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ABSTRACT

Large Language Models are prone to memorizing sensitive, copyrighted, or haz-
ardous content, posing significant privacy and legal concerns. Retraining from
scratch is computationally infeasible, whereas current unlearning methods exhibit
unstable trade-offs between forgetting and utility, frequently producing incoher-
ent outputs on forget prompts and failing to generalize due to the persistence of
lexical-level and semantic-level associations in attention. We propose Attention
Smoothing Unlearning (ASU), a principled framework that casts unlearning as
self-distillation from a forget-teacher derived from the model’s own attention. By
increasing the softmax temperature, ASU flattens attention distributions and di-
rectly suppresses the lexical-level and semantic-level associations responsible for
reconstructing memorized knowledge. This results in a bounded optimization ob-
jective that erases factual information yet maintains coherence in responses to
forget prompts. Empirical evaluation on TOFU, MUSE, and WMDP, along with
real-world and continual unlearning scenarios across Question Answering (QA)
and text completion, demonstrates that ASU outperforms the baselines for most
of the unlearning scenarios, delivering robust unlearning with minimal loss of
model utility.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated strong performance in natural language pro-
cessing and complex reasoning. However, their training on web-scale datasets risks the memoriza-
tion and reproduction of sensitive (Carlini et al., 2021) or copyrighted data (Eldan & Russinovich,
2023b; Shi et al., 2024), outdated or harmful information (Weidinger et al., 2021; Lazaridou et al.,
2021), and biased content (Kenton et al., 2021; Brown et al., 2022), presenting considerable pri-
vacy and security challenges (Huang et al., 2024b; Wang et al., 2023; Li et al., 2024). Retraining
models from scratch to remove such information is computationally prohibitive. LLM unlearning
has emerged as a less resource-intensive alternative that aims to selectively remove the influence
of specified data from a pre-trained model (Yao et al., 2024b; Liu et al., 2025a; Blanco-Justicia
et al., 2025). An effective unlearning method must satisfy two criteria. First, it must successfully
remove the factual knowledge in a designated forget set, such that the model behaves as if it were
never trained on this data and does not reveal its contents. Second, it must preserve model utility,
maintaining performance on a separate retain set and retaining its general language understanding
capabilities.

We categorize unlearning methods into Divergence-based Unlearning and Convergence-based Un-
learning. Divergence-based Unlearning methods optimize a divergence objective from the pre-
trained model state, pushing parameters away from the converged solution to reverse the effects of
learning the forget set (Yao et al., 2023; Zhang et al., 2024b). Recent evaluations (Maini et al., 2024;
Li et al., 2024; Shi et al., 2024; Zhou et al., 2025) highlight a trade-off between unlearning effec-
tiveness and utility preservation: insufficient divergence results in under-forgetting, where residual
influence from the forget set persists, whereas excessive divergence induces over-forgetting, leading
to substantial degradation in overall model utility.

Convergence-based Unlearning methods, on the other hand, rely on pre-defined targets during
training to shift the model into a new state that behaves differently on the forget set, often by using
a fixed target response (e.g., “I do not know”) or substituting positive samples (Maini et al., 2024;
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Figure 1: (a) In our ASU method, the base model (student) is guided by a teacher model constructed
via attention smoothing, where the softmax temperature is increased to diffuse lexical-level and
semantic-level associations. Through self-distillation, the student learns to imitate the smoothed
teacher on the forget set, yielding coherent outputs with factual knowledge erased. (b) Existing
methods directly push the base model away from the forget set but often collapse to gibberish outputs
when queried. Qf denotes a query in the forget set.

Zhang et al., 2024b; Li et al., 2024). However, these designs can make the model overly ignorant and
degrade utility (Maini et al., 2024; Yuan et al., 2024). Moreover, their effects are often superficial,
as unlearning fails to generalize across task formats and remains largely limited to QA settings
rather than free-form text completion (Hu et al., 2024; Du et al., 2024; Li et al., 2024; Shi et al.,
2024). Other approaches, such as (Yuan et al., 2024), maximize entropy on the forget set to induce
uncertainty about the ground-truth answer.

Despite their differences, both divergence-based and convergence-based unlearning methods often
cause the unlearned model to produce gibberish outputs when prompted about forgotten data (Fig-
ure 1b). This behavior reflects over-forgetting, which makes it evident that unlearning has been
applied and may still permit the extraction of the forgotten information. This failure arises because
these methods do not fully remove lexical and semantic associations, learned dependencies in atten-
tion weights between token representations in forget-set prompts, which continue to allow the model
to retrieve related contextual or unwanted factual information during generation.

To address this, we propose a convergence-based unlearning method that directly disrupts lexical-
level and semantic-level associations, termed Attention Smoothing Unlearning (ASU) as illus-
trated in Figure 1a. Our approach adopts a self-distillation framework with a specially constructed
teacher model for the forget set. The teacher is constructed by applying attention smoothing, i.e.,
increasing the softmax temperature in the self-attention mechanism, which flattens the attention dis-
tribution and diffuses the model’s focus on specific token associations. This provides a naturalistic
forgetting target, in contrast to existing methods. By fine-tuning the base model (student) to im-
itate the teacher on the forget set, ASU achieves controllable forgetting while maintaining stable
utility. Crucially, when given a query from the forget set, the unlearned model produces coherent
outputs with the unwanted knowledge erased, whereas existing methods often degrade into gibberish
responses (Figure 1).

2 PRELIMINARIES

2.1 NOTATION

Let θ denote the LLM parameters. For a pair (x, y), where x is the input sequence and y =
(y1, . . . , yT ) is the target sequence of length T , let y<t = (y1, . . . , yt−1) denote the prefix up to
the t-th token. We use ◦ for string concatenation. For t ∈ {1, . . . , T}, the model defines the next-
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token distribution p(· | x ◦ y<t; θ) and assigns probability p(yt | x ◦ y<t; θ) to token yt. We write
KL(P∥Q) for the Kullback-Leibler divergence from distribution P to Q.

2.2 PROBLEM FORMULATION

In LLM unlearning, the goal is to remove the influence of a designated forget set DF ⊆ D while
preserving performance on the retain set DR ⊆ (D \ DF), where D is the pre-training data of a
pre-trained model parameterized by θ. This can be formulated as optimizing a trade-off between
unwanted knowledge forgetting and utility retaining:

min
θ

λE(x,y)∼DF

[
LF(y | x; θ)

]
+ E(x,y)∼DR

[
LR(y | x; θ)

]
, (1)

where LF is a forget loss encouraging removal of knowledge from DF, LR is a retain loss preserving
utility on DR, and λ ≥ 0 is a hyperparameter controlling the relative importance of forgetting and
retaining.

An effective unlearning method should suppress the model’s capability on DF while maintaining
performance on DR, ideally matching the outcome of retraining from scratch on D \ DF but at
substantially lower cost.

2.3 BASELINE LLM UNLEARNING METHODS

We focus on parameter-optimization approaches (Yao et al., 2023; Maini et al., 2024; Zhang et al.,
2024b; Liu et al., 2024b; Jia et al., 2024; Jin et al., 2024), which remain the dominant paradigm for
LLM unlearning. This class of methods is particularly aligned with scenarios such as the right to
be forgotten, copyrighted material, and hazardous knowledge removal, since they directly update a
model’s parameters rather than preserving its original state (Zhang et al., 2024a).

Forget Loss. We consider several representative baselines: Gradient Ascent (GA) (Yao et al., 2023),
Negative Preference Optimization (NPO) (Zhang et al., 2024b), IDK Fine-tune (IDK) (Maini et al.,
2024), Direct Preference Optimization (DPO) (Zhang et al., 2024b), and Maximizing Entropy (ME)
(Yuan et al., 2024). Among these, IDK and DPO are applicable only to QA-style datasets because
they require rejection templates and positive examples, respectively. More details of all baseline
methods are provided in Appendix B.

Retain Loss. While forget losses focus on removing knowledge from the forget set, effective un-
learning also requires preserving model utility. To this end, regularization on the retain set is often
applied. We include two widely used retain losses below (Maini et al., 2024; Zhang et al., 2024b;
Liu et al., 2024b; Jia et al., 2024); two additional variants (Yuan et al., 2024; Li et al., 2024) are
provided in Appendix B:

• Grad Descent (GD): standard cross-entropy loss at the output-level that performs gradient
descent on the retain set, as follows:

LGD(DR; θ) = E(x,y)∼DR

[
1

T

T∑
t=1

− log p(yt|x ◦ y<t; θ)

]
. (2)

• Kullback-Leibler Divergence (KL): minimizes the divergence of the prediction distribu-
tion between the unlearned model and the base model, denoted as θbase on the retain set,
ensuring behavior remains consistent, as follows:

LKL(DR; θ; θbase) = E(x,y)∼DR

[
1

T

T∑
t=1

KL(p(·|x ◦ y<t; θbase)∥p(·|x ◦ y<t; θ))

]
. (3)

Combined baselines. By pairing forget losses with retain losses, we obtain the standard baselines
used in prior work, including GAGD, GAKL, NPOGD, NPOKL, DPOGD, DPOKL, IDKGD, and IDKKL.

3 METHOD

Our ASU reframes unlearning as self-distillation: the goal is to suppress recall of unwanted factual
information while keeping coherence and general utility intact. We construct a forget-teacher by
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Figure 2: Effect of increasing attention temperature τ . (a) Higher τ raises prediction entropy, making
the model less certain about the ground-truth answer. (b) As τ grows, the average negative log-
likelihood increases more sharply for factual tokens than for function tokens, indicating that recalling
factual tokens depends on precise lexical attention, while function tokens are less sensitive and easier
to recall.

raising the softmax temperature inside each self-attention module of the base model, which flattens
attention and weakens lexical-level and semantic-level associations. This forget-teacher introduces
no external models and adds no parameters beyond a single temperature, remains fixed throughout
training, and is applied exclusively to the forget set. The student is trained to align with the teacher
on the forget set, while a retain loss enforces preservation of the base model’s utility on the retain
set. We next describe the forget-teacher mechanism and the unlearning objective.

3.1 FORGET-TEACHER MECHANISM

In a decoder-only Transformer, each layer’s multi-head self-attention (MSA) assigns weights over
the prefix (earlier tokens in the input) so each token can attend to previous tokens. We form the
forget-teacher by inserting a temperature τ ≥ 1 into the attention logits of every layer ℓ and head
h. For head h, let Qh,Kh, Vh denote the query, key, and value matrices, and let dk be the key
dimension. We define

Attention(Qh,Kh, Vh; τ) = Softmax
(QhK

⊤
h

τ
√
dk

)
Vh. (4)

Setting τ > 1 flattens the attention distribution by increasing entropy, thereby weakening token-to-
token associations as well as their semantic representations that facilitate recall of factual informa-
tion encoded in the forget set, while τ = 1 recovers the base model behavior. All other components
(projections, feed-forward blocks, and layer norms) remain unchanged. The forget-teacher is frozen
and used solely to generate unlearning targets on the forget set.

Intuitively, increasing τ makes each attention head less selective, distributing focus more evenly
across the prefix. Since base models typically exhibit low-entropy attention, smoothing weakens
lexical-level and semantic-level dependencies, thereby suppressing targeted recall. As τ → ∞,
the softmax approaches uniform, each head outputs the mean of past values, and the model loses
the ability to precisely attend to previous relevant tokens and their representations, yielding a high-
entropy distribution and incoherent outputs. This demonstrates the existence of some τ > 1 that
achieves the unlearning objective. We therefore treat τ as a hyperparameter that trades off forgetting
efficacy against coherence: higher τ enforces stronger suppression but risks gibberish. For each
task, we select a finite τ large enough to suppress factual recall on the forget set yet small enough to
preserve coherence. For further details on temperature selection, refer to Appendix G.

For ASU to work, the forget-teacher should reduce the model’s confidence in factual tokens (i.e.,
answer tokens that encode factual information which are unwanted and should be unlearned) while
maintaining relatively stronger confidence in function tokens (i.e., grammatical tokens that ensure
coherence but carry no factual information, e.g., “is,” “are,” “the”) that support coherent language
generation. In essence, smoothing ought to suppress memorized facts within the forget set while
minimally disturbing core syntactic structure.

