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ABSTRACT

Large Language Models are prone to memorizing sensitive, copyrighted, or haz-
ardous content, posing significant privacy and legal concerns. Retraining from
scratch is computationally infeasible, whereas current unlearning methods exhibit
unstable trade-offs between forgetting and utility, frequently producing incoher-
ent outputs on forget prompts and failing to generalize due to the persistence of
lexical-level and semantic-level associations in attention. We propose Attention
Smoothing Unlearning (ASU), a principled framework that casts unlearning as
self-distillation from a forget-teacher derived from the model’s own attention. By
increasing the softmax temperature, ASU flattens attention distributions and di-
rectly suppresses the lexical-level and semantic-level associations responsible for
reconstructing memorized knowledge. This results in a bounded optimization ob-
jective that erases factual information yet maintains coherence in responses to
forget prompts. Empirical evaluation on TOFU, MUSE, and WMDP, along with
real-world and continual unlearning scenarios across Question and Answer (QA)
and text completion, demonstrates that ASU outperforms the baselines for most of
the unlearning scenarios, delivering robust unlearning with minimal loss of model
utility.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated strong performance in natural language pro-
cessing and complex reasoning. However, their training on web-scale datasets risks the memoriza-
tion and reproduction of sensitive (Carlini et al., [2021) or copyrighted data (Eldan & Russinovich,
2023b; |Shi et al., [2024), outdated or harmful information (Weidinger et al., 2021} |Lazaridou et al.,
2021)), and biased content (Kenton et al., 2021; Brown et al., 2022)), presenting considerable privacy
and security challenges (Huang et al., [2024bj [Wang et al.l 2023} [Li et al.| |2024). Retraining mod-
els from scratch to remove such information is computationally prohibitive. LLM unlearning has
emerged as a less resource-intensive alternative that aims to selectively remove the influence of spec-
ified data from a pre-trained model (Yao et al.,|2024b; |Liu et al.| | 2025; Blanco-Justicia et al.| [2025).
An effective unlearning method must satisfy two criteria. First, it must successfully remove the
factual knowledge in a designated forget set, such that the model behaves as if it were never trained
on this data and does not reveal its contents. Second, it must preserve model utility, maintaining
performance on a separate retain set and retaining its general language understanding capabilities.

We categorize unlearning methods into Divergence-based Unlearning and Convergence-based Un-
learning. Divergence-based Unlearning methods optimize a divergence objective from the pre-
trained model state, pushing parameters away from the converged solution to reverse the effects of
learning the forget set (Yao et al., 2023} Zhang et al., 2024b)). Recent evaluations (Maini et al., 2024;
Li et al., 2024} |Shi et al.| [2024; |Zhou et al.| [2025) highlight a trade-off between unlearning effec-
tiveness and utility preservation: insufficient divergence results in under-forgetting, where residual
influence from the forget set persists, whereas excessive divergence induces over-forgetting, leading
to substantial degradation in overall model utility.

Convergence-based Unlearning methods, on the other hand, rely on pre-defined targets during
training to shift the model into a new state that behaves differently on the forget set, often by using
a fixed target response (e.g., “I do not know”) or substituting positive samples (Maini et al., [2024;
Zhang et al.||2024b; |Li et al.,[2024). However, these designs can make the model overly ignorant and
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Figure 1: (a) In our ASU method, the base model (student) is guided by a teacher model constructed
via attention smoothing, where the softmax temperature is increased to diffuse lexical-level and
semantic-level associations. Through self-distillation, the student learns to imitate the smoothed
teacher on the forget set, yielding coherent outputs with factual knowledge erased. (b) Existing
methods directly push the base model away from the forget set but often collapse to gibberish outputs
when queried. () denotes a query in the forget set.

degrade utility (Maini et al., 2024; |Yuan et al., 2024). Moreover, their effects are often superficial,
as unlearning fails to generalize across task formats and remains largely limited to QA settings
rather than free-form text completion (Hu et al., [2024; |Du et al.| [2024; [Li et al.| 2024} [Shi et al.|
2024). Other approaches, such as (Yuan et al., 2024), maximize entropy on the forget set to induce
uncertainty about the ground-truth answer.

Despite their differences, both divergence-based and convergence-based unlearning methods often
cause the unlearned model to produce gibberish outputs when prompted about forgotten data (Fig-
ure [Ip). This behavior reflects over-forgetting, which makes it evident that unlearning has been
applied and may still permit the extraction of the forgotten information. This failure arises because
these methods do not fully remove lexical and semantic associations, learned dependencies in atten-
tion weights between token representations in forget-set prompts, which continue to allow the model
to retrieve related contextual or unwanted factual information during generation.

To address this, we propose an unlearning method that directly disrupts lexical-level and semantic-
level associations, termed Attention Smoothing Unlearning (ASU) as illustrated in Figure[Th. Our
approach adopts a self-distillation framework with a specially constructed teacher model for the
forget set. The teacher is constructed by applying attention smoothing, i.e., increasing the softmax
temperature in the self-attention mechanism, which flattens the attention distribution and diffuses
the model’s focus on specific token associations. This provides a naturalistic forgetting target, in
contrast to existing methods. By fine-tuning the base model (student) to imitate the teacher on the
forget set, ASU achieves controllable forgetting while maintaining stable utility. Crucially, when
given a query from the forget set, the unlearned model produces coherent outputs with the unwanted
knowledge erased, whereas existing methods often degrade into gibberish responses (Figure|I).

2 PRELIMINARIES

2.1 NOTATION

Let 6 denote the LLM parameters. For a pair (z,y), where x is the input sequence and y =
(y1,--.,yr) is the target sequence of length T, let yo+ = (y1,...,y:—1) denote the prefix up to
the ¢-th token. We use o for string concatenation. For ¢ € {1,...,T'}, the model defines the next-
token distribution p(- | = o y<;#) and assigns probability p(y: | € o y<+;6) to token y;. We write
KL(P||Q) for the Kullback-Leibler divergence from distribution P to Q.
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2.2 PROBLEM FORMULATION

In LLM unlearning, the goal is to remove the influence of a designated forget set Dp C D while
preserving performance on the retain set Dg C (D \ Dg), where D is the pre-training data of a
pre-trained model parameterized by 6. This can be formulated as optimizing a trade-off between
unwanted knowledge forgetting and utility retaining:

min AE(,y)~p, [Lr(y | 2:0)] + Eeyynne [Cr(y | 230)], M

where L is a forget loss encouraging removal of knowledge from Dg, Ly is a retain loss preserving
utility on Dg, and A > 0 is a hyperparameter controlling the relative importance of forgetting and
retaining.

An effective unlearning method should suppress the model’s capability on Dp while maintaining
performance on Dg, ideally matching the outcome of retraining from scratch on D \ Dg but at
substantially lower cost.

2.3 BASELINE LLM UNLEARNING METHODS

We focus on parameter-optimization approaches (Yao et al., [2023; Maini et al., 2024; [Zhang et al.,
2024b; Liu et al.,[2024b; [Jia et al.l 2024} Jin et al.| |2024)), which remain the dominant paradigm for
LLM unlearning. This class of methods is particularly aligned with scenarios such as the right to
be forgotten, copyrighted material, and hazardous knowledge removal, since they directly update a
model’s parameters rather than preserving its original state (Zhang et al.,[2024a)).

Forget Loss. We consider several representative baselines: Gradient Ascent (GA) (Yao et al.,|2023)),
Negative Preference Optimization (NPO) (Zhang et al., 2024b), IDK Fine-tune (IDK) (Maini et al.,
2024), Direct Preference Optimization (DPO) (Zhang et al.,[2024b), and Maximizing Entropy (ME)
(Yuan et al., [2024). Among these, IDK and DPO are applicable only to QA-style datasets because
they require rejection templates and positive examples, respectively. More details of all baseline
methods are provided in Appendix [A]

Retain Loss. While forget losses focus on removing knowledge from the forget set, effective un-
learning also requires preserving model utility. To this end, regularization on the retain set is often
applied. We include two widely used retain losses below (Maini et al., 2024} Zhang et al.| [2024b;
Liu et al., [2024b; Jia et al., |2024)); two additional variants (Yuan et al.| 2024; |L1 et al., [2024) are
provided in Appendix [A}

* Grad Descent (GD): standard cross-entropy loss at the output-level that performs gradient
descent on the retain set, as follows:

‘CGD(DR§ 9) = E(r,y)NDR

1 T
72~ logp(ule o y<rs 9)1 : ©)

t=1

* Kullback-Leibler Divergence (KL): minimizes the divergence of the prediction distribu-
tion between the unlearned model and the base model, denoted as 6y,, on the retain set,
ensuring behavior remains consistent, as follows:

Lx1.(Dr; 0; Ovase) = Ez) oy

1 T
TZKL(p(-Iwaq;@base)p(-lxoy<t;9))] .
t=1

Combined baselines. By pairing forget losses with retain losses, we obtain the standard baselines
used in prior work, including GAgp, GAxr, NPOgp, NPOky, DPOgp, DPOky,, IDKgp, and IDKky .

