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Abstract

Understanding and mitigating hallucinations in Large Language Models
(LLMSs) is crucial for ensuring reliable content generation. While previous
research has primarily focused on “when” LLMs hallucinate, our work
explains “why” and directly links model behaviour to the pre-training data
that forms their prior knowledge. Specifically, we demonstrate that an
asymmetry exists in the recognition of logically equivalent facts, which can
be attributed to frequency discrepancies of entities appearing as subjects
versus objects. Given that most pre-training datasets are inaccessible, we
leverage the fully open-source OLMo series by indexing its Dolma dataset to
estimate entity frequencies. Using relational facts (represented as triples)
from Wikidata5M, we construct probing datasets to isolate this effect. Our
experiments reveal that facts with a high-frequency subject and a low-
frequency object are better recognised than their inverse, despite their
logical equivalence. The pattern reverses in low-to-high frequency settings,
and no statistically significant asymmetry emerges when both entities are
high-frequency. These findings highlight the influential role of pre-training
data in shaping model predictions and provide insights for inferring the

characteristics of pre-training data in closed or partially closed LLMs.!

1 Introduction

Large Language Models (LLMs) have demonstrated remarkable success in generating
fluent and contextually relevant text (Brown et al., 2020; Achiam et al., 2023; Anil et al.,,
2023; Dubey et al., 2024). However, their tendency to produce hallucinated or factually
inconsistent information remains a critical challenge (Huang et al., 2025; Rawte et al., 2023),
particularly as these models are increasingly deployed in applications where reliability is
paramount (Liu et al., 2023; Huang et al., 2024).

Traditionally, research has focused on identifying the circumstances under which halluci-
nations occur. For example, Lin et al. (2022) found that LLMs struggle with truthfulness
when confronted with conspiracy-style prompts, while Lin et al. (2024) demonstrated their
vulnerability to variations in language style through question paraphrasing. Additionally,
Berglund et al. (2023) highlighted a structural limitation by showing that LLMs often fail to
infer reverse implications correctly when fine-tuned on synthetic forward implications. In
contrast to these approaches, our work addresses a more fundamental question: How does
the pre-training data — the very source of an LLM's prior knowledge — influence its propensity to
hallucinate?

*Equal contribution.

*Work done prior to joining Amazon.

1See code on GitHub: https://github.com/KRR-0xford/FactProbe; and datasets on Zenodo:
https://doi.org/10.5281/zenodo.15092788.


https://github.com/KRR-Oxford/FactProbe
https://doi.org/10.5281/zenodo.15092788

Published as a conference paper at COLM 2025

We posit that one key factor lies in the frequency distribution of entities in the pre-training
corpus. As illustrated in Figure 1, an LLM may correctly recognise that the football star Diego
Maradona has a sibling named Raul Maradona (a lesser-known individual), yet struggle
with the inverse recognition that Raul Maradona has a sibling named Diego Maradona,
despite both statements conveying the same fact. Our central hypothesis is that discrepancies
in entity frequencies during pre-training introduce bias into the model’s predictive distribution over
the correctness of equivalent facts. We aim to analyse and quantify this phenomenon to gain
new insights into how pre-training data influence factual reliability in LLMs.

Given that most pre-training datasets are
proprietary or otherwise inaccessible (Shi
et al.,, 2023), we leverage the fully open- St
source OLMo series (Groeneveld et al., 2024; 7z 2
OLMo Team et al., 2024). By indexing its ac- -

companying Dolma pre-training dataset (Sol- Diego Maradona o
Sibling

High Freq.

daini et al., 2024), we are able to estimate en-

tity frequencies reliably. To isolate the effect

of entity frequencies, we construct probing Pre-training Fre. Raul Maradona
datasets from relational facts extracted from

WikidataSM, represented as triples (s, r, 0). Figure 1: LLMs can exhibit asymmetry
Our experiments reveal a consistent pattern: when recognising equivalent facts, often iden-
facts formatted as (s, r, 0), where the sub- tifying facts from high-frequency to low-
ject s is high-frequency and the object 0 is  frequency entities but struggling with the in-
low-frequency, are more readily recognised verse. Shown here is a working example from
than their logically equivalent inversions, our tests with the OLMo2-13B model.

(0, r71, s); when the frequency dynamics

are reversed (i.e., low-frequency subject and high-frequency object), the recognition pattern
flips; when both entities are high-frequency, the asymmetry is neither prominent nor statisti-
cally significant. These findings offer novel insights into an under-explored aspect of model
behaviour tied directly to pre-training data, and they motivate further research for inferring
characteristics of pre-training corpora — especially for models with undisclosed pre-training
datasets.

2 Related Work

Reversal Curse The term “reversal curse” was first introduced by Berglund et al. (2023)
to describe the structural inability of auto-regressive LLMs to infer “B is entailed by A”
when trained on “A entails B”. Their work demonstrated this phenomenon using fine-
tuned models trained on synthetically crafted datasets, such as names-to-descriptions and
questions-to-answers. Further analysis by Zhu et al. (2024) attributed the reversal curse to
asymmetries induced by the training dynamics of transformer layers, showing that specific
loss functions condition weight updates from one token to another does not necessarily lead
the other way round. To mitigate this issue, Golovneva et al. (2024) proposed a reversed
training scheme, where models were explicitly fine-tuned with reversed training samples.
These works primarily focus on reasoning in a posterior setting, where the model is asked
to infer “B is entailed by A” given the premise “A entails B” is learned. In contrast, our
work shifts attention to a priori perspective, demonstrating that equivalence asymmetry
arises due to inherent biases in the pre-training data itself — specifically, from frequency
imbalances in subject-object pairs within the model’s prior knowledge.