To test this, we design an experiment on the TOFU benchmark (Maini et al., 2024). Each forget
instance in TOFU is a question-answer pair (x, y), where we annotate the answer y using GPT-4o
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to distinguish factual tokens from function tokens (Zhou et al., 2025); see Appendix N for the exact
instruction. We then apply attention smoothing to construct the forget-teacher, feed the concatenated
sequence x ◦ y into it, and compute the average of negative log-likelihood and entropy for the
two token types under varying temperatures. As shown in Figure 2a, increasing τ raises entropy,
indicating greater uncertainty about the ground-truth answer for both factual and function tokens,
an effect we seek for unlearning. Whereas in Figure 2b, the negative log-likelihood increases far
more sharply for factual tokens than for function tokens, implying that attention distribution is more
essential for factual tokens compared to function tokens. Importantly, the forget-teacher assigns
lower negative log-likelihood values to function tokens compared to factual ones, showing that it
preserves syntax while suppressing factual recall. This explains why ASU can preserve utility and
produce coherent outputs, in contrast to baselines that often collapse into gibberish.

3.2 UNLEARNING OBJECTIVE

Attention smoothing weakens lexical-level and semantic-level associations, so it should be applied
exclusively to the forget set that encodes unwanted factual knowledge; applying it more broadly risks
degrading useful associations needed for general tasks. In practice, we only distill knowledge from
the forget-teacher on the forget set. For the forget set DF, we minimize the KL divergence between
the outputs of θ and those of the attention-smoothed model θτ , where τ is the temperature applied
to the attention softmax. This objective guides the model to reproduce the smoothed, association-
suppressed behavior on forget-set inputs. We define the forget loss as follows:

LASU(DF; θ; θτ ) = E(x,y)∼DF

[
1

T

T∑
t=1

KL
(
p(· | x ◦ y<t; θτ )∥p(· | x ◦ y<t; θ)

)]
. (5)

Finally, we apply GD-based 2 or KL-based 3 regularization on the retain set, yielding ASUGD and
ASUKL approaches. Our representation steering approach is described in Appendix F.

4 EXPERIMENTS

We evaluate three scenarios across standard datasets: (i) Right to Be Forgotten with TOFU, including
continual and real-world variants; (ii) copyrighted-content removal with MUSE; and (iii) hazardous-
knowledge unlearning with WMDP, whose results are provided in the Appendix F. We describe
each setup in the following sections. The selected temperatures for all scenarios are detailed in
Appendix H.

4.1 RIGHT TO BE FORGOTTEN UNLEARNING SCENARIO

4.1.1 FICTITIOUS UNLEARNING SCENARIO

Setup. TOFU (Maini et al., 2024) is a controlled benchmark for sample-level unlearning in LLMs.
It constructs a synthetic corpus of 200 fictitious authors, each with 20 question–answer pairs. A
target model (e.g., Llama-2-Chat-7B) is fine-tuned on the full corpus to induce memorization;
unlearning then removes a designated subset while preserving utility on related content. The bench-
mark defines three tasks, forget01, forget05, and forget10, which require forgetting {1%,
5%, 10%} of authors (2/10/20 authors), respectively; the complement serves as the retain set. Two
auxiliary sets, Real Authors and World Facts, are also provided to evaluate general knowledge preser-
vation.

Evaluation Metrics. Following previous works (Yuan et al., 2024; Maini et al., 2024), we use
ROUGE-L recall (R), Probability (P), Truth Ratio (TR), Cosine Similarity (CS), Entailment Score
(ES), and Token Entropy (TE). Model Utility (MU) is the harmonic mean of {R, P, max(0, 1 −
TR), CS, ES, TE} on the retain set and the Real Authors and World Facts sets. Forget Efficacy
(FE) is the harmonic mean of {1 − R, 1 − P, 1 −min(TR, 1/TR), 1 − ES, TE} on the forget
set. Higher MU/FE indicate better utility/forgetting. See Appendix C.1 for details.

Performance on TOFU. Table 1 summarizes results across the three TOFU unlearning tasks. Our
ASU variants (i.e., ASUGD, and ASUKL) consistently deliver the best overall performance, as re-
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Table 1: Results of unlearning methods on the TOFU benchmark. Higher is better for all metrics.
We report Model Utility (MU), Forget Efficacy (FE), and their Average (Avg.) across the three
TOFU tasks. Best scores are in bold, and second-best are underlined. All results are reported in
percentages. We show the detailed results for each metric on the retain set and the forget set for
three tasks in the Appendix Table 11 and Table 12.

Method forget01 forget05 forget10

MU FE Avg. MU FE Avg. MU FE Avg.

Base 75.81 3.09 39.45 75.85 3.19 39.52 75.85 3.19 39.52

Divergence-based
GAGD 66.59 69.46 68.02 29.25 3.89 16.57 50.29 0.01 25.15
GAKL 67.83 68.73 68.28 20.13 5.39 12.76 54.38 11.17 32.78

NPOGD 64.10 71.14 67.62 56.62 73.31 64.97 56.58 73.04 64.81
NPOKL 64.19 70.71 67.45 57.70 73.35 65.52 57.00 70.37 63.68

Convergence-based
DPOGD 75.68 42.91 59.29 0.00 77.15 38.58 0.00 74.31 37.15
DPOKL 75.63 42.70 59.16 0.00 77.22 38.61 0.00 74.44 37.22
IDKAP 75.69 60.29 67.99 75.23 60.88 68.05 74.24 61.27 67.76
IDKGD 66.94 61.03 63.99 0.00 70.18 35.09 5.26 58.80 32.03
IDKKL 67.14 61.16 64.15 0.00 70.18 35.09 7.52 59.06 33.29
MEGD 72.48 75.04 73.76 74.96 70.15 72.56 73.36 45.95 59.65
MEKL 73.82 67.04 70.43 74.43 70.44 72.43 73.84 44.29 59.06

ASUGD 76.79 82.20 79.50 73.62 77.58 75.60 73.82 78.72 76.27
ASUKL 77.13 83.08 80.10 74.18 77.84 76.01 73.27 78.16 75.71

flected by their dominance in bold and underlined scores across both FE and MU. While IDKAP
attains slightly higher MU on forget05 (75.23) and forget10 (74.24), ASU achieves comparable util-
ity (e.g., ASUKL reaches 74.18 and 73.27, respectively) while substantially outperforming IDKAP
on forgetting. Specifically, ASUKL attains FE of 77.84 on forget05 and 78.16 on forget10, compared
to 60.88 and 61.27 for IDKAP, a nearly 30% increase of FE (60.88 → 77.84 and 61.27 → 78.16).
These results highlight ASU’s ability to maintain strong utility while achieving state-of-the-art FE,
offering the most effective and stable trade-off among all methods.

4.1.2 CONTINUAL UNLEARNING SCENARIO

Setup. We study a continual unlearning setup where a base model is subjected to a sequence of un-
learning requests, each removing a disjoint subset of authors in the TOFU benchmark while preserv-
ing utility on the remaining retain data (Yuan et al., 2024). Unlike single-shot evaluations, this set-
ting mirrors rolling Right-to-be-Forgotten requests in practice and exposes cumulative degradation
effects as utility preservation becomes progressively harder with each step, due to a shrinking retain
pool and shifting distributional coverage. Concretely, we run sequences where each step removes
either forget01 (1%), forget05 (5%), or forget10 (10%) of the authors, For forget01
and forget05 we run 10 steps, resulting in cumulative removals of 10% and 50%, respectively.
For forget10 we run 9 steps, removing up to 90% of authors in total. After each step, we evaluate
using the same metrics as in the TOFU task (R, P, TR, CS, ES, TE), reporting the average of MU on
retain/general-knowledge sets and FE on the current forget set. For fair comparison, we chose GD
as the retain loss for all of the baselines.

Performance. Figure 3 reports the average scores of MU and EF in continual unlearning on TOFU,
where disjoint subsets of authors are removed across multiple steps. As expected, maintaining high
average performance becomes increasingly difficult as the retain pool shrinks and distributional
coverage narrows. GA collapses immediately across all three settings, yielding near-zero averages.
In the more challenging scenarios (i.e., continual forget05 and forget10), NPO (Zhang et al., 2024b)
and IDK (Maini et al., 2024) begin with moderately strong average scores, but significantly degrade
with successive unlearning steps, highlighting their instability in long-horizon unlearning. DPO
(Zhang et al., 2024b) and ME (Yuan et al., 2024) show more stable curves in continual unlearning
steps, but start with considerably lower averages than ASU. For example, on forget10, ME attains
scores of roughly 70 and DPO around 45, both substantially lower than ASU, which consistently
maintains an average close to 75.
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Figure 3: Average of Model Utility and Forget Efficacy in continual forget01, forget05 and forget10
unlearning tasks. We show the results for MU and FE in the Appendix Figure 5 and Figure 6.

Table 2: Results of real-world unlearning scenario. Higher is better for all metrics. Base repre-
sents the model before unlearning. Model Utility (MU) and Forget Efficacy (FE) are calculated on
the neighbor set and forget set, respectively. Please see the detailed results in the Appendix Table 6.

Method Unlearning Task Downstream Tasks
Model Utility Forget Efficacy ARC-c MMLU TruthfulQA GSM8K Avg.

Base 61.38 36.83 56.57 63.84 36.11 75.51 58.01

Divergence-based Unlearning
GAGD 21.76 65.73 51.37 58.80 39.29 27.14 44.15
GAKL 43.72 0.00 46.84 58.39 25.46 24.03 38.68

NPOGD 21.38 71.44 38.40 53.49 34.15 69.29 48.83
NPOKL 27.32 72.11 37.80 51.80 33.66 67.10 47.59

Convergence-based Unlearning
DPOGD 0.00 82.45 50.94 62.16 31.82 72.48 54.35
DPOKL 3.28 83.48 50.68 62.00 31.46 72.18 54.08
IDKGD 0.00 78.40 52.47 62.48 32.44 74.53 55.48
MEGD 47.96 48.10 52.99 62.48 31.21 69.52 54.05
IDKAP 52.76 78.04 53.41 62.04 27.05 73.24 53.94

ASUGD 54.10 76.97 49.32 63.42 28.27 63.91 51.23
ASUKL 55.76 79.60 51.19 62.90 33.90 68.84 54.21

Compared to all competing methods, ASU consistently achieves the best trade-off between forget
efficacy and utility preservation over long sequences of unlearning requests. Even under extreme
conditions where up to 90% of authors are unlearned (forget10), ASU exhibits a markedly slower
degradation, maintaining strong performance when other methods collapse. This robustness to con-
tinual unlearning pressure highlights ASU’s suitability for real-world applications such as continual
Right-to-be-Forgotten requests.

4.1.3 REAL-WORLD UNLEARNING SCENARIO

Setup. Following (Yuan et al., 2024), we evaluate unlearning when the target model’s training
data are unknown and the knowledge to be removed is intrinsically memorized. We construct a
real-world forget set by selecting a small cohort of real individuals with strong memorization in
the target model and collecting the model’s own answers to curated prompts. A disjoint cohort of
comparable individuals forms the neighbor/retain pool; a subset is used for regularization during
unlearning and the remainder for utility evaluation. To assess general utility preservation, we also
report performance on standard downstream benchmarks (e.g., MMLU, ARC-c, GSM8K, Truth-
fulQA). We use the same metrics as in the TOFU task (R, P, TR, CS, ES, TE) and report MU on
retain/general-knowledge evaluations and FE on the real-world forget set.

Performance. Table 2 reports results for the real-world unlearning scenario. Divergence-based
methods (e.g., GA, NPO) achieve competitive forget efficacy but suffer from severe utility collapse,
with most MU scores dropping to 21–28, far below the benchmark of 61.38. Convergence-based
approaches (i.e., DPO, IDK) push FE even higher (up to 83.48) but collapse MU to nearly zero. In
contrast, our ASUKL achieves the best overall trade-off, with MU = 55.76 and FE = 79.60, outper-
forming all baselines on both dimensions. ASUGD achieves similar results (FE = 76.97 and MU
= 54.10), underscoring the robustness of ASU across retain-loss variants. Moreover, both ASU
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Table 3: Performance of various unlearning methods on MUSE, considering two unlearning settings:
LLaMA2-7B on News and ICLM-7B on Books.

Method

News Books

Forget Efficacy Model Utility Forget Efficacy Model Utility

VerbMem KnowMem PrivLeak KnowMem VerbMem KnowMem PrivLeak KnowMem
Df (↓) Df (↓) (→ 0) Dr(↑) Df (↓) Df (↓) (→ 0) Dr(↑)

Base 57.9 64.4 -99.8 55.5 99.7 47.1 -57.3 69.1
Retrain 20.2 32.8 0.0 56.0 14.4 30.3 0.0 68.7

GAGD 3.6 1.9 9.4 0.7 0.0 0.0 -23.8 0.0
GAKL 6.8 1.0 43.9 0.0 0.0 0.0 -24.9 0.0

NPOGD 33.7 54.3 -86.0 50.5 53.2 36.6 -53.8 61.4
NPOKL 33.0 56.2 -85.7 49.3 54.4 36.7 -54.6 61.4

SimNPOGD 41.7 60.0 -99.9 42.8 25.8 36.7 -54.4 51.6
SimNPOKL 43.8 60.7 -99.8 52.0 13.1 46.9 -41.7 68.1

ASUGD 8.3 48.0 22.8 46.2 4.9 19.0 -52.3 58.9
ASUKL 8.8 46.8 59.6 52.2 5.3 28.6 -51.0 62.5

variants sustain accuracy on downstream benchmarks at levels comparable to or exceeding other
baselines, demonstrating that ASU effectively removes memorized real-world knowledge while pre-
serving general utility.