3 METHOD

Our ASU reframes unlearning as self-distillation: the goal is to suppress recall of unwanted factual
information while keeping coherence and general utility intact. We construct a forget-teacher by
raising the softmax temperature inside each self-attention module of the base model, which flattens
attention and weakens lexical-level and semantic-level associations. This forget-teacher introduces
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Figure 2: Effect of increasing attention temperature 7. (a) Higher 7 raises prediction entropy, making
the model less certain about the ground-truth answer. (b) As 7 grows, the average negative log-
likelihood increases more sharply for factual tokens than for function tokens, indicating that recalling
factual tokens depends on precise lexical attention, while function tokens are less sensitive and easier
to recall.

no external models and adds no parameters beyond a single temperature, remains fixed throughout
training, and is applied exclusively to the forget set. The student is trained to align with the teacher
on the forget set, while a retain loss enforces preservation of the base model’s utility on the retain
set. We next describe the forget-teacher mechanism and the unlearning objective.

3.1 FORGET-TEACHER MECHANISM

In a decoder-only Transformer, each layer’s multi-head self-attention (MSA) assigns weights over
the prefix (earlier tokens in the input) so each token can attend to previous tokens. We form the
forget-teacher by inserting a temperature 7 > 1 into the attention logits of every layer ¢ and head
h. For head h, let Qp, K,V denote the query, key, and value matrices, and let dj, be the key
dimension. We define

-

Attention(Qp, Kn, Vi; 7) = Softmax (QhKh >Vh. 4
TVdk

Setting 7 > 1 flattens the attention distribution by increasing entropy, thereby weakening token-to-

token associations as well as their semantic representations that facilitate recall of factual informa-

tion encoded in the forget set, while 7 = 1 recovers the base model behavior. All other components

(projections, feed-forward blocks, and layer norms) remain unchanged. The forget-teacher is frozen

and used solely to generate unlearning targets on the forget set.

Intuitively, increasing 7 makes each attention head less selective, distributing focus more evenly
across the prefix. Since base models typically exhibit low-entropy attention, smoothing weakens
lexical-level and semantic-level dependencies, thereby suppressing targeted recall. As 7 — oo,
the softmax approaches uniform, each head outputs the mean of past values, and the model loses
the ability to precisely attend to previous relevant tokens and their representations, yielding a high-
entropy distribution and incoherent outputs. This demonstrates the existence of some 7 > 1 that
achieves the unlearning objective. We therefore treat 7 as a hyperparameter that trades off forgetting
efficacy against coherence: higher 7 enforces stronger suppression but risks gibberish. For each
task, we select a finite 7 large enough to suppress factual recall on the forget set yet small enough to
preserve coherence. For further details on temperature selection, refer to Appendix [F

For ASU to work, the forget-teacher should reduce the model’s confidence in factual tokens (i.e.,
answer tokens that encode factual information which are unwanted and should be unlearned) while
maintaining relatively stronger confidence in function tokens (i.e., grammatical tokens that ensure
coherence but carry no factual information, e.g., “is,” “are,” “the”) that support coherent language
generation. In essence, smoothing ought to suppress memorized facts within the forget set while
minimally disturbing core syntactic structure.

To test this, we design an experiment on the TOFU benchmark (Maini et al., [2024). Each forget
instance in TOFU is a question-answer pair (z,y), where we annotate the answer y using GPT-40
to distinguish factual tokens from function tokens (Zhou et al.| 2025)); see Appendix E]for the exact
instruction. We then apply attention smoothing to construct the forget-teacher, feed the concatenated
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sequence x o y into it, and compute the average of negative log-likelihood and entropy for the
two token types under varying temperatures. As shown in Figure [2h, increasing 7 raises entropy,
indicating greater uncertainty about the ground-truth answer for both factual and function tokens,
an effect we seek for unlearning. Whereas in Figure [2p, the negative log-likelihood increases far
more sharply for factual tokens than for function tokens, implying that attention distribution is more
essential for factual tokens compared to function tokens. Importantly, the forget-teacher assigns
lower negative log-likelihood values to function tokens compared to factual ones, showing that it
preserves syntax while suppressing factual recall. This explains why ASU can preserve utility and
produce coherent outputs, in contrast to baselines that often collapse into gibberish.

3.2 UNLEARNING OBJECTIVE

Attention smoothing weakens lexical-level and semantic-level associations, so it should be applied
exclusively to the forget set that encodes unwanted factual knowledge; applying it more broadly risks
degrading useful associations needed for general tasks. In practice, we only distill knowledge from
the forget-teacher on the forget set. For the forget set Dg, we minimize the KL divergence between
the outputs of # and those of the attention-smoothed model 6, where 7 is the temperature applied
to the attention softmax. This objective guides the model to reproduce the smoothed, association-
suppressed behavior on forget-set inputs. We define the forget loss as follows:

EASU(DF; 0; 97’) = E(a:,y)NDF )

T

1

=D KL(p(- |0 yees 00) (- | w0 y<i0))
t=1

Finally, we apply GD-based [2 or KL-based [3| regularization on the retain set, yielding ASUgp and
ASUgy, approaches. Our representation steering approach is described in Appendix [E]

4 EXPERIMENTS

We evaluate three scenarios across standard datasets: (i) Right to Be Forgotten with TOFU, including
continual and real-world variants; (ii) copyrighted-content removal with MUSE; and (iii) hazardous-
knowledge unlearning with WMDP, whose results are provided in the Appendix [E] We describe
each setup in the following sections. The selected temperatures for all scenarios are detailed in

Appendix [G|

4.1 RIGHT TO BE FORGOTTEN UNLEARNING SCENARIO
4.1.1 FICTITIOUS UNLEARNING SCENARIO

Setup. TOFU (Maini et al.,[2024) is a controlled benchmark for sample-level unlearning in LLMs.
It constructs a synthetic corpus of 200 fictitious authors, each with 20 question—answer pairs. A
target model (e.g., L1lama—2-Chat-7B) is fine-tuned on the full corpus to induce memorization;
unlearning then removes a designated subset while preserving utility on related content. The bench-
mark defines three tasks, forget01, forget05, and forget 10, which require forgetting {1%,
5%, 10%} of authors (2/10/20 authors), respectively; the complement serves as the retain set. Two
auxiliary sets, Real Authors and World Facts, are also provided to evaluate general knowledge preser-
vation.

Evaluation Metrics. Following previous works (Yuan et all |2024; Maini et al.l [2024), we use
ROUGE-L recall (R), Probability (P), Truth Ratio (TR), Cosine Similarity (CS), Entailment Score
(ES), and Token Entropy (TE). Model Utility (MU) is the harmonic mean of {R, P, max(0, 1 —
TR), CS, ES, TE} on the retain set and the Real Authors and World Facts sets. Forget Efficacy
(FE) is the harmonic mean of {1 — R, 1 — P, 1 — min(TR, 1/TR), 1 — ES, TE} on the forget
set. Higher MU/FE indicate better utility/forgetting. See Appendix [B.I]for details.