Probing with Knowledge Bases Utilising a knowledge base (KB) to probe LLMs has
gained significant interest in recent years, as the structured, high-quality knowledge con-
tained in a KB provides an effective means to verify a model’s understanding and mitigate
hallucinations. Petroni et al. (2019) first introduced the concept of “LMs-as-KBs” by crafting
several probing datasets from different knowledge graphs (KGs) to examine whether an
LLM stores relational knowledge. This approach was later extended to more fine-grained
KBs, such as temporal KGs (Dhingra et al., 2022) and ontologies (He et al., 2023). In contrast,
Zheng et al. (2023) focused on more efficient sampling strategies and alternative metrics to
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assess knowledge alignment in LLMs. While these studies primarily quantify how much
relational knowledge is stored, our work shifts the focus to probing the asymmetry in fact
recognition, demonstrating that LLMs may store equivalent facts in an imbalanced manner.

Beyond Long-tail Knowledge Many studies on long-tail knowledge in LLMs focus on
the model’s ability to recognise and retrieve facts about infrequent entities (Kandpal et al.,
2023; Sun et al., 2024; Li et al., 2024). However, our work extends beyond the traditional
long-tail problem by examining cases where subject and object entities exhibit significant
discrepancies in pre-training frequency. This difference, rather than overall rarity, leads to
systematic inconsistencies in fact recognition. Moreover, while prior works have leveraged
Wikidata and other structured knowledge bases to estimate entity frequencies (Wei et al.,
2023; Chen et al., 2023; Xin et al., 2024), such sources provide only a partial view of the
pre-training corpus, typically accounting for less than 10% of the total training data (Soldaini
et al., 2024). In contrast, we derive more accurate frequency estimates directly from the
pre-training data itself, ensuring a more representative analysis of the biases in pre-training
affecting LLMs (see Appendix D for further discussion).

3 Problem Formulation

We define two facts f; and f, as equivalent if they express the same underlying statement.
Since statements can appear in diverse linguistic forms, we focus on relational facts in KGs
to control for linguistic variability and isolate the influence of entity frequencies on model
predictions. Below, we formally define equivalent facts and asymmetry in equivalent facts in the
context of KGs, followed by our hypothesis, which we empirically verify through probing
experiments.

Definition 3.1 (Equivalent Facts). In a KG, a relational fact is represented as a triple
(s, r, 0), where s is the subject, r is the relation, and o is the object. If 7 is an invertible relation

such that r(s,0) <= r~!(0,s), then (s, , 0) is logically equivalent to (o, r1,s).

Definition 3.2 (Asymmetry in Equivalent Facts). This refers to the phenomenon in LLMs
where P(a | (s, 7, 0)) # P(a | (o, ™1, s)), even though the two triples are logically equiva-
lent. Here, P(a | -) indicates the model’s predictive distribution (Kuhn et al., 2023) over the
correctness of the fact.

VTS

In this context, the correctness label a may be “correct”, “incorrect”, or “unknown”. For our
purposes, we focus solely on the 2 = “correct” case, operating under the assumption that if
a model judges a fact as correct, it recognises the fact; otherwise, it does not.

Our hypothesis is that the observed asymmetry originates from significant differences in
the frequencies of the subject s and object o in the model’s pre-training corpus. Specifically,
if count(s) > count(o), the model is more likely to predict the fact (s, r, 0) as correct, i.e.,
P(a = “correct” | (s, r,0)) > P(a = “correct” | {0, r~!, s)), and conversely, if count(o) >
count(s), P(a = “correct” | (s, r,0)) < P(a = “correct” | (o, 7!, s)), where count(-)
denotes the frequency of an entity in the pre-training data.

We primarily focus on symmetric relations r for which r~Lis ritself (e.g., sibling), ensuring that
any differences in the model’s responses can be more directly attributed to entity frequency
effects. By restricting our analysis to these relations, we minimise confounding factors
arising from non-symmetric relations (e.g., employedBy vs. employs), which can introduce

additional biases due to distinct verbalisations of ¥ and 1.

4 Methodology

4.1 Indexing Pre-training Corpus

Our objective is to uncover how pre-training biases in LLMs might lead to asymmetry in
recognising equivalent facts. Achieving this requires fully open-source models (i.e., open
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Relation # Triples Question Template Statement Template
twinTown (P199) 39,191 Is s twinned with 07 s is twinned with o.
spouse (P26) 40,971 Is s married to 07 s is married to 0.
sibling (P3373) 54,960 Does s have a sibling named 0? s has a sibling named o.
bordersWith (P47) 377,967 Does s border with 0? s borders with o.

Table 1: Number of triples and natural language templates for symmetric relations extracted
from Wikidata5M, where s and o are placeholders for the subject and object, respectively.

weights, training approaches, and datasets), which are rarely available. Among the few
meeting these criteria are the OLMo series developed by Ai2 (Groeneveld et al., 2024; OLMo
Team et al., 2024). They are pre-trained on Dolma (Soldaini et al., 2024), a 11TB open-access

corpus, which we index to estimate entity frequencies.

A straightforward approach would be to apply a Named Entity Recognition (NER) model to
Dolma, but our preliminary trials showed that this is either imprecise (e.g., using a BERT-like
NER model) or prohibitively time-consuming (e.g., leveraging a modern decoder-only
LLM). Instead, we focus on Wikidata5M (Wang et al., 2021), a relatively high-quality subset
of Wikidata (Vrandeci¢ & Krotzsch, 2014), and perform string matching for each of its entities.
Because each entity in Wikidata5M can have multiple aliases, we simply search the corpus
for all possible names of each entity, then sum their occurrences.

However, naive methods such as repeated grep commands on large text files become
intractable at Dolma’s scale. Using data structures like Bloom filters (Marone & Van Durme,
2024) allow fast membership testing but do not offer precise frequency counts, whereas suffix
arrays (Nasr et al., 2023) often impose a high memory footprint. To address these limitations,
we adopt the FM-index (Ferragina & Manzini, 2000; 2005), a compressed data structure built
on the Burrows-Wheeler Transform (BWT) (Burrows, 1994) that facilitates efficient full-text
searches over massive corpora. An FM-index typically consists of: (i) the BWT of the text,
which clusters similar substrings to aid searching; (ii) rank and select structures, enabling
rapid pattern matching; and (iii) occurrence tables, providing precise frequency counts and
location information. By applying this indexing scheme, we compress Dolma into 4TB of
indexed files and thus achieve reasonably fast lookups for entity frequencies despite the
corpus’s considerable size.

