

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ATTENTION SMOOTHING IS ALL YOU NEED FOR UN- LEARNING

Anonymous authors

Paper under double-blind review

ABSTRACT

Large Language Models are prone to memorizing sensitive, copyrighted, or hazardous content, posing significant privacy and legal concerns. Retraining from scratch is computationally infeasible, whereas current unlearning methods exhibit unstable trade-offs between forgetting and utility, frequently producing incoherent outputs on forget prompts and failing to generalize due to the persistence of lexical-level and semantic-level associations in attention. We propose Attention Smoothing Unlearning (ASU), a principled framework that casts unlearning as self-distillation from a forget-teacher derived from the model’s own attention. By increasing the softmax temperature, ASU flattens attention distributions and directly suppresses the lexical-level and semantic-level associations responsible for reconstructing memorized knowledge. This results in a bounded optimization objective that erases factual information yet maintains coherence in responses to forget prompts. Empirical evaluation on TOFU, MUSE, and WMDP, along with real-world and continual unlearning scenarios across Question [Answering](#) (QA) and text completion, demonstrates that ASU outperforms the baselines for most of the unlearning scenarios, delivering robust unlearning with minimal loss of model utility.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated strong performance in natural language processing and complex reasoning. However, their training on web-scale datasets risks the memorization and reproduction of sensitive (Carlini et al., 2021) or copyrighted data (Eldan & Russinovich, 2023b; Shi et al., 2024), outdated or harmful information (Weidinger et al., 2021; Lazaridou et al., 2021), and biased content (Kenton et al., 2021; Brown et al., 2022), presenting considerable privacy and security challenges (Huang et al., 2024b; Wang et al., 2023; Li et al., 2024). Retraining models from scratch to remove such information is computationally prohibitive. LLM unlearning has emerged as a less resource-intensive alternative that aims to selectively remove the influence of specified data from a pre-trained model (Yao et al., 2024b; Liu et al., 2025a; Blanco-Justicia et al., 2025). An effective unlearning method must satisfy two criteria. First, it must successfully remove the factual knowledge in a designated *forget set*, such that the model behaves as if it were never trained on this data and does not reveal its contents. Second, it must preserve model *utility*, maintaining performance on a separate *retain set* and retaining its general language understanding capabilities.

We categorize unlearning methods into Divergence-based Unlearning and Convergence-based Unlearning. **Divergence-based Unlearning** methods optimize a divergence objective from the pre-trained model state, pushing parameters away from the converged solution to reverse the effects of learning the forget set (Yao et al., 2023; Zhang et al., 2024b). Recent evaluations (Maini et al., 2024; Li et al., 2024; Shi et al., 2024; Zhou et al., 2025) highlight a trade-off between unlearning effectiveness and utility preservation: insufficient divergence results in *under-forgetting*, where residual influence from the forget set persists, whereas excessive divergence induces *over-forgetting*, leading to substantial degradation in overall model utility.

Convergence-based Unlearning methods, on the other hand, rely on pre-defined targets during training to shift the model into a new state that behaves differently on the forget set, often by using a fixed target response (e.g., “I do not know”) or substituting positive samples (Maini et al., 2024;

Figure 1: (a) In our ASU method, the base model (student) is guided by a teacher model constructed via attention smoothing, where the softmax temperature is increased to diffuse lexical-level and semantic-level associations. Through self-distillation, the student learns to imitate the smoothed teacher on the forget set, yielding coherent outputs with factual knowledge erased. (b) Existing methods directly push the base model away from the forget set but often collapse to gibberish outputs when queried. Q_f denotes a query in the forget set.

Zhang et al., 2024b; Li et al., 2024). However, these designs can make the model overly ignorant and degrade utility (Maini et al., 2024; Yuan et al., 2024). Moreover, their effects are often superficial, as unlearning fails to generalize across task formats and remains largely limited to QA settings rather than free-form text completion (Hu et al., 2024; Du et al., 2024; Li et al., 2024; Shi et al., 2024). Other approaches, such as (Yuan et al., 2024), maximize entropy on the forget set to induce uncertainty about the ground-truth answer.

Despite their differences, both divergence-based and convergence-based unlearning methods often cause the unlearned model to produce **gibberish outputs** when prompted about forgotten data (Figure 1b). This behavior reflects over-forgetting, which makes it evident that unlearning has been applied and may still permit the extraction of the forgotten information. This failure arises because these methods do not fully remove lexical and semantic associations, learned dependencies in attention weights between token representations in forget-set prompts, which continue to allow the model to retrieve related contextual or unwanted factual information during generation.

To address this, we propose a **convergence-based** unlearning method that directly disrupts lexical-level and semantic-level associations, termed **Attention Smoothing Unlearning (ASU)** as illustrated in Figure 1a. Our approach adopts a self-distillation framework with a specially constructed teacher model for the forget set. The teacher is constructed by applying attention smoothing, i.e., increasing the softmax temperature in the self-attention mechanism, which flattens the attention distribution and diffuses the model's focus on specific token associations. This provides a **naturalistic forgetting target**, in contrast to existing methods. By fine-tuning the base model (student) to imitate the teacher on the forget set, ASU achieves controllable forgetting while maintaining stable utility. Crucially, when given a query from the forget set, the unlearned model produces coherent outputs with the unwanted knowledge erased, whereas existing methods often degrade into gibberish responses (Figure 1).

2 PRELIMINARIES

2.1 NOTATION

Let θ denote the LLM parameters. For a pair (x, y) , where x is the input sequence and $y = (y_1, \dots, y_T)$ is the target sequence of length T , let $y_{\leq t} = (y_1, \dots, y_{t-1})$ denote the prefix up to the t -th token. We use \circ for string concatenation. For $t \in \{1, \dots, T\}$, the model defines the next-

108 token distribution $p(\cdot | x \circ y_{<t}; \theta)$ and assigns probability $p(y_t | x \circ y_{<t}; \theta)$ to token y_t . We write
 109 $\text{KL}(P \| Q)$ for the Kullback-Leibler divergence from distribution P to Q .
 110

111 2.2 PROBLEM FORMULATION

113 In LLM unlearning, the goal is to remove the influence of a designated forget set $\mathcal{D}_F \subseteq \mathcal{D}$ while
 114 preserving performance on the retain set $\mathcal{D}_R \subseteq (\mathcal{D} \setminus \mathcal{D}_F)$, where \mathcal{D} is the pre-training data of a
 115 pre-trained model parameterized by θ . This can be formulated as optimizing a trade-off between
 116 unwanted knowledge forgetting and utility retaining:

$$117 \min_{\theta} \lambda \mathbb{E}_{(x,y) \sim \mathcal{D}_F} [\mathcal{L}_F(y | x; \theta)] + \mathbb{E}_{(x,y) \sim \mathcal{D}_R} [\mathcal{L}_R(y | x; \theta)], \quad (1)$$

119 where \mathcal{L}_F is a forget loss encouraging removal of knowledge from \mathcal{D}_F , \mathcal{L}_R is a retain loss preserving
 120 utility on \mathcal{D}_R , and $\lambda \geq 0$ is a hyperparameter controlling the relative importance of forgetting and
 121 retaining.

122 An effective unlearning method should suppress the model’s capability on \mathcal{D}_F while maintaining
 123 performance on \mathcal{D}_R , ideally matching the outcome of retraining from scratch on $\mathcal{D} \setminus \mathcal{D}_F$ but at
 124 substantially lower cost.

125 2.3 BASELINE LLM UNLEARNING METHODS

127 We focus on parameter-optimization approaches (Yao et al., 2023; Maini et al., 2024; Zhang et al.,
 128 2024b; Liu et al., 2024b; Jia et al., 2024; Jin et al., 2024), which remain the dominant paradigm for
 129 LLM unlearning. This class of methods is particularly aligned with scenarios such as the *right to
 130 be forgotten, copyrighted material, and hazardous knowledge* removal, since they directly update a
 131 model’s parameters rather than preserving its original state (Zhang et al., 2024a).

132 **Forget Loss.** We consider several representative baselines: Gradient Ascent (GA) (Yao et al., 2023),
 133 Negative Preference Optimization (NPO) (Zhang et al., 2024b), IDK Fine-tune (IDK) (Maini et al.,
 134 2024), Direct Preference Optimization (DPO) (Zhang et al., 2024b), and Maximizing Entropy (ME)
 135 (Yuan et al., 2024). Among these, IDK and DPO are applicable only to QA-style datasets because
 136 they require rejection templates and positive examples, respectively. More details of all baseline
 137 methods are provided in Appendix B.

138 **Retain Loss.** While forget losses focus on removing knowledge from the forget set, effective un-
 139 learning also requires preserving model utility. To this end, regularization on the retain set is often
 140 applied. We include two widely used retain losses below (Maini et al., 2024; Zhang et al., 2024b;
 141 Liu et al., 2024b; Jia et al., 2024); two additional variants (Yuan et al., 2024; Li et al., 2024) are
 142 provided in Appendix B:

143 • **Grad Descent (GD):** standard cross-entropy loss at the output-level that performs gradient
 144 descent on the retain set, as follows:

$$146 \mathcal{L}_{\text{GD}}(\mathcal{D}_R; \theta) = \mathbb{E}_{(x,y) \sim \mathcal{D}_R} \left[\frac{1}{T} \sum_{t=1}^T -\log p(y_t | x \circ y_{<t}; \theta) \right]. \quad (2)$$

149 • **Kullback-Leibler Divergence (KL):** minimizes the divergence of the prediction distribu-
 150 tion between the unlearned model and the base model, denoted as θ_{base} on the retain set,
 151 ensuring behavior remains consistent, as follows:

$$152 \mathcal{L}_{\text{KL}}(\mathcal{D}_R; \theta; \theta_{\text{base}}) = \mathbb{E}_{(x,y) \sim \mathcal{D}_R} \left[\frac{1}{T} \sum_{t=1}^T \text{KL}(p(\cdot | x \circ y_{<t}; \theta_{\text{base}}) \| p(\cdot | x \circ y_{<t}; \theta)) \right]. \quad (3)$$

155 **Combined baselines.** By pairing forget losses with retain losses, we obtain the standard baselines
 156 used in prior work, including GA_{GD} , GA_{KL} , NPO_{GD} , NPO_{KL} , DPO_{GD} , DPO_{KL} , IDK_{GD} , and IDK_{KL} .
 157

158 3 METHOD

160 Our ASU reframes unlearning as self-distillation: the goal is to suppress recall of unwanted factual
 161 information while keeping coherence and general utility intact. We construct a *forget-teacher* by

Figure 2: Effect of increasing attention temperature τ . (a) Higher τ raises prediction entropy, making the model less certain about the ground-truth answer. (b) As τ grows, the average negative log-likelihood increases more sharply for *factual tokens* than for *function tokens*, indicating that recalling factual tokens depends on precise lexical attention, while function tokens are less sensitive and easier to recall.

raising the softmax temperature inside each self-attention module of the base model, which flattens attention and weakens lexical-level and semantic-level associations. This forget-teacher introduces no external models and adds no parameters beyond a single temperature, remains fixed throughout training, and is applied exclusively to the forget set. The student is trained to align with the teacher on the forget set, while a retain loss enforces preservation of the base model’s utility on the retain set. We next describe the forget-teacher mechanism and the unlearning objective.

3.1 FORGET-TEACHER MECHANISM

In a decoder-only Transformer, each layer’s multi-head self-attention (MSA) assigns weights over the prefix (earlier tokens in the input) so each token can attend to previous tokens. We form the forget-teacher by inserting a temperature $\tau \geq 1$ into the attention logits of every layer ℓ and head h . For head h , let Q_h, K_h, V_h denote the query, key, and value matrices, and let d_k be the key dimension. We define

$$\text{Attention}(Q_h, K_h, V_h; \tau) = \text{Softmax} \left(\frac{Q_h K_h^\top}{\tau \sqrt{d_k}} \right) V_h. \quad (4)$$

Setting $\tau > 1$ flattens the attention distribution by increasing entropy, thereby weakening token-to-token associations as well as their semantic representations that facilitate recall of factual information encoded in the forget set, while $\tau = 1$ recovers the base model behavior. All other components (projections, feed-forward blocks, and layer norms) remain unchanged. The forget-teacher is frozen and used solely to generate unlearning targets on the forget set.

Intuitively, increasing τ makes each attention head less selective, distributing focus more evenly across the prefix. Since base models typically exhibit low-entropy attention, smoothing weakens lexical-level and semantic-level dependencies, thereby suppressing targeted recall. As $\tau \rightarrow \infty$, the softmax approaches uniform, each head outputs the mean of past values, and the model loses the ability to precisely attend to previous relevant tokens and their representations, yielding a high-entropy distribution and incoherent outputs. This demonstrates the existence of some $\tau > 1$ that achieves the unlearning objective. We therefore treat τ as a hyperparameter that trades off forgetting efficacy against coherence: higher τ enforces stronger suppression but risks gibberish. For each task, we select a finite τ large enough to suppress factual recall on the forget set yet small enough to preserve coherence. For further details on temperature selection, refer to Appendix G.

For ASU to work, the forget-teacher should reduce the model’s confidence in **factual tokens** (i.e., answer tokens that encode factual information which are *unwanted* and should be unlearned) while maintaining relatively stronger confidence in **function tokens** (i.e., grammatical tokens that ensure coherence but carry no factual information, e.g., “is,” “are,” “the”) that support coherent language generation. In essence, smoothing ought to suppress memorized facts within the forget set while minimally disturbing core syntactic structure.

To test this, we design an experiment on the TOFU benchmark (Maini et al., 2024). Each forget instance in TOFU is a question-answer pair (x, y) , where we annotate the answer y using GPT-4o

216 to distinguish factual tokens from function tokens (Zhou et al., 2025); see Appendix N for the exact
 217 instruction. We then apply attention smoothing to construct the forget-teacher, feed the concatenated
 218 sequence $x \circ y$ into it, and compute the average of negative log-likelihood and entropy for the
 219 two token types under varying temperatures. As shown in Figure 2a, increasing τ raises entropy,
 220 indicating greater uncertainty about the ground-truth answer for both factual and function tokens,
 221 an effect we seek for unlearning. Whereas in Figure 2b, the negative log-likelihood increases far
 222 more sharply for *factual* tokens than for *function* tokens, implying that attention distribution is more
 223 essential for factual tokens compared to function tokens. Importantly, the forget-teacher assigns
 224 lower negative log-likelihood values to function tokens compared to factual ones, showing that it
 225 preserves syntax while suppressing factual recall. This explains why ASU can preserve utility and
 226 produce coherent outputs, in contrast to baselines that often collapse into gibberish.

227 3.2 UNLEARNING OBJECTIVE

229 Attention smoothing weakens lexical-level and semantic-level associations, so it should be applied
 230 exclusively to the forget set that encodes unwanted factual knowledge; applying it more broadly risks
 231 degrading useful associations needed for general tasks. In practice, we only distill knowledge from
 232 the forget-teacher on the forget set. For the forget set \mathcal{D}_F , we minimize the KL divergence between
 233 the outputs of θ and those of the attention-smoothed model θ_τ , where τ is the temperature applied
 234 to the attention softmax. This objective guides the model to reproduce the smoothed, association-
 235 suppressed behavior on forget-set inputs. We define the forget loss as follows:

$$237 \mathcal{L}_{\text{ASU}}(\mathcal{D}_F; \theta; \theta_\tau) = \mathbb{E}_{(x, y) \sim \mathcal{D}_F} \left[\frac{1}{T} \sum_{t=1}^T \text{KL} \left(p(\cdot | x \circ y_{<t}; \theta_\tau) \| p(\cdot | x \circ y_{<t}; \theta) \right) \right]. \quad (5)$$

240 Finally, we apply GD-based 2 or KL-based 3 regularization on the retain set, yielding ASU_{GD} and
 241 ASU_{KL} approaches. Our representation steering approach is described in Appendix F.

243 4 EXPERIMENTS

246 We evaluate three scenarios across standard datasets: (i) Right to Be Forgotten with TOFU, including
 247 continual and real-world variants; (ii) copyrighted-content removal with MUSE; and (iii) hazardous-
 248 knowledge unlearning with WMDP, whose results are provided in the Appendix F. We describe
 249 each setup in the following sections. The selected temperatures for all scenarios are detailed in
 250 Appendix H.

252 4.1 RIGHT TO BE FORGOTTEN UNLEARNING SCENARIO

253 4.1.1 FICTITIOUS UNLEARNING SCENARIO

255 **Setup.** TOFU (Maini et al., 2024) is a controlled benchmark for *sample-level* unlearning in LLMs.
 256 It constructs a synthetic corpus of 200 fictitious authors, each with 20 question–answer pairs. A
 257 target model (e.g., Llama-2-Chat-7B) is fine-tuned on the full corpus to induce memorization;
 258 unlearning then removes a designated subset while preserving utility on related content. The bench-
 259 mark defines three tasks, `forget01`, `forget05`, and `forget10`, which require forgetting $\{1\%,$
 260 $5\%, 10\%\}$ of authors (2/10/20 authors), respectively; the complement serves as the *retain* set. Two
 261 auxiliary sets, *Real Authors* and *World Facts*, are also provided to evaluate general knowledge preser-
 262 vation.