Performance on TOFU. Table T[] summarizes results across the three TOFU unlearning tasks. Our
ASU variants (i.e., ASUgp, and ASUyg; ) consistently deliver the best overall performance, as re-
flected by their dominance in bold and underlined scores across both FE and MU. While IDKap
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Table 1: Results of unlearning methods on the TOFU benchmark. Higher is better for all metrics.
We report Model Utility (MU), Forget Efficacy (FE), and their Average (Avg.) across the three
TOFU tasks. Best scores are in bold, and second-best are underlined. All results are reported in
percentages. We show the detailed results for each metric on the retain set and the forget set for
three tasks in the Appendix Table [7]and Table 3}

Method forget01 forget05 forget10
MU FE Avg. MU FE Avg. MU FE Avg.
Base 75.81 3.09 39.45 75.85 3.19 39.52 75.85 3.19 39.52
Divergence-based
GAGDp 66.59 69.46 68.02 29.25 3.89 16.57 50.29 0.01 25.15
GAkL 67.83 68.73 68.28 20.13 5.39 12.76 54.38 11.17 32.78
NPOgp 64.10 71.14 67.62 56.62 73.31 64.97 56.58 73.04 64.81
NPOg 64.19 70.71 67.45 57.70 73.35 65.52 57.00 70.37 63.68
Convergence-based
DPOgp 75.68 4291 59.29 0.00 77.15 38.58 0.00 74.31 37.15
DPOg, 75.63 42.70 59.16 0.00 77.22 38.61 0.00 74.44 37.22
IDKAp 75.69 60.29 67.99 75.23 60.88 68.05 74.24 61.27 67.76
IDKgp 66.94 61.03 63.99 0.00 70.18 35.09 5.26 58.80 32.03
IDKk1, 67.14 61.16 64.15 0.00 70.18 35.09 7.52 59.06 33.29
MEgp 72.48 75.04 73.76 74.96 70.15 72.56 73.36 45.95 59.65
MEg 73.82 67.04 70.43 74.43 70.44 72.43 73.84 44.29 59.06
ASUgp 76.79 82.20 79.50 73.62 77.58 75.60 73.82 78.72 76.27
ASUgr, 77.13 83.08 80.10 74.18 77.84 76.01 73.27 78.16 75.71

attains slightly higher MU on forget05 (75.23) and forget10 (74.24), ASU achieves comparable util-
ity (e.g., ASUky reaches 74.18 and 73.27, respectively) while substantially outperforming IDKp
on forgetting. Specifically, ASUk; attains FE of 77.84 on forget05 and 78.16 on forget10, compared
to 60.88 and 61.27 for IDKp, a nearly 30% increase of FE (60.88 — 77.84 and 61.27 — 78.16).
These results highlight ASU’s ability to maintain strong utility while achieving state-of-the-art FE,
offering the most effective and stable trade-off among all methods.

4.1.2 CONTINUAL UNLEARNING SCENARIO

Setup. We study a continual unlearning setup where a base model is subjected to a sequence of un-
learning requests, each removing a disjoint subset of authors in the TOFU benchmark while preserv-
ing utility on the remaining retain data (Yuan et al., [2024). Unlike single-shot evaluations, this set-
ting mirrors rolling Right-to-be-Forgotten requests in practice and exposes cumulative degradation
effects as utility preservation becomes progressively harder with each step, due to a shrinking retain
pool and shifting distributional coverage. Concretely, we run sequences where each step removes
either forget01 (1%), forget05 (5%), or forget10 (10%) of the authors, For forget01
and forget 05 we run 10 steps, resulting in cumulative removals of 10% and 50%, respectively.
For forget10 we run 9 steps, removing up to 90% of authors in total. After each step, we evaluate
using the same metrics as in the TOFU task (R, P, TR, CS, ES, TE), reporting the average of MU on
retain/general-knowledge sets and FE on the current forget set. For fair comparison, we chose GD
as the retain loss for all of the baselines.

Performance. Figure [3|reports the average scores of MU and EF in continual unlearning on TOFU,
where disjoint subsets of authors are removed across multiple steps. As expected, maintaining high
average performance becomes increasingly difficult as the retain pool shrinks and distributional
coverage narrows. GA collapses immediately across all three settings, yielding near-zero averages.
In the more challenging scenarios (i.e., continual forget05 and forget10), NPO (Zhang et al.,2024b)
and IDK (Maini et al.} 2024) begin with moderately strong average scores, but significantly degrade
with successive unlearning steps, highlighting their instability in long-horizon unlearning. DPO
(Zhang et al.,|2024b) and ME (Yuan et al., 2024)) show more stable curves in continual unlearning
steps, but start with considerably lower averages than ASU. For example, on forget 10, ME attains
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Figure 3: Average of Model Utility and Forget Efficacy in continual forgetO1, forgetO5 and forget10
unlearning tasks. We show the results for MU and FE in the Appendix Figure 4|and Figure E}

Table 2: Results of real-world unlearning scenario. Higher is better for all metrics. Base repre-
sents the model before unlearning. Model Utility (MU) and Forget Efficacy (FE) are calculated on
the neighbor set and forget set, respectively. Please see the detailed results in the Appendix Table

Method Unlearning Task Downstream Tasks
Model Utility Forget Efficacy ARC-c MMLU Truthful QA GSM8K Avg.
Base 61.38 36.83 56.57 63.84 36.11 75.51 58.01
Divergence-based Unlearning
GAgp 21.76 65.73 51.37 58.80 39.29 27.14 44.15
GAkL 43.72 0.00 46.84 58.39 25.46 24.03 38.68
NPOgp 21.38 71.44 38.40 53.49 34.15 69.29 48.83
NPOgy, 27.32 72.11 37.80 51.80 33.66 67.10 47.59
Convergence-based Unlearning
DPOgp 0.00 82.45 50.94 62.16 31.82 72.48 54.35
DPOgy, 3.28 83.48 50.68 62.00 31.46 72.18 54.08
IDKgp 0.00 78.40 52.47 62.48 32.44 74.53 55.48
MEgp 47.96 48.10 52.99 62.48 31.21 69.52 54.05
IDKap 52.76 78.04 53.41 62.04 27.05 73.24 53.94
ASUgp 54.10 76.97 49.32 63.42 28.27 63.91 51.23
ASUgy, 55.76 79.60 51.19 62.90 33.90 68.84 54.21

scores of roughly 70 and DPO around 45, both substantially lower than ASU, which consistently
maintains an average close to 75.

Compared to all competing methods, ASU consistently achieves the best trade-off between forget
efficacy and utility preservation over long sequences of unlearning requests. Even under extreme
conditions where up to 90% of authors are unlearned (forget 10), ASU exhibits a markedly slower
degradation, maintaining strong performance when other methods collapse. This robustness to con-
tinual unlearning pressure highlights ASU’s suitability for real-world applications such as continual
Right-to-be-Forgotten requests.

4.1.3 REAL-WORLD UNLEARNING SCENARIO

Setup. Following (Yuan et al., [2024), we evaluate unlearning when the target model’s training
data are unknown and the knowledge to be removed is intrinsically memorized. We construct a
real-world forget set by selecting a small cohort of real individuals with strong memorization in
the target model and collecting the model’s own answers to curated prompts. A disjoint cohort of
comparable individuals forms the neighbor/retain pool; a subset is used for regularization during
unlearning and the remainder for utility evaluation. To assess general utility preservation, we also
report performance on standard downstream benchmarks (e.g., MMLU, ARC-c, GSM8K, Truth-
fulQA). We use the same metrics as in the TOFU task (R, P, TR, CS, ES, TE) and report MU on
retain/general-knowledge evaluations and FE on the real-world forget set.

Performance. Table [2| reports results for the real-world unlearning scenario. Divergence-based
methods (e.g., GA, NPO) achieve competitive forget efficacy but suffer from severe utility collapse,
with most MU scores dropping to 21-28, far below the benchmark of 61.38. Convergence-based
approaches (i.e., DPO, IDK) push FE even higher (up to 83.48) but collapse MU to nearly zero. In
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Table 3: Performance of various unlearning methods on MUSE, considering two unlearning settings:
LLaMAZ2-7B on News and ICLM-7B on Books.

News Books
Method Forget Efficacy Model Utility Forget Efficacy Model Utility
VerbMem  KnowMem  PrivLeak KnowMem VerbMem  KnowMem  PrivLeak KnowMem
Dy(d) Dy() (=0) Dr(1) Dy(d) Dy(d) (=0) Dr(1)

Base 579 64.4 -99.8 55.5 99.7 47.1 -57.3 69.1
Retrain 20.2 32.8 0.0 56.0 14.4 30.3 0.0 68.7
GAcp 3.6 1.9 94 0.7 0.0 0.0 -23.8 0.0
GAkL 6.8 1.0 439 0.0 0.0 0.0 -24.9 0.0
NPOgp 33.7 54.3 -86.0 50.5 53.2 36.6 -53.8 61.4
NPOxkL 33.0 56.2 -85.7 49.3 54.4 36.7 -54.6 61.4
SimNPOgp 41.7 60.0 -99.9 42.8 25.8 36.7 -54.4 51.6
SimNPOgy, 43.8 60.7 -99.8 52.0 13.1 46.9 -41.7 68.1
ASUgp 8.3 48.0 22.8 46.2 4.9 19.0 -52.3 58.9
ASUkL 8.8 46.8 59.6 522 53 28.6 -51.0 62.5

contrast, our ASUky, achieves the best overall trade-off, with MU = 55.76 and FE = 79.60, outper-
forming all baselines on both dimensions. ASUgp achieves similar results (FE = 76.97 and MU
= 54.10), underscoring the robustness of ASU across retain-loss variants. Moreover, both ASU
variants sustain accuracy on downstream benchmarks at levels comparable to or exceeding other
baselines, demonstrating that ASU effectively removes memorized real-world knowledge while pre-
serving general utility.