4.2 COPYRIGHT UNLEARNING SCENARIO

Setup. We use MUSE (Shi et al., 2024) to assess unlearning of copyrighted content. MUSE provides
two corpora (News, Books), each partitioned into three disjoint splits: forget, retain, and holdout
(non-members). Each corpus includes a Verbatim set (passages) and a Knowledge set (QA derived
from those passages). Following (Shi et al., 2024), the target model is fine-tuned on the union of
forget and retain, and the retrain baseline is fine-tuned on retain only.

Metrics. Following previous works (Shi et al., 2024), we evaluate using three standard unlearning
metrics: VerbMem (verbatim recall), KnowMem on both forget and retain splits (factual associa-
tion and utility), and PrivLeak (membership leakage). Full definitions and implementation details
are provided in Appendix C.2.

Performance on MUSE. Table 3 reports results on the MUSE benchmark under the News and
Books settings. On News, GA variants (i.e, GAGD, and GAKL) suffer from complete utility collapse,
with their KnownMem score on the retain set dropping close to zero. Therefore, their forgetting
efficacy is less meaningful to interpret. Considering the remaining baselines (NPO and SimNPO
variants), ASU variants provide the best overall trade-off between FE and MU. In particular, ASUGD
achieves the strongest FE performance, while ASUKL delivers comparable FE to ASUGD but clearly
surpasses all baselines and preserves the highest MU, attaining a KnowMem score of 52.2 on the
retain set.

On the Books setting, GA variants once again collapse in utility, with KnowMem Dr dropping to
zero. NPO and SimNPO variants achieve only partial forgetting, either leaving VerbMem high (e.g.,
NPOKL = 54.4) or retaining substantial KnowMem (e.g., SimNPOKL = 46.9), indicating incomplete
unlearning. In contrast, our ASU variants achieve a more favorable trade-off between FE and
MU. ASUGD provides the strongest forgetting across all metrics, while ASUKL provides the best
overall balance, delivering effective forgetting (VerbMem = 5.3, KnowMem = 28.6, PrivLeak =
-51.0) while maintaining the comparable utility (KnowMem = 62.5). These results demonstrate
that ASU generalizes effectively across different domains, preserving utility while ensuring stronger
forgetting than existing baselines.

5 ABLATION STUDIES

5.1 IMPACT OF SMOOTHING PARTIAL LAYERS ON FACTUAL VS. FUNCTION TOKENS

We previously showed in Section 3.1 that smoothing attention across all layers reduces the model’s
NLL in factual tokens. A plausible reason is that LLMs encode syntactic operations (function to-
kens) and factual knowledge in fundamentally different ways. Functional tokens support grammat-
ical structure and appear extremely frequently during pre-training, which makes their embeddings
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Figure 4: Effect of increasing attention temperature τ for consecutive shallow layers.

stable and resistant to perturbations in shallow-layer attention. In contrast, factual knowledge ap-
pears only in a small portion of the corpus and relies on precise lexical and semantic associations.
These associations are considerably more fragile: smoothing early-layer attention is sufficient to
disrupt the recall of factual tokens while leaving the syntactic scaffold largely unaffected.

To validate this explanation, we conducted an additional experiment where we smooth only the
shallow layers (e.g., layers 6–8). We focus on shallow layers because prior work shows that earlier
transformer layers play a more important role in factual associations in LLMs (Meng et al., 2022;
Guo et al., 2025). Under this setting, both entropy and NLL for factual tokens increase much more
sharply than for functional tokens, as shown in Figure 4. This result confirms that factual tokens
depend more heavily on precise attention patterns. Please refer to the Appendix I for a compre-
hensive set of ablations examining how smoothing different subsets of layers affects factual and
functional token behavior. When we use this shallow-smoothed model as the forget-teacher, we
obtain nearly the same forget efficacy and model utility on TOFU tasks (Table 4) as in our default
full-layer smoothing setting (Table 1).

Table 4: ASU results on TOFU with smoothing
applied only to layers 6, 7, 8.

Task Method MU FE Avg.

forget01 ASUGD 75.74 79.52 77.63
ASUKL 75.77 80.45 78.11

forget05 ASUGD 71.82 77.62 74.72
ASUKL 72.39 77.49 74.94

forget10 ASUGD 71.64 77.14 74.39
ASUKL 70.89 76.90 73.90

5.2 ASU COMBINE WITH REFUSAL-STYLE OUTPUT

Table 5: Performance of ASU combined with
IDKAP on TOFU.

Task Method MU FE Avg.

forget01 ASUGD 76.67 80.69 78.68
ASUKL 76.75 80.72 78.74

forget05 ASUGD 76.15 83.50 79.82
ASUKL 76.24 83.28 79.76

forget10 ASUGD 75.60 86.94 81.27
ASUKL 75.61 86.77 81.19

Since the refusal-style output can only be applied to QA datasets (e.g., TOFU) and can not be used
in non-QA datasets (e.g., MUSE and WMDP), we follow prior work (GA, NPO, ME) and do not
train ASU itself to refuse. To further demonstrate the flexibility and effectiveness of our method, we
combine ASU with a refusal-based baseline, IDKAP, and train the model to generate refusal-style
outputs on the TOFU benchmark (using the same setup as Table 1). Table 5 shows that this combined
approach yields consistently higher MU and FE scores than the original baselines in Table 1. For
instance, on the most challenging task, forget10, both ASUGD and ASUKL achieve MU above 75
and FE above 80, whereas IDKAP alone reaches only MU 74.24 and FE 61.27. This indicates that
ASU effectively removes factual knowledge that IDKAP alone fails to erase, while preserving the
model’s ability to produce refusal-style responses on the forget set.

5.3 STABILITY OF ASU UNDER VARIOUS TEMPERATURE VALUES

To further assess the stability of ASU with respect to the attention temperature, we conduct ad-
ditional experiments on the TOFU forget05 task using a range of temperature values τ ∈
{2.0, 2.2, 2.4, 2.6, 2.8, 3.0} (our main results in Table 1 use τ = 2.3). The full results are reported in
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Table 9 in Appendix. As shown in Table 9, ASU remains stable across a broad interval: temperatures
between 2.0 and 2.8 yield highly consistent MU and FE for both ASUGD and ASUKL. These results
demonstrate that ASU is robust to the choice of temperature within a wide and practical range.

6 RELATED WORK

Machine Unlearning. Machine Unlearning (MU) seeks to remove the effect of specific data or
facts without full retraining, which is often prohibitively expensive (Cao & Yang, 2015; Bourtoule
et al., 2021; Ginart et al., 2019; Golatkar et al., 2020). Existing works provide approximate un-
learning methods (Warnecke et al., 2021; Izzo et al., 2021; Sekhari et al., 2021), influence-function
approaches (Koh & Liang, 2017), and second-order optimization (Jia et al., 2024). MU has been
studied across diverse domains such as image classification (Neel et al., 2021), text-to-image genera-
tion (Gandikota et al., 2023; Kumari et al., 2023), federated settings (Wang et al., 2022; Halimi et al.,
2022), and graph neural networks (Chen et al., 2022; Wu et al., 2023), and is especially relevant for
LLMs where retraining a model from scratch is infeasible.

LLM unlearning. Motivated by privacy regulations (Regulation, 2016; Pardau, 2018) such as the
“right to be forgotten” (Rosen, 2011; Dang, 2021), LLM unlearning has become an active research
area. The main approaches fine-tune the model in a forgotten set to obtain an unlearned version
including gradient-ascent based methods (Jang et al., 2022; Yao et al., 2024b; Tunstall et al., 2023;
Ishibashi & Shimodaira, 2023; Fan et al., 2024; Maini et al., 2024; Tamirisa et al., 2024; Zhou et al.,
2025), preference optimization methods (Zhang et al., 2024b; Mekala et al., 2024; Wang et al., 2024;
2025b), knowledge distillation (Dong et al., 2024; Lu et al., 2024; Yao et al., 2024a; Jia et al., 2024;
Tian et al., 2024; Gu et al., 2024; Eldan & Russinovich, 2023a), influence functions (Jia et al., 2023;
Grosse et al., 2023; Zhao et al., 2024; Liu et al., 2024b; Dang et al., 2025; Wang et al., 2025a;c;
Sakarvadia et al., 2025), activation steering (Li et al., 2024; Dang et al., 2025), localized edits (Guo
et al., 2025; Wuerkaixi et al., 2025; Fan et al., 2025; Wang et al., 2025d; Gao et al., 2025; Ding et al.,
2025). Other works focus on inference-time unlearning, including contrastive decoding (Huang
et al., 2024a; Ji et al., 2024), in-context unlearning (Pawelczyk et al., 2023; Muresanu et al., 2024),
guardrails (Thaker et al., 2024; Bhaila et al., 2024), task vector–based methods (Ilharco et al., 2022;
Liu et al., 2024c; Dou et al., 2024), and input pre-processing (Gao et al., 2024; Liu et al., 2024a).
However, most of these methods do not modify the LLM parameters, so the resulting system cannot
be released as an open model and may still raise security concerns in black-box settings (Shi et al.,
2023; Zade et al., 2025). In this work, we investigate the role of attention in unlearning from a new
perspective.

Adjusting Attention. Beyond unlearning, attention adjustments, through temperature scaling or
normalization, have been applied across diverse tasks, such as improving translation (Araabi et al.,
2024; Henry et al., 2020), accelerating sequence labeling (Dufter et al., 2020), smoothing teacher
signals for summarization distillation (Zhang et al., 2022), improving stability by avoiding entropy
collapse (Zhai et al., 2023), maintaining selective focus in long-context reasoning (Veličković et al.,
2024), tuning sparsity per query in LLMs (Zhang et al., 2024c), and aiding cross-domain few-shot
transfer in vision (Zou et al., 2024). Moreover, prior work shows that smoothing across attention
heads can impact safety (Zhou et al., 2024). To the best of our knowledge, its effect on unlearning
has not yet been explored.

7 CONCLUSION

We introduced ASU, a method that reframes unlearning as self-distillation from a forget-teacher
constructed by raising the softmax temperature in attention. By flattening attention and weakening
the lexical-level and semantic-level associations that drive factual recall, ASU effectively erases
memorized content while keeping responses on forget prompts coherent. Extensive experiments
across various scenarios show that ASU reaches strong forget efficacy with minimal utility loss, and
unlike prior divergence-based or convergence-based methods, it avoids gibberish outputs or under-
forgetting. These findings position ASU method as a simple, practical path for unlearning in LLMs
and for safer model release.
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8 ETHICS STATEMENT

This work investigates unlearning techniques for LLMs, with the goal of enabling models to for-
get specific undesirable or sensitive knowledge while retaining general utility. Our experiments are
conducted on publicly available datasets and do not involve private or personally identifiable infor-
mation. We recognize that unlearning methods may raise ethical concerns if misused, for example
by selectively erasing knowledge in ways that distort truth, suppress marginalized perspectives, or
enable malicious applications. To mitigate these risks, we focus on controlled benchmarks, trans-
parently report our methodology and limitations, and emphasize that unlearning should be applied
responsibly, in alignment with broader principles of trustworthy and safe AI.

9 REPRODUCIBILITY STATEMENT

We have taken several steps to facilitate the reproducibility of our results. All datasets used in our
experiments are publicly available. We provide detailed descriptions of baselines and evaluation pro-
tocols in the main text and appendix. Our code, including scripts to reproduce the experiments and
generate the reported figures and tables, are included as supplemental materials. And it will be made
publicly available upon publication. Models with checkpoints and random seeds are documented to
ensure consistency across runs.
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APPENDIX

A PROOF

A.1 NOTATIONS

Let V be a finite vocabulary, and let θ denote the parameters of a pretrained decoder-only language
model. For any input–output pair (x, y), where

x = (x1, . . . , xL) and y = (y1, . . . , yT ),

the model defines conditional probabilities

pθ(yt | x ◦ y<t), t = 1, . . . , T.

For any (x, y) ∈ DF (forget set), we partition the target positions into

F ⊆ {1, . . . , T} (factual positions), G = {1, . . . , T} \ F (function positions).