We also performed a comparative analysis by querying 100 entities using 64 CPUs with
both grep and the FM-index on Dolma. While grep took 20 hours due to full-text scans,
the FM-index completed the task in just 20 minutes, demonstrating approximately a 60x
speedup. Additional theoretical analysis is provided in Appendix C.

4.2 Extracting Relational Facts

We extract relational facts, i.e., triples of the form (s, , 0), from Wikidata5M and group them
by relation r.®> Since our focus is on symmetric relations, we first identify relations that
satisfy the symmetric constraint using the Wikidata Query Service (see Appendix B for the
SPARQL query). We then filter these relations by retaining only those with more than 10K
triples in Wikidata5M, resulting in six candidate relations.

However, not all of these relations contain a sufficient number of triples where high-
frequency subjects are paired with low-frequency objects (or vice versa for the inverse
relation). After further filtering, we select four symmetric relations, each with at least
around 1K triples in the extreme high-to-low and low-to-high divisions, i.e., high-frequency
entity count > 100K and low-frequency entity count < 1K. These frequency thresholds
are empirical, chosen because it is infeasible to know the complete frequency distribution
of all entities in the pre-training corpus. Our analysis shows that among English named

2https://huggingface.co/datasets/allenai/dolma; version 1.7 was used in our experiments. The
file is 4.5TB in its compressed (gzip) form and expands to 11TB when uncompressed.
3We focus on entities that have at least one English name; see preprocessing details in Appendix A.
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Question Prompt

<|system|>
Please evaluate the statement or claim contained in the

Statement Prompt

<|system|>
Please evaluate the statement or claim. Respond with only

question. Respond with only one word-either 'Yes' if the one word-either 'True' if the claim is correct or 'False’ if it is
claim is correct or 'No' if it is incorrect. Do not include any incorrect. Do not include any additional text or commentary.
additional text or commentary. E <|user|>

<|user|> H Diego Maradona has a sibling named Raul Maradona.

Does Diego Maradona have a sibling named Raul Maradona? H

Figure 2: A concrete input example for the triple (DiegoMaradona, sibling, RaulMaradona),
shown as a question (left) and as a statement (right). In each case, the system instruction
restricts the model’s response to a single word: “Yes”/“No” or “True”/“False”, respectively.

entities in Wikidata5M, approximately two-thirds have frequencies lower than 1K, while
only about 5% exceed 100K — a pattern that is consistent with the long-tail distribution
typically observed in real-world datasets. Table 1 presents the total number of triples for
each selected relation, along with natural language templates for verbalising them (see
next section for our probing set-up). The distribution of triples across specific frequency
divisions will be reported alongside the results in Section 5.3.

4.3 Probing Asymmetry in Equivalent Facts

Following Definition 3.2, we investigate potential asymmetry in an LLM’s predictive dis-
tribution: P(a | (s, r,0)) # P(a| (o, v}, s)), where we designate (s, r, 0) as the forward
triple and (o, r—!, s) as the backward triple, both of which are logically equivalent. Since the
model processes forward and backward triples through distinct logits due to its autoregres-
sive nature, comparing these probabilities directly is not straightforward. Instead, we reveal
potential asymmetry by comparing how many forward triples versus backward triples are
recognised as correct under the same relation r.

To assess how an LLM judges the correctness of a relational fact, we frame it as a classification
task in which the model needs to produce a single-word answer a given the fact’s natural
language expression and a task instruction. We employ two prompt templates for each fact:
a question format and a statement format (see Table 1). In the question prompt, the model is
asked to respond “Yes” or “No”, whereas in the statement prompt, it should answer “True”

or “False”.* A concrete example is provided in Figure 2.

We derive verbalisations for each relation from the corresponding Wikidata descriptions. To
better capture the model’s potential familiarity with different representations of the same
fact, we apply an inference-time scaling approach (Snell et al., 2024), introducing variations
of entity names for both subject and object. Specifically, we randomly select up to six
synonyms from Wikidata5M for each entity, resulting in a maximum of 36 prompt variations
per fact. Since real-world texts often refer to entities by multiple names, this procedure
provides a more robust measure of the model’s knowledge. We consider a fact successfully
recognised if the model produces the correct one-word label (“Yes” for a question or “True”
for a statement) in any of these variations. We apply the same evaluation criterion to
both the forward triple (s, r, 0) and its backward equivalent (o, r~1,s), allowing us to
compare recognition accuracies, compute statistical significance, and investigate how entity
frequencies affect asymmetry.

McNemar’s Test To assess the statistical significance of differences between forward and
backward triple recognition, we employ McNemar’s test (McNemar, 1947), which is designed

_ 2
for comparing paired data. The test statistic is given by x> = %, where Nrr is

the number of paired triples recognised in the forward case but not in the backward case,
and Nrr is the opposite. Under the null hypothesis Hy, we have Nt = Nrr, indicating no

4All instruction prompts were generated by GPT-4o.
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asymmetry. The alternative hypothesis H, posits Nrr # Nrr, indicating asymmetry. The
p-value is computed as 1 — F(x?; 1), where F(x; k) is the cumulative distribution function
(CDF) of the chi-squared distribution with k degree of freedom. A low p-value (often < 0.05)
provides strong evidence to reject Hy, showing that the difference in recognition rates is
statistically significant and biased in favour of one direction.