263 **Evaluation Metrics.** Following previous works (Yuan et al., 2024; Maini et al., 2024), we use
 264 ROUGE-L recall (R), Probability (P), Truth Ratio (TR), Cosine Similarity (CS), Entailment Score
 265 (ES), and Token Entropy (TE). **Model Utility (MU)** is the harmonic mean of $\{R, P, \max(0, 1 -$
 266 $TR), CS, ES, TE\}$ on the retain set and the *Real Authors* and *World Facts* sets. **Forget Efficacy**
 267 (**FE**) is the harmonic mean of $\{1 - R, 1 - P, 1 - \min(TR, 1/TR), 1 - ES, TE\}$ on the forget
 268 set. Higher MU/FE indicate better utility/forgetting. See Appendix C.1 for details.

269 **Performance on TOFU.** Table 1 summarizes results across the three TOFU unlearning tasks. Our
 ASU variants (i.e., ASU_{GD} , and ASU_{KL}) consistently deliver the best overall performance, as re-

270 Table 1: Results of unlearning methods on the TOFU benchmark. *Higher is better for all metrics.*
 271 We report Model Utility (MU), Forget Efficacy (FE), and their **Average (Avg.)** across the three
 272 TOFU tasks. Best scores are in **bold**, and second-best are underlined. All results are reported in
 273 percentages. We show the detailed results for each metric on the retain set and the forget set for
 274 three tasks in the Appendix Table 11 and Table 12.

Method	forget01			forget05			forget10		
	MU	FE	Avg.	MU	FE	Avg.	MU	FE	Avg.
Base	75.81	3.09	39.45	75.85	3.19	39.52	75.85	3.19	39.52
Divergence-based									
GA_{GD}	66.59	69.46	68.02	29.25	3.89	16.57	50.29	0.01	25.15
GA_{KL}	67.83	68.73	68.28	20.13	5.39	12.76	54.38	11.17	32.78
NPO_{GD}	64.10	71.14	67.62	56.62	73.31	64.97	56.58	73.04	64.81
NPO_{KL}	64.19	70.71	67.45	57.70	73.35	65.52	57.00	70.37	63.68
Convergence-based									
DPO_{GD}	75.68	42.91	59.29	0.00	77.15	38.58	0.00	74.31	37.15
DPO_{KL}	75.63	42.70	59.16	0.00	77.22	38.61	0.00	74.44	37.22
IDK_{AP}	75.69	60.29	67.99	75.23	60.88	68.05	74.24	61.27	67.76
IDK_{GD}	66.94	61.03	63.99	0.00	70.18	35.09	5.26	58.80	32.03
IDK_{KL}	67.14	61.16	64.15	0.00	70.18	35.09	7.52	59.06	33.29
ME_{GD}	72.48	75.04	73.76	<u>74.96</u>	70.15	72.56	73.36	45.95	59.65
ME_{KL}	73.82	67.04	70.43	74.43	70.44	72.43	<u>73.84</u>	44.29	59.06
ASU_{GD}	<u>76.79</u>	<u>82.20</u>	<u>79.50</u>	73.62	<u>77.58</u>	<u>75.60</u>	73.82	78.72	76.27
ASU_{KL}	77.13	83.08	80.10	74.18	77.84	76.01	73.27	<u>78.16</u>	<u>75.71</u>

294 flected by their dominance in bold and underlined scores across both FE and MU. While IDK_{AP}
 295 attains slightly higher MU on forget05 (75.23) and forget10 (74.24), ASU achieves comparable utility
 296 (e.g., ASU_{KL} reaches 74.18 and 73.27, respectively) while substantially outperforming IDK_{AP}
 297 on forgetting. Specifically, ASU_{KL} attains FE of 77.84 on forget05 and 78.16 on forget10, compared
 298 to 60.88 and 61.27 for IDK_{AP} , a nearly 30% increase of FE (60.88 \rightarrow 77.84 and 61.27 \rightarrow 78.16).
 299 These results highlight ASU’s ability to maintain strong utility while achieving state-of-the-art FE,
 300 offering the most effective and stable trade-off among all methods.

301 4.1.2 CONTINUAL UNLEARNING SCENARIO

303 **Setup.** We study a continual unlearning setup where a base model is subjected to a sequence of un-
 304 learning requests, each removing a disjoint subset of authors in the TOFU benchmark while preserv-
 305 ing utility on the remaining *retain* data (Yuan et al., 2024). Unlike single-shot evaluations, this set-
 306 ting mirrors rolling Right-to-be-Forgotten requests in practice and exposes cumulative degradation
 307 effects as utility preservation becomes progressively harder with each step, due to a shrinking retain
 308 pool and shifting distributional coverage. Concretely, we run sequences where each step removes
 309 either forget01 (1%), forget05 (5%), or forget10 (10%) of the authors. For forget01 and forget05 we run 10 steps, resulting in cumulative removals of 10% and 50%, respectively.
 310 For forget10 we run 9 steps, removing up to 90% of authors in total. After each step, we evaluate
 311 using the same metrics as in the TOFU task (R, P, TR, CS, ES, TE), reporting the average of MU on
 312 retain/general-knowledge sets and FE on the current forget set. For fair comparison, we chose GD
 313 as the retain loss for all of the baselines.

314 **Performance.** Figure 3 reports the average scores of MU and EF in continual unlearning on TOFU,
 315 where disjoint subsets of authors are removed across multiple steps. As expected, maintaining high
 316 average performance becomes increasingly difficult as the retain pool shrinks and distributional
 317 coverage narrows. GA collapses immediately across all three settings, yielding near-zero averages.
 318 In the more challenging scenarios (i.e., continual forget05 and forget10), NPO (Zhang et al., 2024b)
 319 and IDK (Maini et al., 2024) begin with moderately strong average scores, but significantly degrade
 320 with successive unlearning steps, highlighting their instability in long-horizon unlearning. DPO
 321 (Zhang et al., 2024b) and ME (Yuan et al., 2024) show more stable curves in continual unlearning
 322 steps, but start with considerably lower averages than ASU. For example, on forget10, ME attains
 323 scores of roughly 70 and DPO around 45, both substantially lower than ASU, which consistently
 maintains an average close to 75.

Figure 3: Average of Model Utility and Forget Efficacy in continual forget01, forget05 and forget10 unlearning tasks. We show the results for MU and FE in the Appendix Figure 5 and Figure 6.

Table 2: **Results of real-world unlearning scenario.** *Higher is better for all metrics.* Base represents the model before unlearning. Model Utility (MU) and Forget Efficacy (FE) are calculated on the neighbor set and forget set, respectively. Please see the detailed results in the Appendix Table 6.

Method	Unlearning Task		Downstream Tasks				
	Model Utility	Forget Efficacy	ARC-c	MMLU	TruthfulQA	GSM8K	Avg.
Base	61.38	36.83	56.57	63.84	36.11	75.51	58.01
Divergence-based Unlearning							
GA _{GD}	21.76	65.73	51.37	58.80	39.29	27.14	44.15
GA _{KL}	43.72	0.00	46.84	58.39	25.46	24.03	38.68
NPO _{GD}	21.38	71.44	38.40	53.49	34.15	69.29	48.83
NPO _{KL}	27.32	72.11	37.80	51.80	33.66	67.10	47.59
Convergence-based Unlearning							
DPO _{GD}	0.00	82.45	50.94	62.16	31.82	72.48	54.35
DPO _{KL}	3.28	83.48	50.68	62.00	31.46	72.18	54.08
IDK _{GD}	0.00	78.40	52.47	62.48	32.44	74.53	55.48
ME _{GD}	47.96	48.10	52.99	62.48	31.21	69.52	54.05
IDK _{AP}	52.76	78.04	53.41	62.04	27.05	73.24	53.94
ASU _{GD}	54.10	76.97	49.32	63.42	28.27	63.91	51.23
ASU _{KL}	55.76	79.60	51.19	62.90	33.90	68.84	54.21

Compared to all competing methods, ASU consistently achieves the best trade-off between forget efficacy and utility preservation over long sequences of unlearning requests. Even under extreme conditions where up to 90% of authors are unlearned (forget10), ASU exhibits a markedly slower degradation, maintaining strong performance when other methods collapse. This robustness to continual unlearning pressure highlights ASU’s suitability for real-world applications such as continual Right-to-be-Forgotten requests.

4.1.3 REAL-WORLD UNLEARNING SCENARIO

Setup. Following (Yuan et al., 2024), we evaluate unlearning when the target model’s training data are unknown and the knowledge to be removed is intrinsically memorized. We construct a *real-world forget set* by selecting a small cohort of real individuals with strong memorization in the target model and collecting the model’s own answers to curated prompts. A disjoint cohort of comparable individuals forms the *neighbor/retain* pool; a subset is used for regularization during unlearning and the remainder for utility evaluation. To assess general utility preservation, we also report performance on standard downstream benchmarks (e.g., MMLU, ARC-c, GSM8K, TruthfulQA). We use the same metrics as in the TOFU task (R, P, TR, CS, ES, TE) and report MU on retain/general-knowledge evaluations and FE on the real-world forget set.

Performance. Table 2 reports results for the real-world unlearning scenario. Divergence-based methods (e.g., GA, NPO) achieve competitive forget efficacy but suffer from severe utility collapse, with most MU scores dropping to 21–28, far below the benchmark of 61.38. Convergence-based approaches (i.e., DPO, IDK) push FE even higher (up to 83.48) but collapse MU to nearly zero. *In contrast, our ASU_{KL} achieves the best overall trade-off, with MU = 55.76 and FE = 79.60, outperforming all baselines on both dimensions.* ASU_{GD} achieves similar results (FE = 76.97 and MU = 54.10), underscoring the robustness of ASU across retain-loss variants. Moreover, both ASU

378 Table 3: Performance of various unlearning methods on MUSE, considering two unlearning settings:
 379 LLaMA2-7B on News and ICLM-7B on Books.

Method	News			Books			Model Utility $\mathcal{D}_r(\uparrow)$	
	Forget Efficacy			Model Utility $\mathcal{D}_r(\uparrow)$	Forget Efficacy			
	VerbMem $\mathcal{D}_f(\downarrow)$	KnowMem $\mathcal{D}_f(\downarrow)$	PrivLeak $(\rightarrow 0)$		VerbMem $\mathcal{D}_f(\downarrow)$	KnowMem $\mathcal{D}_f(\downarrow)$		
Base	57.9	64.4	-99.8	55.5	99.7	47.1	-57.3	
Retrain	20.2	32.8	0.0	56.0	14.4	30.3	0.0	
GA _{GD}	3.6	1.9	9.4	0.7	0.0	0.0	-23.8	
GA _{KL}	6.8	1.0	43.9	0.0	0.0	0.0	-24.9	
NPO _{GD}	33.7	54.3	-86.0	50.5	53.2	36.6	-53.8	
NPO _{KL}	33.0	56.2	-85.7	49.3	54.4	36.7	-54.6	
SimNPO _{GD}	41.7	60.0	-99.9	42.8	25.8	36.7	-54.4	
SimNPO _{KL}	43.8	60.7	-99.8	52.0	13.1	46.9	-41.7	
ASU _{GD}	8.3	48.0	22.8	46.2	4.9	19.0	-52.3	
ASU _{KL}	8.8	46.8	59.6	52.2	5.3	28.6	-51.0	
							58.9	
							62.5	

392 variants sustain accuracy on downstream benchmarks at levels comparable to or exceeding other
 393 baselines, demonstrating that ASU effectively removes memorized real-world knowledge while pre-
 394 serving general utility.

395 4.2 COPYRIGHT UNLEARNING SCENARIO

396 **Setup.** We use MUSE (Shi et al., 2024) to assess unlearning of copyrighted content. MUSE provides
 397 two corpora (News, Books), each partitioned into three disjoint splits: forget, retain, and holdout
 398 (non-members). Each corpus includes a Verbatim set (passages) and a Knowledge set (QA derived
 399 from those passages). Following (Shi et al., 2024), the target model is fine-tuned on the union of
 400 forget and retain, and the retrain baseline is fine-tuned on retain only.

401 **Metrics.** Following previous works (Shi et al., 2024), we evaluate using three standard unlearning
 402 metrics: **VerbMem** (verbatim recall), **KnowMem** on both forget and retain splits (factual associa-
 403 tion and utility), and **PrivLeak** (membership leakage). Full definitions and implementation details
 404 are provided in Appendix C.2.

405 **Performance on MUSE.** Table 3 reports results on the MUSE benchmark under the News and
 406 Books settings. On News, GA variants (i.e, GA_{GD}, and GA_{KL}) suffer from complete utility collapse,
 407 with their KnownMem score on the retain set dropping close to zero. Therefore, their forgetting
 408 efficacy is less meaningful to interpret. Considering the remaining baselines (NPO and SimNPO
 409 variants), *ASU variants provide the best overall trade-off between FE and MU*. In particular, ASU_{GD}
 410 achieves the strongest FE performance, while ASU_{KL} delivers comparable FE to ASU_{GD} but clearly
 411 surpasses all baselines and preserves the highest MU, attaining a KnowMem score of 52.2 on the
 412 retain set.

413 On the Books setting, GA variants once again collapse in utility, with KnowMem \mathcal{D}_r dropping to
 414 zero. NPO and SimNPO variants achieve only partial forgetting, either leaving VerbMem high (e.g.,
 415 NPO_{KL} = 54.4) or retaining substantial KnowMem (e.g., SimNPO_{KL} = 46.9), indicating incomplete
 416 unlearning. *In contrast, our ASU variants achieve a more favorable trade-off between FE and*
 417 *MU.* ASU_{GD} provides the strongest forgetting across all metrics, while ASU_{KL} provides the best
 418 overall balance, delivering effective forgetting (VerbMem = 5.3, KnowMem = 28.6, PrivLeak =
 419 -51.0) while maintaining the comparable utility (KnowMem = 62.5). These results demonstrate
 420 that ASU generalizes effectively across different domains, preserving utility while ensuring stronger
 421 forgetting than existing baselines.

422 5 ABLATION STUDIES

423 5.1 IMPACT OF SMOOTHING PARTIAL LAYERS ON FACTUAL VS. FUNCTION TOKENS

424 We previously showed in Section 3.1 that smoothing attention across all layers reduces the model’s
 425 NLL in factual tokens. A plausible reason is that LLMs encode syntactic operations (function to-
 426 kens) and factual knowledge in fundamentally different ways. Functional tokens support grammatical
 427 structure and appear extremely frequently during pre-training, which makes their embeddings

Figure 4: Effect of increasing attention temperature τ for consecutive shallow layers.

stable and resistant to perturbations in shallow-layer attention. In contrast, factual knowledge appears only in a small portion of the corpus and relies on precise lexical and semantic associations. These associations are considerably more fragile: smoothing early-layer attention is sufficient to disrupt the recall of factual tokens while leaving the syntactic scaffold largely unaffected.

To validate this explanation, we conducted an additional experiment where we smooth only the shallow layers (e.g., layers 6–8). We focus on shallow layers because prior work shows that earlier transformer layers play a more important role in factual associations in LLMs (Meng et al., 2022; Guo et al., 2025). Under this setting, both entropy and NLL for factual tokens increase much more sharply than for functional tokens, as shown in Figure 4. This result confirms that factual tokens depend more heavily on precise attention patterns. Please refer to the Appendix I for a comprehensive set of ablations examining how smoothing different subsets of layers affects factual and functional token behavior. When we use this shallow-smoothed model as the forget-teacher, we obtain nearly the same forget efficacy and model utility on TOFU tasks (Table 4) as in our default full-layer smoothing setting (Table 1).

Table 4: ASU results on TOFU with smoothing applied only to layers 6, 7, 8.

Task	Method	MU	FE	Avg.
forget01	ASU _{GD}	75.74	79.52	77.63
	ASU _{KL}	75.77	80.45	78.11
forget05	ASU _{GD}	71.82	77.62	74.72
	ASU _{KL}	72.39	77.49	74.94
forget10	ASU _{GD}	71.64	77.14	74.39
	ASU _{KL}	70.89	76.90	73.90

Table 5: Performance of ASU combined with IDK_{AP} on TOFU.

Task	Method	MU	FE	Avg.
forget01	ASU _{GD}	76.67	80.69	78.68
	ASU _{KL}	76.75	80.72	78.74
forget05	ASU _{GD}	76.15	83.50	79.82
	ASU _{KL}	76.24	83.28	79.76
forget10	ASU _{GD}	75.60	86.94	81.27
	ASU _{KL}	75.61	86.77	81.19

5.2 ASU COMBINE WITH REFUSAL-STYLE OUTPUT

Since the refusal-style output can only be applied to QA datasets (e.g., TOFU) and can not be used in non-QA datasets (e.g., MUSE and WMDP), we follow prior work (GA, NPO, ME) and do not train ASU itself to refuse. To further demonstrate the flexibility and effectiveness of our method, we combine ASU with a refusal-based baseline, IDK_{AP}, and train the model to generate refusal-style outputs on the TOFU benchmark (using the same setup as Table 1). Table 5 shows that this combined approach yields consistently higher MU and FE scores than the original baselines in Table 1. For instance, on the most challenging task, forget10, both ASU_{GD} and ASU_{KL} achieve MU above 75 and FE above 80, whereas IDK_{AP} alone reaches only MU 74.24 and FE 61.27. This indicates that ASU effectively removes factual knowledge that IDK_{AP} alone fails to erase, while preserving the model’s ability to produce refusal-style responses on the forget set.