Factual positions correspond to the tokens that encode the unwanted information to be removed,
whereas function positions refer to tokens that serve primarily syntactic or structural roles within
the sequence.

A.2 SELF-ATTENTION AND TEMPERATURE

Consider a single Transformer layer with one attention head (layer and head indices are omitted for
clarity; the argument applies to each head independently). For a position t, let qt ∈ Rd denote the
query vector, and let ki, vi ∈ Rd be the key and value vectors for all positions i ≤ t.

The attention logits are

at,i :=
⟨qt, ki⟩√

d
, i = 1, . . . , t,

and the standard attention weights (with temperature set to 1) are

αt,i =
exp(at,i)∑t
j=1 exp(at,j)

.

The corresponding attention output is

zt =

t∑
i=1

αt,ivi.

We introduce a temperature parameter τ ≥ 1 and define the smoothed attention weights

αt,i(τ) =
exp(at,i/τ)∑t
j=1 exp(at,j/τ)

,

with attention output

zt(τ) =

t∑
i=1

αt,i(τ)vi.

When τ = 1, the model recovers the base attention: αt,i(1) = αt,i and zt(1) = zt. For τ > 1, the
distribution αt(τ) becomes strictly flatter than αt due to the scaling of all logit differences by 1/τ .

We define the attention-smoothed teacher model θτ as the model obtained by applying temperature τ
in all attention heads while keeping all other components (feed-forward layers, layer norms, and
output projection) unchanged.
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A.3 OUTPUT LAYER AND TOKEN PROBABILITIES

Let W ∈ R|V |×d and b ∈ R|V | denote the output projection matrix and bias. At position t, let ht be
the hidden representation produced by the Transformer (which incorporates the attention output zt
through the subsequent layers).

For each token w ∈ V , the model computes the logit

ℓt(w; θ) = ⟨Ww, ht⟩+ bw,

and the corresponding conditional probability

pθ(w | x ◦ y<t) =
exp(ℓt(w; θ))∑
u∈V exp(ℓt(u; θ))

.

For the attention-smoothed teacher model θτ , applying temperature τ only inside the attention mech-
anism yields modified hidden states ht(τ), which produce logits

ℓt(w; θτ )

and token probabilities
pθτ (w | x ◦ y<t).

A.4 NOTIONS OF “FORGETTING” AND “FLUENCY”

We define two properties of interest: the removal of specific factual content and the preservation of
normal language behavior.

A.4.1 FORGETTING

Fix a forget example (x, y) ∈ DF and a factual position t ∈ F . Let y⋆t denote the factual token to
be removed (for example, the correct entity name in TOFU).

We say that the smoothed model θτ forgets this fact at position t if

pθτ (y
⋆
t | x ◦ y<t) ≤ ϵF ,

for some small threshold ϵF > 0 (roughly the level of random guess accuracy among plausible
entities).

At the sequence level, forgetting holds on DF when the average

− log pθτ (y
⋆
t | x ◦ y<t)

over all (x, y) ∈ DF and all t ∈ F is at least a target value LF , meaning the model assigns low
probability to the factual tokens.

A.4.2 FLUENCY

For function positions t ∈ G, we require that the model continue to assign high probability to the
correct function tokens, which reflect grammar and structure.

We say that θτ preserves fluency on (x, y) if

− log pθτ (yt | x ◦ y<t) ≤ − log pθ(yt | x ◦ y<t) + δG, t ∈ G,

for a tolerance δG > 0.

At the sequence level, fluency is preserved if the average cross-entropy on function tokens increases
by at most δG.

A.5 ASSUMPTIONS

To show that attention smoothing can remove specific facts while keeping normal language behavior,
we introduce structural assumptions on how factual and function tokens depend on attention.
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A.5.1 ASSUMPTION A1 (FACTUAL TOKENS REQUIRE PRECISE ATTENTION)

For every factual position t ∈ F , there exists a small index set St ⊆ {1, . . . , t} such that the base
attention places most of its mass on St:∑

i∈St

αt,i ≥ γ for some γ ∈ (0, 1).

The value vectors at positions in St contain the main signal that raises the logit of the factual token
y⋆t , while positions outside St contribute little to that fact.

Define

zt =

t∑
i=1

αt,ivi, zt(S) :=
1

|St|
∑
i∈St

vi, zt(S̄) :=
1

t− |St|
∑
i/∈St

vi.

We assume that

⟨Wy⋆
t
−Wu, zt(S)− zt(S̄)⟩ ≥ mF > 0 for all tokens u ̸= y⋆t ,

meaning that putting more weight on St instead of the remaining positions increases the logit of y⋆t
by at least a margin mF .

A.5.2 ASSUMPTION A2 (FUNCTION TOKENS ARE LESS ATTENTION-SENSITIVE)

For each function position t ∈ G, we assume that the correct token yt depends on a broad mixture
of value vectors rather than on a small set of positions. In other words, predicting yt does not rely
on a sharp attention pattern.

Formally, let ℓt(yt; θ; z) denote the logit of yt when the attention output at position t is z. Assume
the logit is smooth with respect to z and satisfies an L-Lipschitz bound:

|ℓt(yt; θ; z)− ℓt(yt; θ; z
′)| ≤ L ∥z − z′∥2 for all z, z′.

We also assume that the convex combinations of {vi}i≤t do not have strong changes in the direction
of Wyt

. Thus, shifting the attention weights from a sharper pattern toward a smoother one (such as
closer to uniform) causes only a small change in ℓt(yt).

A.5.3 ASSUMPTION A3 (NON-DEGENERATE LOGITS FOR FACTUAL TOKENS)

For each factual position t ∈ F , the base model assigns a clear margin to the correct factual token
y⋆t . Formally,

ℓt(y
⋆
t ; θ)− max

u̸=y⋆
t

ℓt(u; θ) ≥ ∆F > 0.

This ensures that factual recall in the base model is supported by a positive logit gap.

A.5.4 ASSUMPTION A4 (CONTINUITY IN τ )

For every position t, the attention-smoothed hidden state ht(τ) and the logits ℓt(w; θτ ) vary contin-
uously with respect to the temperature parameter τ .

This holds for standard Transformer layers, since attention, linear transformations, and activation
functions are continuous.

A.6 LEMMAS

A.6.1 LEMMA 1 (DIRECTION OF ATTENTION CHANGES UNDER TEMPERATURE)

Fix a position t and attention logits at,1, . . . , at,t ∈ R. For τ > 0, define the temperature-scaled
attention weights

αt,i(τ) =
exp(at,i/τ)∑t
j=1 exp(at,j/τ)

, i = 1, . . . , t.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Let

āt(τ) :=

t∑
j=1

αt,j(τ) at,j

denote the average logit at position t under the attention distribution αt(τ).

Then, for every i ∈ {1, . . . , t},

∂

∂τ
αt,i(τ) =

1

τ2
αt,i(τ)

(
āt(τ)− at,i

)
.

In particular:

• If at,i > āt(τ), then ∂
∂τ αt,i(τ) < 0, so the attention on index i decreases as τ increases.

• If at,i < āt(τ), then ∂
∂τ αt,i(τ) > 0, so the attention on index i increases as τ increases.

• If at,i = āt(τ), then ∂
∂τ αt,i(τ) = 0.

Proof.

For a fixed t, write ai := at,i and αi(τ) := αt,i(τ) for i = 1, . . . , t to lighten notation. By definition,

αi(τ) =
exp(ai/τ)

Z(τ)
, Z(τ) :=

t∑
j=1

exp(aj/τ).

We first differentiate the log-attention with respect to τ :

logαi(τ) =
ai
τ

− logZ(τ).

Taking derivatives gives
∂

∂τ
logαi(τ) = − ai

τ2
− 1

Z(τ)

∂Z(τ)

∂τ
.

Next we compute ∂Z(τ)
∂τ . By the chain rule,

∂Z(τ)

∂τ
=

t∑
j=1

∂

∂τ
exp(aj/τ) =

t∑
j=1

exp(aj/τ)
(
−aj
τ2

)
= − 1

τ2

t∑
j=1

aj exp(aj/τ).

Thus
1

Z(τ)

∂Z(τ)

∂τ
= − 1

τ2

∑t
j=1 aj exp(aj/τ)∑t
k=1 exp(ak/τ)

= − 1

τ2

t∑
j=1

αj(τ) aj = − 1

τ2
ā(τ),

where

ā(τ) :=

t∑
j=1

αj(τ) aj

is the average logit under the current attention distribution.

Plugging this back into the derivative of logαi(τ), we get

∂

∂τ
logαi(τ) = − ai

τ2
+

1

τ2
ā(τ) =

1

τ2
(
ā(τ)− ai

)
.

Finally, we move from the derivative of the log-attention to the derivative of the attention itself.
Since

∂

∂τ
αi(τ) = αi(τ)

∂

∂τ
logαi(τ),

we obtain
∂

∂τ
αi(τ) = αi(τ)

1

τ2
(
ā(τ)− ai

)
=

1

τ2
αi(τ)

(
ā(τ)− ai

)
,

which is the claimed formula.

The sign statements follow directly:
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• If ai > ā(τ), then ā(τ)− ai < 0, so ∂
∂τ αi(τ) < 0 and the attention on i decreases with τ .

• If ai < ā(τ), then ā(τ)− ai > 0, so ∂
∂τ αi(τ) > 0 and the attention on i increases with τ .

• If ai = ā(τ), then ∂
∂τ αi(τ) = 0.

This shows that increasing the temperature shifts mass from positions with above-average logits
to positions with below-average logits, which matches the intuitive picture of attention becoming
flatter. □

A.6.2 LEMMA 2 (ATTENTION ENTROPY INCREASES BY INCREASING TEMPERATURE)

Fix a position t and attention logits at,1, . . . , at,t ∈ R. For τ > 0, define

αt,i(τ) =
exp(at,i/τ)∑t
j=1 exp(at,j/τ)

, i = 1, . . . , t,

and the entropy

Ht(τ) := −
t∑

i=1

αt,i(τ) logαt,i(τ).

Let

āt(τ) :=

t∑
j=1

αt,j(τ) at,j

be the average logit at position t under αt(τ). Then

∂

∂τ
Ht(τ) =

1

τ3
Varαt(τ)

(
at,1, . . . , at,t

)
≥ 0,

with strict inequality whenever the logits at,1, . . . , at,t are not all equal.

Proof.

Fix t and write ai := at,i and αi(τ) := αt,i(τ) for i = 1, . . . , t to lighten notation. Let

Z(τ) :=

t∑
j=1

exp(aj/τ), ā(τ) :=

t∑
j=1

αj(τ) aj .

By definition,

αi(τ) =
exp(ai/τ)

Z(τ)
, logαi(τ) =

ai
τ

− logZ(τ).

Thus the entropy can be written as

H(τ) := −
t∑

i=1

αi(τ) logαi(τ) = −
t∑

i=1

αi(τ)
(ai
τ

− logZ(τ)
)
.

Using
∑

i αi(τ) = 1, this simplifies to

H(τ) = −1

τ

t∑
i=1

αi(τ)ai + logZ(τ) = −1

τ
ā(τ) + logZ(τ).

Differentiate H(τ) with respect to τ :

∂H

∂τ
=

1

τ2
ā(τ)− 1

τ

∂ā(τ)

∂τ
+

1

Z(τ)

∂Z(τ)

∂τ
.

We compute ∂Z(τ)
∂τ :

∂Z(τ)

∂τ
=

t∑
j=1

∂

∂τ
exp(aj/τ) =

t∑
j=1

exp(aj/τ)
(
−aj
τ2

)
= − 1

τ2

t∑
j=1

aj exp(aj/τ).
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Hence

1

Z(τ)

∂Z(τ)

∂τ
= − 1

τ2

∑t
j=1 aj exp(aj/τ)∑t
k=1 exp(ak/τ)

= − 1

τ2

t∑
j=1

αj(τ) aj = − 1

τ2
ā(τ).

Plugging this into the expression for ∂H/∂τ gives

∂H

∂τ
=

1

τ2
ā(τ)− 1

τ

∂ā(τ)

∂τ
− 1

τ2
ā(τ) = −1

τ

∂ā(τ)

∂τ
.

We now compute ∂ā(τ)
∂τ . By definition,

ā(τ) =

t∑
i=1

αi(τ) ai, so
∂ā(τ)

∂τ
=

t∑
i=1

ai
∂αi(τ)

∂τ
.

From Lemma 1 we have, for each i,

∂αi(τ)

∂τ
=

1

τ2
αi(τ)

(
ā(τ)− ai

)
.

