences of our research. One of the implications of our work is282
adding evidence to the potential vulnerabilities of deep learning-based control policies in relation to283
adversarial attacks. We base this statement on our results, which show that input adapter finetuning284
approaches could effectively improve policy performance. Given that we affect policy performance285
substantially without changing the base policy weights, this opens the potential of repurposing deep286
learning control policies to tasks beyond their original purposes. In AI security research this is287
called adversarial reprogramming in which models are repurposed for nefarious uses (Elsayed et al.,288
2019; Zheng et al., 2023; Englert & Lazic, 2022). Suppose researchers discover that input-adaptive289
approaches can learn without direct knowledge of the base control model. In that case, adversarial290
attacks could repurpose deep learning control policies for undesired applications. This could arise by291
making seemingly benign adversarial action decisions by the pre-trained policy (delaying purchase292
in investment agent systems, adding extra torque during control, etc.). Given these implications, we293
caution that research in PEFT techniques should also consider the negative consequence of eliciting294
positive transfer with input or prefix tuning approaches for control use cases.295

References296

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016. URL297
https://arxiv.org/abs/1607.06450.298

Nico Bohlinger, Grzegorz Czechmanowski, Maciej Piotr Krupka, Piotr Kicki, Krzysztof Walas, Jan299
Peters, and Davide Tateo. One policy to run them all: an end-to-end learning approach to multi-300
embodiment locomotion. In 8th Annual Conference on Robot Learning, 2025.301

Konstantinos Bousmalis, Giulia Vezzani, Dushyant Rao, Coline Devin, Alex X. Lee, Maria Bauza,302
Todor Davchev, Yuxiang Zhou, Agrim Gupta, Akhil Raju, Antoine Laurens, Claudio Fantacci,303
Valentin Dalibard, Martina Zambelli, Murilo Martins, Rugile Pevceviciute, Michiel Blokzijl,304
Misha Denil, Nathan Batchelor, Thomas Lampe, Emilio Parisotto, Konrad Żołna, Scott Reed,305
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Table 1: Layer tuning parameters and experiment identifiers

Layer Tuned Parameters ϕ Exp. Identifier

End-to-end θ∗ E2E
Transformer layers {Ti; i ∈ [1, L]} Layer 5
Attention layers {W attn

i ; i ∈ [1, L]} Lora
Nonlinear transformation {W in

i ,W out
i ; i ∈ [1, L]} Lora

Input Embedding {W embed,W position} Embedding
Decoder {W decoder

i ; i ∈ [1, Ldec]} Decoder

Supplementary Materials488

The following content was not necessarily subject to peer review.489
490

A Direct Finetuning Configurations491

In our experiments, we consider various finetuning scenarios in our evaluations. For direct finetun-492
ing methods, we include combinations of subsets we finetune online in Table 1. Our evaluations493
included subsets of the direct tuning configurations of weight combinations. For example, Input494
Embedding includes combinations in which just W embed, W position and both {W emebed,W position} are495
tuned online during training.496

B LoRA Initialization Details497

When using LoRA in our experiments, initialize B to small Gaussian noise bij ∼ N(0, 10−4)498
and A to a zero matrix which eliminates LoRA adapters affect on the zeros-hot performance at the499
beginning of training. LoRA was included as a finetuning method because we want to reduce the500
total number of parameters used which LoRA can explicitly do via the rank.501

C Morphology-Aware Policy Performance502

This section reports results for the best-performing PEFT algorithms for each significant grouping503
of methods we consider. Table 2 show flat terrain results, Table 3 shows variable terrain results, and504
Table 4 shows results for obstacle avoidance. These results report statistical significance when com-505
paring results to zero-shot pretraining performance and training policies from scratch. Surprisingly,506
training from scratch worked surprisingly well in flat terrain. Still, most PEFT techniques perform507
better after five million samples than training from scratch on more complex tasks.508

D Prefix Tuning Additional Results509

In this section, we include plots similar to those in the main paper for our prefix-tuning ablation510
experiments. Flat terrain results are shown in Figure 7 and obstacle avoidance in Figure 8. We also511
show similar ablation results for LoRA and prefix tuning for flat terrain in Figure 9 and obstacle512
avoidance in Figure 10.513
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Table 2: Flat Terrain Cumulative Rewards for each testing morphology. Values show mean (top)
and standard deviation (bottom). † statistical significance compared to Zero Shot and ‡ statistical
significance to Scratch (p < 0.01).

Morphology 1 2 3 4 5 6
Full Model 4281.46†‡ 4552.77†‡ 1635.82† 5545.44†‡ 5019.71†‡ 5558.61†‡

±181.77 ±239.11 ±405.64 ±280.16 ±143.13 ±286.80

Layer 4 3761.11† 4121.84† 1491.06† 5183.88†‡ 4666.95†‡ 5192.58†‡

±102.11 ±120.48 ±230.10 ±167.91 ±255.22 ±152.33

Lora 3798.90† 4208.41†‡ 1639.69† 5223.47†‡ 4761.58†‡ 5223.47†‡

±138.55 ±77.12 ±41.31 ±174.25 ±210.57 ±174.25

Decoder Only 2732.26†‡ 3112.46†‡ 1398.42† 4868.54‡ 3404.67†‡ 4858.76‡

±71.35 ±221.65 ±210.79 ±263.81 ±92.07 ±248.01

Embeding 3308.43†‡ 3684.66† 1554.28† 4986.16‡ 4062.05† 4997.82‡

±115.83 ±104.99 ±190.82 ±183.78 ±248.20 ±191.07

Input Adapt 3231.84†‡ 3529.41† 1510.46† 4927.72‡ 3946.59† 4963.53‡

±100.03 ±104.58 ±242.36 ±225.75 ±220.78 ±222.35

Prefix 3332.33†‡ 3750.54† 1604.92† 5064.15‡ 4199.89† 5066.47‡

±126.28 ±201.62 ±336.88 ±133.91 ±276.27 ±137.63

Scratch 3754.15† 3840.33† 2191.50† 3727.29 4085.82† 3608.55
±210.65 ±211.59 ±624.72 ±733.60 ±217.00 ±777.33

Zero Shot 1867.58 1703.19 253.70 4392.08 1849.41 4431.93
±82.55 ±447.69 ±188.25 ±434.01 ±338.10 ±405.78

Table 3: Variable Terrain Cumulative Rewards for each testing morphology. Values show mean (top)
and standard deviation (bottom). † statistical significance compared to Zero Shot and ‡ statistical
significance to Scratch (p < 0.01).