4.2 COPYRIGHT UNLEARNING SCENARIO

Setup. We use MUSE (Shi et al.,|2024)) to assess unlearning of copyrighted content. MUSE provides
two corpora (News, Books), each partitioned into three disjoint splits: forget, retain, and holdout
(non-members). Each corpus includes a Verbatim set (passages) and a Knowledge set (QA derived
from those passages). Following (Shi et al. 2024)), the target model is fine-tuned on the union of
forget and retain, and the retrain baseline is fine-tuned on retain only.

Metrics. Following previous works (Shi et al, [2024)), we evaluate using three standard unlearning
metrics: VerbMem (verbatim recall), KnowMem on both forget and retain splits (factual associa-
tion and utility), and PrivLeak (membership leakage). Full definitions and implementation details
are provided in Appendix

Performance on MUSE. Table [3| reports results on the MUSE benchmark under the News and
Books settings. On News, GA variants (i.e, GAgp, and GAky) suffer from complete utility collapse,
with their KnownMem score on the retain set dropping close to zero. Therefore, their forgetting
efficacy is less meaningful to interpret. Considering the remaining baselines (NPO and SimNPO
variants), ASU variants provide the best overall trade-off between FE and MU. In particular, ASUgp
achieves the strongest FE performance, while ASUk; delivers comparable FE to ASUgp but clearly
surpasses all baselines and preserves the highest MU, attaining a KnowMem score of 52.2 on the
retain set.

On the Books setting, GA variants once again collapse in utility, with KnowMem D,. dropping to
zero. NPO and SimNPO variants achieve only partial forgetting, either leaving VerbMem high (e.g.,
NPOgy = 54.4) or retaining substantial KnowMem (e.g., SimNPOg;, = 46.9), indicating incomplete
unlearning. In contrast, our ASU variants achieve a more favorable trade-off between FE and
MU. ASUgp provides the strongest forgetting across all metrics, while ASUg; provides the best
overall balance, delivering effective forgetting (VerbMem = 5.3, KnowMem = 28.6, PrivLeak =
-51.0) while maintaining the comparable utility (KnowMem = 62.5). These results demonstrate
that ASU generalizes effectively across different domains, preserving utility while ensuring stronger
forgetting than existing baselines.

5 RELATED WORK

Machine Unlearning. Machine Unlearning (MU) seeks to remove the effect of specific data or
facts without full retraining, which is often prohibitively expensive (Cao & Yang, |2015; [Bourtoule
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et al| [Ginart et al} 2019; [Golatkar et all, 2020). Existing works provide approximate un-
learning methods (Warnecke et al., 2021} [zzo et al 2021}, [Sekhari et all,[2021), influence-function

approaches (Koh & Liang| 2017), and second-order optimization (Jia et al., [2024). MU has been
studied across diverse domains such as image classification (Neel et al.,[2021)), text-to-image genera-
tion (Gandikota et al.| 2023}, [Kumari et al,[2023)), federated settings (Wang et al.} 2022} [Halimi et al
2022), and graph neural networks (Chen et al.,[2022; [Wu et al.,[2023), and is especially relevant for
LLMs where retraining a model from scratch is infeasible.

LLM unlearning. Motivated by privacy regulations (Regulation, 2016} [Pardau), 2018) such as the
“right to be forgotten” (Rosenl, 2011} [Dang) [2021), LLM unlearning has become an active research
area. The main approaches fine-tune the model in a forgotten set to obtain an unlearned version
including gradient-ascent based methods (Jang et al., 2022} [Yao et al.| [2024D} Tunstall et al.| 2023}
[[shibashi & Shimodaira, [2023}; [Fan et al.,[2024; Maini et al., 2024} Tamirisa et al., 2024} Zhou et al.
2025), preference optimization methods (Zhang et al.,[2024b; Mekala et al.,[2024; [Wang et al., 2024;
2025b)), knowledge distillation (Dong et al.,[2024; |Lu et al., 2024} |Yao et al.,[2024a} Jia et al., 2024}

Tian et al.| 2024; |Gu et al.| 2024; [Eldan & Russinovich, 2023@]), influence functions (Jia et al.| 2023}
Grosse et al, 2023 [Zhao et all, 2024} [Liu et al, [2024b}; [Dang et al. m [Wang et al.| [2025alc}
Sakarvadia et al., [2025)), activation steering (Li et al.,[2024} Dang et al.l 2025), localized edits (Guo

et al.,[2025]; Wuerkaixi et al.} 2025}, [Fan et al, [2025; Wang et al.,[2025d; Gao et al., 2025} Ding et al.}

2025). Other works focus on inference-time unlearning, including contrastive decoding (Huang
et al., [2024a; Ji et al.l 2024), in-context unlearning (Pawelczyk et all 2023} Muresanu et al, [2024),
guardrails (Thaker et al., 2024} [Bhaila et al.l 2024), task vector-based methods (Ilharco et al.l 2022;
[Ciu et all, 2024ct Dou et al., 2024), and input pre-processing (Gao et al} 2024} Liu et al., 2024al).
However, most of these methods do not modify the LLM parameters, so the resulting system cannot
be released as an open model and may still raise security concerns in black-box settings
[2023}, [Zade et all, [2025). In this work, we investigate the role of attention in unlearning from a new
perspective.

Adjusting Attention. Beyond unlearning, attention adjustments, through temperature scaling or
normalization, have been applied across diverse tasks, such as improving translation (Araabi et al.,

2024; [Henry et al.| 2020), accelerating sequence labeling (Dufter et al, [2020), smoothing teacher
signals for summarization distillation (Zhang et al.| 2022)), improving stability by avoiding entropy

collapse 2023)), maintaining selective focus in long-context reasoning
[2024), tuning sparsity per query in LLMs (Zhang et al.l [2024c), and aiding cross-domain few-shot
transfer in vision (Zou et al 2024). Moreover, prior work shows that smoothing across attention
heads can impact safety 2024). To the best of our knowledge, its effect on unlearning
has not yet been explored.

6 CONCLUSION

We introduced ASU, a method that reframes unlearning as self-distillation from a forget-teacher
constructed by raising the softmax temperature in attention. By flattening attention and weakening
the lexical-level and semantic-level associations that drive factual recall, ASU effectively erases
memorized content while keeping responses on forget prompts coherent. Extensive experiments
across various scenarios show that ASU reaches strong forget efficacy with minimal utility loss, and
unlike prior divergence-based or convergence-based methods, it avoids gibberish outputs or under-
forgetting. These findings position ASU method as a simple, practical path for unlearning in LLMs
and for safer model release.

7 LIMITATIONS

Our approach to LLM unlearning centers on parameter-optimization through self-distillation; we
do not adopt the inference-time variant, which applies high-temperature attention to the forget set,
as its effectiveness depends on an auxiliary module for on-the-fly detection of unwanted factual
knowledge and is tightly coupled to domain-specific deployment. We also use a global tempera-
ture parameter 7 shared across all heads and layers to ensure computational scalability; exploring
adaptive or automatic temperature tuning per-head/per-layer is left for future work.
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8 ETHICS STATEMENT

This work investigates unlearning techniques for LLMs, with the goal of enabling models to for-
get specific undesirable or sensitive knowledge while retaining general utility. Our experiments are
conducted on publicly available datasets and do not involve private or personally identifiable infor-
mation. We recognize that unlearning methods may raise ethical concerns if misused, for example
by selectively erasing knowledge in ways that distort truth, suppress marginalized perspectives, or
enable malicious applications. To mitigate these risks, we focus on controlled benchmarks, trans-
parently report our methodology and limitations, and emphasize that unlearning should be applied
responsibly, in alignment with broader principles of trustworthy and safe Al

9 REPRODUCIBILITY STATEMENT

We have taken several steps to facilitate the reproducibility of our results. All datasets used in our
experiments are publicly available. We provide detailed descriptions of baselines and evaluation pro-
tocols in the main text and appendix. Our code, including scripts to reproduce the experiments and
generate the reported figures and tables, are included as supplemental materials. And it will be made
publicly available upon publication. Models with checkpoints and random seeds are documented to
ensure consistency across runs.
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APPENDIX