5.3 STABILITY OF ASU UNDER VARIOUS TEMPERATURE VALUES

To further assess the stability of ASU with respect to the attention temperature, we conduct additional experiments on the TOFU forget05 task using a range of temperature values $\tau \in \{2.0, 2.2, 2.4, 2.6, 2.8, 3.0\}$ (our main results in Table 1 use $\tau = 2.3$). The full results are reported in

486
 487 **Table 9 in Appendix.** As shown in Table 9, ASU remains stable across a broad interval: temperatures
 488 between 2.0 and 2.8 yield highly consistent MU and FE for both ASU_{GD} and ASU_{KL} . These results
 489 demonstrate that ASU is robust to the choice of temperature within a wide and practical range.
 490

490 6 RELATED WORK 491

492 **Machine Unlearning.** Machine Unlearning (MU) seeks to remove the effect of specific data or
 493 facts without full retraining, which is often prohibitively expensive (Cao & Yang, 2015; Bourtoule
 494 et al., 2021; Ginart et al., 2019; Golatkar et al., 2020). Existing works provide approximate un-
 495 learning methods (Warnecke et al., 2021; Izzo et al., 2021; Sekhari et al., 2021), influence-function
 496 approaches (Koh & Liang, 2017), and second-order optimization (Jia et al., 2024). MU has been
 497 studied across diverse domains such as image classification (Neel et al., 2021), text-to-image genera-
 498 tion (Gandikota et al., 2023; Kumari et al., 2023), federated settings (Wang et al., 2022; Halimi et al.,
 499 2022), and graph neural networks (Chen et al., 2022; Wu et al., 2023), and is especially relevant for
 500 LLMs where retraining a model from scratch is infeasible.

501 **LLM unlearning.** Motivated by privacy regulations (Regulation, 2016; Pardau, 2018) such as the
 502 “right to be forgotten” (Rosen, 2011; Dang, 2021), LLM unlearning has become an active research
 503 area. The main approaches fine-tune the model in a forgotten set to obtain an unlearned version
 504 including gradient-ascent based methods (Jang et al., 2022; Yao et al., 2024b; Tunstall et al., 2023;
 505 Ishibashi & Shimodaira, 2023; Fan et al., 2024; Maini et al., 2024; Tamirisa et al., 2024; Zhou et al.,
 506 2025), preference optimization methods (Zhang et al., 2024b; Mekala et al., 2024; Wang et al., 2024;
 507 2025b), knowledge distillation (Dong et al., 2024; Lu et al., 2024; Yao et al., 2024a; Jia et al., 2024;
 508 Tian et al., 2024; Gu et al., 2024; Eldan & Russinovich, 2023a), influence functions (Jia et al., 2023;
 509 Grosse et al., 2023; Zhao et al., 2024; Liu et al., 2024b; Dang et al., 2025; Wang et al., 2025a;c;
 510 Sakarvadia et al., 2025), activation steering (Li et al., 2024; Dang et al., 2025), localized edits (Guo
 511 et al., 2025; Wuerkaixi et al., 2025; Fan et al., 2025; Wang et al., 2025d; Gao et al., 2025; Ding et al.,
 512 2025). Other works focus on inference-time unlearning, including contrastive decoding (Huang
 513 et al., 2024a; Ji et al., 2024), in-context unlearning (Pawelczyk et al., 2023; Muresanu et al., 2024),
 514 guardrails (Thaker et al., 2024; Bhaila et al., 2024), task vector-based methods (Ilharco et al., 2022;
 515 Liu et al., 2024c; Dou et al., 2024), and input pre-processing (Gao et al., 2024; Liu et al., 2024a).
 516 However, most of these methods do not modify the LLM parameters, so the resulting system cannot
 517 be released as an open model and may still raise security concerns in black-box settings (Shi et al.,
 518 2023; Zade et al., 2025). In this work, we investigate the role of attention in unlearning from a new
 519 perspective.

520 **Adjusting Attention.** Beyond unlearning, attention adjustments, through temperature scaling or
 521 normalization, have been applied across diverse tasks, such as improving translation (Araabi et al.,
 522 2024; Henry et al., 2020), accelerating sequence labeling (Dufter et al., 2020), smoothing teacher
 523 signals for summarization distillation (Zhang et al., 2022), improving stability by avoiding entropy
 524 collapse (Zhai et al., 2023), maintaining selective focus in long-context reasoning (Veličković et al.,
 525 2024), tuning sparsity per query in LLMs (Zhang et al., 2024c), and aiding cross-domain few-shot
 526 transfer in vision (Zou et al., 2024). Moreover, prior work shows that smoothing across attention
 527 heads can impact safety (Zhou et al., 2024). To the best of our knowledge, its effect on unlearning
 528 has not yet been explored.

529 7 CONCLUSION 530

531 We introduced ASU, a method that reframes unlearning as self-distillation from a forget-teacher
 532 constructed by raising the softmax temperature in attention. By flattening attention and weakening
 533 the lexical-level and semantic-level associations that drive factual recall, ASU effectively erases
 534 memorized content while keeping responses on forget prompts coherent. Extensive experiments
 535 across various scenarios show that ASU reaches strong forget efficacy with minimal utility loss, and
 536 unlike prior divergence-based or convergence-based methods, it avoids gibberish outputs or under-
 537 forgetting. These findings position ASU method as a simple, practical path for unlearning in LLMs
 538 and for safer model release.

539

540 8 ETHICS STATEMENT
541

542 This work investigates unlearning techniques for LLMs, with the goal of enabling models to forget
543 specific undesirable or sensitive knowledge while retaining general utility. Our experiments are
544 conducted on publicly available datasets and do not involve private or personally identifiable information.
545 We recognize that unlearning methods may raise ethical concerns if misused, for example by selectively
546 erasing knowledge in ways that distort truth, suppress marginalized perspectives, or enable malicious
547 applications. To mitigate these risks, we focus on controlled benchmarks, transparently report our
548 methodology and limitations, and emphasize that unlearning should be applied responsibly, in alignment
549 with broader principles of trustworthy and safe AI.

550
551 9 REPRODUCIBILITY STATEMENT
552

553 We have taken several steps to facilitate the reproducibility of our results. All datasets used in our
554 experiments are publicly available. We provide detailed descriptions of baselines and evaluation pro-
555 tocols in the main text and appendix. Our code, including scripts to reproduce the experiments and
556 generate the reported figures and tables, are included as supplemental materials. And it will be made
557 publicly available upon publication. Models with checkpoints and random seeds are documented to
558 ensure consistency across runs.

559
560 REFERENCES
561

562 Ali Araabi, Vlad Niculae, and Christof Monz. Entropy-and distance-regularized attention improves
563 low-resource neural machine translation. In *Proceedings of the 16th Conference of the Association
564 for Machine Translation in the Americas (Volume 1: Research Track)*, pp. 140–153, 2024.

565 Karuna Bhaila, Minh-Hao Van, and Xintao Wu. Soft prompting for unlearning in large language
566 models. *arXiv preprint arXiv:2406.12038*, 2024.

567 Alberto Blanco-Justicia, Najeeb Jebreel, Benet Manzanares-Salor, David Sánchez, Josep Domingo-
568 Ferrer, Guillem Collell, and Kuan Eeik Tan. Digital forgetting in large language models: A survey
569 of unlearning methods. *Artificial Intelligence Review*, 58(3):90, 2025.

570 Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-Choo, Hengrui Jia, Adelin
571 Travers, Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning. In *2021 IEEE
572 Symposium on Security and Privacy (SP)*, pp. 141–159. IEEE, 2021.

573 Hannah Brown, Katherine Lee, Fatemehsadat Mireshghallah, Reza Shokri, and Florian Tramèr.
574 What does it mean for a language model to preserve privacy? In *Proceedings of the 2022 ACM
575 conference on fairness, accountability, and transparency*, pp. 2280–2292, 2022.

576 Yinzhi Cao and Junfeng Yang. Towards making systems forget with machine unlearning. In *2015
577 IEEE symposium on security and privacy*, pp. 463–480, 2015.

578 Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine
579 Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, et al. Extracting training data
580 from large language models. In *30th USENIX security symposium (USENIX Security 21)*, pp.
581 2633–2650, 2021.

582 Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-Gazpio, and Lucia Specia. Semeval-2017 task
583 1: Semantic textual similarity-multilingual and cross-lingual focused evaluation. *arXiv preprint
584 arXiv:1708.00055*, 2017.

585 Min Chen, Zhikun Zhang, Tianhao Wang, Michael Backes, Mathias Humbert, and Yang Zhang.
586 Graph unlearning. In *Proceedings of the 2022 ACM SIGSAC Conference on Computer and Com-
587 munications Security*, pp. 499–513, 2022.

588 Huu-Tien Dang, Tin Pham, Hoang Thanh-Tung, and Naoya Inoue. On effects of steering latent
589 representation for large language model unlearning. In *Proceedings of the AAAI Conference on
590 Artificial Intelligence*, volume 39, pp. 23733–23742, 2025.

594 Quang-Vinh Dang. Right to be forgotten in the age of machine learning. In *International Conference*
 595 *on Advances in Digital Science*, pp. 403–411. Springer, 2021.
 596

597 Chenlu Ding, Jiancan Wu, Yancheng Yuan, Jinda Lu, Kai Zhang, Alex Su, Xiang Wang, and Xiang-
 598 nan He. Unified parameter-efficient unlearning for LLMs. In *The Thirteenth International Confer-
 599 ence on Learning Representations*, 2025. URL <https://openreview.net/forum?id=zONMuIVCAT>
 600

601 Yijiang River Dong, Hongzhou Lin, Mikhail Belkin, Ramon Huerta, and Ivan Vulić. Undial: Self-
 602 distillation with adjusted logits for robust unlearning in large language models. *arXiv preprint
 603 arXiv:2402.10052*, 2024.

604 Vineeth Dorna, Anmol Mekala, Wenlong Zhao, Andrew McCallum, Zachary C Lipton, J Zico
 605 Kolter, and Pratyush Maini. Openunlearning: Accelerating llm unlearning via unified bench-
 606 marking of methods and metrics. *arXiv preprint arXiv:2506.12618*, 2025.
 607

608 Guangyao Dou, Zheyuan Liu, Qing Lyu, Kaize Ding, and Eric Wong. Avoiding copyright infringe-
 609 ment via large language model unlearning. *arXiv preprint arXiv:2406.10952*, 2024.

610 Jiacheng Du, Zhibo Wang, Jie Zhang, Xiaoyi Pang, Jiahui Hu, and Kui Ren. Textual unlearning
 611 gives a false sense of unlearning. *arXiv preprint arXiv:2406.13348*, 2024.
 612

613 Philipp Dufter, Martin Schmitt, and Hinrich Schütze. Increasing learning efficiency of self-attention
 614 networks through direct position interactions, learnable temperature, and convoluted attention.
 615 2020.

616 Ronen Eldan and Mark Russinovich. Who's harry potter? approximate unlearning in llms. *arXiv
 617 preprint arXiv:2310.02238*, 2023a.
 618

619 Ronen Eldan and Mark Russinovich. Who's harry potter? approximate unlearning in llms, 2023b.

620 Chongyu Fan, Jiancheng Liu, Licong Lin, Jinghan Jia, Ruiqi Zhang, Song Mei, and Sijia Liu. Sim-
 621 plicity prevails: Rethinking negative preference optimization for llm unlearning. *arXiv preprint
 622 arXiv:2410.07163*, 2024.
 623

624 Chongyu Fan, Jinghan Jia, Yihua Zhang, Anil Ramakrishna, Mingyi Hong, and Sijia Liu. Towards
 625 LLM unlearning resilient to relearning attacks: A sharpness-aware minimization perspective and
 626 beyond. In *Forty-second International Conference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=zZjLv6F0Ks>.
 627

628 Jack Foster, Stefan Schoepf, and Alexandra Brintrup. Fast machine unlearning without retraining
 629 through selective synaptic dampening. In *Proceedings of the AAAI conference on artificial intel-
 630 ligence*, volume 38, pp. 12043–12051, 2024.

631 Rohit Gandikota, Joanna Materzynska, Jaden Fiotto-Kaufman, and David Bau. Erasing concepts
 632 from diffusion models. *arXiv preprint arXiv:2303.07345*, 2023.
 633

634 Chongyang Gao, Lixu Wang, Kaize Ding, Chenkai Weng, Xiao Wang, and Qi Zhu. On large lan-
 635 guage model continual unlearning. *arXiv preprint arXiv:2407.10223*, 2024.
 636

637 Chongyang Gao, Lixu Wang, Kaize Ding, Chenkai Weng, Xiao Wang, and Qi Zhu. On large lan-
 638 guage model continual unlearning. In *The Thirteenth International Conference on Learning Rep-
 639 resentations*, 2025. URL <https://openreview.net/forum?id=Essg9kb4yx>.
 640

Antonio Ginart, Melody Guan, Gregory Valiant, and James Y Zou. Making ai forget you: Data
 641 deletion in machine learning. *Advances in neural information processing systems*, 32, 2019.

642 Aditya Golatkar, Alessandro Achille, and Stefano Soatto. Eternal sunshine of the spotless net:
 643 Selective forgetting in deep networks. In *Proceedings of the IEEE/CVF Conference on Computer
 644 Vision and Pattern Recognition*, pp. 9304–9312, 2020.
 645

Roger Grosse, Juhan Bae, Cem Anil, Nelson Elhage, Alex Tamkin, Amirhossein Tajdini, Benoit
 646 Steiner, Dustin Li, Esin Durmus, Ethan Perez, et al. Studying large language model generalization
 647 with influence functions. *arXiv preprint arXiv:2308.03296*, 2023.

648 Kang Gu, Md Rafi Ur Rashid, Najrin Sultana, and Shagufta Mehnaz. Second-order information mat-
 649 ters: Revisiting machine unlearning for large language models. *arXiv preprint arXiv:2403.10557*,
 650 2024.

651 Phillip Huang Guo, Aaquib Syed, Abhay Sheshadri, Aidan Ewart, and Gintare Karolina Dzi-
 652 ugaite. Mechanistic unlearning: Robust knowledge unlearning and editing via mechanistic
 653 localization. In *Forty-second International Conference on Machine Learning*, 2025. URL
 654 <https://openreview.net/forum?id=92oBV5HAG1>.

655 Anisa Halimi, Swanand Kadhe, Ambrish Rawat, and Nathalie Baracaldo. Federated unlearning:
 656 How to efficiently erase a client in fl? *arXiv preprint arXiv:2207.05521*, 2022.

657 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
 658 Steinhardt. Measuring massive multitask language understanding. In *International Conference
 659 on Learning Representations*.

660 Alex Henry, Prudhvi Raj Dachapally, Shubham Shantaram Pawar, and Yuxuan Chen. Query-key
 661 normalization for transformers. In Trevor Cohn, Yulan He, and Yang Liu (eds.), *Findings of the
 662 Association for Computational Linguistics: EMNLP 2020*, pp. 4246–4253, Online, November
 663 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.findings-emnlp.379.
 664 URL <https://aclanthology.org/2020.findings-emnlp.379/>.

665 Shengyuan Hu, Yiwei Fu, Zhiwei Steven Wu, and Virginia Smith. Unlearning or obfuscating?
 666 jogging the memory of unlearned llms via benign relearning. *arXiv preprint arXiv:2406.13356*,
 667 2024.

668 James Y Huang, Wenxuan Zhou, Fei Wang, Fred Morstatter, Sheng Zhang, Hoifung Poon, and
 669 Muha Chen. Offset unlearning for large language models. *arXiv preprint arXiv:2404.11045*,
 670 2024a.

671 Yue Huang, Lichao Sun, Haoran Wang, Siyuan Wu, Qihui Zhang, Yuan Li, Chujie Gao, Yixin
 672 Huang, Wenhan Lyu, Yixuan Zhang, et al. Position: Trustllm: Trustworthiness in large language
 673 models. In *International Conference on Machine Learning*, pp. 20166–20270. PMLR, 2024b.

674 Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt,
 675 Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic. *arXiv preprint
 676 arXiv:2212.04089*, 2022.

677 Yoichi Ishibashi and Hidetoshi Shimodaira. Knowledge sanitization of large language models. *arXiv
 678 preprint arXiv:2309.11852*, 2023.

679 Zachary Izzo, Mary Anne Smart, Kamalika Chaudhuri, and James Zou. Approximate data dele-
 680 tion from machine learning models. In *International Conference on Artificial Intelligence and
 681 Statistics*, pp. 2008–2016. PMLR, 2021.

682 Joel Jang, Dongkeun Yoon, Sohee Yang, Sungmin Cha, Moontae Lee, Lajanugen Logeswaran, and
 683 Minjoon Seo. Knowledge unlearning for mitigating privacy risks in language models. *arXiv
 684 preprint arXiv:2210.01504*, 2022.

685 Jiabao Ji, Yujian Liu, Yang Zhang, Gaowen Liu, Ramana R Kompella, Sijia Liu, and Shiyu Chang.
 686 Reversing the forget-retain objectives: An efficient llm unlearning framework from logit differ-
 687 ence. *Advances in Neural Information Processing Systems*, 37:12581–12611, 2024.

688 Jinghan Jia, Jiancheng Liu, Parikshit Ram, Yuguang Yao, Gaowen Liu, Yang Liu, Pranay Sharma,
 689 and Sijia Liu. Model sparsity can simplify machine unlearning. In *Thirty-seventh Conference on
 690 Neural Information Processing Systems*, 2023.