Therefore,

∂ā(τ)

∂τ
=

1

τ2

t∑
i=1

ai αi(τ)
(
ā(τ)− ai

)
=

1

τ2

(
ā(τ)

t∑
i=1

αi(τ)ai −
t∑

i=1

αi(τ)a
2
i

)
.

Since
∑

i αi(τ)ai = ā(τ), this becomes

∂ā(τ)

∂τ
=

1

τ2

(
ā(τ)2 −

t∑
i=1

αi(τ)a
2
i

)
= − 1

τ2

( t∑
i=1

αi(τ)a
2
i − ā(τ)2

)
.

The term in parentheses is the variance of the logits under α(τ):

Varα(τ)(a) :=

t∑
i=1

αi(τ)a
2
i − ā(τ)2.

Hence
∂ā(τ)

∂τ
= − 1

τ2
Varα(τ)(a).

Substituting into ∂H/∂τ yields

∂H

∂τ
= −1

τ

(
− 1

τ2
Varα(τ)(a)

)
=

1

τ3
Varα(τ)(a).

Since variance is always non-negative and equals zero only when all logits a1, . . . , at are equal, we
obtain

∂H

∂τ
≥ 0,

with strict inequality whenever a1, . . . , at are not all equal. This proves that the attention entropy
increases with temperature unless the attention is already uniform. □

A.6.3 LEMMA 3 (EFFECT ON FACTUAL-TOKEN LOGITS)

Fix a factual position t ∈ F . Under Assumptions A1 and A3, the logit margin of the factual token
decreases as τ increases above 1, and becomes negative for sufficiently large τ . More precisely,
there exists τF ≥ 1 such that for all τ ≥ τF ,

ℓt(y
⋆
t ; θτ )− max

u̸=y⋆
t

ℓt(u; θτ ) ≤ −mF

2
< 0.

Proof.
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By A1, most of the base attention mass at position t lies on the set St, whose value vectors strengthen
the logit of y⋆t . The base attention output can be written as

zt =

t∑
i=1

αt,ivi =
∑
i∈St

αt,ivi +
∑
i/∈St

αt,ivi.

For large τ , Lemma 2 implies that αt,i(τ) approaches the uniform distribution as τ → ∞. Hence

zt(τ) =

t∑
i=1

αt,i(τ)vi −−−−→
τ→∞

1

t

t∑
i=1

vi = λSzt(St) + λS̄t
zt(S̄t),

for weights λS , λS̄ determined by |St| and t. Define the change

∆zt(τ) := zt(τ)− zt.

By Lemma 1, as τ increases, ∆zt(τ) moves the attention output away from the sharp pattern that
favors St, and toward the S̄t with attention weights lower than entropy.

Let u ̸= y⋆t be any competing token. The logit difference at temperature τ is

ℓt(y
⋆
t ; θτ )− ℓt(u; θτ ) = ⟨Wy⋆

t
−Wu, zt(τ)⟩+ (by⋆

t
− bu).

Subtracting the difference at τ = 1 gives

∆τ = ⟨Wy⋆
t
−Wu, zt(τ)− zt⟩.

By A1, putting more weight on St increases the factual margin, so moving away from St (as smooth-
ing does) decreases it. Thus, for large enough τ , the inner product above is negative and can be
bounded above by a negative constant once αt(τ) is close to uniform.

By A3, at τ = 1 the factual margin is positive:

ℓt(y
⋆
t ; θ)− ℓt(u; θ) ≥ ∆F > 0.

By continuity in τ (A4), the margin decreases continuously as the attention pattern is smoothed.
Since the margin becomes negative for large τ , the intermediate value theorem guarantees a point
τF where it crosses zero. For any τ ≥ τF , the margin is strictly negative, and by adjusting the
threshold we may ensure the bound −mF /2.

This implies that for τ ≥ τF ,

pθτ (y
⋆
t | x ◦ y<t) ≤

1

1 + exp(mF /2)
=: ϵF <

1

2
,

so the factual token is no longer the most likely output. □

A.6.4 LEMMA 4 (EFFECT ON FUNCTION-TOKEN LOGITS IS SMALL)

Fix a function position t ∈ G. Under Assumptions A2 and A4, for any η > 0 there exists τ̄G ≥ 1
such that for all τ ∈ [1, τ̄G], ∣∣ℓt(yt; θτ )− ℓt(yt; θ)

∣∣ ≤ η.

Proof.

For any compact interval [1, τ̄G], the attention weights αt(τ) vary continuously in τ and stay inside
the simplex. Therefore zt(τ) is a continuous function of τ .

By A2, the logit of the correct function token is L-Lipschitz in the attention output:∣∣ℓt(yt; θτ )− ℓt(yt; θ)
∣∣ ≤ L ∥zt(τ)− zt∥2.

Since zt(τ) → zt as τ → 1 (by A4 and continuity of the attention map), for any η > 0 we can
choose τ̄G > 1 so that

∥zt(τ)− zt∥2 ≤ η/L for all τ ∈ [1, τ̄G].

Substituting into the Lipschitz bound yields∣∣ℓt(yt; θτ )− ℓt(yt; θ)
∣∣ ≤ η,

which proves the claim. □
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A.6.5 LEMMA 5 (SMALL LOGIT CHANGE IMPLIES SMALL CROSS-ENTROPY CHANGE)

Let p and q be two distributions over V whose logits differ at the true token by at most η. Then the
increase in negative log-likelihood at that token is at most a function c(η) with c(η) → 0 as η → 0.

Formally, let ℓθ and ℓθτ be two logit vectors. If for some token w,∣∣ℓθτ (w)− ℓθ(w)
∣∣ ≤ η,

and the remaining logit differences are uniformly bounded, then

− log pθτ (w) ≤ − log pθ(w) + c(η).

Proof sketch. The softmax map from logits to probabilities is smooth and Lipschitz on any compact
region of logit space, and the negative log-probability of a fixed token is smooth as well. Thus a
small change in the logits produces a small change in the negative log-likelihood. The function c(η)
follows from the Lipschitz constants of the softmax and the log operation. □

Combining Lemma 4 and Lemma 5, for any tolerance δG > 0 we may choose τ̄G > 1 so that for all
τ ∈ [1, τ̄G] and all function tokens t ∈ G,

− log pθτ (yt | x ◦ y<t) ≤ − log pθ(yt | x ◦ y<t) + δG.

A.7 MAIN THEOREM

Theorem: Attention smoothing yields forgetting with fluency.

Assume A1–A4 hold for all forget examples (x, y) ∈ DF and for their factual and function positions.
Then there exists a temperature interval [τ0, τ1] with

1 < τ0 ≤ τ1 < ∞

such that:

• Forgetting: For all τ ∈ [τ0, τ1], the smoothed model θτ forgets the factual tokens in DF .
In particular, for every factual position t ∈ F ,

pθτ (y
⋆
t | x ◦ y<t) ≤ ϵF ,

and the average factual negative log-likelihood is at least LF > 0.
• Fluency: For all τ ∈ [τ0, τ1], the increase in average loss on function tokens (over both
DF and DR) is at most δG:

1

|G|
∑
t∈G

− log pθτ (yt | x ◦ y<t) ≤
1

|G|
∑
t∈G

− log pθ(yt | x ◦ y<t) + δG.

Thus there is a non-trivial range of temperatures where factual knowledge is forgotten while fluent
language behavior is preserved.

Proof.

Step 1: Forgetting at sufficiently large τ . For each factual position t ∈ F , Lemma 3 provides a
temperature τF (t) such that for all τ ≥ τF (t),

ℓt(y
⋆
t ; θτ )− max

u̸=y⋆
t

ℓt(u; θτ ) ≤ −mF

2
.

Hence
pθτ (y

⋆
t | x ◦ y<t) ≤ ϵF ,

for ϵF < 1/2 depending only on mF .

Define
τF := max

(x,y)∈DF

max
t∈F

τF (t).

For all τ ≥ τF , the forgetting inequality holds for every factual position in every forget example,
and the average factual loss is at least LF = − log ϵF .
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Step 2: Fluency at sufficiently small τ . For each function position t ∈ G, Lemma 4 states that for
any η > 0 there exists τ̄G(t) > 1 such that for all τ ∈ [1, τ̄G(t)],∣∣ℓt(yt; θτ )− ℓt(yt; θ)

∣∣ ≤ η.

Lemma 5 then ensures that the extra loss on each function token is at most c(η), where c(η) → 0 as
η → 0.

Choose η so that c(η) ≤ δG, and define

τ̄G := min
(x,y)

min
t∈G

τ̄G(t).

For all τ ∈ [1, τ̄G],

− log pθτ (yt | x ◦ y<t) ≤ − log pθ(yt | x ◦ y<t) + δG,

and averaging this over all function tokens gives the bound in the theorem.

Step 3: Establishing a common temperature range. We have:

• Forgetting holds for all τ ≥ τF .
• Fluency holds for all τ ∈ [1, τ̄G].

Both hold simultaneously for all
τ ∈ [τF , τ̄G],

which is non-empty whenever τF ≤ τ̄G.

This condition reflects the structure in A1–A3: factual tokens depend on precise attention patterns
that collapse quickly when smoothed, while function tokens depend on broader patterns that remain
stable under mild smoothing.

Choose any τ0, τ1 satisfying
1 < τF ≤ τ0 ≤ τ1 ≤ τ̄G < ∞.

Then for all τ ∈ [τ0, τ1], both forgetting and fluency hold. □

B BASELINES

Notation. Let P (y | x; θ) denote the probability of an output sequence y = (y1, . . . , yT ) given
input x under a model parameterized by θ. This probability is defined as:

P (y | x; θ) =
T∏

t=1

p(yt | x ◦ y<t; θ)
1
T .

Forget Loss. Existing methods can be broadly categorized into Convergence-based Unlearning and
Divergence-based Unlearning. The baselines we use are:

• Gradient Ascent (GA) (Yao et al., 2023) maximizes the prediction loss on the forget set,
effectively reversing the training objective:

LGA(DF; θ) = −E(x,y)∼DF

[
1

T

T∑
t=1

− log p(yt | x ◦ y<t; θ)

]
. (6)

• Negative Preference Optimization (NPO) (Zhang et al., 2024b) is derived from Direct
Preference Optimization (DPO) (Rafailov et al., 2023). It treats forget-set answers as neg-
ative samples while omitting positive terms:

LNPO(DF; θ) = − 2

β
E(x,y)∼DF

[
log σ

(
−β log

P (y | x; θ)
P (y | x; θBase)

)]
, (7)

where σ(t) = 1/(1 + e−t), β is a hyperparameter, and θref is the fixed reference model.
NPO can be viewed as GA with adaptive gradient scaling (Zhang et al., 2024b).
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• Maximizing Entropy (ME) (Yuan et al., 2024) minimize the KL divergence between the
predicted distribution for each token and a uniform distribution with vocabulary size.

LME(DF; θ) = E(x,y)∼DF

[
1

T

T∑
t=1

KL
(
U[K]||p(· | x ◦ y<t; θ)

)]
, (8)

where U[K] is a uniform distribution over the vocabulary of size K, where each value is
1/K.

• IDK Fine-tune (IDK) (Maini et al., 2024) reframes unlearning as instruction tuning by
relabeling forget-set questions with random responses from DIDK, a pool of rejection tem-
plates (e.g., “Sorry, I don’t know.”). Its loss is

LIDK(DF,DIDK; θ) = Ex∼DF,y∼DIDK [− logP (y | x; θ)] . (9)

• Direct Preference Optimization (DPO) (Zhang et al., 2024b) applies the standard DPO
loss (Rafailov et al., 2023), using forget-set answers as negatives and rejection templates
from DIDK as positives.

LDPO(DF,DIDK; θ; θref) = − 1

β
E(x,y)∼DF,y′∼DIDK[

log σ

(
β log

P (y′ | x; θ)
P (y′ | x; θbase)

− β log
P (y | x; θ)

P (y | x; θbase)

)]
,

(10)

where θbase denotes the parameter of the reference model, which is the initial base model
for unlearning.

• SimNPO (Fan et al., 2024). It derives from NPO, whose reward function is given by
the comparison with the reference model. In contrast, SimNPO takes a reference-free but
length-normalized reward formulation, so they can mitigate the reference model bias in
NPO by replacing its reward formulation, as follows:

LSimNPO(DF; θ) = − 2

β
E(x,y)∼DF

[
log σ

(
− β

|y|
logP (y | x; θ)− γ

)]
, (11)

where γ ≥ 0 is the reward margin parameter, inherited from SimPO, which defines the
margin of preference for a desired response over a dispreferred one.