A BASELINES

Notation. Let P(y | z;60) denote the probability of an output sequence y = (y1,...,yr) given
input z under a model parameterized by 6. This probability is defined as:
T
Py | z;0) = Hp(yt | £ 0y<t;0)

t=1

S

Forget Loss. Existing methods can be broadly categorized into Convergence-based Unlearning and
Divergence-based Unlearning. The baselines we use are:

* Gradient Ascent (GA) (Yao et al., [2023) maximizes the prediction loss on the forget set,
effectively reversing the training objective:

Lca(Dr; 0) = —E )~y

T

1

72~ logp(y | oy 9)] : (6)

t=1

* Negative Preference Optimization (NPQO) (Zhang et al., 2024b) is derived from Direct
Preference Optimization (DPO) (Rafailov et al., [2023). It treats forget-set answers as neg-
ative samples while omitting positive terms:

oy 2 N Ply | =;0)
£NPO(DF7 9) - /B]E(I,y)NDF |:10g0 ( ﬂlOg P(y | .’E; eBase) ) (7)

where o(t) = 1/(1 + e™t), 8 is a hyperparameter, and Oy is the fixed reference model.
NPO can be viewed as GA with adaptive gradient scaling (Zhang et al., 2024b)).

* Maximizing Entropy (ME) (Yuan et al., |2024) minimize the KL divergence between the
predicted distribution for each token and a uniform distribution with vocabulary size.

ZKL (| @0y ))], (8)

where U is a uniform distribution over the vocabulary of size K, where each value is
1/K.
e IDK Fine-tune (IDK) (Maini et al 2024) reframes unlearning as instruction tuning by

relabeling forget-set questions with random responses from Dipk, a pool of rejection tem-
plates (e.g., “Sorry, I don’t know.”). Its loss is

Lipk (Dr, Divk; 0) = Epnpy,y~Dik [—log Py | 2;6)] . )

* Direct Preference Optimization (DPO) (Zhang et al.| [2024b)) applies the standard DPO
loss (Rafailov et al.l [2023), using forget-set answers as negatives and rejection templates
from Dipk as positives.

Lyre(Dr; 0) = E(g )~y

1
Lopro (D, Dink; 0; Orer) = — BE(x,y)NDF,y’N'DDpo

(10)
P(y' | x;0) P(y | z;0)
[loga (ﬂ log Py | 7;00e) Plog P(y | = Gbase)ﬂ ’

where Oy,s. denotes the parameter of the reference model, which is the initial base model
for unlearning.

* SimNPO (Fan et al. 2024). It derives from NPO, whose reward function is given by
the comparison with the reference model. In contrast, SiImNPO takes a reference-free but
length-normalized reward formulation, so they can mitigate the reference model bias in
NPO by replacing its reward formulation, as follows:

2
Lsimneo(Dr; 0) = _BE(m,y)NDF [bga( ol log P(y | x;0) —’Y>} ; (11)

where v > 0 is the reward margin parameter, inherited from SimPO, which defines the
margin of preference for a desired response over a dispreferred one.
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* Representation Misdirection (RMU) (L1 et al., [2024) misdirects internal representations
on the forget set by pushing layer-¢ activations toward a fixed random direction with am-
plified norm, corrupting downstream processing. It’s forget loss is

1 T
ERMU:EzwDF ?ZHHZ(IKMG)*C'UHE R (12)

t=1

where H*(x.:;0) denotes the hidden state at layer ¢ of the model parameterized by 6,
given the prefix ., u is a random unit vector, ¢ > 0 is a scaling constant, and 7" is the
sequence length of z.

IDK and DPO are only applicable in QA-style datasets, since they require rejection templates as
positive samples.

Retain Loss. In addition to the GD and KL regularization losses introduced in Section we
further include the Answer Preservation (AP) and Mean Squared Error (MSE) loss as an additional
baseline component.

* Answer Preservation (AP). To prevent unlearned models from becoming overly ignorant
during targeted unlearning, (Yuan et al.|[2024) proposed the Answer Preservation (AP) loss
as a regularization term. Unlike standard GD or KL regularization, AP explicitly balances
two objectives on the retain set: (1) reducing the probability of rejection templates, and (2)
maintaining the probability of the original answers. Formally, the AP loss is defined as:

! PGy | 4:0)
Lap(Dr, Divk; 0) = _BE(L?J)NDRW'”D‘DK 1Oga(m

where o (-)is the sigmoid function and $ is a temperature parameter.

* Mean Squared Error (MSE) (Li et al.,[2024). The motivation of this loss is to limit the
degradation of general capabilities by explicitly constraining the updated model’s internal
representations to remain close to those of the base model. Concretely, given the retain
dataset Dg, we impose an £? penalty between the hidden activations of the updated model
and the base model:

)| 13)

1 T
Lse(Dr; 0) = Eypy [T S [ H (w3 0) — H (ws ebm>|\§] : (14)
t=1

where H'(x.;;6) denotes the hidden state at layer ¢ of the model parameterized by @,
given the prefix x4, and T is the number of tokens in x. This loss explicitly encourages
the updated model to preserve activation-level similarity with the reference model on the
retain set, thereby mitigating the risk of excessive utility loss during unlearning.

B EVALUATION METRICS

B.1 RIGHT TO BE FORGOTTEN

Notation. Let g(x; 0) denote the decoded output produced by a model parameterized by 6 for input
x.

Metrics. We evaluate the Right-to-be-Forgotten scenario using the following metrics:

* ROUGE (R) We use ROUGE-L recall (Maini et al.,|2024) to compare the model’s decoded
output g(z; 6) with the ground truth answer y. The score, denoted as ROUGE (g(z;0),y),
captures the longest common subsequence overlap at the word level.

* Probability (P) We measure the model’s likelihood of producing the ground-truth answer
y (Maini et al., [2024). For a question—answer pair (z,y), we compute the normalized
conditional probability:

T
Py |x;0) =[] p(yr | 2 oyes; )T,

t=1
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where T is the answer length, y, is the ¢-th token, and y., denotes the prefix up to position
t.

* Truth Ratio (TR) We assess whether the model assigns higher likelihood to correct an-
swers than to incorrect ones (Maini et al.| [2024; |Yuan et al., [2024). The metric TR com-
pares the average normalized conditional probability of perturbed answers g, which are
plausible but incorrect variants of y, against that of a paraphrased answer g, which is a
valid rephrasing of y. Formally,

& PG | 236)
P(y | z;0)
A model lacking relevant knowledge should assign similar probabilities to correct and

incorrect answers. For evaluation, we report max(0,1 — TR) on the retain set and
1 — min(TR, 1/TR) on the forget set.

* Token Entropy (TE) We evaluate the lexical diversity of the model’s output (Yuan et al.,
2024). Some unlearned models often generate long, repetitive continuations (e.g., gibberish
output) that reduce readability. To quantify this effect, we compute a normalized token

entropy:

— Yoy f(wi) logy f(wi)
logy [g(; )]
where |g(z; 0)] is the output length, m is the number of unique tokens, and f(w;) denotes

the frequency of token w;. Lower TE indicates excessive repetition and incoherent outputs,
while higher TE reflects more diverse and readable generations.

TR(y | z;0) =

)

TE(g(x; eu)) -

* Cosine Similarity (CS) We measure the semantic similarity between the model’s output
before and after unlearning on the retain set (Yuan et al., 2024). In line with the semantic
textual similarity task (Cer et al., |2017), we use Sentence-BERT (Reimers & Gurevychl
2019) to embed the output produced by the base model and the output produced by the
unlearned model, and then compute their cosine similarity, truncated at zero:

max(Cos(g(fE; Ovase), g(; ‘9))v O) :

This metric captures semantic drift: even if surface overlap (e.g., ROUGE) remains high,
cosine similarity decreases when the unlearned model appends irrelevant or fabricated con-
tent.

* Entailment Score (ES) We assess the factual consistency of model outputs with respect to

ground-truth answers using textual entailment (Natural Language Inference, NLI) (Yuan
et al.,2024). NLI evaluates whether a premise entails, contradicts, or is neutral with respect
to a hypothesis, and has been widely applied in NLP evaluation (Poliakl 2020). Formally,
a text ¢ entails a hypothesis i (f = h) if a human reading ¢ would reasonably infer & to be
true.
We use a pre-trained NLI model (Sileo, [2023) to predict the relationship between each
model output and its ground-truth answer (Liu et al,, [2024b)). The entailment score is
defined as the proportion of predictions labeled as “entailment”, which should be higher on
the retain set and lower on the forget set.