691 Jinghan Jia, Yihua Zhang, Yimeng Zhang, Jiancheng Liu, Bharat Runwal, James Diffenderfer,
 692 Bhavya Kailkhura, and Sijia Liu. Soul: Unlocking the power of second-order optimization for
 693 llm unlearning. *arXiv preprint arXiv:2404.18239*, 2024.

694 Dongsheng Jiang, Yuchen Liu, Songlin Liu, Jin'e Zhao, Hao Zhang, Zhen Gao, Xiaopeng Zhang, Jin
 695 Li, and Hongkai Xiong. From clip to dino: Visual encoders shout in multi-modal large language
 696 models. *arXiv preprint arXiv:2310.08825*, 2023.

702 Zhuoran Jin, Pengfei Cao, Chenhao Wang, Zhitao He, Hongbang Yuan, Jiachun Li, Yubo Chen,
 703 Kang Liu, and Jun Zhao. Ruku: Benchmarking real-world knowledge unlearning for large lan-
 704 guage models. *Advances in Neural Information Processing Systems*, 37:98213–98263, 2024.

705 Zachary Kenton, Tom Everitt, Laura Weidinger, Iason Gabriel, Vladimir Mikulik, and Geoffrey
 706 Irving. Alignment of language agents. *arXiv preprint arXiv:2103.14659*, 2021.

708 Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
 709 *International conference on machine learning*, pp. 1885–1894. PMLR, 2017.

710 Nupur Kumari, Bingliang Zhang, Sheng-Yu Wang, Eli Shechtman, Richard Zhang, and Jun-Yan
 711 Zhu. Ablating concepts in text-to-image diffusion models. In *Proceedings of the IEEE/CVF
 712 International Conference on Computer Vision*, pp. 22691–22702, 2023.

713 Meghdad Kurmanji, Peter Triantafillou, Jamie Hayes, and Eleni Triantafillou. Towards unbounded
 714 machine unlearning. *Advances in neural information processing systems*, 36:1957–1987, 2023.

715 Angeliki Lazaridou, Adhi Kuncoro, Elena Gribovskaya, Devang Agrawal, Adam Liska, Tayfun
 716 Terzi, Mai Gimenez, Cyprien de Masson d’Autume, Tomas Kociský, Sebastian Ruder, et al. Mind
 717 the gap: Assessing temporal generalization in neural language models. *Advances in Neural In-
 718 formation Processing Systems*, 34:29348–29363, 2021.

719 Nathaniel Li, Alexander Pan, Anjali Gopal, Summer Yue, Daniel Berrios, Alice Gatti, Justin D Li,
 720 Ann-Kathrin Dombrowski, Shashwat Goel, Long Phan, et al. The wmdp benchmark: Measuring
 721 and reducing malicious use with unlearning. *arXiv preprint arXiv:2403.03218*, 2024.

722 Chris Liu, Yaxuan Wang, Jeffrey Flanigan, and Yang Liu. Large language model unlearning via
 723 embedding-corrupted prompts. *Advances in Neural Information Processing Systems*, 37:118198–
 724 118266, 2024a.

725 Sijia Liu, Yuanshun Yao, Jinghan Jia, Stephen Casper, Nathalie Baracaldo, Peter Hase, Yuguang
 726 Yao, Chris Yuhao Liu, Xiaojun Xu, Hang Li, et al. Rethinking machine unlearning for large
 727 language models. *Nature Machine Intelligence*, pp. 1–14, 2025a.

728 Zhenhua Liu, Tong Zhu, Chuanyuan Tan, and Wenliang Chen. Learning to refuse: Towards mitigat-
 729 ing privacy risks in llms. *arXiv preprint arXiv:2407.10058*, 2024b.

730 Zhenhua Liu, Tong Zhu, Chuanyuan Tan, and Wenliang Chen. Learning to refuse: Towards mitigat-
 731 ing privacy risks in llms. In *Proceedings of the 31st International Conference on Computational
 732 Linguistics*, pp. 1683–1698, 2025b.

733 Zheyuan Liu, Guangyao Dou, Zhaoxuan Tan, Yijun Tian, and Meng Jiang. Towards safer large
 734 language models through machine unlearning. *arXiv preprint arXiv:2402.10058*, 2024c.

735 Weikai Lu, Ziqian Zeng, Jianwei Wang, Zhengdong Lu, Zelin Chen, Huiping Zhuang, and Cen
 736 Chen. Eraser: Jailbreaking defense in large language models via unlearning harmful knowledge.
 737 *arXiv preprint arXiv:2404.05880*, 2024.

738 Pratyush Maini, Zhili Feng, Avi Schwarzschild, Zachary Chase Lipton, and J Zico Kolter. TOFU:
 739 A task of fictitious unlearning for LLMs. In *First Conference on Language Modeling*, 2024.

740 Anmol Mekala, Vineeth Dorna, Shreya Dubey, Abhishek Lalwani, David Koleczek, Mukund
 741 Rungta, Sadid Hasan, and Elita Lobo. Alternate preference optimization for unlearning factual
 742 knowledge in large language models. *arXiv preprint arXiv:2409.13474*, 2024.

743 Kevin Meng, Arnab Sen Sharma, Alex Andonian, Yonatan Belinkov, and David Bau. Mass-editing
 744 memory in a transformer. *arXiv preprint arXiv:2210.07229*, 2022.

745 Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
 746 models. In *International Conference on Learning Representations*, 2017.

747 Sasi Kumar Murakonda, Reza Shokri, and George Theodorakopoulos. Quantifying the privacy
 748 risks of learning high-dimensional graphical models. In *International Conference on Artificial
 749 Intelligence and Statistics*, pp. 2287–2295. PMLR, 2021.

756 Andrei Muresanu, Anvith Thudi, Michael R Zhang, and Nicolas Papernot. Unlearnable algorithms
 757 for in-context learning. *arXiv preprint arXiv:2402.00751*, 2024.

758

759 Seth Neel, Aaron Roth, and Saeed Sharifi-Malvajerdi. Descent-to-delete: Gradient-based methods
 760 for machine unlearning. In *Algorithmic Learning Theory*, pp. 931–962. PMLR, 2021.

761

762 Stuart L Pardau. The california consumer privacy act: Towards a european-style privacy regime in
 763 the united states. *J. Tech. L. & Pol'y*, 23:68, 2018.

764

765 Martin Pawelczyk, Seth Neel, and Himabindu Lakkaraju. In-context unlearning: Language models
 766 as few shot unlearners. *arXiv preprint arXiv:2310.07579*, 2023.

767

768 Adam Poliak. A survey on recognizing textual entailment as an nlp evaluation. *arXiv preprint
 769 arXiv:2010.03061*, 2020.

770

771 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 772 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances
 773 in Neural Information Processing Systems*, 36:53728–53741, 2023.

774

775 Protection Regulation. Regulation (eu) 2016/679 of the european parliament and of the council.
 776 *Regulation (eu)*, 679(2016):10–13, 2016.

777

778 Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
 779 networks. *arXiv preprint arXiv:1908.10084*, 2019.

780

781 Jeffrey Rosen. The right to be forgotten. *Stan. L. Rev. Online*, 64:88, 2011.

782

783 Mansi Sakarvadia, Aswathy Ajith, Arham Mushtaq Khan, Nathaniel C Hudson, Caleb Geniesse,
 784 Kyle Chard, Yaoqing Yang, Ian Foster, and Michael W. Mahoney. Mitigating memorization in
 785 language models. In *The Thirteenth International Conference on Learning Representations*, 2025.
 786 URL <https://openreview.net/forum?id=MGKDBuyv4p>.

787

788 Ayush Sekhari, Jayadev Acharya, Gautam Kamath, and Ananda Theertha Suresh. Remember what
 789 you want to forget: Algorithms for machine unlearning. *Advances in Neural Information Pro-
 790 cessing Systems*, 34:18075–18086, 2021.

791

792 Weijia Shi, Anirudh Ajith, Mengzhou Xia, Yangsibo Huang, Daogao Liu, Terra Blevins, Danqi
 793 Chen, and Luke Zettlemoyer. Detecting pretraining data from large language models. *arXiv
 794 preprint arXiv:2310.16789*, 2023.

795

796 Weijia Shi, Jaechan Lee, Yangsibo Huang, Sadhika Malladi, Jieyu Zhao, Ari Holtzman, Daogao
 797 Liu, Luke Zettlemoyer, Noah A Smith, and Chiyuan Zhang. Muse: Machine unlearning six-way
 798 evaluation for language models. *arXiv preprint arXiv:2407.06460*, 2024.

799

800 Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference at-
 801 tacks against machine learning models. In *2017 IEEE symposium on security and privacy (SP)*,
 802 pp. 3–18, 2017.

803

804 Damien Sileo. tasksource: A dataset harmonization framework for streamlined nlp multi-task learn-
 805 ing and evaluation. *arXiv preprint arXiv:2301.05948*, 2023.

806

807 Rishabh Tamirisa, Bhrugu Bharathi, Long Phan, Andy Zhou, Alice Gatti, Tarun Suresh, Maxwell
 808 Lin, Justin Wang, Rowan Wang, Ron Arel, et al. Tamper-resistant safeguards for open-weight
 809 llms. *arXiv preprint arXiv:2408.00761*, 2024.

810

811 Pratiksha Thaker, Yash Maurya, Shengyuan Hu, Zhiwei Steven Wu, and Virginia Smith. Guardrail
 812 baselines for unlearning in llms. *arXiv preprint arXiv:2403.03329*, 2024.

813

814 Bozhong Tian, Xiaozhuan Liang, Siyuan Cheng, Qingbin Liu, Mengru Wang, Dianbo Sui, Xi Chen,
 815 Huajun Chen, and Ningyu Zhang. To forget or not? towards practical knowledge unlearning for
 816 large language models. *arXiv preprint arXiv:2407.01920*, 2024.

817

818 Lewis Tunstall, Edward Beeching, Nathan Lambert, Nazneen Rajani, Kashif Rasul, Younes Belkada,
 819 Shengyi Huang, Leandro Von Werra, Clémentine Fourrier, Nathan Habib, et al. Zephyr: Direct
 820 distillation of lm alignment. *arXiv preprint arXiv:2310.16944*, 2023.

810 Petar Veličković, Christos Perivolaropoulos, Federico Barbero, and Razvan Pascanu. Softmax is not
 811 enough (for sharp size generalisation). *arXiv preprint arXiv:2410.01104*, 2024.

812

813 Bichen Wang, Yuzhe Zi, Yixin Sun, Yanyan Zhao, and Bing Qin. Rkld: Reverse kl-divergence-
 814 based knowledge distillation for unlearning personal information in large language models. *arXiv*
 815 *preprint arXiv:2406.01983*, 2024.

816 Boxin Wang, Weixin Chen, Hengzhi Pei, Chulin Xie, Mintong Kang, Chenhui Zhang, Chejian Xu,
 817 Zidi Xiong, Ritik Dutta, Rylan Schaeffer, et al. Decodingtrust: A comprehensive assessment of
 818 trustworthiness in gpt models. In *NeurIPS*, 2023.

819

820 Hangyu Wang, Jianghao Lin, Bo Chen, Yang Yang, Ruiming Tang, Weinan Zhang, and Yong Yu.
 821 Towards efficient and effective unlearning of large language models for recommendation. *Fron-
 822 tiers of Computer Science*, 19(3):193327, 2025a.

823 Junxiao Wang, Song Guo, Xin Xie, and Heng Qi. Federated unlearning via class-discriminative
 824 pruning. In *Proceedings of the ACM Web Conference 2022*, pp. 622–632, 2022.

825

826 Lingzhi Wang, Xingshan Zeng, Jinsong Guo, Kam-Fai Wong, and Georg Gottlob. Selective forget-
 827 ting: Advancing machine unlearning techniques and evaluation in language models. In *Proceed-
 828 ings of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 843–851, 2025b.

829 Qizhou Wang, Jin Peng Zhou, Zhanke Zhou, Saeyeol Shin, Bo Han, and Kilian Q Weinberger.
 830 Rethinking LLM unlearning objectives: A gradient perspective and go beyond. In *The Thirteenth
 831 International Conference on Learning Representations*, 2025c. URL <https://openreview.net/forum?id=huo8MqVH6t>.

832

833 Yue Wang, Qizhou Wang, Feng Liu, Wei Huang, Yali Du, Xiaojiang Du, and Bo Han. GRU: Mit-
 834 igating the trade-off between unlearning and retention for LLMs. In *Forty-second International
 835 Conference on Machine Learning*, 2025d. URL <https://openreview.net/forum?id=EAjhGr1Oeo>.

836

837 Alexander Warnecke, Lukas Pirch, Christian Wressnegger, and Konrad Rieck. Machine unlearning
 838 of features and labels. *arXiv preprint arXiv:2108.11577*, 2021.

839

840 Laura Weidinger, John Mellor, Maribeth Rauh, Conor Griffin, Jonathan Uesato, Po-Sen Huang,
 841 Myra Cheng, Mia Glaese, Borja Balle, Atoosa Kasirzadeh, et al. Ethical and social risks of harm
 842 from language models. *arXiv preprint arXiv:2112.04359*, 2021.

843

844 Kun Wu, Jie Shen, Yue Ning, Ting Wang, and Wendy Hui Wang. Certified edge unlearning for graph
 845 neural networks. In *Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery
 846 and Data Mining*, pp. 2606–2617, 2023.

847

848 Abudukelimu Wuerkaixi, Qizhou Wang, Sen Cui, Wutong Xu, Bo Han, Gang Niu, Masashi
 849 Sugiyama, and Changshui Zhang. Adaptive localization of knowledge negation for continual
 850 LLM unlearning. In *Forty-second International Conference on Machine Learning*, 2025. URL
 851 <https://openreview.net/forum?id=tCk4PV3VN4>.

852

853 Jin Yao, Eli Chien, Minxin Du, Xinyao Niu, Tianhao Wang, Zezhou Cheng, and Xiang Yue. Machine
 854 unlearning of pre-trained large language models. *arXiv preprint arXiv:2402.15159*, 2024a.

855

856 Yuanshun Yao, Xiaojun Xu, and Yang Liu. Large language model unlearning. *arXiv preprint
 857 arXiv:2310.10683*, 2023.

858

859 Yuanshun Yao, Xiaojun Xu, and Yang Liu. Large language model unlearning. *Advances in Neural
 860 Information Processing Systems*, 37:105425–105475, 2024b.

861

862 Xiaojian Yuan, Tianyu Pang, Chao Du, Kejiang Chen, Weiming Zhang, and Min Lin. A closer look
 863 at machine unlearning for large language models. *arXiv preprint arXiv:2410.08109*, 2024.

864

865 Saleh Zare Zade, Yao Qiang, Xiangyu Zhou, Hui Zhu, Mohammad Amin Roshani, Prashant Khan-
 866 duri, and Dongxiao Zhu. Automatic calibration for membership inference attack on large lan-
 867 guage models. *arXiv preprint arXiv:2505.03392*, 2025.

864 Shuangfei Zhai, Tatiana Likhomanenko, Eta Littwin, Dan Busbridge, Jason Ramapuram, Yizhe
 865 Zhang, Jiatao Gu, and Joshua M Susskind. Stabilizing transformer training by preventing attention
 866 entropy collapse. In *International Conference on Machine Learning*, pp. 40770–40803. PMLR,
 867 2023.

868 Dawen Zhang, Pamela Finckenberg-Broman, Thong Hoang, Shidong Pan, Zhenchang Xing, Mark
 869 Staples, and Xiwei Xu. Right to be forgotten in the era of large language models: Implications,
 870 challenges, and solutions. *AI and Ethics*, pp. 1–10, 2024a.

872 Ruiqi Zhang, Licong Lin, Yu Bai, and Song Mei. Negative preference optimization: From catas-
 873 trophic collapse to effective unlearning. In *First Conference on Language Modeling*, 2024b.

875 Shengqiang Zhang, Xingxing Zhang, Hangbo Bao, and Furu Wei. Attention temperature mat-
 876 ters in abstractive summarization distillation. In Smaranda Muresan, Preslav Nakov, and Aline
 877 Villavicencio (eds.), *Proceedings of the 60th Annual Meeting of the Association for Compu-
 878 tational Linguistics (Volume 1: Long Papers)*, pp. 127–141, Dublin, Ireland, May 2022. As-
 879 sociation for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.11. URL <https://aclanthology.org/2022.acl-long.11/>.

880 Xuechen Zhang, Xiangyu Chang, Mingchen Li, Amit Roy-Chowdhury, Jiasi Chen, and Samet Oy-
 881 mak. Selective attention: Enhancing transformer through principled context control. *Advances in
 882 Neural Information Processing Systems*, 37:11061–11086, 2024c.

884 Kairan Zhao, Meghdad Kurmanji, George-Octavian Bărbulescu, Eleni Triantafillou, and Peter Tri-
 885 antafillou. What makes unlearning hard and what to do about it. *Advances in Neural Information
 886 Processing Systems*, 37:12293–12333, 2024.

887 Xiangyu Zhou, Yao Qiang, Saleh Zare Zade, Douglas Ztyko, Prashant Khanduri, and Dongxiao Zhu.
 888 Not all tokens are meant to be forgotten. *arXiv preprint arXiv:2506.03142*, 2025.