5 Experiments

5.1 Models and Implementations

We focus primarily on the OLMo model series due to their direct relevance to the pre-training
dataset Dolma. In our experiments, we mainly use OLMo2-32B°, the most capable variant
at the time of our experiments, and also consider the less capable OLMo2-1 3B°. We use the
instruction-tuned variants for their ability to follow directions and produce single-word
answers, as described in Section 4.3. In addition to the OLMo series, we evaluate L1ama3.1-887
(Dubey et al., 2024) and Qwen2. 5-788 (Yang et al., 2024), again using their instruction-tuned
versions. Although the extent of overlap between their pre-training data and Dolma remains
unknown, we explore whether the entity frequency information from Dolma can be reliable
for estimating their pre-training data distributions. For a more accurate and viable probing
of the LLM’s predictive distribution, we report results with temperature = 0.0 (greedy
decoding). Our probing pipeline was implemented based on the v11lm’ infrastructure for
fast inference (Kwon et al., 2023), and all experiments were conducted on H100 GPUs.

5.2 Evaluation Settings

For each relation, we examine three settings: High-to-Low (a high-frequency subject paired
with a low-frequency object), Low-to-High (a low-frequency subject paired with a high-
frequency object), and High-to-High (both subject and object are high-frequency).!? In every
setting, the forward triples correspond to the original triples from Wikidata5M. Although
the relation r is symmetric, only one directional instance is typically recorded, meaning
that the High-to-Low and Low-to-High settings do not overlap. For the High-to-Low and
Low-to-High settings, we fix the high-frequency threshold at 100K and consider three low-
frequency ranges: 0-1K, 1K-10K, and 10K-100K. In the High-to-High setting, both the subject
and the object exceed the 100K threshold. As described in Section 4.3, we evaluate two
prompt templates (question and statement) to examine the effect of prompt phrasing on fact
recognition.

5.3 Results

Results for OLMo Models We present full results for OLMo2-32B in Table 2. Full results for
OLMo02-13B can be found in Appendix F. Observations for the larger OLMo2-32B model are
generally consistent with those of OLMo2-13B. For each frequency range, we report the total
number of triples, the forward and backward triple recognition accuracies, an arrow symbol
indicating the preferred direction (4* for forward and ¥ for backward), and the statistical
significance, denoted as: p<0.001 (***), p<0.01 (**), p<0.05 (*), or not significant (NS).

Overall, the model demonstrates a clear directional preference: favouring forward triples
in the High-to-Low setting and backward triples in the Low-to-High setting. In the most
extreme low-frequency range (0-1K), nearly all differences reach top statistical significance
(***), with the exception of bordersWith. Notably, the spouse relation exhibits the largest

5https ://huggingface.co/allenai/OLMo-2-0325-32B-Instruct
6https ://huggingface.co/allenai/OLMo-2-1124-13B-Instruct
7https ://huggingface.co/meta-1lama/Llama-3.1-8B-Instruct
8https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
https://docs.vllm.ai/

10We omit the Low-to-Low setting because the sample size and/or the recognition accuracies in this
setting are insufficient to provide statistical meaning.
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‘ Question Template ‘ Statement Template
Relation Low Freq. Total ‘ Forward Backward Diff. Stat Sig. ‘ Forward Backward Diff. Stat Sig.
High — Low
0-1K 894 0.176 0.110 o 0.372 0.276 o
twinnedTown 1K-10K 1667 0.219 0.113 o 0.430 0.347 o
10K-100K 3383 0.238 0.180 b 0.487 0.469 NS
0-1K 1005 0.709 0.450 b 0.647 0.383 e
spouse 1K-10K 1141 0.768 0.589 o 0.734 0.548 o
10K-100K 858 0.752 0.662 o 0.727 0.638 o
0-1K 1707 0.786 0.675 o 0.767 0.627 o
sibling 1K-10K 887 0.844 0.796 o 0.842 0.759 ok
10K-100K 744 0.843 0.836 NS 0.840 0.817 NS
0-1K 12718 | 0.147 0.141 NS 0.141 0.135 NS
bordersWith  1K-10K 6132 0.413 0.385 b 0.394 0.382 NS
10K-100K 4397 0.507 0.485 ** 0.480 0.476 NS
Low — High
0-1K 934 0.095 0.171 L 4 o 0.272 0.364 L 4 o
twinnedTown 1K-10K 1674 0.115 0.223 L 4 o 0.364 0.444 L 4 b
10K-100K 3465 0.179 0.229 L 4 o 0.463 0.483 L 2 *
0-1K 1064 0.421 0.664 L 2 o 0.374 0.605 L 2 ok
spouse 1K-10K 1147 0.581 0.759 L 4 o 0.539 0.727 L 4 o
10K-100K 864 0.652 0.727 L 4 o 0.633 0.725 L 4 o
0-1K 1711 0.677 0.781 L 4 o 0.631 0.766 L 4 o
sibling 1K-10K 881 0.768 0.839 L 4 o 0.734 0.844 L 4 o
10K-100K 752 0.830 0.836 L 4 NS 0.814 0.832 L 4 NS
0-1K 13005 | 0.147 0.148 L 4 NS 0.140 0.143 L 4 NS
bordersWith  1K-10K 6152 0.389 0.411 L 2 o 0.377 0.386 L 2 NS
10K-100K 4418 0.488 0.507 L 4 ** 0.474 0.479 L 4 NS
High — High
twinnedTown >100K 11103 ‘ 0.231 0.232 L 4 NS ‘ 0.450 0.451 L 4 NS
spouse >100K 700 ‘ 0.666 0.673 L 4 NS ‘ 0.651 0.660 L 4 NS
sibling >100K 754 ‘ 0.780 0.779 NS ‘ 0.776 0.782 L 4 NS
bordersWith  >100K 6254 ‘ 0.674 0.676 L 4 NS ‘ 0.635 0.631 NS

Table 2: Results of OLMo2-32B comparing the statistical differences in recognising forward
versus backward relational facts using two template types under High-to-Low, Low-to-High,
and High-to-High settings.

forward-backward accuracy differences, ranging from 0.231 to 0.264 across both templates
and settings. While this asymmetry persists in higher low-frequency bands (1K-10K and
10K-100K), it tends to diminish as entity frequency increases. For instance, in the High-
to-Low setting with the question template, the observed differences for sibling are 0.111,
0.048, and 0.007 for the 0-1K, 1K-10K, and 10K-100K ranges, respectively. Non-significant
results (NS) typically appear either in the least extreme frequency range (10K-100K) or for
relations that are harder to model, such as bordersWith.