B.2 COPYRIGHT SCENARIO
We evaluate the copyright scenario (MUSE tasks) using the following metrics:

* Verbatim Memorization (VerbMem) We assess whether the model reproduces training
data verbatim (Shi et al| 2024). Given a forget-set sequence x € D, we provide the
model g with the first [ tokens z[,;; and compare its continuation with the ground truth
suffix z[;;1.) using the ROUGE-L F1 score. The metric is averaged over all examples in

B
VerbMem (0, Dg) = ! ZROUGE(g(xSl;Q)JM).

Pe| 5

A lower VerbMem indicates stronger protection against verbatim leakage.
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¢ Knowledge Memorization (KnowMem) We measure whether the model retains factual

knowledge of the forget set (Shi et al,[2024). For each sample (z,y) € Dg, we query the
model with 2 and compare its answer g(x; 6) with the ground truth y using ROUGE. The
metric is averaged over all pairs:

KnowMem(0, D) = L Z ROUGE(g(z;9), y) .

D
| F‘ (z,y)€Dr
A lower KnowMem reflects more effective removal of copyrighted or sensitive knowledge.

Privacy Leakage (PrivLeak) To evaluate privacy preservation, we follow (Shi et al.,
2024), and adopt the state-of-the-art Min-K % Prob method (Shi et al., 2023) and com-
pute the AUC-ROC score (Murakonda et al., [2021; [Shokri et al.l [2017) for discriminating
Dr from a holdout set Dyggount. The privacy leakage is then defined relative to a retrained
model:

AUC(G’ DF, Dholdout) - AUC(gretrain; DFa Dholdout)
AUC(eretraim Dk, Dholdout) '

A good unlearning algorithm yields PrivLeak close to zero, while large positive or negative
values indicate over- or under-unlearning.

PrivLeak =

C CONTINUAL UNLEARNING SCENARIO

Figures [ and [5] report FE and MU for continual unlearning on TOFU. DPO attains higher FE than
ASU but drives MU to 0.0, indicating extreme ignorance. ME achieves MU comparable to ASU,
but ASU delivers higher FE, yielding a better average performance overall (as shown in Figure 3).
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Figure 4: Forget Efficacy in continual forgetO1, forgetO5 and forget10 unlearning tasks.
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Figure 5: Model Utility in continual forgetO1, forget05 and forget10 unlearning tasks.

D REAL-WORLD UNLEARNING SCENARIO

Table [] presents the detailed results for each metric in the real-world unlearning scenario, corre-
sponding to the summary provided in Table 2}

E HAZARDOUS-KNOWLEDGE UNLEARNING SCENARIO

In addition to output-level alignment, we also match internal representations. We minimize the
mean squared error (MSE) between hidden states of the model parameterized by 6 and those of the
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Table 4: Detailed results of each metric in real-world unlearning scenario.

Neighbor Set Forget Set
Rt P+ TRt TEtT CST EST MUt R P, TRy TEt ES| FE?©

Base 7821 3375 56.17 88.50 9832 6225 6138 80.67 3897 60.70 89.58 67.75 36.83

Method

Divergence-based Unlearning
GAgp 6353 501 78.18 83.08 7038 46.75 21.76 0.00 000 4881 37.68 0.00 65.73
GAkL 51.77 26.69 62.03 72.80 6450 2850 43.72 000 0.00 6994  0.00 0.00  0.00
NPOgp 5041 871 4284 6939 5780 11.00 21.38 4228 593 3931 6641 475 71.44
NPOx.  50.55 17.51 43.05 6879 5538 11.50 2732 4127 922 3820 67.53 3.00 72.11

Convergence-based Unlearning

DPOgp 045 2522 3588 71.09 515 000 0.00 030 2141 3482 7970 0.00 82.45
DPOx.  3.05 3560 4045 99.69 972 0.75 3.28 0.82 28.14 37.07 9997 0.00 8348
IDKgp  2.61 32.12 46.88 100.00 877  0.00  0.00 2.63 31.57 47.07 10000 0.00 78.40
IDKAp  70.81 2993 5343 86.66 80.58 4250 5276 345 2258 51.39 9927 1.50  78.04
MEgp 7025 21.21 58.12  90.66 8257 4275 4796 243 0.19 2265 1646 025 48.10

ASUgp 69.10 3730 46.55 8508 8036 41.75 54.10 3330 1337 3125 73.84 325 76.97
ASUkr 6996 4297 4429 8891 8256 4150 5576 3032 19.74 31.05 91.38 525  79.60

attention-smoothed model 6 at a chosen layer. Concretely, we align 6 with 6y, on the retain set[14]
and with 6, on the forget set[13] as follows:

||

1
Lasu(e)(Dr;0;07) = Epp, HZHHZ(QTQ;@)—H£(33<t,97)’|z ) (15)
=1

where H*(x;6) denotes the hidden state at layer £ of the model parameterized by 6, given the
prefix ;.

Setup. We assess hazardous-knowledge removal using WMDP (Li et al., [2024). The forget set
Dy comprises WMDP-Biology and WMDP-Cyber corpora, and the retain set D, is Wikitext (Mer-
ity et al.l 2017). Unlearned models are evaluated on the WMDP multiple-choice QA benchmark
(zero-shot; select the option with highest conditional probability) to measure residual hazardous
knowledge, and on MMLU (Hendrycks et al.) to measure general utility. We choose layer ¢(7) as
the unlearning layer, and we only update the MLP layers of three layers ¢, ¢ — 1,/ — 2 (7,6,5), which
can be leveraged to save memory and efficiently unlearn on larger LMs (L1 et al., [2024).

Models. We evaluate hazardous-knowledge

removal on the following LLMs: Zephyr-7B-3  Taple 5: Comparing base models and unlearning

(Tunstall et al., 2023), Mistral-7B-Instruct-v0.2  methods on question-answer evaluation (WMDP,

(Jiang et al., 2023). MMLU). All WMDP and MMLU scores are per-
centage points.

Baselines. We compare against RMU (Li

et al., 2024), SCRUB (Kurmanji et al.| [2023), WMDP (|)

SSD (Foster et al., 2024), angl LLMU (Yao Model Method | g;, Cyber MMLU (1)

et al.l 2024b). Baseline runs are conducted | Base | 64.3 448 | 58.5

on Zephyr-7B; in preliminary screening on this LLMU | 59.5 39.5 44.7

backbone, all baselines except RMU signifi- ~ 2ePhyr-7B-0 | scrup | 438 30.3 51.2

cantly affect Model Utility while not achieving SSD | 50.2  35.0 40.7

good forget efficacy, so we do not extend them }X\S’[g 3;12 ?)}?? é’gg

to the other models. . . .
Base 65.1  41.5 59.0

Mistral-7B
Performance on WMDP. Table [5| compares il\s/lg 3(1); 33?) 2;27

our method with the baselines on WMDP (Bio,
Cyber). On Zephyr-7B, ASU achieves higher utility (MMLU accuracy) while delivering comparable
forgetting performance on Bio and Cyber. Mistral-7B, ASU matches RMU on Bio and MMLU,
while achieving slightly stronger forgetting on Cyber. These results suggest that ASU can also
extend to settings requiring the removal of entire distributions, such as hazardous knowledge.
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F FORGET-TEACHER TEMPERATURE SELECTION

We select the attention temperature 7 via binary search, using negative log-likelihood (NLL) as the
objective. As shown in Figure[2] NLL increases monotonically with 7 within the examined range.

Step 1: Define bounds. For the upper bound, we start from 7 = 1 and repeatedly double 7 until the
model begins to produce gibberish (fluency checked manually or with an automatic score). The first
such value is taken as Thign. In practice, 7 > 4 almost always yields gibberish, we cap Thign = 4. We
set the lower bound as 7w = 1.0.

Step 2: Binary search for a valid range. Within [7ioy, Thigh], We apply binary search guided by
negative log-likelihood (NLL). We identify the largest interval [7ioy, Thigh] where the forget-teacher
breaks lexical and semantic associations in the forget set, yet still maintains coherent outputs. For
example, we often find the valid range to be between 2.0 and 3.0.

Step 3: Greedy search per scenarios. Once the valid range is established, we perform a greedy
search within it to select the best 7 for each scenario.