890 Zhenhong Zhou, Haiyang Yu, Xinghua Zhang, Rongwu Xu, Fei Huang, Kun Wang, Yang Liu,
 891 Junfeng Fang, and Yongbin Li. On the role of attention heads in large language model safety.
 892 *arXiv preprint arXiv:2410.13708*, 2024.

893 Yixiong Zou, Ran Ma, Yuhua Li, and Ruixuan Li. Attention temperature matters in vit-based cross-
 894 domain few-shot learning. *Advances in Neural Information Processing Systems*, 37:116332–
 895 116354, 2024.

896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917

918 APPENDIX
919920 A PROOF
921922 A.1 NOTATIONS
923

924 Let V be a finite vocabulary, and let θ denote the parameters of a pretrained decoder-only language
925 model. For any input–output pair (x, y) , where
926

$$927 \quad x = (x_1, \dots, x_L) \quad \text{and} \quad y = (y_1, \dots, y_T),$$

928 the model defines conditional probabilities
929

$$930 \quad p_\theta(y_t \mid x \circ y_{<t}), \quad t = 1, \dots, T.$$

932 For any $(x, y) \in D_F$ (forget set), we partition the target positions into
933

$$934 \quad F \subseteq \{1, \dots, T\} \quad (\text{factual positions}), \quad G = \{1, \dots, T\} \setminus F \quad (\text{function positions}).$$

935 Factual positions correspond to the tokens that encode the unwanted information to be removed,
936 whereas function positions refer to tokens that serve primarily syntactic or structural roles within
937 the sequence.
938

939 A.2 SELF-ATTENTION AND TEMPERATURE
940

941 Consider a single Transformer layer with one attention head (layer and head indices are omitted for
942 clarity; the argument applies to each head independently). For a position t , let $q_t \in \mathbb{R}^d$ denote the
943 query vector, and let $k_i, v_i \in \mathbb{R}^d$ be the key and value vectors for all positions $i \leq t$.
944

945 The attention logits are

$$946 \quad a_{t,i} := \frac{\langle q_t, k_i \rangle}{\sqrt{d}}, \quad i = 1, \dots, t,$$

948 and the standard attention weights (with temperature set to 1) are
949

$$950 \quad \alpha_{t,i} = \frac{\exp(a_{t,i})}{\sum_{j=1}^t \exp(a_{t,j})}.$$

953 The corresponding attention output is

$$955 \quad z_t = \sum_{i=1}^t \alpha_{t,i} v_i.$$

958 We introduce a temperature parameter $\tau \geq 1$ and define the smoothed attention weights
959

$$960 \quad \alpha_{t,i}(\tau) = \frac{\exp(a_{t,i}/\tau)}{\sum_{j=1}^t \exp(a_{t,j}/\tau)},$$

963 with attention output

$$964 \quad z_t(\tau) = \sum_{i=1}^t \alpha_{t,i}(\tau) v_i.$$

967 When $\tau = 1$, the model recovers the base attention: $\alpha_{t,i}(1) = \alpha_{t,i}$ and $z_t(1) = z_t$. For $\tau > 1$, the
968 distribution $\alpha_t(\tau)$ becomes strictly flatter than α_t due to the scaling of all logit differences by $1/\tau$.
969

970 We define the *attention-smoothed teacher model* θ_τ as the model obtained by applying temperature τ
971 in all attention heads while keeping all other components (feed-forward layers, layer norms, and
output projection) unchanged.

972 A.3 OUTPUT LAYER AND TOKEN PROBABILITIES
973974 Let $W \in \mathbb{R}^{|V| \times d}$ and $b \in \mathbb{R}^{|V|}$ denote the output projection matrix and bias. At position t , let h_t be
975 the hidden representation produced by the Transformer (which incorporates the attention output z_t
976 through the subsequent layers).977 For each token $w \in V$, the model computes the logit
978

979
$$\ell_t(w; \theta) = \langle W_w, h_t \rangle + b_w,$$

980 and the corresponding conditional probability
981

982
$$p_\theta(w | x \circ y_{<t}) = \frac{\exp(\ell_t(w; \theta))}{\sum_{u \in V} \exp(\ell_t(u; \theta))}.$$

983

984 For the attention-smoothed teacher model θ_τ , applying temperature τ only inside the attention mech-
985 anism yields modified hidden states $h_t(\tau)$, which produce logits
986

987
$$\ell_t(w; \theta_\tau)$$

988

989 and token probabilities
990

991
$$p_{\theta_\tau}(w | x \circ y_{<t}).$$

992

993 A.4 NOTIONS OF “FORGETTING” AND “FLUENCY”
994995 We define two properties of interest: the removal of specific factual content and the preservation of
996 normal language behavior.
997998 A.4.1 FORGETTING
9991000 Fix a forget example $(x, y) \in D_F$ and a factual position $t \in F$. Let y_t^* denote the factual token to
1001 be removed (for example, the correct entity name in TOFU).1002 We say that the smoothed model θ_τ forgets this fact at position t if
1003

1004
$$p_{\theta_\tau}(y_t^* | x \circ y_{<t}) \leq \epsilon_F,$$

1005

1006 for some small threshold $\epsilon_F > 0$ (roughly the level of random guess accuracy among plausible
1007 entities).
10081009 At the sequence level, forgetting holds on D_F when the average
1010

1011
$$-\log p_{\theta_\tau}(y_t^* | x \circ y_{<t})$$

1012

1013 over all $(x, y) \in D_F$ and all $t \in F$ is at least a target value L_F , meaning the model assigns low
1014 probability to the factual tokens.
10151016 A.4.2 FLUENCY
10171018 For function positions $t \in G$, we require that the model continue to assign high probability to the
1019 correct function tokens, which reflect grammar and structure.
10201021 We say that θ_τ preserves fluency on (x, y) if
1022

1023
$$-\log p_{\theta_\tau}(y_t | x \circ y_{<t}) \leq -\log p_\theta(y_t | x \circ y_{<t}) + \delta_G, \quad t \in G,$$

1024

1025 for a tolerance $\delta_G > 0$.
10261027 At the sequence level, fluency is preserved if the average cross-entropy on function tokens increases
1028 by at most δ_G .
10291030 A.5 ASSUMPTIONS
10311032 To show that attention smoothing can remove specific facts while keeping normal language behavior,
1033 we introduce structural assumptions on how factual and function tokens depend on attention.
1034

1026 A.5.1 ASSUMPTION A1 (FACTUAL TOKENS REQUIRE PRECISE ATTENTION)
10271028 For every factual position $t \in F$, there exists a small index set $S_t \subseteq \{1, \dots, t\}$ such that the base
1029 attention places most of its mass on S_t :

1030
$$\sum_{i \in S_t} \alpha_{t,i} \geq \gamma \quad \text{for some } \gamma \in (0, 1).$$

1031
1032

1033 The value vectors at positions in S_t contain the main signal that raises the logit of the factual token
1034 y_t^* , while positions outside S_t contribute little to that fact.
1035

1036 Define

1037
$$z_t = \sum_{i=1}^t \alpha_{t,i} v_i, \quad z_t(S) := \frac{1}{|S_t|} \sum_{i \in S_t} v_i, \quad z_t(\bar{S}) := \frac{1}{t - |S_t|} \sum_{i \notin S_t} v_i.$$

1038
1039

1040 We assume that

1041
$$\langle W_{y_t^*} - W_u, z_t(S) - z_t(\bar{S}) \rangle \geq m_F > 0 \quad \text{for all tokens } u \neq y_t^*,$$

1042

1043 meaning that putting more weight on S_t instead of the remaining positions increases the logit of y_t^*
1044 by at least a margin m_F .
1045

1046 A.5.2 ASSUMPTION A2 (FUNCTION TOKENS ARE LESS ATTENTION-SENSITIVE)

1047 For each function position $t \in G$, we assume that the correct token y_t depends on a broad mixture
1048 of value vectors rather than on a small set of positions. In other words, predicting y_t does not rely
1049 on a sharp attention pattern.
10501051 Formally, let $\ell_t(y_t; \theta; z)$ denote the logit of y_t when the attention output at position t is z . Assume
1052 the logit is smooth with respect to z and satisfies an L -Lipschitz bound:

1053
$$|\ell_t(y_t; \theta; z) - \ell_t(y_t; \theta; z')| \leq L \|z - z'\|_2 \quad \text{for all } z, z'.
1054$$

1055 We also assume that the convex combinations of $\{v_i\}_{i \leq t}$ do not have strong changes in the direction
1056 of W_{y_t} . Thus, shifting the attention weights from a sharper pattern toward a smoother one (such as
1057 closer to uniform) causes only a small change in $\ell_t(y_t)$.
1058

1059 A.5.3 ASSUMPTION A3 (NON-DEGENERATE LOGITS FOR FACTUAL TOKENS)

1060 For each factual position $t \in F$, the base model assigns a clear margin to the correct factual token
1061 y_t^* . Formally,

1062
$$\ell_t(y_t^*; \theta) - \max_{u \neq y_t^*} \ell_t(u; \theta) \geq \Delta_F > 0.$$

1063

1064 This ensures that factual recall in the base model is supported by a positive logit gap.
10651066 A.5.4 ASSUMPTION A4 (CONTINUITY IN τ)1067 For every position t , the attention-smoothed hidden state $h_t(\tau)$ and the logits $\ell_t(w; \theta_\tau)$ vary continuously
1068 with respect to the temperature parameter τ .
10691070 This holds for standard Transformer layers, since attention, linear transformations, and activation
1071 functions are continuous.
1072

1073 A.6 LEMMAS

1074 A.6.1 LEMMA 1 (DIRECTION OF ATTENTION CHANGES UNDER TEMPERATURE)

1075 Fix a position t and attention logits $a_{t,1}, \dots, a_{t,t} \in \mathbb{R}$. For $\tau > 0$, define the temperature-scaled
1076 attention weights
1077

1078
$$\alpha_{t,i}(\tau) = \frac{\exp(a_{t,i}/\tau)}{\sum_{j=1}^t \exp(a_{t,j}/\tau)}, \quad i = 1, \dots, t.$$

1079

1080

Let

1081

1082

1083

$$\bar{a}_t(\tau) := \sum_{j=1}^t \alpha_{t,j}(\tau) a_{t,j}$$

1084

denote the average logit at position t under the attention distribution $\alpha_t(\tau)$.

1085

Then, for every $i \in \{1, \dots, t\}$,

1086

1087

1088

$$\frac{\partial}{\partial \tau} \alpha_{t,i}(\tau) = \frac{1}{\tau^2} \alpha_{t,i}(\tau) (\bar{a}_t(\tau) - a_{t,i}).$$

1089

In particular:

1090

1091

1092

1093

1094

- If $a_{t,i} > \bar{a}_t(\tau)$, then $\frac{\partial}{\partial \tau} \alpha_{t,i}(\tau) < 0$, so the attention on index i *decreases* as τ increases.
- If $a_{t,i} < \bar{a}_t(\tau)$, then $\frac{\partial}{\partial \tau} \alpha_{t,i}(\tau) > 0$, so the attention on index i *increases* as τ increases.
- If $a_{t,i} = \bar{a}_t(\tau)$, then $\frac{\partial}{\partial \tau} \alpha_{t,i}(\tau) = 0$.

1095

Proof.

1096

1097

For a fixed t , write $a_i := a_{t,i}$ and $\alpha_i(\tau) := \alpha_{t,i}(\tau)$ for $i = 1, \dots, t$ to lighten notation. By definition,

1098

1099

1100

$$\alpha_i(\tau) = \frac{\exp(a_i/\tau)}{Z(\tau)}, \quad Z(\tau) := \sum_{j=1}^t \exp(a_j/\tau).$$

1101

We first differentiate the log-attention with respect to τ :

1102

1103

1104

$$\log \alpha_i(\tau) = \frac{a_i}{\tau} - \log Z(\tau).$$

1105

Taking derivatives gives

1106

1107

$$\frac{\partial}{\partial \tau} \log \alpha_i(\tau) = -\frac{a_i}{\tau^2} - \frac{1}{Z(\tau)} \frac{\partial Z(\tau)}{\partial \tau}.$$

1108

1109

Next we compute $\frac{\partial Z(\tau)}{\partial \tau}$. By the chain rule,

1110

1111

1112

$$\frac{\partial Z(\tau)}{\partial \tau} = \sum_{j=1}^t \frac{\partial}{\partial \tau} \exp(a_j/\tau) = \sum_{j=1}^t \exp(a_j/\tau) \left(-\frac{a_j}{\tau^2} \right) = -\frac{1}{\tau^2} \sum_{j=1}^t a_j \exp(a_j/\tau).$$

1113

Thus

1114

1115

1116

$$\frac{1}{Z(\tau)} \frac{\partial Z(\tau)}{\partial \tau} = -\frac{1}{\tau^2} \frac{\sum_{j=1}^t a_j \exp(a_j/\tau)}{\sum_{k=1}^t \exp(a_k/\tau)} = -\frac{1}{\tau^2} \sum_{j=1}^t \alpha_j(\tau) a_j = -\frac{1}{\tau^2} \bar{a}(\tau),$$

1117

where

1118

1119

1120

$$\bar{a}(\tau) := \sum_{j=1}^t \alpha_j(\tau) a_j$$

1121

is the average logit under the current attention distribution.

1122

Plugging this back into the derivative of $\log \alpha_i(\tau)$, we get

1123

1124

1125

$$\frac{\partial}{\partial \tau} \log \alpha_i(\tau) = -\frac{a_i}{\tau^2} + \frac{1}{\tau^2} \bar{a}(\tau) = \frac{1}{\tau^2} (\bar{a}(\tau) - a_i).$$

1126

Finally, we move from the derivative of the log-attention to the derivative of the attention itself.

1127

Since

1128

1129

$$\frac{\partial}{\partial \tau} \alpha_i(\tau) = \alpha_i(\tau) \frac{\partial}{\partial \tau} \log \alpha_i(\tau),$$

1130

1131

1132

we obtain

1133

1134

$$\frac{\partial}{\partial \tau} \alpha_i(\tau) = \alpha_i(\tau) \frac{1}{\tau^2} (\bar{a}(\tau) - a_i) = \frac{1}{\tau^2} \alpha_i(\tau) (\bar{a}(\tau) - a_i),$$

which is the claimed formula.

1135

The sign statements follow directly:

1134 • If $a_i > \bar{a}(\tau)$, then $\bar{a}(\tau) - a_i < 0$, so $\frac{\partial}{\partial \tau} \alpha_i(\tau) < 0$ and the attention on i decreases with τ .
 1135 • If $a_i < \bar{a}(\tau)$, then $\bar{a}(\tau) - a_i > 0$, so $\frac{\partial}{\partial \tau} \alpha_i(\tau) > 0$ and the attention on i increases with τ .
 1136 • If $a_i = \bar{a}(\tau)$, then $\frac{\partial}{\partial \tau} \alpha_i(\tau) = 0$.

1137
 1138 This shows that increasing the temperature shifts mass from positions with above-average logits
 1139 to positions with below-average logits, which matches the intuitive picture of attention becoming
 1140 flatter. \square

1141
 1142 **A.6.2 LEMMA 2 (ATTENTION ENTROPY INCREASES BY INCREASING TEMPERATURE)**

1143 Fix a position t and attention logits $a_{t,1}, \dots, a_{t,t} \in \mathbb{R}$. For $\tau > 0$, define

1144
 1145
$$\alpha_{t,i}(\tau) = \frac{\exp(a_{t,i}/\tau)}{\sum_{j=1}^t \exp(a_{t,j}/\tau)}, \quad i = 1, \dots, t,$$

1146 and the entropy

1147
 1148
$$H_t(\tau) := - \sum_{i=1}^t \alpha_{t,i}(\tau) \log \alpha_{t,i}(\tau).$$

1149 Let

1150
 1151
$$\bar{a}_t(\tau) := \sum_{j=1}^t \alpha_{t,j}(\tau) a_{t,j}$$

1152 be the average logit at position t under $\alpha_t(\tau)$. Then

1153
 1154
$$\frac{\partial}{\partial \tau} H_t(\tau) = \frac{1}{\tau^3} \text{Var}_{\alpha_t(\tau)}(a_{t,1}, \dots, a_{t,t}) \geq 0,$$

1155 with strict inequality whenever the logits $a_{t,1}, \dots, a_{t,t}$ are not all equal.