We also observe that recognition accuracy generally improves as the low-frequency range
broadens, aligning with general observations on long-tail knowledge. Among the examined
relations, twinnedTown and bordersWith consistently yield lower accuracies, likely reflecting
the model’s greater difficulty with geography-related facts (Bhandari et al., 2023).

Finally, in the High-to-High setting where both subject and object entities exceed 100K
in frequency, results are consistently non-significant (NS), indicating no clear directional
asymmetry when both entities are frequent during pretraining.

Accuracy Ratios across Models Figures 3 and 4 compare the forward /backward recogni-
tion accuracy ratios for the spouse and twinnedTown relations across four models: OLMo2-32B,
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Figure 3: Results of the spouse relation comparing the forward/backward recognition
accuracy ratios across models using two template types under High-to-Low, Low-to-High,
and High-to-High settings (best viewed in colour).

OLMo02-13B, L1ama3.1-8B, and Qwen2.5-7B. These two relations are selected because all mod-
els achieve relatively high recognition accuracies, either forward or backward, yielding
more stable and meaningful ratios. The red horizontal line at 1.0 denotes parity between
forward and backward recognition. For each low-frequency range, both the High-to-Low
ratio (plain bar) and the Low-to-High ratio (hatched bar) are presented in the same colour,
along with corresponding statistical significance markers above each bar. In the > 100K
frequency range (i.e., High-to-High), the two bars coincide and thus are identical.

Across both relations, we observe a consistent trend: the High-to-Low setting yields a
forward /backward ratio greater than 1, while the Low-to-High setting yields a ratio less
than 1. For example, for the spouse relation in the 0-1K low-frequency range, OLMo2-13B
with the question template achieves a High-to-Low ratio of approximately 2.3 and a Low-
to-High ratio of about 0.4. Notably, even though it is unknown whether L1ama3.1-8B and
Qwen2.5-7B were pre-trained on Dolma, they exhibit a similar trend with the OLMo models.
For instance, both models, using the statement template, attain a High-to-Low ratio above
1.2 and a Low-to-High ratio around 0.8 for the sibling relation in the 0-1K range. In the
less extreme low-frequency range (10K-100K), the forward /backward ratios become much
less prominent, with almost no difference observed in the High-to-High setting.

Full results for L1ama3.1-8B and Qwen2.5-7B are available in Appendix F.

6 Discussion

Rationale Behind the Asymmetry We conjecture that the observed asymmetry arises from
inherent biases in the pre-training data. In natural language texts, high-frequency entities
tend to appear more often as subjects rather than as objects, and subjects typically precede
objects in declarative sentences. Consequently, given the autoregressive nature of LLMs,
a fact expressed as (s, r, 0) with a high-frequency entity as s and a low-frequency entity
as o is more likely to be recognised than its inverted form (o, !, s). This tendency in the
training data thus leads to the asymmetry defined in Definition 3.2.
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Figure 4: Results of the sibling relation comparing the forward/backward recognition
accuracy ratios across models using two template types under High-to-Low, Low-to-High,
and High-to-High settings (best viewed in colour).

Classification Rather than Entity Generation A common probing setup for similar struc-
tural failures in LLMs involves generating free-form answers to a given question (Berglund
et al., 2023; Golovneva et al., 2024). In our setting, this would correspond to generating
the object given the subject and relation, or generating the subject given the object and
the inverse relation. However, this approach essentially examines P(o | (s, 7, ?)) and

P(s | (0, 71, ?)), which are not expected to be the same unless r is one-to-one. To ensure
a rigorous probing of the asymmetry in recognising equivalent facts, we instead formu-
late the problem as a classification task that aligns with evaluating P(a | (s, r, 0)) and

P(a| {0,771, s)), where (s, r, 0) and (o0, 1, s) are logically equivalent.

Detecting Pre-training Data Most state-of-the-art LLMs do not publicly disclose detailed
information about their pre-training datasets. This lack of transparency has raised ethical
and legal concerns, driving efforts to infer the composition of pre-training corpora. Various
approaches have been proposed, including prompting models to generate data-specific
examples (Sainz et al., 2023), employing statistical methods to detect dataset contamination
(Golchin & Surdeanu, 2023; Oren et al., 2023), and using membership inference attacks to
determine whether specific data points were present during training (Carlini et al., 2021;
Shokri et al., 2017). However, these methods primarily rely on model behaviour, such as
output probabilities and loss patterns, which do not necessarily provide direct insight into
the structure and distribution of the pre-training data itself. In contrast, our work examines
inherent characteristics of pre-training corpora that shape an LLM’s factual consistency.
Through this, we gain clues about the distribution of entities in closed-source pre-training
data. Our results on L1ama3. 1-8B and Qwen2.5-7B illustrate that these models also exhibit the
frequency-based asymmetry, suggesting a possible distribution, or at least the commonality
and rarity, of entity mentions in their undisclosed training data.

7 Conclusion

In this paper, we investigate the asymmetry in how LLMs recognise logically equivalent
facts. Our results indicate that LLMs readily identify relational facts with a high-frequency
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subject and a low-frequency object but struggle with the inverse form. By leveraging the fully
open-source OLMo models and their Dolma pre-training data, we accurately estimate entity
frequencies and demonstrate a strong correlation between these frequency discrepancies
and model performance. Extending our analysis to models with proprietary pre-training
data from the L1ama and Qwen families further confirms that the same asymmetry emerges.
These findings contribute to understanding how pre-training data characteristics shape
model behaviour and motivate future research into mitigating such biases.
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A Preprocessing of Wikidata5M Entities

Due to the presence of potentially ill-formed entity names in Wikidata5M, we apply the
following preprocessing steps: (i) remove brackets, underscores, and extra spaces; (ii) retain
only names composed of ASCII characters, digits, dashes, periods, commas, quotation
marks, and spaces — components typically found in English named entities; and (iii) keep
only those entities for which at least one valid name remains after the previous steps.