Morphology 1 2 3 4 5 6
Full Model 2253.96†‡ 1983.81†‡ 2001.18†‡ 3560.43†‡ 2047.49†‡ 3595.38†‡

±41.47 ±154.82 ±42.14 ±317.89 ±117.06 ±368.99

Layer 4 2093.75†‡ 1871.09†‡ 1879.22†‡ 3254.06†‡ 1912.17†‡ 3279.03‡

±34.23 ±79.86 ±33.91 ±353.70 ±135.29 ±379.46

Lora 2141.39†‡ 1848.53†‡ 1786.88†‡ 3230.13†‡ 1878.93†‡ 3234.25‡

±53.29 ±113.44 ±72.97 ±327.39 ±107.89 ±329.42

Decoder Only 1969.63†‡ 1623.70†‡ 1299.89† 3164.72†‡ 1672.47†‡ 3180.90‡

±28.01 ±126.14 ±70.71 ±307.28 ±112.14 ±316.43

Embeding 1836.54†‡ 1529.38† 1441.65† 2872.51‡ 1549.29† 2887.67‡

±25.22 ±84.38 ±41.51 ±307.30 ±106.71 ±311.40

Input Adapt 1820.01†‡ 1521.18† 1338.57† 2869.53‡ 1512.25† 2895.01‡

±48.63 ±106.76 ±61.81 ±293.57 ±109.46 ±299.56

Prefix 1902.95†‡ 1643.33†‡ 1406.55† 2930.13‡ 1601.95† 2918.47‡

±43.36 ±165.26 ±83.55 ±261.58 ±134.90 ±300.10

Scratch 1679.33† 1406.59† 1406.58† 1735.22† 1449.59† 1758.99†

±82.91 ±101.71 ±164.55 ±166.72 ±69.66 ±168.21
Zero Shot 1259.92 591.83 136.82 2452.59 685.54 2476.77

±61.93 ±67.70 ±103.66 ±291.96 ±71.67 ±349.00
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Table 4: Obstacle Avoidance Cumulative Rewards for each testing morphology. Values show mean
(top) and standard deviation (bottom). † statistical significance compared to Zero Shot and ‡ statis-
tical significance to Scratch (p < 0.01).

Morphology 1 2 3 4 5 6
Full Model 2652.41†‡ 3101.42†‡ 1705.64† 3577.09†‡ 3219.75†‡ 3558.26†‡

±193.57 ±177.17 ±4.16 ±341.74 ±199.13 ±365.21

Layer 4 2246.88† 2684.70†‡ 1592.29†‡ 3276.76†‡ 2888.34†‡ 3194.19‡

±184.03 ±85.63 ±140.05 ±314.17 ±64.04 ±351.87

Lora 2137.75†‡ 2585.71†‡ 1672.75†‡ 3191.40†‡ 2851.48†‡ 3189.01‡

±116.21 ±191.00 ±12.63 ±320.51 ±107.16 ±319.76

Decoder Only 2263.74† 2531.13†‡ 1456.02†‡ 3061.26‡ 2672.06†‡ 3132.18‡

±186.99 ±161.72 ±218.88 ±360.37 ±160.55 ±302.67

Embeding 1863.25†‡ 2189.46† 1556.72†‡ 2882.24‡ 2398.29† 2877.35‡

±94.00 ±167.27 ±151.65 ±361.86 ±139.50 ±417.09

Input Adapt 1839.40†‡ 2159.73† 1458.49†‡ 2929.91‡ 2367.39† 2833.04‡

±117.50 ±125.84 ±206.98 ±356.45 ±142.90 ±312.07

Prefix 1841.45†‡ 2334.01† 1514.42†‡ 2877.43‡ 2538.31†‡ 2935.63‡

±142.33 ±133.00 ±186.34 ±324.42 ±119.05 ±293.07

Scratch 2334.75† 2119.16† 1843.23† 2112.34 2265.47† 2144.60†

±92.45 ±124.11 ±99.74 ±216.38 ±124.23 ±123.50
Zero Shot 1300.21 1184.87 332.64 2467.45 1295.92 2488.64

±117.01 ±248.07 ±114.42 ±246.89 ±202.99 ±274.84

Figure 7: Choice of initialization and injection layers of prefix tuning in flat terrain. Initial zero-shot
results of E2E learning are plotted to compare affect of prefixes.
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Figure 8: Choice of initialization and injection layers of prefix tuning in obstacle avoidance. Initial
zero-shot results of E2E learning are plotted to compare affect of prefixes.

(a) Number of randomly initialized prefix tokens (b) Lora in different layers of fifth transformer block.

Figure 9: Ablation studies on prefix tokens and LoRA in flat terrain task.

(a) Number of randomly initialized prefix tokens (b) Lora in different layers of fifth transformer block.

Figure 10: Ablation studies on prefix tokens and LoRA in obstacle avoidance task.
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