1156 **Proof.**

1157 Fix t and write $a_i := a_{t,i}$ and $\alpha_i(\tau) := \alpha_{t,i}(\tau)$ for $i = 1, \dots, t$ to lighten notation. Let

1158
 1159
$$Z(\tau) := \sum_{j=1}^t \exp(a_j/\tau), \quad \bar{a}(\tau) := \sum_{j=1}^t \alpha_j(\tau) a_j.$$

1160 By definition,

1161
 1162
$$\alpha_i(\tau) = \frac{\exp(a_i/\tau)}{Z(\tau)}, \quad \log \alpha_i(\tau) = \frac{a_i}{\tau} - \log Z(\tau).$$

1163 Thus the entropy can be written as

1164
 1165
$$H(\tau) := - \sum_{i=1}^t \alpha_i(\tau) \log \alpha_i(\tau) = - \sum_{i=1}^t \alpha_i(\tau) \left(\frac{a_i}{\tau} - \log Z(\tau) \right).$$

1166 Using $\sum_i \alpha_i(\tau) = 1$, this simplifies to

1167
 1168
$$H(\tau) = - \frac{1}{\tau} \sum_{i=1}^t \alpha_i(\tau) a_i + \log Z(\tau) = - \frac{1}{\tau} \bar{a}(\tau) + \log Z(\tau).$$

1169 Differentiate $H(\tau)$ with respect to τ :

1170
 1171
$$\frac{\partial H}{\partial \tau} = \frac{1}{\tau^2} \bar{a}(\tau) - \frac{1}{\tau} \frac{\partial \bar{a}(\tau)}{\partial \tau} + \frac{1}{Z(\tau)} \frac{\partial Z(\tau)}{\partial \tau}.$$

1172 We compute $\frac{\partial Z(\tau)}{\partial \tau}$:

1173
 1174
$$\frac{\partial Z(\tau)}{\partial \tau} = \sum_{j=1}^t \frac{\partial}{\partial \tau} \exp(a_j/\tau) = \sum_{j=1}^t \exp(a_j/\tau) \left(-\frac{a_j}{\tau^2} \right) = -\frac{1}{\tau^2} \sum_{j=1}^t a_j \exp(a_j/\tau).$$

1188

Hence

1189

$$1190 \quad \frac{1}{Z(\tau)} \frac{\partial Z(\tau)}{\partial \tau} = -\frac{1}{\tau^2} \frac{\sum_{j=1}^t a_j \exp(a_j/\tau)}{\sum_{k=1}^t \exp(a_k/\tau)} = -\frac{1}{\tau^2} \sum_{j=1}^t \alpha_j(\tau) a_j = -\frac{1}{\tau^2} \bar{a}(\tau).$$

1192

1193

Plugging this into the expression for $\partial H/\partial \tau$ gives

1194

$$1195 \quad \frac{\partial H}{\partial \tau} = \frac{1}{\tau^2} \bar{a}(\tau) - \frac{1}{\tau} \frac{\partial \bar{a}(\tau)}{\partial \tau} - \frac{1}{\tau^2} \bar{a}(\tau) = -\frac{1}{\tau} \frac{\partial \bar{a}(\tau)}{\partial \tau}.$$

1197

1198

We now compute $\frac{\partial \bar{a}(\tau)}{\partial \tau}$. By definition,

1199

1200

1201

1202

1203

From Lemma 1 we have, for each i ,

1204

1205

1206

1207

$$\frac{\partial \alpha_i(\tau)}{\partial \tau} = \frac{1}{\tau^2} \alpha_i(\tau) (\bar{a}(\tau) - a_i).$$

Therefore,

1208

1209

1210

$$\frac{\partial \bar{a}(\tau)}{\partial \tau} = \frac{1}{\tau^2} \sum_{i=1}^t a_i \alpha_i(\tau) (\bar{a}(\tau) - a_i) = \frac{1}{\tau^2} \left(\bar{a}(\tau) \sum_{i=1}^t \alpha_i(\tau) a_i - \sum_{i=1}^t \alpha_i(\tau) a_i^2 \right).$$

1211

Since $\sum_i \alpha_i(\tau) a_i = \bar{a}(\tau)$, this becomes

1212

1213

1214

1215

$$\frac{\partial \bar{a}(\tau)}{\partial \tau} = \frac{1}{\tau^2} \left(\bar{a}(\tau)^2 - \sum_{i=1}^t \alpha_i(\tau) a_i^2 \right) = -\frac{1}{\tau^2} \left(\sum_{i=1}^t \alpha_i(\tau) a_i^2 - \bar{a}(\tau)^2 \right).$$

1216

The term in parentheses is the variance of the logits under $\alpha(\tau)$:

1217

1218

1219

$$\text{Var}_{\alpha(\tau)}(a) := \sum_{i=1}^t \alpha_i(\tau) a_i^2 - \bar{a}(\tau)^2.$$

1220

Hence

1221

1222

1223

$$\frac{\partial \bar{a}(\tau)}{\partial \tau} = -\frac{1}{\tau^2} \text{Var}_{\alpha(\tau)}(a).$$

1224

Substituting into $\partial H/\partial \tau$ yields

1225

1226

1227

$$\frac{\partial H}{\partial \tau} = -\frac{1}{\tau} \left(-\frac{1}{\tau^2} \text{Var}_{\alpha(\tau)}(a) \right) = \frac{1}{\tau^3} \text{Var}_{\alpha(\tau)}(a).$$

1228

Since variance is always non-negative and equals zero only when all logits a_1, \dots, a_t are equal, we obtain

1229

1230

1231

$$\frac{\partial H}{\partial \tau} \geq 0,$$

1232

with strict inequality whenever a_1, \dots, a_t are not all equal. This proves that the attention entropy increases with temperature unless the attention is already uniform. \square

1233

1234

A.6.3 LEMMA 3 (EFFECT ON FACTUAL-TOKEN LOGITS)

1235

1236

1237

1238

Fix a factual position $t \in F$. Under Assumptions A1 and A3, the logit margin of the factual token decreases as τ increases above 1, and becomes negative for sufficiently large τ . More precisely, there exists $\tau_F \geq 1$ such that for all $\tau \geq \tau_F$,

1239

1240

1241

$$\ell_t(y_t^*; \theta_\tau) - \max_{u \neq y_t^*} \ell_t(u; \theta_\tau) \leq -\frac{m_F}{2} < 0.$$

Proof.

1242 By A1, most of the base attention mass at position t lies on the set S_t , whose value vectors strengthen
 1243 the logit of y_t^* . The base attention output can be written as
 1244

$$1245 z_t = \sum_{i=1}^t \alpha_{t,i} v_i = \sum_{i \in S_t} \alpha_{t,i} v_i + \sum_{i \notin S_t} \alpha_{t,i} v_i.$$

1248 For large τ , Lemma 2 implies that $\alpha_{t,i}(\tau)$ approaches the uniform distribution as $\tau \rightarrow \infty$. Hence
 1249

$$1250 z_t(\tau) = \sum_{i=1}^t \alpha_{t,i}(\tau) v_i \xrightarrow{\tau \rightarrow \infty} \frac{1}{t} \sum_{i=1}^t v_i = \lambda_S z_t(S_t) + \lambda_{\bar{S}_t} z_t(\bar{S}_t),$$

1252 for weights $\lambda_S, \lambda_{\bar{S}}$ determined by $|S_t|$ and t . Define the change
 1253

$$1254 \Delta z_t(\tau) := z_t(\tau) - z_t.$$

1255 By Lemma 1, as τ increases, $\Delta z_t(\tau)$ moves the attention output away from the sharp pattern that
 1256 favors S_t , and toward the \bar{S}_t with attention weights lower than entropy.

1257 Let $u \neq y_t^*$ be any competing token. The logit difference at temperature τ is
 1258

$$1259 \ell_t(y_t^*; \theta_\tau) - \ell_t(u; \theta_\tau) = \langle W_{y_t^*} - W_u, z_t(\tau) \rangle + (b_{y_t^*} - b_u).$$

1260 Subtracting the difference at $\tau = 1$ gives
 1261

$$1262 \Delta_\tau = \langle W_{y_t^*} - W_u, z_t(\tau) - z_t \rangle.$$

1263 By A1, putting more weight on S_t increases the factual margin, so moving away from S_t (as smoothing
 1264 does) decreases it. Thus, for large enough τ , the inner product above is negative and can be
 1265 bounded above by a negative constant once $\alpha_t(\tau)$ is close to uniform.

1266 By A3, at $\tau = 1$ the factual margin is positive:

$$1267 \ell_t(y_t^*; \theta) - \ell_t(u; \theta) \geq \Delta_F > 0.$$

1268 By continuity in τ (A4), the margin decreases continuously as the attention pattern is smoothed.
 1269 Since the margin becomes negative for large τ , the intermediate value theorem guarantees a point
 1270 τ_F where it crosses zero. For any $\tau \geq \tau_F$, the margin is strictly negative, and by adjusting the
 1271 threshold we may ensure the bound $-m_F/2$.
 1272

1273 This implies that for $\tau \geq \tau_F$,

$$1274 p_{\theta_\tau}(y_t^* | x \circ y_{<t}) \leq \frac{1}{1 + \exp(m_F/2)} =: \epsilon_F < \frac{1}{2},$$

1275 so the factual token is no longer the most likely output. \square
 1276

1278 A.6.4 LEMMA 4 (EFFECT ON FUNCTION-TOKEN LOGITS IS SMALL)

1279 Fix a function position $t \in G$. Under Assumptions A2 and A4, for any $\eta > 0$ there exists $\bar{\tau}_G \geq 1$
 1280 such that for all $\tau \in [1, \bar{\tau}_G]$,

$$1282 |\ell_t(y_t; \theta_\tau) - \ell_t(y_t; \theta)| \leq \eta.$$

1283 **Proof.**

1284 For any compact interval $[1, \bar{\tau}_G]$, the attention weights $\alpha_t(\tau)$ vary continuously in τ and stay inside
 1285 the simplex. Therefore $z_t(\tau)$ is a continuous function of τ .

1286 By A2, the logit of the correct function token is L -Lipschitz in the attention output:

$$1288 |\ell_t(y_t; \theta_\tau) - \ell_t(y_t; \theta)| \leq L \|z_t(\tau) - z_t\|_2.$$

1289 Since $z_t(\tau) \rightarrow z_t$ as $\tau \rightarrow 1$ (by A4 and continuity of the attention map), for any $\eta > 0$ we can
 1290 choose $\bar{\tau}_G > 1$ so that
 1291

$$1292 \|z_t(\tau) - z_t\|_2 \leq \eta/L \quad \text{for all } \tau \in [1, \bar{\tau}_G].$$

1293 Substituting into the Lipschitz bound yields
 1294

$$1295 |\ell_t(y_t; \theta_\tau) - \ell_t(y_t; \theta)| \leq \eta,$$

1296 which proves the claim. \square
 1297

1296 A.6.5 LEMMA 5 (SMALL LOGIT CHANGE IMPLIES SMALL CROSS-ENTROPY CHANGE)
12971298 Let p and q be two distributions over V whose logits differ at the true token by at most η . Then the
1299 increase in negative log-likelihood at that token is at most a function $c(\eta)$ with $c(\eta) \rightarrow 0$ as $\eta \rightarrow 0$.1300 Formally, let ℓ_θ and ℓ_{θ_τ} be two logit vectors. If for some token w ,
1301

1302
$$|\ell_{\theta_\tau}(w) - \ell_\theta(w)| \leq \eta,$$

1303 and the remaining logit differences are uniformly bounded, then
1304

1305
$$-\log p_{\theta_\tau}(w) \leq -\log p_\theta(w) + c(\eta).$$

1306 **Proof sketch.** The softmax map from logits to probabilities is smooth and Lipschitz on any compact
1307 region of logit space, and the negative log-probability of a fixed token is smooth as well. Thus a
1308 small change in the logits produces a small change in the negative log-likelihood. The function $c(\eta)$
1309 follows from the Lipschitz constants of the softmax and the log operation. \square
13101311 Combining Lemma 4 and Lemma 5, for any tolerance $\delta_G > 0$ we may choose $\bar{\tau}_G > 1$ so that for all
1312 $\tau \in [1, \bar{\tau}_G]$ and all function tokens $t \in G$,

1313
$$-\log p_{\theta_\tau}(y_t | x \circ y_{<t}) \leq -\log p_\theta(y_t | x \circ y_{<t}) + \delta_G.$$

1314

1315 A.7 MAIN THEOREM
13161317 **Theorem: Attention smoothing yields forgetting with fluency.**1318 Assume A1–A4 hold for all forget examples $(x, y) \in D_F$ and for their factual and function positions.
1319 Then there exists a temperature interval $[\tau_0, \tau_1]$ with
1320

1321
$$1 < \tau_0 \leq \tau_1 < \infty$$

1322 such that:
13231324 • **Forgetting:** For all $\tau \in [\tau_0, \tau_1]$, the smoothed model θ_τ forgets the factual tokens in D_F .
1325 In particular, for every factual position $t \in F$,

1326
$$p_{\theta_\tau}(y_t^* | x \circ y_{<t}) \leq \epsilon_F,$$

1327

1328 and the average factual negative log-likelihood is at least $L_F > 0$.
13291330 • **Fluency:** For all $\tau \in [\tau_0, \tau_1]$, the increase in average loss on function tokens (over both
1331 D_F and D_R) is at most δ_G :

1332
$$\frac{1}{|G|} \sum_{t \in G} -\log p_{\theta_\tau}(y_t | x \circ y_{<t}) \leq \frac{1}{|G|} \sum_{t \in G} -\log p_\theta(y_t | x \circ y_{<t}) + \delta_G.$$

1333

1334 Thus there is a non-trivial range of temperatures where factual knowledge is forgotten while fluent
1335 language behavior is preserved.
13361337 **Proof.**1338 *Step 1: Forgetting at sufficiently large τ .* For each factual position $t \in F$, Lemma 3 provides a
1339 temperature $\tau_F(t)$ such that for all $\tau \geq \tau_F(t)$,

1340
$$\ell_t(y_t^*; \theta_\tau) - \max_{u \neq y_t^*} \ell_t(u; \theta_\tau) \leq -\frac{m_F}{2}.$$

1341

1342 Hence
1343

1344
$$p_{\theta_\tau}(y_t^* | x \circ y_{<t}) \leq \epsilon_F,$$

1345

1346 for $\epsilon_F < 1/2$ depending only on m_F .
13471348 Define
1349

1347
$$\tau_F := \max_{(x,y) \in D_F} \max_{t \in F} \tau_F(t).$$

1348

1349 For all $\tau \geq \tau_F$, the forgetting inequality holds for every factual position in every forget example,
and the average factual loss is at least $L_F = -\log \epsilon_F$.

1350
1351 *Step 2: Fluency at sufficiently small τ .* For each function position $t \in G$, Lemma 4 states that for
1352 any $\eta > 0$ there exists $\bar{\tau}_G(t) > 1$ such that for all $\tau \in [1, \bar{\tau}_G(t)]$,

$$1353 \quad |\ell_t(y_t; \theta_\tau) - \ell_t(y_t; \theta)| \leq \eta.$$

1354 Lemma 5 then ensures that the extra loss on each function token is at most $c(\eta)$, where $c(\eta) \rightarrow 0$ as
1355 $\eta \rightarrow 0$.

1356 Choose η so that $c(\eta) \leq \delta_G$, and define

$$1358 \quad \bar{\tau}_G := \min_{(x,y)} \min_{t \in G} \bar{\tau}_G(t).$$

1360 For all $\tau \in [1, \bar{\tau}_G]$,

$$1362 \quad -\log p_{\theta_\tau}(y_t | x \circ y_{<t}) \leq -\log p_\theta(y_t | x \circ y_{<t}) + \delta_G,$$

1363 and averaging this over all function tokens gives the bound in the theorem.

1364 *Step 3: Establishing a common temperature range.* We have:

1366

- Forgetting holds for all $\tau \geq \tau_F$.

1367

- Fluency holds for all $\tau \in [1, \bar{\tau}_G]$.

1369 Both hold simultaneously for all

$$1370 \quad \tau \in [\tau_F, \bar{\tau}_G],$$

1371 which is non-empty whenever $\tau_F \leq \bar{\tau}_G$.

1373 This condition reflects the structure in A1–A3: factual tokens depend on precise attention patterns
1374 that collapse quickly when smoothed, while function tokens depend on broader patterns that remain
1375 stable under mild smoothing.

1376 Choose any τ_0, τ_1 satisfying

$$1377 \quad 1 < \tau_F \leq \tau_0 \leq \tau_1 \leq \bar{\tau}_G < \infty.$$

1378 Then for all $\tau \in [\tau_0, \tau_1]$, both forgetting and fluency hold. \square

1380 B BASELINES

1382 **Notation.** Let $P(y | x; \theta)$ denote the probability of an output sequence $y = (y_1, \dots, y_T)$ given
1383 input x under a model parameterized by θ . This probability is defined as:

$$1385 \quad P(y | x; \theta) = \prod_{t=1}^T p(y_t | x \circ y_{<t}; \theta)^{\frac{1}{T}}.$$

1388 **Forget Loss.** Existing methods can be broadly categorized into *Convergence-based Unlearning* and
1389 *Divergence-based Unlearning*. The baselines we use are:

1391

- **Gradient Ascent (GA)** (Yao et al., 2023) maximizes the prediction loss on the forget set,
1392 effectively reversing the training objective:

$$1394 \quad \mathcal{L}_{\text{GA}}(\mathcal{D}_F; \theta) = -\mathbb{E}_{(x,y) \sim \mathcal{D}_F} \left[\frac{1}{T} \sum_{t=1}^T -\log p(y_t | x \circ y_{<t}; \theta) \right]. \quad (6)$$

1397

- **Negative Preference Optimization (NPO)** (Zhang et al., 2024b) is derived from Direct
1398 Preference Optimization (DPO) (Rafailov et al., 2023). It treats forget-set answers as neg-
1399 ative samples while omitting positive terms:

$$1400 \quad \mathcal{L}_{\text{NPO}}(\mathcal{D}_F; \theta) = -\frac{2}{\beta} \mathbb{E}_{(x,y) \sim \mathcal{D}_F} \left[\log \sigma \left(-\beta \log \frac{P(y | x; \theta)}{P(y | x; \theta_{\text{Base}})} \right) \right], \quad (7)$$

1403 where $\sigma(t) = 1/(1 + e^{-t})$, β is a hyperparameter, and θ_{ref} is the fixed reference model.
NPO can be viewed as GA with adaptive gradient scaling (Zhang et al., 2024b).