B SPARQL Query for Symmetric Relations

SELECT ?property ?propertylLabel

WHERE {
?property p:P2302 ?statement
?statement ps:P2302 wd:Q21510862 . # Q21510862 = "symmetric constraint”

SERVICE wikibase:label {
bd:serviceParam wikibase:language
}

}
ORDER BY ?propertylLabel

Listing 1: SPARQL query that retrieves all Wikidata relations (properties) that have the
symmetric constraint.

C Efficiency Analysis for Search Algorithms

In our work, we utilise the FM-index for fast entity search in large pre-training corpora,
such as Dolma (11TB), owing to its significant advantages in both time and space complexity
over traditional grep-based approaches.

Time Complexity While grep, whether employing the Boyer-Moore or Aho-Corasick
algorithms, typically requires scanning the entire corpus for each query, resulting in a
search time that scales with the corpus size (O(N)), where N represents the total number of
characters in the corpus. In contrast, the FM-index performs exact pattern matching in time
proportional only to the pattern length (O(M)), where M is the length of the search pattern.
When dealing with extremely large datasets like Dolma, it becomes practical to partition the
FM-index into K separate files. This partitioning allows for parallel processing and more
manageable memory requirements during query operations. However, it introduces an
additional cost for reporting matches, denoted as O(K), where K is the number of partitions.
In practice, since both M and K are typically much smaller than N, the query performance
is effectively independent of the corpus size N. Constructing the FM-index involves an
initial preprocessing cost, which can be as high as O(N log N). This preprocessing cost is
amortised over numerous queries in a static corpus, leading to substantial overall efficiency
gains.

Space Complexity Furthermore, by leveraging the Burrows-Wheeler Transform, the FM-
index maintains a compressed representation of the data, thereby significantly reducing the
memory footprint compared to grep, which must operate on the full, uncompressed text.
Partitioning the FM-index into K files also allows for more efficient memory management
by loading only the relevant partitions during query execution. This approach ensures that
the memory footprint remains manageable, even when working with massive datasets like
Dolma. This combination of rapid query performance and memory efficiency makes the
FM-index a superior choice for our application.

D Entity Frequency Analysis

We conduct an additional analysis to highlight the importance of directly estimating entity
frequency from pre-training data. As noted in Section 2, some prior studies have identified
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long-tail entities based on their rarity in large KGs such as Wikidata. To show that this
proxy can be inaccurate, we consider all entities in Wikidata5M and independently estimate
their counts in both the Dolma pre-training dataset (see Section 4.1) and Wikidata (via the
SPARQL query in Listing 2). Because the raw counts are on different scales, we normalise
them using the transformation log(x + 1). We then compute the Pearson linear correlation
and Spearman rank correlation between the two sets of normalised counts. The results yield
a Pearson correlation of ¥ = 0.291 and a Spearman correlation of p = 0.255, indicating a
weak linear relationship between the frequency distributions.

SELECT (COUNT(DISTINCT ?subject) AS ?subject_count) (COUNT(DISTINCT ?
object) AS ?object_count) WHERE {{

{{

?subject ?p wd:{entity_id}
}} UNION {{

wd:{entity_id} ?p ?object
33

1}

Listing 2: SPARQL query that retrieves the total count of an entity (appearing as either
subject or object) in Wikidata.

E Effect of Thinking Before Judging

In the main paper, we focus on prompting models to directly judge the truth of a factual
claim (see Figure 2). Here, we explore whether encouraging the model to think step by
step (chain-of-thought (CoT) prompting (Wei et al., 2022)) before making a judgment affects
its behavior. Specifically, we evaluate OLMo2-32B on the spouse relation (Table 3) using a
modified instruction: instead of “Respond with only one word...”, we prompt the model with
“Let’s first think step by step. After reasoning, give the final answer—either “Yes’ if the claim is correct
or ‘No’ if it is incorrect” (replacing “Yes” with “True” and ‘No” with ‘False” in the Statement
Template). As shown in Table 3, CoT does not alter the observed equivalence asymmetry
and it remains consistent across frequency ranges.

‘ Question Template ‘ Statement Template
Relation Low Freq. Total ‘ Forward Backward Diff. Stat Sig. ‘ Forward Backward Diff. Stat Sig.
High — Low
0-1K 1005 | 0.790 0.684 o 0.851 0.614 ek
spouse 1K-10K 1141 0.851 0.770 ot 0.889 0.761 e
10K-100K 858 | 0.829 0.803 NS 0.893 0.830 o
Low — High
0-1K 1064 | 0.648 0.747 L 4 b 0.613 0.831 L 4 o
spouse 1K-10K 1147 0.762 0.838 L 4 b 0.753 0.881 L 4 ok
10K-100K 864 0.799 0.841 L 2 ** 0.815 0.884 L 2 b
High — High
spouse >100K 700 | 0.803 0.793 NS | 0829 0.831 v NS

Table 3: Results of OLMo2-32B comparing statistical differences in recognising forward and
backward relational facts for the spouse relation, using the two modified thinking-before-
judging template types under High-to-Low, Low-to-High, and High-to-High settings.

F Additional Full Results

In the main paper, we report full results for OLMo2-32B in Table 2. Here, we amend complete
results for OLMo2-13B (Table 4), L1ama3.1-8B (Table 5), and Qwen2.5-7B (Table 6).
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To see if the observed asymmetry is consistent with even larger models, we conduct further
experiments with L1ama3.1-70B!! (Table 7). The results show that the asymmetry persists
in the most extreme freq range (0-1K), with one exception for bordersWith under the state-
ment template. In less extreme freq ranges, the model either shows the same trend or no
statistically significant difference, likely due to its increased capacity.