• Representation Misdirection (RMU) (Li et al., 2024) misdirects internal representations
on the forget set by pushing layer-ℓ activations toward a fixed random direction with am-
plified norm, corrupting downstream processing. It’s forget loss is

LRMU = Ex∼DF

[
1

T

T∑
t=1

∥∥Hℓ(x<t; θ)− c · u
∥∥2
2

]
, (12)

where Hℓ(x<t; θ) denotes the hidden state at layer ℓ of the model parameterized by θ,
given the prefix x<t, u is a random unit vector, c > 0 is a scaling constant, and T is the
sequence length of x.

IDK and DPO are only applicable in QA-style datasets, since they require rejection templates as
positive samples.

Retain Loss. In addition to the GD and KL regularization losses introduced in Section 2.3, we
further include the Answer Preservation (AP) and Mean Squared Error (MSE) loss as an additional
baseline component.

• Answer Preservation (AP). To prevent unlearned models from becoming overly ignorant
during targeted unlearning, (Yuan et al., 2024) proposed the Answer Preservation (AP) loss
as a regularization term. Unlike standard GD or KL regularization, AP explicitly balances
two objectives on the retain set: (1) reducing the probability of rejection templates, and (2)
maintaining the probability of the original answers. Formally, the AP loss is defined as:

LAP(DR,DIDK; θ) = − 1

β
E(x,y)∼DR,y′∼DIDK

[
log σ(

P (y′ | x; θ)
P (y | x; θ)

)

]
, (13)

where σ(·)is the sigmoid function and β is a temperature parameter.
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• Mean Squared Error (MSE) (Li et al., 2024). The motivation of this loss is to limit the
degradation of general capabilities by explicitly constraining the updated model’s internal
representations to remain close to those of the base model. Concretely, given the retain
dataset DR, we impose an ℓ2 penalty between the hidden activations of the updated model
and the base model:

LMSE(DR; θ) = Ex∼DR

[
1

T

T∑
t=1

∥∥Hℓ(x<t; θ)−Hℓ(x<t; θbase)
∥∥2
2

]
, (14)

where Hℓ(x<t; θ) denotes the hidden state at layer ℓ of the model parameterized by θ,
given the prefix x<t, and T is the number of tokens in x. This loss explicitly encourages
the updated model to preserve activation-level similarity with the reference model on the
retain set, thereby mitigating the risk of excessive utility loss during unlearning.

C EVALUATION METRICS

C.1 RIGHT TO BE FORGOTTEN

Notation. Let g(x; θ) denote the decoded output produced by a model parameterized by θ for input
x.

Metrics. We evaluate the Right-to-be-Forgotten scenario using the following metrics:

• ROUGE (R) We use ROUGE-L recall (Maini et al., 2024) to compare the model’s decoded
output g(x; θ) with the ground truth answer y. The score, denoted as ROUGE(g(x; θ), y),
captures the longest common subsequence overlap at the word level.

• Probability (P) We measure the model’s likelihood of producing the ground-truth answer
y (Maini et al., 2024). For a question–answer pair (x, y), we compute the normalized
conditional probability:

P (y | x; θ) =
T∏

t=1

p(yt | x ◦ y<t; θ)
1
T ,

where T is the answer length, yt is the t-th token, and y<t denotes the prefix up to position
t.

• Truth Ratio (TR) We assess whether the model assigns higher likelihood to correct an-
swers than to incorrect ones (Maini et al., 2024; Yuan et al., 2024). The metric TR com-
pares the average normalized conditional probability of perturbed answers ŷ, which are
plausible but incorrect variants of y, against that of a paraphrased answer ỹ, which is a
valid rephrasing of y. Formally,

TR(y | x; θ) =

1
|ŷ|
∑|ŷ|

i=1 P (ŷi | x; θ)
P (ỹ | x; θ)

.

A model lacking relevant knowledge should assign similar probabilities to correct and
incorrect answers. For evaluation, we report max(0, 1 − TR) on the retain set and
1−min(TR, 1/TR) on the forget set.

• Token Entropy (TE) We evaluate the lexical diversity of the model’s output (Yuan et al.,
2024). Some unlearned models often generate long, repetitive continuations (e.g., gibberish
output) that reduce readability. To quantify this effect, we compute a normalized token
entropy:

TE(g(x; θu)) =
−
∑m

i=1 f(wi) log2 f(wi)

log2 |g(x; θ)|
,

where |g(x; θ)| is the output length, m is the number of unique tokens, and f(wi) denotes
the frequency of token wi. Lower TE indicates excessive repetition and incoherent outputs,
while higher TE reflects more diverse and readable generations.
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• Cosine Similarity (CS) We measure the semantic similarity between the model’s output
before and after unlearning on the retain set (Yuan et al., 2024). In line with the semantic
textual similarity task (Cer et al., 2017), we use Sentence-BERT (Reimers & Gurevych,
2019) to embed the output produced by the base model and the output produced by the
unlearned model, and then compute their cosine similarity, truncated at zero:

max
(
Cos
(
g(x; θbase), g(x; θ)

)
, 0
)
.

This metric captures semantic drift: even if surface overlap (e.g., ROUGE) remains high,
cosine similarity decreases when the unlearned model appends irrelevant or fabricated con-
tent.

• Entailment Score (ES) We assess the factual consistency of model outputs with respect to
ground-truth answers using textual entailment (Natural Language Inference, NLI) (Yuan
et al., 2024). NLI evaluates whether a premise entails, contradicts, or is neutral with respect
to a hypothesis, and has been widely applied in NLP evaluation (Poliak, 2020). Formally,
a text t entails a hypothesis h (t ⇒ h) if a human reading t would reasonably infer h to be
true.
We use a pre-trained NLI model (Sileo, 2023) to predict the relationship between each
model output and its ground-truth answer (Liu et al., 2024b). The entailment score is
defined as the proportion of predictions labeled as “entailment”, which should be higher on
the retain set and lower on the forget set.

C.2 COPYRIGHT SCENARIO

We evaluate the copyright scenario (MUSE tasks) using the following metrics:

• Verbatim Memorization (VerbMem) We assess whether the model reproduces training
data verbatim (Shi et al., 2024). Given a forget-set sequence x ∈ DF, we provide the
model g with the first l tokens x[:l] and compare its continuation with the ground truth
suffix x[l+1:] using the ROUGE-L F1 score. The metric is averaged over all examples in
DF:

VerbMem(θ,DF) =
1

|DF|
∑
x∈DF

ROUGE(g(x≤l; θ), x>l).

A lower VerbMem indicates stronger protection against verbatim leakage.
• Knowledge Memorization (KnowMem) We measure whether the model retains factual

knowledge of the forget set (Shi et al., 2024). For each sample (x, y) ∈ DF, we query the
model with x and compare its answer g(x; θ) with the ground truth y using ROUGE. The
metric is averaged over all pairs:

KnowMem(θ,DF) =
1

|DF|
∑

(x,y)∈DF

ROUGE(g(x; θ), y) .

A lower KnowMem reflects more effective removal of copyrighted or sensitive knowledge.
• Privacy Leakage (PrivLeak) To evaluate privacy preservation, we follow (Shi et al.,

2024), and adopt the state-of-the-art Min-K% Prob method (Shi et al., 2023) and com-
pute the AUC-ROC score (Murakonda et al., 2021; Shokri et al., 2017) for discriminating
DF from a holdout set Dholdout. The privacy leakage is then defined relative to a retrained
model:

PrivLeak =
AUC(θ;DF,Dholdout) − AUC(θretrain;DF,Dholdout)

AUC(θretrain;DF,Dholdout)
.

A good unlearning algorithm yields PrivLeak close to zero, while large positive or negative
values indicate over- or under-unlearning.

D CONTINUAL UNLEARNING SCENARIO

Figures 5 and 6 report FE and MU for continual unlearning on TOFU. DPO attains higher FE than
ASU but drives MU to 0.0, indicating extreme ignorance. ME achieves MU comparable to ASU,
but ASU delivers higher FE, yielding a better average performance overall (as shown in Figure 3).
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Figure 5: Forget Efficacy in continual forget01, forget05 and forget10 unlearning tasks.
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Figure 6: Model Utility in continual forget01, forget05 and forget10 unlearning tasks.

E REAL-WORLD UNLEARNING SCENARIO

Table 6 presents the detailed results for each metric in the real-world unlearning scenario, corre-
sponding to the summary provided in Table 2.

Table 6: Detailed results of each metric in real-world unlearning scenario.

Method Neighbor Set Forget Set
R ↑ P ↑ TR ↑ TE ↑ CS ↑ ES ↑ MU ↑ R ↓ P ↓ TR ↓ TE ↑ ES ↓ FE ↑

Base 78.21 33.75 56.17 88.50 98.32 62.25 61.38 80.67 38.97 60.70 89.58 67.75 36.83

Divergence-based Unlearning
GAGD 63.53 5.01 78.18 83.08 70.38 46.75 21.76 0.00 0.00 48.81 37.68 0.00 65.73
GAKL 51.77 26.69 62.03 72.80 64.50 28.50 43.72 0.00 0.00 69.94 0.00 0.00 0.00

NPOGD 50.41 8.71 42.84 69.39 57.80 11.00 21.38 42.28 5.93 39.31 66.41 4.75 71.44
NPOKL 50.55 17.51 43.05 68.79 55.38 11.50 27.32 41.27 9.22 38.20 67.53 3.00 72.11

Convergence-based Unlearning
DPOGD 0.45 25.22 35.88 71.09 5.15 0.00 0.00 0.30 21.41 34.82 79.70 0.00 82.45
DPOKL 3.05 35.60 40.45 99.69 9.72 0.75 3.28 0.82 28.14 37.07 99.97 0.00 83.48
IDKGD 2.61 32.12 46.88 100.00 8.77 0.00 0.00 2.63 31.57 47.07 100.00 0.00 78.40
IDKAP 70.81 29.93 53.43 86.66 80.58 42.50 52.76 3.45 22.58 51.39 99.27 1.50 78.04
MEGD 70.25 21.21 58.12 90.66 82.57 42.75 47.96 2.43 0.19 22.65 16.46 0.25 48.10

ASUGD 69.10 37.30 46.55 85.08 80.36 41.75 54.10 33.30 13.37 31.25 73.84 3.25 76.97
ASUKL 69.96 42.97 44.29 88.91 82.56 41.50 55.76 30.32 19.74 31.05 91.38 5.25 79.60

F HAZARDOUS-KNOWLEDGE UNLEARNING SCENARIO

In addition to output-level alignment, we also match internal representations. We minimize the
mean squared error (MSE) between hidden states of the model parameterized by θ and those of the
attention-smoothed model θτ at a chosen layer. Concretely, we align θ with θbase on the retain set 14
and with θτ on the forget set 15, as follows:

LASU(ℓ)(DF ; θ; θτ ) = Ex∼DF

 1

|x|

|x|∑
t=1

∥∥Hℓ(x<t; θ)−Hℓ(x<t, θτ )
∥∥2
2

 , (15)

where Hℓ(x<t; θ) denotes the hidden state at layer ℓ of the model parameterized by θ, given the
prefix x<t.
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Setup. We assess hazardous-knowledge removal using WMDP (Li et al., 2024). The forget set
Df comprises WMDP-Biology and WMDP-Cyber corpora, and the retain set Dr is Wikitext (Mer-
ity et al., 2017). Unlearned models are evaluated on the WMDP multiple-choice QA benchmark
(zero-shot; select the option with highest conditional probability) to measure residual hazardous
knowledge, and on MMLU (Hendrycks et al.) to measure general utility. We choose layer ℓ(7) as
the unlearning layer, and we only update the MLP layers of three layers ℓ, ℓ−1, ℓ−2 (7,6,5), which
can be leveraged to save memory and efficiently unlearn on larger LMs (Li et al., 2024).

Table 7: Comparing base models and unlearning
methods on question-answer evaluation (WMDP,
MMLU). All WMDP and MMLU scores are per-
centage points.

Model Method WMDP (↓) MMLU (↑)Bio Cyber

Zephyr-7B-β

Base 64.3 44.8 58.5

LLMU 59.5 39.5 44.7
SCRUB 43.8 39.3 51.2

SSD 50.2 35.0 40.7
RMU 31.2 28.2 57.0
ASU 32.1 31.7 57.5

Mistral-7B
Base 65.1 41.5 59.0

RMU 30.7 32.3 57.7
ASU 31.5 29.5 57.2

Models. We evaluate hazardous-knowledge
removal on the following LLMs: Zephyr-7B-β
(Tunstall et al., 2023), Mistral-7B-Instruct-v0.2
(Jiang et al., 2023).

Baselines. We compare against RMU (Li
et al., 2024), SCRUB (Kurmanji et al., 2023),
SSD (Foster et al., 2024), and LLMU (Yao
et al., 2024b). Baseline runs are conducted
on Zephyr-7B; in preliminary screening on this
backbone, all baselines except RMU signifi-
cantly affect Model Utility while not achieving
good forget efficacy, so we do not extend them
to the other models.