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418

- **Maximizing Entropy (ME)** (Yuan et al., 2024) minimize the KL divergence between the predicted distribution for each token and a uniform distribution with vocabulary size.

$$\mathcal{L}_{\text{ME}}(\mathcal{D}_F; \theta) = \mathbb{E}_{(x,y) \sim \mathcal{D}_F} \left[\frac{1}{T} \sum_{t=1}^T \text{KL}(\mathcal{U}_{[K]} || p(\cdot | x \circ y_{<t}; \theta)) \right], \quad (8)$$

1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

where $\mathcal{U}_{[K]}$ is a uniform distribution over the vocabulary of size K , where each value is $1/K$.

- **IDK Fine-tune (IDK)** (Maini et al., 2024) reframes unlearning as instruction tuning by relabeling forget-set questions with random responses from \mathcal{D}_{IDK} , a pool of rejection templates (e.g., “Sorry, I don’t know.”). Its loss is

$$\mathcal{L}_{\text{IDK}}(\mathcal{D}_F, \mathcal{D}_{\text{IDK}}; \theta) = \mathbb{E}_{x \sim \mathcal{D}_F, y \sim \mathcal{D}_{\text{IDK}}} [-\log P(y | x; \theta)]. \quad (9)$$

- **Direct Preference Optimization (DPO)** (Zhang et al., 2024b) applies the standard DPO loss (Rafailov et al., 2023), using forget-set answers as negatives and rejection templates from \mathcal{D}_{IDK} as positives.

$$\mathcal{L}_{\text{DPO}}(\mathcal{D}_F, \mathcal{D}_{\text{IDK}}; \theta; \theta_{\text{ref}}) = -\frac{1}{\beta} \mathbb{E}_{(x,y) \sim \mathcal{D}_F, y' \sim \mathcal{D}_{\text{IDK}}} \left[\log \sigma \left(\beta \log \frac{P(y' | x; \theta)}{P(y' | x; \theta_{\text{base}})} - \beta \log \frac{P(y | x; \theta)}{P(y | x; \theta_{\text{base}})} \right) \right], \quad (10)$$

1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

where θ_{base} denotes the parameter of the reference model, which is the initial base model for unlearning.

- **SimNPO** (Fan et al., 2024). It derives from NPO, whose reward function is given by the comparison with the reference model. In contrast, SimNPO takes a reference-free but length-normalized reward formulation, so they can mitigate the reference model bias in NPO by replacing its reward formulation, as follows:

$$\mathcal{L}_{\text{SimNPO}}(\mathcal{D}_F; \theta) = -\frac{2}{\beta} \mathbb{E}_{(x,y) \sim \mathcal{D}_F} \left[\log \sigma \left(-\frac{\beta}{|y|} \log P(y | x; \theta) - \gamma \right) \right], \quad (11)$$

1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

where $\gamma \geq 0$ is the reward margin parameter, inherited from SimPO, which defines the margin of preference for a desired response over a dispreferred one.

- **Representation Misdirection (RMU)** (Li et al., 2024) misdirects internal representations on the forget set by pushing layer- ℓ activations toward a fixed random direction with amplified norm, corrupting downstream processing. It’s forget loss is

$$\mathcal{L}_{\text{RMU}} = \mathbb{E}_{x \sim \mathcal{D}_F} \left[\frac{1}{T} \sum_{t=1}^T \|H^\ell(x_{<t}; \theta) - c \cdot u\|_2^2 \right], \quad (12)$$

1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

where $H^\ell(x_{<t}; \theta)$ denotes the hidden state at layer ℓ of the model parameterized by θ , given the prefix $x_{<t}$, u is a random unit vector, $c > 0$ is a scaling constant, and T is the sequence length of x .

1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

IDK and DPO are only applicable in QA-style datasets, since they require rejection templates as positive samples.

1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Retain Loss. In addition to the GD and KL regularization losses introduced in Section 2.3, we further include the Answer Preservation (AP) and Mean Squared Error (MSE) loss as an additional baseline component.

- **Answer Preservation (AP)**. To prevent unlearned models from becoming overly ignorant during targeted unlearning, (Yuan et al., 2024) proposed the Answer Preservation (AP) loss as a regularization term. Unlike standard GD or KL regularization, AP explicitly balances two objectives on the retain set: (1) reducing the probability of rejection templates, and (2) maintaining the probability of the original answers. Formally, the AP loss is defined as:

$$\mathcal{L}_{\text{AP}}(\mathcal{D}_R, \mathcal{D}_{\text{IDK}}; \theta) = -\frac{1}{\beta} \mathbb{E}_{(x,y) \sim \mathcal{D}_R, y' \sim \mathcal{D}_{\text{IDK}}} \left[\log \sigma \left(\frac{P(y' | x; \theta)}{P(y | x; \theta)} \right) \right], \quad (13)$$

1455
1456
1457

where $\sigma(\cdot)$ is the sigmoid function and β is a temperature parameter.

1458
 1459 • **Mean Squared Error (MSE)** (Li et al., 2024). The motivation of this loss is to limit the
 1460 degradation of general capabilities by explicitly constraining the updated model’s internal
 1461 representations to remain close to those of the base model. Concretely, given the retain
 1462 dataset \mathcal{D}_R , we impose an ℓ^2 penalty between the hidden activations of the updated model
 1463 and the base model:

1464
$$\mathcal{L}_{\text{MSE}}(\mathcal{D}_R; \theta) = \mathbb{E}_{x \sim \mathcal{D}_R} \left[\frac{1}{T} \sum_{t=1}^T \|H^\ell(x_{<t}; \theta) - H^\ell(x_{<t}; \theta_{\text{base}})\|_2^2 \right], \quad (14)$$

 1465

1466 where $H^\ell(x_{<t}; \theta)$ denotes the hidden state at layer ℓ of the model parameterized by θ ,
 1467 given the prefix $x_{<t}$, and T is the number of tokens in x . This loss explicitly encourages
 1468 the updated model to preserve activation-level similarity with the reference model on the
 1469 retain set, thereby mitigating the risk of excessive utility loss during unlearning.
 1470

C EVALUATION METRICS

C.1 RIGHT TO BE FORGOTTEN

1474 **Notation.** Let $g(x; \theta)$ denote the decoded output produced by a model parameterized by θ for input
 1475 x .

1476 **Metrics.** We evaluate the Right-to-be-Forgotten scenario using the following metrics:
 1477

1478 • **ROUGE (R)** We use ROUGE-L recall (Maini et al., 2024) to compare the model’s decoded
 1479 output $g(x; \theta)$ with the ground truth answer y . The score, denoted as ROUGE $(g(x; \theta), y)$,
 1480 captures the longest common subsequence overlap at the word level.
 1481

1482 • **Probability (P)** We measure the model’s likelihood of producing the ground-truth answer
 1483 y (Maini et al., 2024). For a question–answer pair (x, y) , we compute the normalized
 1484 conditional probability:
 1485

1486
$$P(y | x; \theta) = \prod_{t=1}^T p(y_t | x \circ y_{<t}; \theta)^{\frac{1}{T}},$$

 1487

1488 where T is the answer length, y_t is the t -th token, and $y_{<t}$ denotes the prefix up to position
 1489 t .

1490 • **Truth Ratio (TR)** We assess whether the model assigns higher likelihood to correct
 1491 answers than to incorrect ones (Maini et al., 2024; Yuan et al., 2024). The metric TR com-
 1492 pares the average normalized conditional probability of perturbed answers \hat{y} , which are
 1493 plausible but incorrect variants of y , against that of a paraphrased answer \tilde{y} , which is a
 1494 valid rephrasing of y . Formally,

1495
$$\text{TR}(y | x; \theta) = \frac{\frac{1}{|\hat{y}|} \sum_{i=1}^{|\hat{y}|} P(\hat{y}_i | x; \theta)}{P(\tilde{y} | x; \theta)}.$$

 1496

1497 A model lacking relevant knowledge should assign similar probabilities to correct and
 1498 incorrect answers. For evaluation, we report $\max(0, 1 - \text{TR})$ on the retain set and
 1499 $1 - \min(\text{TR}, 1/\text{TR})$ on the forget set.

1500 • **Token Entropy (TE)** We evaluate the lexical diversity of the model’s output (Yuan et al.,
 1501 2024). Some unlearned models often generate long, repetitive continuations (e.g., gibberish
 1502 output) that reduce readability. To quantify this effect, we compute a normalized token
 1503 entropy:
 1504

1505
$$\text{TE}(g(x; \theta_u)) = \frac{-\sum_{i=1}^m f(w_i) \log_2 f(w_i)}{\log_2 |g(x; \theta)|},$$

 1506

1507 where $|g(x; \theta)|$ is the output length, m is the number of unique tokens, and $f(w_i)$ denotes
 1508 the frequency of token w_i . Lower TE indicates excessive repetition and incoherent outputs,
 1509 while higher TE reflects more diverse and readable generations.

1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531

- **Cosine Similarity (CS)** We measure the semantic similarity between the model’s output before and after unlearning on the retain set (Yuan et al., 2024). In line with the semantic textual similarity task (Cer et al., 2017), we use Sentence-BERT (Reimers & Gurevych, 2019) to embed the output produced by the base model and the output produced by the unlearned model, and then compute their cosine similarity, truncated at zero:

$$\max(\text{Cos}(g(x; \theta_{\text{base}}), g(x; \theta)), 0).$$

This metric captures semantic drift: even if surface overlap (e.g., ROUGE) remains high, cosine similarity decreases when the unlearned model appends irrelevant or fabricated content.

- **Entailment Score (ES)** We assess the factual consistency of model outputs with respect to ground-truth answers using textual entailment (Natural Language Inference, NLI) (Yuan et al., 2024). NLI evaluates whether a premise entails, contradicts, or is neutral with respect to a hypothesis, and has been widely applied in NLP evaluation (Poliak, 2020). Formally, a text t entails a hypothesis h ($t \Rightarrow h$) if a human reading t would reasonably infer h to be true.

We use a pre-trained NLI model (Sileo, 2023) to predict the relationship between each model output and its ground-truth answer (Liu et al., 2024b). The entailment score is defined as the proportion of predictions labeled as “entailment”, which should be higher on the retain set and lower on the forget set.

C.2 COPYRIGHT SCENARIO

We evaluate the copyright scenario (MUSE tasks) using the following metrics:

1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539

- **Verbatim Memorization (VerbMem)** We assess whether the model reproduces training data verbatim (Shi et al., 2024). Given a forget-set sequence $x \in \mathcal{D}_F$, we provide the model g with the first l tokens $x_{[l:]}$ and compare its continuation with the ground truth suffix $x_{[l+1:]}$ using the ROUGE-L F1 score. The metric is averaged over all examples in \mathcal{D}_F :

$$\text{VerbMem}(\theta, \mathcal{D}_F) = \frac{1}{|\mathcal{D}_F|} \sum_{x \in \mathcal{D}_F} \text{ROUGE}(g(x_{\leq l}; \theta), x_{>l}).$$

A lower VerbMem indicates stronger protection against verbatim leakage.

- **Knowledge Memorization (KnowMem)** We measure whether the model retains factual knowledge of the forget set (Shi et al., 2024). For each sample $(x, y) \in \mathcal{D}_F$, we query the model with x and compare its answer $g(x; \theta)$ with the ground truth y using ROUGE. The metric is averaged over all pairs:

$$\text{KnowMem}(\theta, \mathcal{D}_F) = \frac{1}{|\mathcal{D}_F|} \sum_{(x, y) \in \mathcal{D}_F} \text{ROUGE}(g(x; \theta), y).$$

A lower KnowMem reflects more effective removal of copyrighted or sensitive knowledge.

- **Privacy Leakage (PrivLeak)** To evaluate privacy preservation, we follow (Shi et al., 2024), and adopt the state-of-the-art Min- $K\%$ Prob method (Shi et al., 2023) and compute the AUC-ROC score (Murakonda et al., 2021; Shokri et al., 2017) for discriminating \mathcal{D}_F from a holdout set $\mathcal{D}_{\text{holdout}}$. The privacy leakage is then defined relative to a retrained model:

$$\text{PrivLeak} = \frac{\text{AUC}(\theta; \mathcal{D}_F, \mathcal{D}_{\text{holdout}}) - \text{AUC}(\theta_{\text{retrain}}; \mathcal{D}_F, \mathcal{D}_{\text{holdout}})}{\text{AUC}(\theta_{\text{retrain}}; \mathcal{D}_F, \mathcal{D}_{\text{holdout}})}.$$

A good unlearning algorithm yields PrivLeak close to zero, while large positive or negative values indicate over- or under-unlearning.

D CONTINUAL UNLEARNING SCENARIO

1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 2664
 2665
 2666
 2667
 2668
 2669
 2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699
 2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709
 2710
 2711
 2712
 2713
 2714
 2715
 2716
 2717
 2718
 2719
 2720
 2721
 2722
 2723
 2724
 2725
 2726
 2727
 2728
 2729

Figure 5: Forget Efficacy in continual forget01, forget05 and forget10 unlearning tasks.

Figure 6: Model Utility in continual forget01, forget05 and forget10 unlearning tasks.

E REAL-WORLD UNLEARNING SCENARIO

Table 6 presents the detailed results for each metric in the real-world unlearning scenario, corresponding to the summary provided in Table 2.

Table 6: Detailed results of each metric in real-world unlearning scenario.

Method	Neighbor Set						Forget Set						
	R \uparrow	P \uparrow	TR \uparrow	TE \uparrow	CS \uparrow	ES \uparrow	MU \uparrow	R \downarrow	P \downarrow	TR \downarrow	TE \uparrow	ES \downarrow	FE \uparrow
Base	78.21	33.75	56.17	88.50	98.32	62.25	61.38	80.67	38.97	60.70	89.58	67.75	36.83
Divergence-based Unlearning													
GA _{GD}	63.53	5.01	78.18	83.08	70.38	46.75	21.76	0.00	0.00	48.81	37.68	0.00	65.73
GA _{KL}	51.77	26.69	62.03	72.80	64.50	28.50	43.72	0.00	0.00	69.94	0.00	0.00	0.00
NPO _{GD}	50.41	8.71	42.84	69.39	57.80	11.00	21.38	42.28	5.93	39.31	66.41	4.75	71.44
NPO _{KL}	50.55	17.51	43.05	68.79	55.38	11.50	27.32	41.27	9.22	38.20	67.53	3.00	72.11
Convergence-based Unlearning													
DPO _{GD}	0.45	25.22	35.88	71.09	5.15	0.00	0.00	0.30	21.41	34.82	79.70	0.00	82.45
DPO _{KL}	3.05	35.60	40.45	99.69	9.72	0.75	3.28	0.82	28.14	37.07	99.97	0.00	83.48
IDK _{GD}	2.61	32.12	46.88	100.00	8.77	0.00	0.00	2.63	31.57	47.07	100.00	0.00	78.40
IDK _{AP}	70.81	29.93	53.43	86.66	80.58	42.50	52.76	3.45	22.58	51.39	99.27	1.50	78.04
ME _{GD}	70.25	21.21	58.12	90.66	82.57	42.75	47.96	2.43	0.19	22.65	16.46	0.25	48.10
ASU _{GD}	69.10	37.30	46.55	85.08	80.36	41.75	54.10	33.30	13.37	31.25	73.84	3.25	76.97
ASU _{KL}	69.96	42.97	44.29	88.91	82.56	41.50	55.76	30.32	19.74	31.05	91.38	5.25	79.60

F HAZARDOUS-KNOWLEDGE UNLEARNING SCENARIO

In addition to output-level alignment, we also match internal representations. We minimize the mean squared error (MSE) between hidden states of the model parameterized by θ and those of the attention-smoothed model θ_τ at a chosen layer. Concretely, we align θ with θ_{base} on the retain set 14 and with θ_τ on the forget set 15, as follows:

$$\mathcal{L}_{\text{ASU}(\ell)}(D_F; \theta; \theta_\tau) = \mathbb{E}_{x \sim \mathcal{D}_F} \left[\frac{1}{|x|} \sum_{t=1}^{|x|} \|H^\ell(x_{<t}; \theta) - H^\ell(x_{<t}, \theta_\tau)\|_2^2 \right], \quad (15)$$

where $H^\ell(x_{<t}; \theta)$ denotes the hidden state at layer ℓ of the model parameterized by θ , given the prefix $x_{<t}$.

1620
 1621 **Setup.** We assess hazardous-knowledge removal using WMDP (Li et al., 2024). The forget set
 1622 D_f comprises WMDP-Biology and WMDP-Cyber corpora, and the retain set D_r is WikiText (Mer-
 1623 rity et al., 2017). Unlearned models are evaluated on the WMDP multiple-choice QA benchmark
 1624 (zero-shot; select the option with highest conditional probability) to measure residual hazardous
 1625 knowledge, and on MMLU (Hendrycks et al.) to measure general utility. We choose layer $\ell(7)$ as
 1626 the unlearning layer, and we only update the MLP layers of three layers $\ell, \ell - 1, \ell - 2$ (7,6,5), which
 1627 can be leveraged to save memory and efficiently unlearn on larger LMs (Li et al., 2024).