‘ Question Template ‘ Statement Template
Relation Low Freq. Total ‘ Forward Backward Diff. Stat Sig. ‘ Forward Backward Diff. Stat Sig.
High — Low
0-1K 894 0.032 0.015 1 #* 0.112 0.088 1 *
twinnedTown 1K-10K 1667 0.042 0.018 | o 0.154 0.133 ] *
10K-100K 3383 0.076 0.047 | e 0.219 0.213 L] NS
0-1K 1005 0.337 0.146 | b 0.380 0.256 )] o
spouse 1K-10K 1141 0.472 0.314 | e 0.616 0.492 * o
10K-100K 858 0.565 0.488 L e 0.681 0.634 2 **
0-1K 1707 0.408 0.374 L * 0.583 0.535 1 o
sibling 1K-10K 887 0.626 0.539 1 o 0.745 0.649 1 o
10K-100K 744 0.638 0.608 L * 0.712 0.695 * NS
0-1K 12718 0.031 0.022 L] b 0.059 0.054 4] *
bordersWith  1K-10K 6132 0.140 0.129 | * 0.211 0.186 L] o
10K-100K 4397 0.296 0.281 L * 0.371 0.357 * *
Low — High
0-1K 934 0.014 0.030 L 2 i 0.092 0.116 L 4 *
twinnedTown 1K-10K 1674 0.018 0.051 L 2 o 0.136 0.156 L 4 *
10K-100K 3465 0.052 0.078 L 4 o 0.211 0.225 L 4 NS
0-1K 1064 0.148 0.339 L 4 e 0.243 0.387 L 4 o
spouse 1K-10K 1147 0.316 0.471 L 4 oxx 0.476 0.595 ¥ o
10K-100K 864 0.479 0.557 L 4 xoxx 0.625 0.679 ¥ o
0-1K 1711 0.373 0.402 L 2 * 0.538 0.563 L 4 *
sibling 1K-10K 881 0.524 0.621 L 2 o 0.638 0.738 L 4 o
10K-100K 752 0.616 0.637 L 2 NS 0.682 0.694 L 4 NS
0-1K 13005 | 0.023 0.031 L 4 o 0.058 0.060 L 4 NS
bordersWith  1K-10K 6152 0.123 0.136 L 4 #* 0.181 0.203 L 4 o
10K-100K 4418 0.281 0.290 L 4 NS 0.354 0.366 L 2 NS
High — High
twinnedTown >100K 11103 ‘ 0.146 0.150 L 4 NS ‘ 0.345 0.348 ¥ NS
spouse >100K 700 | 0.563 0.563 = NS | 0647 0.641 4 NS
sibling >100K 754 ‘ 0.569 0.564 | NS ‘ 0.601 0.618 ¥ NS
bordersWith  >100K 6254 ‘ 0.554 0.553 | NS ‘ 0.600 0.596 )] NS

Table 4: Results of OLMo2-13B comparing the statistical differences in recognising forward
versus backward relational facts using two template types under High-to-Low, Low-to-High,
and High-to-High settings.

Whttps://huggingface.co/meta-1lama/Llama-3.1-70B-Instruct
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‘ Question Template ‘ Statement Template
Relation Low Freq. Total ‘ Forward Backward Diff. Stat Sig. ‘ Forward Backward Diff. Stat Sig.
High — Low
0-1K 894 0.888 0.868 | NS 0.714 0.655 | o
twinnedTown 1K-10K 1667 0.901 0.878 | ** 0.754 0.669 L e
10K-100K 3383 0.952 0.938 1t e 0.791 0.741 * .
0-1K 1005 0.737 0.554 1t ot 0.623 0.444 * o
spouse 1K-10K 1141 0.830 0.731 L o 0.783 0.654 * o
10K-100K 858 0.814 0.783 L * 0.763 0.723 L] **
0-1K 1707 0.884 0.692 L o 0.813 0.667 L] o
sibling 1K-10K 887 0.924 0.763 L] o 0.868 0.763 | e
10K-100K 744 0.910 0.837 | b 0.835 0.789 L **
0-1K 12718 0.412 0.460 L 4 e 0.159 0.191 ¥ e
bordersWith  1K-10K 6132 0.646 0.657 L 2 NS 0.330 0.311 ] **
10K-100K 4397 0.693 0.691 1t NS 0.380 0.398 L 4 *
Low — High
0-1K 934 0.874 0.883 L 4 NS 0.654 0.713 L 4 o
twinnedTown 1K-10K 1674 0.878 0.904 L 4 b 0.671 0.754 L 4 o
10K-100K 3465 0.943 0.952 L 4 * 0.744 0.794 L 2 o
0-1K 1064 0.523 0.714 L 4 o 0.429 0.606 ¥ e
spouse 1K-10K 1147 0.712 0.810 L 2 b 0.650 0.765 L 2 e
10K-100K 864 0.786 0.814 L 2 NS 0.726 0.751 L 4 NS
0-1K 1711 0.687 0.884 L 2 o 0.654 0.819 L 4 o
sibling 1K-10K 881 0.765 0.926 L 4 o 0.757 0.865 L 4 o
10K-100K 752 0.832 0.914 L 4 b 0.789 0.834 L 4 **
0-1K 13005 | 0.463 0.416 L i 0.190 0.164 L] o
bordersWith  1K-10K 6152 0.655 0.645 L] NS 0.313 0.330 L 2 *
10K-100K 4418 0.691 0.693 L 4 NS 0.398 0.382 L *
High — High
twinnedTown >100K 11103 | 0.932 0932 2 NS | 0697 0.693 + NS
spouse >100K 700 ‘ 0.747 0.750 L 2 NS ‘ 0.681 0.674 * NS
sibling >100K 754 | 0.871 0.877 ¥ NS | 0772 0.773 ¥ NS
bordersWith  >100K 6254 ‘ 0.784 0.783 1t NS ‘ 0.516 0.518 L 4 NS