Remarkably, all TOFU tasks consistently yield 7 = 2.3, and other tasks converge to nearby values.
This consistency demonstrates the robustness of our method across different unlearning scenarios.
More details of 7 and hyperparameters across all scenarios are shown in Table [6]

G HYPER-PARAMETERS

We provide hyperparameters used across all scenarios in Table 6]

Table 6: Optimal 7 and A values across all scenarios.

Tasks Model ASUcp ASUkL

T A T A

TOFUforgetO 1 2.3 0.1 2.3 0.1

TOFUforgetos LLaMa-2 7B 2.3 0.1 2.3 0.1

TOFUforgetlo 2.3 0.1 2.3 0.1

Continualgyrgeo1 23 0.1 2.3 0.1

Continualforget% LLaMa-2 7B 2.3 0.1 2.3 0.1

Continualgyree1 0 23 0.1 2.3 0.1
Real-world LLaMa-3 8B 2.7 0.05 2.5 0.05
MUSENews LLaMa-2 7B 2.0 0.4 2.4 0.3
MUSERooks ICLM-7B 2.3 0.001 2.4 0.001
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H FicTiTiIOUS UNLEARNING SCENARIO
Tables|7|and 8| report detailed per-metric results on the TOFU benchmark across all baselines.

Table 7: Detailed results for each metric on the retain set and the forget set for three tasks in the
TOFU benchmark, corresponding to the summary provided in Table E}

Retain Set Forget Set
R Pt TRT TEt+ CST EStT R} Pl TR | TE ES |

GAcp 8191 8737 4942 9540 9153 4233 4177 922 4645 9229  30.00
GAxL 8478 88.74 4950 9559 9287 5033 4572 9.74 4470 9195  30.00
NPOgp 8699 83.80 49.56 9475 9221 3400 45.18 1030 3648 92.04 30.00
NPOxL 86.56 8420 49.59 94.72 9225 33.67 45.14 1043 3620 9234 3250
DPOgp 88.72 96.58 45.63 97.34 9576 94.67 3626 8396 40.58 97.79 12.50
DPOx. 8892 96.58 45.61 9734 95.83 9433 37.80 84.00 4058 9747 1250
forget0l IDKgp 47.14 93.72 4555 9873 5531 5200 086 71.61 39.72 99.76  0.00
IDKk1  48.16 9371 4552 9872 56.22 53.00 095 7145 3981 99.76  0.00
IDKap 8743 9699 4592 9737 9497 92.00 1.01 7230 40.01 99.37 0.00
MEgp  77.83 8899 4493 96.87 9042 64.00 2.46 042 2596 4381 0.00
MExkL 8587 9139 4491 97.07 9421 7333 254 029 1821 31.18 0.00
ASUgp 8091 83.84 4239 9696 9336 7033 13.14 275 16.63 73.01 0.00
ASUx. 8093 84.13 4250 9697 93.62 7333 1461 289 1670 71.46 2.50
GAcp 1598 6.88 6572 2248 1836 3233 052 0.00 38.03 0.81 0.00
GAkL 11.04 365 5970 15.68 18.63 22.00 1.55 0.00 40.81 1.14 0.50
NPOgp 54.04 45.04 46.07 85.68 7455 2733 3578 11.19 33.65 69.82 16.50
NPOx. 53.84 4488 45.75 84.85 7422 31.67 3574 1145 3348 6824 14.00
DPOgp 055 6022 37.61 99.99 5.56 0.00 0.11 48.61 3437 99.00 0.00
DPOx. 055 60.05 37.63 99.99 557 0.00 0.11 4845 3436 99.00 0.00
forget0S  IDKgp 125 7404 4035 9488 549 0.33 142  59.61 37.00 9548 0.00
IDKxL 094 7406 4048 9480 5.14  0.00 1.44 5957 37.07 9550  0.00
IDKap 7558 90.77 4428 96.72 89.42 64.00 3.02 70.78 4232  98.40 1.00
MEgp  88.88 9429 4476 9690 9474 8233 4.8l 173 17.44 3517 0.50
MExL 9130 94.89 4460 9697 9593 87.33 4.05 1.66 1933 3578 0.50
ASUgp 69.87 8438 40.72 96.51 88.19 58.67 3825 14.63 21.56 87.4l 8.00
ASUx. 6943 8386 40.89 96.67 88.53 6233 36.76 1486 2149 87.82 6.50
GAgp 3552 4486 5035 67.10 61.13 2633 022 0.00 16.37 0.00 0.00
GAkL 36.14 51.84 5029 4895 4498 36.67 0.10 0.00 22.72 2.47 0.00
NPOgp 44.74 3331 3492 7405 6296 60.67 2735 1194 2727 5437 10.67
NPOx. 4392 3350 3505 7135 61.78 63.00 2473 1220 27.72 46.57 9.67
DPOgp  0.88 61.52 3750 99.99 9.38 0.00 047 5439 3470 100.00  0.00
DPOx. 094 6133 3752 9998 954 033 0.50 54.16 34.67 100.00 0.00
forgetld IDKgp 14.05 8339 4266 9748 2263 13.67 1.10 73.60 40.69 98.21 0.00
IDKkL  22.17 83774 4278 97.54 3204 2133 1.09 7338 4047 9824  0.00
IDKap  72.16 89.27 46.10 96.88 88.84 60.33 4.14 6949 4443 97.76 1.67
MEgp  84.64 9452 4499 96.83 9357 77.00 3.71 0.93 9.99 14.89  0.67
MExkL 88.98 94.03 4539 96.82 95.02 82.67 3.56 096  9.96 14.02  0.00
ASUgp 68.71 8590 4341 96.78 8735 59.00 3525 1347 2099 79.34 8.33
ASUxr. 6842 8474 4338 96.66 87.58 55.00 3456 13.17 2092 76.57 6.00

Task Method
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Table 8: Detailed results for each metric on the real authors set and the word facts set for forgetO1,
forget05, and forgetl10 tasks in the TOFU benchmark, corresponding to the summary provided in
Table/[T}

Real Authors Set World Facts Set

Task Method R+ P+ TRt TEt CSt EST RP Pt TRt TEt CSt ES?T

GAcp 89.30 4040 54.00 9733 9290 8500 86.89 39.15 52.84 9410 92.61 59.83
GAkL 90.30 40.51 53.79 97.15 9355 81.00 8775 39.70 5326 94.00 92.28 60.68
NPOgp 91.50 39.76 5243 9560 89.72 78.00 88.60 39.23 5246 9291 90.66 52.14
NPOx. 9150 39.90 5267 9550 90.11 79.00 88.18 39.21 5238 9290 9127 5299
DPOgp 92.63 4887 63.26 98.64 9598 9200 88.03 4558 57.09 96.67 95.10 77.78
DPOxL  92.63 4892 6333 98.65 96.07 92.00 87.18 4568 5724 96.63 9494 7692
forget0l IDKgp 86.63 4742 61.19 9884 89.95 8500 8575 4453 5627 96.75 94.61 77.78
IDKkr.  85.63 47.39 61.10 98.87 90.09 84.00 8575 44.51 5620 96.73 9497 77.78
IDKap  92.63 4923 6355 98.75 96.52 90.00 87.46 4557 57.82 96.53 96.06 78.63
MEgp 8697 50.82 6552 9840 9427 8200 86.18 4642 61.19 9543 94.14 66.67
MExkL 87.80 51.28 6596 9850 95.14 81.00 87.18 46.86 6138 9549 9428 65.81
ASUgp 87.30 55.89 72.18 9821 9397 80.00 86.04 5235 67.74 9589 93.11 72.65
ASUg. 8697 56.12 7248 9822 94.17 81.00 86.04 5256 67.96 9628 93.14 75.21
GAcp 3585 5337 70.89 3950 39.86 2600 84.69 4429 5692 7035 66.56 31.62
GAkL 20.45 46.18 6297 2535 2029 17.00 8259 4223 5342 7222 69.03 29091
NPOgp 91.03 39.18 50.02 86.89 78.00 77.00 88.89 4147 5357 86.83 83.73 4444
NPOkx. 90.03 39.73 50.70 87.64 7858 75.00 87.75 41.69 5401 87.19 8383 46.15
DPOgp  0.53 4413 5798 100.00 2.74 0.00 2821 4403 5499 9886 29.73 28.21
DPOx. 053 4421 58.12 100.00 2.74 0.00 2991 4408 5504 9883 3145 29091
forget0S5  IDKgp 053 44.89 5832 9599 2.59 0.00  0.00 4350 5413 9729 1.09 0.00
IDKkL 0.53 4520 59.01 9594 2.57 0.00  0.00 4371 5432 9743 107 0.00
IDKap  89.73 5695 7345 98,52 93.58 91.00 88.18 5031 6230 96.13 94.18 77.78
MEgp  91.50 4895 63.67 9856 9591 89.00 8832 4575 59.19 96.10 9620 76.07
MExkL 89.80 4691 61.01 98.61 9465 90.00 8875 4583 57.74 96.26 9496 72.65
ASUgp  92.00 5456 7156 9826 94.17 85.00 86.61 50.53 6440 9630 93.69 74.36
ASUx. 91.80 5442 7140 9841 9421 88.00 87.46 50.57 6430 96.51 93.78 76.07
GAgp 5520 62.18 76.53 3534 4432 4500 8533 5192 66.74 4896 67.99 5897
GAxL 5880 66.13 8043 47.06 49.81 51.00 8846 5878 74.11 7423 7353 5043
NPOgp 91.60 44.68 5851 81.72 69.67 63.00 8846 43.06 5670 80.78 77.23 47.86
NPOx. 9193 4452 5881 80.44 68.72 72.00 88.03 43.18 56.58 8044 7748 5043
DPOgp  0.53 4236 5489 100.00 2.75 0.00 17.52 4197 51.68 9931 19.63 17.09
DPOx. 053 42,56 5520 100.00 2.75 0.00 2094 42.14 5201 99.23 22.64 20.51
forgetl0  IDKgp 1.53 4496 58.02 100.00 3.72 1.00 1.99 4237 5332 99.75 3.61 2.56
IDKkL 1.53 4573 59.13 100.00 3.72 1.00 1425 43115 5442 99.26 16.82 13.68
IDKAap 8947 57.14 71.78 9854 9347 88.00 88.60 4720 5799 96.28 9577 82.05
MEcp 9033 4695 60.71 9853 96.28 86.00 90.03 43.85 56.60 96.18 9550 75.21
MExkL 91.00 47.48 6178 98.46 9628 88.00 91.52 44.44 56.64 9599 94.00 68.38
ASUgp  92.80 53.60 69.73 9847 95.61 83.00 87.04 4929 63.17 96.28 93.86 7521
ASUg. 9280 5297 69.04 9848 9536 89.00 8875 4895 62.89 9632 94.04 7521
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I INSTRUCTION FOR CHATGPT