Performance on WMDP. Table 7 compares
our method with the baselines on WMDP (Bio,
Cyber). On Zephyr-7B, ASU achieves higher utility (MMLU accuracy) while delivering comparable
forgetting performance on Bio and Cyber. Mistral-7B, ASU matches RMU on Bio and MMLU,
while achieving slightly stronger forgetting on Cyber. These results suggest that ASU can also
extend to settings requiring the removal of entire distributions, such as hazardous knowledge.

G FORGET-TEACHER TEMPERATURE SELECTION

We select the attention temperature τ via binary search, using negative log-likelihood (NLL) as the
objective. As shown in Figure 2, NLL increases monotonically with τ within the examined range.

Step 1: Define bounds. For the upper bound, we start from τ = 1 and repeatedly double τ until the
model begins to produce gibberish (fluency checked manually or with an automatic score). The first
such value is taken as τhigh. In practice, τ > 4 almost always yields gibberish, we cap τhigh = 4. We
set the lower bound as τlow = 1.0.

Step 2: Binary search for a valid range. Within [τlow, τhigh], we apply binary search guided by
negative log-likelihood (NLL). We identify the largest interval [τlow, τhigh] where the forget-teacher
breaks lexical and semantic associations in the forget set, yet still maintains coherent outputs. For
example, we often find the valid range to be between 2.0 and 3.0.

Step 3: Greedy search per scenarios. Once the valid range is established, we perform a greedy
search within it to select the best τ for each scenario.

Remarkably, all TOFU tasks consistently yield τ = 2.3, and other tasks converge to nearby values.
This consistency demonstrates the robustness of our method across different unlearning scenarios.
More details of τ and hyperparameters across all scenarios are shown in Table 8.

H HYPER-PARAMETERS

We provide hyperparameters used across all scenarios in Table 8.

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Table 8: Optimal τ and λ values across all scenarios.

Tasks Model ASUGD ASUKL
τ λ τ λ

TOFUforget01
LLaMa-2 7B

2.3 0.1 2.3 0.1
TOFUforget05 2.3 0.1 2.3 0.1
TOFUforget10 2.3 0.1 2.3 0.1

Continualforget01
LLaMa-2 7B

2.3 0.1 2.3 0.1
Continualforget05 2.3 0.1 2.3 0.1
Continualforget10 2.3 0.1 2.3 0.1

Real-world LLaMa-3 8B 2.7 0.05 2.5 0.05

MUSENews LLaMa-2 7B 2.0 0.4 2.4 0.3
MUSEBooks ICLM-7B 2.3 0.001 2.4 0.001

I ABLATION ON LAYERS

In Figure 7, we smooth attention over different sets of consecutive layers. Smoothing n consecutive
layers at layer ℓ means modifying layers ℓ, ℓ − 1, . . . , ℓ − n + 1. When n > ℓ, we smooth layers
ℓ, ℓ− 1, . . . , 1. The value 0 on the x-axis indicates that no attention layer is smoothed. All plots are
generated with temperature τ = 3.0.

From Figure 7, the upper-left panel (smoothing a single layer) shows a clear rise in NLL when
smoothing layers 3 through 8. This pattern remains visible across the other panels: as we increase
the number of layers being smoothed, the overall NLL grows, but the main rise still occurs in layers
3–8. Across all settings, the NLL for factual tokens is consistently much higher than that for function
tokens, regardless of which layers are smoothed, which supports our finding that factual positions
are far more sensitive to attention smoothing.

This demonstrates that smoothing only a small block of early layers is enough to forget the factual
tokens. This observation matches earlier findings such as Meng et al. (2022); Guo et al. (2025),
which show that factual knowledge is largely stored in shallow transformer layers.
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Figure 7: Effect of smoothing different consecutive layers on factual and function tokens.

J STABILITY OF ASU

Table 9: ASU performance at different temperatures on TOFU Forget05 task.

Method forget05

MU FE Avg.

ASUGD(τ = 2.0) 74.21 75.72 74.97
ASUGD(τ = 2.2) 72.47 78.04 75.26
ASUGD(τ = 2.4) 72.06 79.35 75.70
ASUGD(τ = 2.6) 71.31 80.98 76.15
ASUGD(τ = 2.8) 71.38 81.55 76.46
ASUGD(τ = 3.0) 71.17 75.00 73.09
ASUKL(τ = 2.0) 73.88 75.91 74.89
ASUKL(τ = 2.2) 72.91 78.04 75.48
ASUKL(τ = 2.4) 72.34 79.83 76.08
ASUKL(τ = 2.6) 71.68 81.05 76.37
ASUKL(τ = 2.8) 71.31 81.37 76.34
ASUKL(τ = 3.0) 71.20 75.71 73.45
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K IMPLEMENTATION DETAILS

K.1 TOFU

We use the Llama-2-Chat-7B model fine-tuned by (Maini et al., 2024) as our target model. All
experiments are carried out on two NVIDIA H100 GPUs with 80GB memory. We follow the public
TOFU repository and train with DeepSpeed ZeRO-3 to reduce memory usage. Our training setup
follows (Maini et al., 2024). We adopt the AdamW optimizer with a weight decay of 0.01, a learning
rate of 1 × 10−5, and an effective batch size of 32. Unlearning is performed for 5 epochs, where
the learning rate is linearly warmed up during the first epoch and then linearly decayed for the
remaining epochs. For evaluation, following (Maini et al., 2024), we randomly select up to 400 QA
pairs from the TOFU dataset to keep the process faster. Following previous works (Zhang et al.,
2024b; Yuan et al., 2024), for NPO and AP, we set β = 0.1, and for ME, we use λ = 0.1 in the
fictitious unlearning setup and λ = 1.0 in the continual unlearning setup. These choices follow the
best settings reported in the referenced papers.

K.2 REAL-WORLD DATASET

In line with (Liu et al., 2025b), we adopt Llama-3-8B-Instruct as our target model. We run down-
stream evaluations through the lm-evaluation-harness with its default configuration.

For ASU, we unlearn for 5 epochs, with a learning rate of 5× 10−6, and use λ = 0.05.

Following previous work (Yuan et al., 2024), we tune the baseline methods by searching over {3,
5} epochs and learning rates in {2 × 10−6, 5 × 10−6, 1 × 10−5}, using the best hyperparameters
reported in the literature. For ME, we set λ = 0.5, and for NPO and IDKAP, we set β = 0.1.

To ensure that forgetting is measured in a way that holds across different prompts, and we compute
unlearning metrics using golden answers rather than the original generated outputs of the model
before unlearning.

All other training and evaluation settings are kept the same as in the TOFU experiments.

K.3 MUSE DATASET

For the MUSE experiments, Following (Shi et al., 2024; Dorna et al., 2025) and perform unlearning
with a constant learning rate of 1 × 10−5 and an effective batch size of 32 for 10 epochs. All other
training settings remain the same as in the TOFU experiments.

L ADDITIONAL EXPERIMENTS ON TOFU

Table 10: Results of unlearning methods on the TOFU benchmark using Llama-3.1-8B. Higher is
better for all metrics. We report Model Utility (MU), Forget Efficacy (FE), and their Average (Avg.)
across the three TOFU tasks. Best scores are in bold. All results are reported in percentages.

Method forget01 forget05 forget10

MU FE Avg. MU FE Avg. MU FE Avg.

Divergence-based
GAKL 36.25 74.98 55.62 36.34 0.00 18.17 54.43 1.87 28.15

NPOKL 68.20 58.89 63.55 59.99 60.78 60.38 65.50 57.48 61.49

Convergence-based
DPOKL 78.45 44.22 61.33 1.74 68.51 35.12 19.50 63.58 41.54
IDKAP 77.68 47.28 62.48 72.74 60.93 66.83 72.70 65.79 69.24
IDKKL 73.67 52.95 63.31 0.00 64.68 32.34 21.72 55.77 38.75
MEKL 78.88 73.09 75.99 75.14 70.15 72.65 74.44 43.03 58.73

ASUKL 78.36 77.69 78.02 71.67 74.07 72.87 71.81 77.00 74.40
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M FICTITIOUS UNLEARNING SCENARIO

Tables 11 and 12 report detailed per-metric results on the TOFU benchmark across all baselines.

Table 11: Detailed results for each metric on the retain set and the forget set for three tasks in the
TOFU benchmark, corresponding to the summary provided in Table 1.

Retain Set Forget SetTask Method
R ↑ P ↑ TR ↑ TE ↑ CS ↑ ES ↑ R ↓ P ↓ TR ↓ TE ↑ ES ↓

GAGD 81.91 87.37 49.42 95.40 91.53 42.33 41.77 9.22 46.45 92.29 30.00
GAKL 84.78 88.74 49.50 95.59 92.87 50.33 45.72 9.74 44.70 91.95 30.00

NPOGD 86.99 83.80 49.56 94.75 92.21 34.00 45.18 10.30 36.48 92.04 30.00
NPOKL 86.56 84.20 49.59 94.72 92.25 33.67 45.14 10.43 36.20 92.34 32.50
DPOGD 88.72 96.58 45.63 97.34 95.76 94.67 36.26 83.96 40.58 97.79 12.50
DPOKL 88.92 96.58 45.61 97.34 95.83 94.33 37.89 84.00 40.58 97.47 12.50
IDKGD 47.14 93.72 45.55 98.73 55.31 52.00 0.86 71.61 39.72 99.76 0.00
IDKKL 48.16 93.71 45.52 98.72 56.22 53.00 0.95 71.45 39.81 99.76 0.00
IDKAP 87.43 96.99 45.92 97.37 94.97 92.00 1.01 72.30 40.01 99.37 0.00
MEGD 77.83 88.99 44.93 96.87 90.42 64.00 2.46 0.42 25.96 43.81 0.00
MEKL 85.87 91.39 44.91 97.07 94.21 73.33 2.54 0.29 18.21 31.18 0.00

ASUGD 80.91 83.84 42.39 96.96 93.36 70.33 13.14 2.75 16.63 73.01 0.00

forget01

ASUKL 80.93 84.13 42.50 96.97 93.62 73.33 14.61 2.89 16.70 71.46 2.50
GAGD 15.98 6.88 65.72 22.48 18.36 32.33 0.52 0.00 38.03 0.81 0.00
GAKL 11.04 3.65 59.70 15.68 18.63 22.00 1.55 0.00 40.81 1.14 0.50

NPOGD 54.04 45.04 46.07 85.68 74.55 27.33 35.78 11.19 33.65 69.82 16.50
NPOKL 53.84 44.88 45.75 84.85 74.22 31.67 35.74 11.45 33.48 68.24 14.00
DPOGD 0.55 60.22 37.61 99.99 5.56 0.00 0.11 48.61 34.37 99.00 0.00
DPOKL 0.55 60.05 37.63 99.99 5.57 0.00 0.11 48.45 34.36 99.00 0.00
IDKGD 1.25 74.04 40.35 94.88 5.49 0.33 1.42 59.61 37.00 95.48 0.00
IDKKL 0.94 74.06 40.48 94.80 5.14 0.00 1.44 59.57 37.07 95.50 0.00
IDKAP 75.58 90.77 44.28 96.72 89.42 64.00 3.02 70.78 42.32 98.40 1.00
MEGD 88.88 94.29 44.76 96.90 94.74 82.33 4.81 1.73 17.44 35.17 0.50
MEKL 91.30 94.89 44.60 96.97 95.93 87.33 4.05 1.66 19.33 35.78 0.50

ASUGD 69.87 84.38 40.72 96.51 88.19 58.67 38.25 14.63 21.56 87.41 8.00

forget05

ASUKL 69.43 83.86 40.89 96.67 88.53 62.33 36.76 14.86 21.49 87.82 6.50
GAGD 35.52 44.86 50.35 67.10 61.13 26.33 0.22 0.00 16.37 0.00 0.00
GAKL 36.14 51.84 50.29 48.95 44.98 36.67 0.10 0.00 22.72 2.47 0.00

NPOGD 44.74 33.31 34.92 74.05 62.96 60.67 27.35 11.94 27.27 54.37 10.67
NPOKL 43.92 33.50 35.05 71.35 61.78 63.00 24.73 12.20 27.72 46.57 9.67
DPOGD 0.88 61.52 37.50 99.99 9.38 0.00 0.47 54.39 34.70 100.00 0.00
DPOKL 0.94 61.33 37.52 99.98 9.54 0.33 0.50 54.16 34.67 100.00 0.00
IDKGD 14.05 83.39 42.66 97.48 22.63 13.67 1.10 73.60 40.69 98.21 0.00
IDKKL 22.17 83.74 42.78 97.54 32.04 21.33 1.09 73.38 40.47 98.24 0.00
IDKAP 72.16 89.27 46.10 96.88 88.84 60.33 4.14 69.49 44.43 97.76 1.67
MEGD 84.64 94.52 44.99 96.83 93.57 77.00 3.71 0.93 9.99 14.89 0.67
MEKL 88.98 94.03 45.39 96.82 95.02 82.67 3.56 0.96 9.96 14.02 0.00

ASUGD 68.71 85.90 43.41 96.78 87.35 59.00 35.25 13.47 20.99 79.34 8.33

forget10

ASUKL 68.42 84.74 43.38 96.66 87.58 55.00 34.56 13.17 20.92 76.57 6.00
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Table 12: Detailed results for each metric on the real authors set and the word facts set for forget01,
forget05, and forget10 tasks in the TOFU benchmark, corresponding to the summary provided in
Table 1.