Table 5: Results of L1ama3.1-8B comparing the statistical differences in recognising forward
versus backward relational facts using two template types under High-to-Low, Low-to-High,
and High-to-High settings.
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‘ Question Template ‘ Statement Template
Relation Low Freq. Total ‘ Forward Backward Diff. Stat Sig. ‘ Forward Backward Diff. Stat Sig.
High — Low
0-1K 894 0.393 0.375 | NS 0.834 0.856 ¥ NS
twinnedTown 1K-10K 1667 | 0.490 0.379 4+ wor 0916 0.878 4+ o
10K-100K 3383 0.565 0.469 1t ot 0.948 0.915 * .
0-1K 1005 0.320 0.221 | o 0.687 0.544 * .
spouse 1K-10K 1141 0.428 0.250 |, b 0.810 0.623 (] ok
10K-100K 858 0.486 0.389 L o 0.804 0.728 L] o
0-1K 1707 0.582 0.449 L o 0.783 0.640 L] o
sibling 1K-10K 887 0.667 0.506 L] o 0.830 0.669 | o
10K-100K 744 0.726 0.624 | b 0.804 0.738 L o
0-1K 12718 0.048 0.057 L 4 e 0.219 0.281 ¥ e
bordersWith  1K-10K 6132 0.168 0.171 L 2 NS 0.445 0.426 ] **
10K-100K 4397 0.312 0.335 L 2 o 0.555 0.565 L 4 NS
Low — High
0-1K 934 0.366 0.387 L 4 NS 0.857 0.833 1 NS
twinnedTown 1K-10K 1674 0.381 0.505 L 4 i 0.876 0.924 L 4 o
10K-100K 3465 0.468 0.568 L 4 b 0.916 0.947 L 2 o
0-1K 1064 0.209 0.308 L 4 o 0.525 0.661 ¥ o
spouse 1K-10K 1147 0.253 0.437 L 2 e 0.626 0.791 L 2 e
10K-100K 864 0.376 0.481 L 2 wx 0.728 0.788 L 2 b
0-1K 1711 0.449 0.564 L 2 e 0.634 0.788 L 2 ok
sibling 1K-10K 881 0.506 0.664 L 4 wx 0.670 0.813 L 4 o
10K-100K 752 0.638 0.709 L 4 b 0.743 0.803 L 4 o
0-1K 13005 | 0.061 0.047 L i 0.285 0.219 L] o
bordersWith  1K-10K 6152 0.166 0.167 L 4 NS 0.424 0.441 L 2 *
10K-100K 4418 0.336 0.299 | o 0.563 0.552 L NS
High — High
twinnedTown >100K 11103 | 0.443 0445 v NS | 0869 0.869 + NS
spouse >100K 700 | 0.501 0.524 v NS | 0761 0.773 2 2 NS
sibling >100K 754 | 0.678 0.664 4 NS | 0744 0.735 4 NS
bordersWith  >100K 6254 ‘ 0.531 0.530 1t NS ‘ 0.688 0.688 * NS

Table 6: Results of Qwen2.5-7B comparing the statistical differences in recognising forward
versus backward relational facts using two template types under High-to-Low, Low-to-High,
and High-to-High settings.
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‘ Question Template ‘ Statement Template
Relation Low Freq. Total ‘ Forward Backward Diff. Stat Sig. ‘ Forward Backward Diff. Stat Sig.
High — Low
0-1K 894 | 0968 0.938 4 > 0.971 0.932 2
twinnedTown 1K-10K 1667 | 0974 0.945 4 0.972 0.936 *
10K-100K 3383 | 0.982 0.947 2 0.973 0.937 4
0-1K 1005 | 0.902 0.834 2 0.869 0.826 4
spouse 1K-10K 1141 | 0.896 0.909 ¥ NS 0.897 0.909 ¥ NS
10K-100K 858 | 0.828 0.840 ¥ NS 0.831 0.850 ¥ NS
0-1K 1707 | 0.941 0.884 4 0.948 0.902 +
sibling 1K-10K 887 | 0.968 0.939 4 0.964 0.950 2 NS
10K-100K 744 | 0.965 0.941 4 * 0.958 0.950 * NS
0-1K 12718 |  0.919 0.908 4 0.863 0.870 ¥ *
bordersWith  1K-10K 6132 | 0.953 0.939 2 0.927 0.924 4 NS
10K-100K 4397 | 0.937 0.934 2 NS 0917 0913 4 NS
Low — High
0-1K 934 | 0934 0.967 v 0.924 0.970 ¥
twinnedTown 1K-10K 1674 | 0.939 0.973 ¥ 0.928 0.969 ¥
10K-100K 3465 | 0.946 0.979 ¥ 0.933 0973 ¥
0-1K 1064 | 0817 0.867 ¥ 0.809 0.837 ¥ *
spouse 1K-10K 1147 0.891 0.887 4+ NS 0.887 0.875 L NS
10K-100K 864 | 0.846 0.826 2 NS 0.852 0.829 4 NS
0-1K 1711 | 0.879 0.942 v 0.897 0.938 ¥
sibling 1K-10K 881 | 0926 0.958 v 0.941 0.961 ¥ *
10K-100K 752 | 0.940 0.955 ¥ NS 0.952 0.953 ¥ NS
0-1K 13005 | 0.909 0.919 ¥ 0.872 0.864 2 *
bordersWith  1K-10K 6152 | 0938 0.950 ¥ 0.921 0.928 ¥ *
10K-100K 4418 | 0.932 0.936 ¥ NS 0913 0.917 v NS
High — High
twinnedTown >100K 11103 | 0.945 0.947 v NS | 0923 0.926 v NS
spouse >100K 700 | 0791 0.806 22 NS | 0789 0.794 22 NS
sibling >100K 754 | 0.939 0.938 1 NS | 0952 0.955 22 NS
bordersWith ~ >100K 6254 | 0928 0925 * NS | 0903 0.904 v NS

Table 7: Results of L1ama3. 1-70B comparing the statistical differences in recognising forward
versus backward relational facts using two template types under High-to-Low, Low-to-High,
and High-to-High settings.
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