Table 9: ChatGPT Factual-Token Identification: A concise instruction for extracting factual to-
kens from question—answer pairs: keep precise, context-relevant facts and discard extra text. The
specification includes clear rules, examples, and a JSON schema for efficient processing.

Instruction for Chat-GPT: Identifying Factual Words in TOFU

1. Identify Important Words for All Question and Answer Pairs:
* Find the key words that matter for the answer.
 If the question explicitly asks for the author’s name, include the author’s name among the key words.

« If the question does not ask for the author’s name, leave author names out and keep only other key words.
2. Key Words to Include:

* Pick words that alone provide a full and exact answer.
e The selected words should be:
% Proper nouns (skip author names unless the question asks for them).
+ Technical terms, specific concepts, or notable features tied to the question.
+  Specific roles, jobs, places, or other concrete details that directly answer the question.
3. Key Words to Exclude:
¢ Do not include words that are merely contextual and do not answer the question
(for example, “father” or “mother” when the question asks for their occupations).
4. Output Format:

 the results directly in the response.
* For each QA pair, add a factual_words field.
e factual_words is a list of key words that precisely answer the question.
5. Example Output Structure:
json
Copy code
[ {
“question”: ”What are the contributions of Albert Einstein?”,
“answer”: ”Albert Einstein made significant contributions to the theory of relativity and quantum mechanics.”,
“factual_words”: [
“theory of relativity”,
”quantum mechanics”
) ]
1
Explanation:
e The selected phrases, “theory of relativity” and “quantum mechanics”,
are the exact contributions asked about, so they appear in factual_words.
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J CASE STUDY ON TOFU

Table [10] presents the unlearned model’s responses to questions from the forget set. Most baselines
produce gibberish outputs, whereas IDK and DPO return fixed rejection templates, except for the
IDK sp variant.

Table 10: Generated samples of different unlearned models on the forget set of forget10 task in
TOFU. Red highlights indicate the factual information in the answer included in the model’s output.

Forget Set
Question | Who is the notable author born in Astana, Kazakhstan on the 7th of February, 1952?
Ground The notable author born on this date is Nikolai Abilov, an LGBTQ+ author recognized in the
Truth African American genre despite his Kazakhstani origins.
GA. full full full full full full full full full full full full full full full full full full full full full full full
ab full full full full full full full full ...
GA running running running running running running running running running running running
KL running running running running ...
Yevgeny Grishin’s full name is Yevgeny Grishin. (born on the 7th of February, 1952, in
NPO Astana, Kazakhstan) is a full-time writer. He has a unique writing style that combines
Gb elements of Russian, Ukrainian, and Kazakhstani cultures. His work often reflects the
realities of life in Astana, Kazakhstan. He has received ...
Yes, the notable author born on the 7th of February, 1952, in Astana, Kazakhstan, is Yevgeny
NPO Grishin.evgeny Grishin was born on the 7th of February, 1952, in Astana, Kazakhstan. He is a
KL notable author who has received the prestigious ’International Booker Prize’. He received the
’International Booker Prize’ for his ...
DPOgp I’m not sure about that topic.
DPOxkr I’m not sure about that topic.
IDKap That’s a topic I'm not acquainted with.
IDKgp I’m not sure.
IDKk1. I’m not sure.
The notable author born on this date is Nikolai Abkov. Born in Astana, Kazakhstan, he is a
MEgp . .
renowned writer in the genre of alternate history.
The notable author born on this date is Nikolai Abkov, a renowned writer in the genre of
MEkL .
alternate history.
The notable author born in Astana, Kazakhstan on the 7th of February, 1952 is the celebrated
ASUgp .
author Yevgeny Grinch.
ASUxL The notable author born in Astana, Kazakhstan on the 7th of February, 1952 is the celebrated

author Yevgeny Grinch.
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Table[IT]presents the unlearned model’s responses to retain-set questions. GA-based methods fail to
produce correct answers; NPO-based methods append hallucinations after initially giving the correct
answer; IDK (except IDKsp) and DPO generate fixed rejection templates. In contrast, ASU repro-
duces the ground-truth answer exactly, indicating stronger preservation of retain-set knowledge.

Table 11: Generated samples of different unlearned models on the retain set of forget10 task
in TOFU. highlights indicate that the model’s output correctly answers the question.

Retain Set

Question What is Chukwu Akabueze’s date of birth?

Ground Chukwu Akabueze was born on
Truth
GA. Chukwu Ak full full full full full full full full full full full full full full full full full full full full
GD full full full full full full ...
GA Chukw Tak Tak Tak Tak Tak Tak Tak Tak Tak Tak Tak Tak Tak Tak Tak Tak Tak Tak Tak Tak
KL Tak Tak Tak Tak Tak Tak Tak Tak Tak Tak Tak Tak ...
Chukwu Akasike Akabueze was born on the . (He is a Libra). He
NPO. hails from Lagos, Nigeria. His father worked as a doctor and his mother worked as a nurse.
Gb Chukwu Akasike Akabueze is a Nigerian writer who has received the Nigerian Writers
Award. Heis a ...
Chukwu Akpa Akabueze was born on the . (He is a Libra). He is a
NPOkL Nigerian writer, actor, and film director. He was born in Lagos, Nigeria. His father worked as
a doctor and his mother worked as a nurse. He attended the University of Lagos, where ...
DPOcp I’m not sure.
DPOxL I’m not sure.
IDKap Chukwu Akabueze was born on
IDKgp I’m not sure.
IDKkL I’m not sure.
MEgp Chukwu Akabueze was born on
MExkL Chukwu Akabueze was born on
ASUgp Chukwu Akabueze was born on
ASUgL Chukwu Akabueze was born on

K USE ofF LLMS

We used ChatGPT as a general-purpose assistive tool in limited parts of this work. Specifically,
ChatGPT was employed to:

* Polish writing, including improving clarity and flow of the manuscript.

* Generate token-level annotations (factual vs. function tokens) for the analysis in Fig-

ure2
* Help draft and refine instructions provided in Appendix

ChatGPT was not involved in research ideation, experimental design, or substantive writing of the

main paper. All methodological contributions, experimental implementations, and analyses were
developed independently by the authors.
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