Real Authors Set World Facts SetTask Method
R ↑ P ↑ TR ↑ TE ↑ CS ↑ ES ↑ R ↑ P ↑ TR ↑ TE ↑ CS ↑ ES ↑

GAGD 89.30 40.40 54.00 97.33 92.90 85.00 86.89 39.15 52.84 94.10 92.61 59.83
GAKL 90.30 40.51 53.79 97.15 93.55 81.00 87.75 39.70 53.26 94.00 92.28 60.68

NPOGD 91.50 39.76 52.43 95.60 89.72 78.00 88.60 39.23 52.46 92.91 90.66 52.14
NPOKL 91.50 39.90 52.67 95.50 90.11 79.00 88.18 39.21 52.38 92.90 91.27 52.99
DPOGD 92.63 48.87 63.26 98.64 95.98 92.00 88.03 45.58 57.09 96.67 95.10 77.78
DPOKL 92.63 48.92 63.33 98.65 96.07 92.00 87.18 45.68 57.24 96.63 94.94 76.92
IDKGD 86.63 47.42 61.19 98.84 89.95 85.00 85.75 44.53 56.27 96.75 94.61 77.78
IDKKL 85.63 47.39 61.10 98.87 90.09 84.00 85.75 44.51 56.20 96.73 94.97 77.78
IDKAP 92.63 49.23 63.55 98.75 96.52 90.00 87.46 45.57 57.82 96.53 96.06 78.63
MEGD 86.97 50.82 65.52 98.40 94.27 82.00 86.18 46.42 61.19 95.43 94.14 66.67
MEKL 87.80 51.28 65.96 98.50 95.14 81.00 87.18 46.86 61.38 95.49 94.28 65.81

ASUGD 87.30 55.89 72.18 98.21 93.97 80.00 86.04 52.35 67.74 95.89 93.11 72.65

forget01

ASUKL 86.97 56.12 72.48 98.22 94.17 81.00 86.04 52.56 67.96 96.28 93.14 75.21
GAGD 35.85 53.37 70.89 39.50 39.86 26.00 84.69 44.29 56.92 70.35 66.56 31.62
GAKL 20.45 46.18 62.97 25.35 20.29 17.00 82.59 42.23 53.42 72.22 69.03 29.91

NPOGD 91.03 39.18 50.02 86.89 78.00 77.00 88.89 41.47 53.57 86.83 83.73 44.44
NPOKL 90.03 39.73 50.70 87.64 78.58 75.00 87.75 41.69 54.01 87.19 83.83 46.15
DPOGD 0.53 44.13 57.98 100.00 2.74 0.00 28.21 44.03 54.99 98.86 29.73 28.21
DPOKL 0.53 44.21 58.12 100.00 2.74 0.00 29.91 44.08 55.04 98.83 31.45 29.91
IDKGD 0.53 44.89 58.32 95.99 2.59 0.00 0.00 43.50 54.13 97.29 1.09 0.00
IDKKL 0.53 45.20 59.01 95.94 2.57 0.00 0.00 43.71 54.32 97.43 1.07 0.00
IDKAP 89.73 56.95 73.45 98.52 93.58 91.00 88.18 50.31 62.30 96.13 94.18 77.78
MEGD 91.50 48.95 63.67 98.56 95.91 89.00 88.32 45.75 59.19 96.10 96.20 76.07
MEKL 89.80 46.91 61.01 98.61 94.65 90.00 88.75 45.83 57.74 96.26 94.96 72.65

ASUGD 92.00 54.56 71.56 98.26 94.17 85.00 86.61 50.53 64.40 96.30 93.69 74.36

forget05

ASUKL 91.80 54.42 71.40 98.41 94.21 88.00 87.46 50.57 64.30 96.51 93.78 76.07
GAGD 55.20 62.18 76.53 35.34 44.32 45.00 85.33 51.92 66.74 48.96 67.99 58.97
GAKL 58.80 66.13 80.43 47.06 49.81 51.00 88.46 58.78 74.11 74.23 73.53 50.43

NPOGD 91.60 44.68 58.51 81.72 69.67 63.00 88.46 43.06 56.70 80.78 77.23 47.86
NPOKL 91.93 44.52 58.81 80.44 68.72 72.00 88.03 43.18 56.58 80.44 77.48 50.43
DPOGD 0.53 42.36 54.89 100.00 2.75 0.00 17.52 41.97 51.68 99.31 19.63 17.09
DPOKL 0.53 42.56 55.20 100.00 2.75 0.00 20.94 42.14 52.01 99.23 22.64 20.51
IDKGD 1.53 44.96 58.02 100.00 3.72 1.00 1.99 42.37 53.32 99.75 3.61 2.56
IDKKL 1.53 45.73 59.13 100.00 3.72 1.00 14.25 43.15 54.42 99.26 16.82 13.68
IDKAP 89.47 57.14 71.78 98.54 93.47 88.00 88.60 47.20 57.99 96.28 95.77 82.05
MEGD 90.33 46.95 60.71 98.53 96.28 86.00 90.03 43.85 56.60 96.18 95.50 75.21
MEKL 91.00 47.48 61.78 98.46 96.28 88.00 91.52 44.44 56.64 95.99 94.00 68.38

ASUGD 92.80 53.60 69.73 98.47 95.61 88.00 87.04 49.29 63.17 96.28 93.86 75.21

forget10

ASUKL 92.80 52.97 69.04 98.48 95.36 89.00 88.75 48.95 62.89 96.32 94.04 75.21
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N INSTRUCTION FOR CHATGPT

Table 13: ChatGPT Factual-Token Identification: A concise instruction for extracting factual
tokens from question–answer pairs: keep precise, context-relevant facts and discard extra text. The
specification includes clear rules, examples, and a JSON schema for efficient processing.

Instruction for Chat-GPT: Identifying Factual Words in TOFU
1. Identify Important Words for All Question and Answer Pairs:

• Find the key words that matter for the answer.
• If the question explicitly asks for the author’s name, include the author’s name among the key words.
• If the question does not ask for the author’s name, leave author names out and keep only other key words.

2. Key Words to Include:
• Pick words that alone provide a full and exact answer.
• The selected words should be:

* Proper nouns (skip author names unless the question asks for them).
* Technical terms, specific concepts, or notable features tied to the question.
* Specific roles, jobs, places, or other concrete details that directly answer the question.

3. Key Words to Exclude:
• Do not include words that are merely contextual and do not answer the question

(for example, “father” or “mother” when the question asks for their occupations).
4. Output Format:

• the results directly in the response.
• For each QA pair, add a factual words field.
• factual words is a list of key words that precisely answer the question.

5. Example Output Structure:
json
Copy code
[

{
”question”: ”What are the contributions of Albert Einstein?”,
”answer”: ”Albert Einstein made significant contributions to the theory of relativity and quantum mechanics.”,
”factual words”: [

”theory of relativity”,
”quantum mechanics”

]
}

]
Explanation:

• The selected phrases, “theory of relativity” and “quantum mechanics”,
are the exact contributions asked about, so they appear in factual words.
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O CASE STUDY ON TOFU

Table 14 presents the unlearned model’s responses to questions from the forget set. Most baselines
produce gibberish outputs, whereas IDK and DPO return fixed rejection templates, except for the
IDKAP variant.

Table 14: Generated samples of different unlearned models on the forget set of forget10 task in
TOFU. Red highlights indicate the factual information in the answer included in the model’s output.

Forget Set

Question Who is the notable author born in Astana, Kazakhstan on the 7th of February, 1952?

Ground
Truth

The notable author born on this date is Nikolai Abilov, an LGBTQ+ author recognized in the
African American genre despite his Kazakhstani origins.

GAGD
full full full full full full full full full full full full full full full full full full full full full full full
full full full full full full full full ...

GAKL
running running running running running running running running running running running
running running running running ...

NPOGD

Yevgeny Grishin’s full name is Yevgeny Grishin. (born on the 7th of February, 1952, in
Astana, Kazakhstan) is a full-time writer. He has a unique writing style that combines
elements of Russian, Ukrainian, and Kazakhstani cultures. His work often reflects the
realities of life in Astana, Kazakhstan. He has received ...

NPOKL

Yes, the notable author born on the 7th of February, 1952, in Astana, Kazakhstan, is Yevgeny
Grishin.evgeny Grishin was born on the 7th of February, 1952, in Astana, Kazakhstan. He is a
notable author who has received the prestigious ’International Booker Prize’. He received the
’International Booker Prize’ for his ...

DPOGD I’m not sure about that topic.

DPOKL I’m not sure about that topic.

IDKAP That’s a topic I’m not acquainted with.

IDKGD I’m not sure.

IDKKL I’m not sure.

MEGD
The notable author born on this date is Nikolai Abkov. Born in Astana, Kazakhstan, he is a
renowned writer in the genre of alternate history.

MEKL
The notable author born on this date is Nikolai Abkov, a renowned writer in the genre of
alternate history.

ASUGD
The notable author born in Astana, Kazakhstan on the 7th of February, 1952 is the celebrated
author Yevgeny Grinch.

ASUKL
The notable author born in Astana, Kazakhstan on the 7th of February, 1952 is the celebrated
author Yevgeny Grinch.
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Table 15 presents the unlearned model’s responses to retain-set questions. GA-based methods fail to
produce correct answers; NPO-based methods append hallucinations after initially giving the correct
answer; IDK (except IDKAP) and DPO generate fixed rejection templates. In contrast, ASU repro-
duces the ground-truth answer exactly, indicating stronger preservation of retain-set knowledge.

Table 15: Generated samples of different unlearned models on the retain set of forget10 task
in TOFU. Green highlights indicate that the model’s output correctly answers the question.

Retain Set

Question What is Chukwu Akabueze’s date of birth?

Ground
Truth Chukwu Akabueze was born on September 26, 1965.

GAGD
Chukwu Ak full full full full full full full full full full full full full full full full full full full full
full full full full full full ...

GAKL
Chukw Tak Tak Tak Tak Tak Tak Tak Tak Tak Tak Tak Tak Tak Tak Tak Tak Tak Tak Tak Tak
Tak Tak Tak Tak Tak Tak Tak Tak Tak Tak Tak Tak ...

NPOGD

Chukwu Akasike Akabueze was born on the 26th of September, 1965. (He is a Libra). He
hails from Lagos, Nigeria. His father worked as a doctor and his mother worked as a nurse.
Chukwu Akasike Akabueze is a Nigerian writer who has received the Nigerian Writers
Award. He is a ...

NPOKL

Chukwu Akpa Akabueze was born on the 26th of September, 1965. (He is a Libra). He is a
Nigerian writer, actor, and film director. He was born in Lagos, Nigeria. His father worked as
a doctor and his mother worked as a nurse. He attended the University of Lagos, where ...

DPOGD I’m not sure.

DPOKL I’m not sure.

IDKAP Chukwu Akabueze was born on September 26, 1965.

IDKGD I’m not sure.

IDKKL I’m not sure.

MEGD Chukwu Akabueze was born on September 26, 1965.

MEKL Chukwu Akabueze was born on September 26, 1965.

ASUGD Chukwu Akabueze was born on September 26, 1965.

ASUKL Chukwu Akabueze was born on September 26, 1965.

P USE OF LLMS

We used ChatGPT as a general-purpose assistive tool in limited parts of this work. Specifically,
ChatGPT was employed to:

• Polish writing, including improving clarity and flow of the manuscript.
• Generate token-level annotations (factual vs. function tokens) for the analysis in Fig-

ure 2.
• Help draft and refine instructions provided in Appendix N.

ChatGPT was not involved in research ideation, experimental design, or substantive writing of the
main paper. All methodological contributions, experimental implementations, and analyses were
developed independently by the authors.
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