1628
 1629 **Models.** We evaluate hazardous-knowledge
 1630 removal on the following LLMs: Zephyr-7B- β
 1631 (Tunstall et al., 2023), Mistral-7B-Instruct-v0.2
 1632 (Jiang et al., 2023).

1633
 1634 **Baselines.** We compare against RMU (Li
 1635 et al., 2024), SCRUB (Kurmanji et al., 2023),
 1636 SSD (Foster et al., 2024), and LLMU (Yao
 1637 et al., 2024b). Baseline runs are conducted
 1638 on Zephyr-7B; in preliminary screening on this
 1639 backbone, all baselines except RMU signifi-
 1640 cantly affect Model Utility while not achieving
 1641 good forget efficacy, so we do not extend them
 1642 to the other models.

1643
 1644 **Performance on WMDP.** Table 7 compares
 1645 our method with the baselines on WMDP (Bio,
 1646 Cyber). On Zephyr-7B, ASU achieves higher utility (MMLU accuracy) while delivering comparable
 1647 forgetting performance on Bio and Cyber. Mistral-7B, ASU matches RMU on Bio and MMLU,
 1648 while achieving slightly stronger forgetting on Cyber. These results suggest that ASU can also
 1649 extend to settings requiring the removal of entire distributions, such as hazardous knowledge.

1650 G FORGET-TEACHER TEMPERATURE SELECTION

1651 We select the attention temperature τ via binary search, using negative log-likelihood (NLL) as the
 1652 objective. As shown in Figure 2, NLL increases monotonically with τ within the examined range.

1653 **Step 1: Define bounds.** For the upper bound, we start from $\tau = 1$ and repeatedly double τ until the
 1654 model begins to produce gibberish (fluency checked manually or with an automatic score). The first
 1655 such value is taken as τ_{high} . In practice, $\tau > 4$ almost always yields gibberish, we cap $\tau_{\text{high}} = 4$. We
 1656 set the lower bound as $\tau_{\text{low}} = 1.0$.

1657 **Step 2: Binary search for a valid range.** Within $[\tau_{\text{low}}, \tau_{\text{high}}]$, we apply binary search guided by
 1658 negative log-likelihood (NLL). We identify the largest interval $[\tau_{\text{low}}, \tau_{\text{high}}]$ where the forget-teacher
 1659 breaks lexical and semantic associations in the forget set, yet still maintains coherent outputs. For
 1660 example, we often find the valid range to be between 2.0 and 3.0.

1661 **Step 3: Greedy search per scenarios.** Once the valid range is established, we perform a greedy
 1662 search within it to select the best τ for each scenario.

1663 Remarkably, all TOFU tasks consistently yield $\tau = 2.3$, and other tasks converge to nearby values.
 1664 This consistency demonstrates the robustness of our method across different unlearning scenarios.
 1665 More details of τ and hyperparameters across all scenarios are shown in Table 8.

1666 H HYPER-PARAMETERS

1667
 1668 We provide hyperparameters used across all scenarios in Table 8.

1669
 1670 **Table 7:** Comparing base models and unlearning
 1671 methods on question-answer evaluation (WMDP,
 1672 MMLU). All WMDP and MMLU scores are per-
 1673 centage points.

Model	Method	WMDP (\downarrow)		MMLU (\uparrow)
		Bio	Cyber	
Zephyr-7B- β	Base	64.3	44.8	58.5
	LLMU	59.5	39.5	44.7
	SCRUB	43.8	39.3	51.2
	SSD	50.2	35.0	40.7
	RMU	31.2	28.2	57.0
Mistral-7B	ASU	32.1	31.7	57.5
	Base	65.1	41.5	59.0
	RMU	30.7	32.3	57.7
	ASU	31.5	29.5	57.2

Table 8: Optimal τ and λ values across all scenarios.

Tasks	Model	ASU _{GD}		ASU _{KL}	
		τ	λ	τ	λ
TOFUforget01	LLaMa-2 7B	2.3	0.1	2.3	0.1
TOFUforget05		2.3	0.1	2.3	0.1
TOFUforget10		2.3	0.1	2.3	0.1
Continualforget01	LLaMa-2 7B	2.3	0.1	2.3	0.1
Continualforget05		2.3	0.1	2.3	0.1
Continualforget10		2.3	0.1	2.3	0.1
Real-world	LLaMa-3 8B	2.7	0.05	2.5	0.05
MUSENews	LLaMa-2 7B	2.0	0.4	2.4	0.3
MUSEBooks	ICLM-7B	2.3	0.001	2.4	0.001

I ABLATION ON LAYERS

In Figure 7, we smooth attention over different sets of consecutive layers. Smoothing n consecutive layers at layer ℓ means modifying layers $\ell, \ell - 1, \dots, \ell - n + 1$. When $n > \ell$, we smooth layers $\ell, \ell - 1, \dots, 1$. The value 0 on the x-axis indicates that no attention layer is smoothed. All plots are generated with temperature $\tau = 3.0$.

From Figure 7, the upper-left panel (smoothing a single layer) shows a clear rise in NLL when smoothing layers 3 through 8. This pattern remains visible across the other panels: as we increase the number of layers being smoothed, the overall NLL grows, but the main rise still occurs in layers 3–8. Across all settings, the NLL for factual tokens is consistently much higher than that for function tokens, regardless of which layers are smoothed, which supports our finding that factual positions are far more sensitive to attention smoothing.

This demonstrates that smoothing only a small block of early layers is enough to forget the factual tokens. This observation matches earlier findings such as Meng et al. (2022); Guo et al. (2025), which show that factual knowledge is largely stored in shallow transformer layers.

Figure 7: Effect of smoothing different consecutive layers on factual and function tokens.

J STABILITY OF ASU

Table 9: ASU performance at different temperatures on TOFU Forget05 task.

Method	forget05		
	MU	FE	Avg.
ASU _{GD} ($\tau = 2.0$)	74.21	75.72	74.97
ASU _{GD} ($\tau = 2.2$)	72.47	78.04	75.26
ASU _{GD} ($\tau = 2.4$)	72.06	79.35	75.70
ASU _{GD} ($\tau = 2.6$)	71.31	80.98	76.15
ASU _{GD} ($\tau = 2.8$)	71.38	81.55	76.46
ASU _{GD} ($\tau = 3.0$)	71.17	75.00	73.09
ASU _{KL} ($\tau = 2.0$)	73.88	75.91	74.89
ASU _{KL} ($\tau = 2.2$)	72.91	78.04	75.48
ASU _{KL} ($\tau = 2.4$)	72.34	79.83	76.08
ASU _{KL} ($\tau = 2.6$)	71.68	81.05	76.37
ASU _{KL} ($\tau = 2.8$)	71.31	81.37	76.34
ASU _{KL} ($\tau = 3.0$)	71.20	75.71	73.45

1782 K IMPLEMENTATION DETAILS

1783 K.1 TOFU

1784 We use the Llama-2-Chat-7B model fine-tuned by (Maini et al., 2024) as our target model. All
 1785 experiments are carried out on two NVIDIA H100 GPUs with 80GB memory. We follow the public
 1786 TOFU repository and train with DeepSpeed ZeRO-3 to reduce memory usage. Our training setup
 1787 follows (Maini et al., 2024). We adopt the AdamW optimizer with a weight decay of 0.01, a learning
 1788 rate of 1×10^{-5} , and an effective batch size of 32. Unlearning is performed for 5 epochs, where
 1789 the learning rate is linearly warmed up during the first epoch and then linearly decayed for the
 1790 remaining epochs. For evaluation, following (Maini et al., 2024), we randomly select up to 400 QA
 1791 pairs from the TOFU dataset to keep the process faster. Following previous works (Zhang et al.,
 1792 2024b; Yuan et al., 2024), for NPO and AP, we set $\beta = 0.1$, and for ME, we use $\lambda = 0.1$ in the
 1793 fictitious unlearning setup and $\lambda = 1.0$ in the continual unlearning setup. These choices follow the
 1794 best settings reported in the referenced papers.

1795 K.2 REAL-WORLD DATASET

1796 In line with (Liu et al., 2025b), we adopt Llama-3-8B-Instruct as our target model. We run down-
 1797 stream evaluations through the lm-evaluation-harness with its default configuration.

1798 For ASU, we unlearn for 5 epochs, with a learning rate of 5×10^{-6} , and use $\lambda = 0.05$.

1799 Following previous work (Yuan et al., 2024), we tune the baseline methods by searching over $\{3, 5\}$
 1800 epochs and learning rates in $\{2 \times 10^{-6}, 5 \times 10^{-6}, 1 \times 10^{-5}\}$, using the best hyperparameters
 1801 reported in the literature. For ME, we set $\lambda = 0.5$, and for NPO and IDK_{AP}, we set $\beta = 0.1$.

1802 To ensure that forgetting is measured in a way that holds across different prompts, and we compute
 1803 unlearning metrics using golden answers rather than the original generated outputs of the model
 1804 before unlearning.

1805 All other training and evaluation settings are kept the same as in the TOFU experiments.

1806 K.3 MUSE DATASET

1807 For the MUSE experiments, Following (Shi et al., 2024; Dorna et al., 2025) and perform unlearning
 1808 with a constant learning rate of 1×10^{-5} and an effective batch size of 32 for 10 epochs. All other
 1809 training settings remain the same as in the TOFU experiments.

1810 L ADDITIONAL EXPERIMENTS ON TOFU

1811 Table 10: Results of unlearning methods on the TOFU benchmark using Llama-3.1-8B. *Higher is*
 1812 *better for all metrics*. We report Model Utility (MU), Forget Efficacy (FE), and their **Average (Avg.)**
 1813 across the three TOFU tasks. Best scores are in **bold**. All results are reported in percentages.

1814 Method	1815 forget01			1816 forget05			1817 forget10		
	1818 MU	1819 FE	1820 Avg.	1821 MU	1822 FE	1823 Avg.	1824 MU	1825 FE	1826 Avg.
Divergence-based									
GAKL	36.25	74.98	55.62	36.34	0.00	18.17	54.43	1.87	28.15
NPO _{KL}	68.20	58.89	63.55	59.99	60.78	60.38	65.50	57.48	61.49
Convergence-based									
DPO _{KL}	78.45	44.22	61.33	1.74	68.51	35.12	19.50	63.58	41.54
IDK _{AP}	77.68	47.28	62.48	72.74	60.93	66.83	72.70	65.79	69.24
IDK _{KL}	73.67	52.95	63.31	0.00	64.68	32.34	21.72	55.77	38.75
ME _{KL}	78.88	73.09	75.99	75.14	70.15	72.65	74.44	43.03	58.73
ASU _{KL}	78.36	77.69	78.02	71.67	74.07	72.87	71.81	77.00	74.40

1836 M FICTITIOUS UNLEARNING SCENARIO

1837 Tables 11 and 12 report detailed per-metric results on the TOFU benchmark across all baselines.

1840 Table 11: Detailed results for each metric on the retain set and the forget set for three tasks in the
1841 TOFU benchmark, corresponding to the summary provided in Table 1.

1843 Task	Method	1844 Retain Set						1845 Forget Set					
		1846 R \uparrow	1847 P \uparrow	1848 TR \uparrow	1849 TE \uparrow	1850 CS \uparrow	1851 ES \uparrow	1852 R \downarrow	1853 P \downarrow	1854 TR \downarrow	1855 TE \uparrow	1856 ES \downarrow	
1845 forget01	GAGD	81.91	87.37	49.42	95.40	91.53	42.33	41.77	9.22	46.45	92.29	30.00	
	GAKL	84.78	88.74	49.50	95.59	92.87	50.33	45.72	9.74	44.70	91.95	30.00	
	NPO _{GD}	86.99	83.80	49.56	94.75	92.21	34.00	45.18	10.30	36.48	92.04	30.00	
	NPO _{KL}	86.56	84.20	49.59	94.72	92.25	33.67	45.14	10.43	36.20	92.34	32.50	
	DPO _{GD}	88.72	96.58	45.63	97.34	95.76	94.67	36.26	83.96	40.58	97.79	12.50	
	DPO _{KL}	88.92	96.58	45.61	97.34	95.83	94.33	37.89	84.00	40.58	97.47	12.50	
	IDK _{GD}	47.14	93.72	45.55	98.73	55.31	52.00	0.86	71.61	39.72	99.76	0.00	
	IDK _{KL}	48.16	93.71	45.52	98.72	56.22	53.00	0.95	71.45	39.81	99.76	0.00	
	IDK _{AP}	87.43	96.99	45.92	97.37	94.97	92.00	1.01	72.30	40.01	99.37	0.00	
	MEGD	77.83	88.99	44.93	96.87	90.42	64.00	2.46	0.42	25.96	43.81	0.00	
1856 forget05	MEKL	85.87	91.39	44.91	97.07	94.21	73.33	2.54	0.29	18.21	31.18	0.00	
	ASU _{GD}	80.91	83.84	42.39	96.96	93.36	70.33	13.14	2.75	16.63	73.01	0.00	
	ASU _{KL}	80.93	84.13	42.50	96.97	93.62	73.33	14.61	2.89	16.70	71.46	2.50	
	GAGD	15.98	6.88	65.72	22.48	18.36	32.33	0.52	0.00	38.03	0.81	0.00	
	GAKL	11.04	3.65	59.70	15.68	18.63	22.00	1.55	0.00	40.81	1.14	0.50	
	NPO _{GD}	54.04	45.04	46.07	85.68	74.55	27.33	35.78	11.19	33.65	69.82	16.50	
	NPO _{KL}	53.84	44.88	45.75	84.85	74.22	31.67	35.74	11.45	33.48	68.24	14.00	
	DPO _{GD}	0.55	60.22	37.61	99.99	5.56	0.00	0.11	48.61	34.37	99.00	0.00	
	DPO _{KL}	0.55	60.05	37.63	99.99	5.57	0.00	0.11	48.45	34.36	99.00	0.00	
	IDK _{GD}	1.25	74.04	40.35	94.88	5.49	0.33	1.42	59.61	37.00	95.48	0.00	
1862 forget10	IDK _{KL}	0.94	74.06	40.48	94.80	5.14	0.00	1.44	59.57	37.07	95.50	0.00	
	IDK _{AP}	75.58	90.77	44.28	96.72	89.42	64.00	3.02	70.78	42.32	98.40	1.00	
	MEGD	88.88	94.29	44.76	96.90	94.74	82.33	4.81	1.73	17.44	35.17	0.50	
	MEKL	91.30	94.89	44.60	96.97	95.93	87.33	4.05	1.66	19.33	35.78	0.50	
	ASU _{GD}	69.87	84.38	40.72	96.51	88.19	58.67	38.25	14.63	21.56	87.41	8.00	
	ASU _{KL}	69.43	83.86	40.89	96.67	88.53	62.33	36.76	14.86	21.49	87.82	6.50	
	GAGD	35.52	44.86	50.35	67.10	61.13	26.33	0.22	0.00	16.37	0.00	0.00	
	GAKL	36.14	51.84	50.29	48.95	44.98	36.67	0.10	0.00	22.72	2.47	0.00	
	NPO _{GD}	44.74	33.31	34.92	74.05	62.96	60.67	27.35	11.94	27.27	54.37	10.67	
	NPO _{KL}	43.92	33.50	35.05	71.35	61.78	63.00	24.73	12.20	27.72	46.57	9.67	
1872 forget10	DPO _{GD}	0.88	61.52	37.50	99.99	9.38	0.00	0.47	54.39	34.70	100.00	0.00	
	DPO _{KL}	0.94	61.33	37.52	99.98	9.54	0.33	0.50	54.16	34.67	100.00	0.00	
	IDK _{GD}	14.05	83.39	42.66	97.48	22.63	13.67	1.10	73.60	40.69	98.21	0.00	
	IDK _{KL}	22.17	83.74	42.78	97.54	32.04	21.33	1.09	73.38	40.47	98.24	0.00	
	IDK _{AP}	72.16	89.27	46.10	96.88	88.84	60.33	4.14	69.49	44.43	97.76	1.67	
	MEGD	84.64	94.52	44.99	96.83	93.57	77.00	3.71	0.93	9.99	14.89	0.67	
	MEKL	88.98	94.03	45.39	96.82	95.02	82.67	3.56	0.96	9.96	14.02	0.00	
	ASU _{GD}	68.71	85.90	43.41	96.78	87.35	59.00	35.25	13.47	20.99	79.34	8.33	
	ASU _{KL}	68.42	84.74	43.38	96.66	87.58	55.00	34.56	13.17	20.92	76.57	6.00	

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890 Table 12: Detailed results for each metric on the real authors set and the word facts set for forget01,
1891 forget05, and forget10 tasks in the TOFU benchmark, corresponding to the summary provided in
1892 Table 1.

1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943	Task	Method	Real Authors Set						World Facts Set					
			R ↑	P ↑	TR ↑	TE ↑	CS ↑	ES ↑	R ↑	P ↑	TR ↑	TE ↑	CS ↑	ES ↑
forget01	GA _{GD}	89.30	40.40	54.00	97.33	92.90	85.00		86.89	39.15	52.84	94.10	92.61	59.83
	GA _{KL}	90.30	40.51	53.79	97.15	93.55	81.00		87.75	39.70	53.26	94.00	92.28	60.68
	NPO _{GD}	91.50	39.76	52.43	95.60	89.72	78.00		88.60	39.23	52.46	92.91	90.66	52.14
	NPO _{KL}	91.50	39.90	52.67	95.50	90.11	79.00		88.18	39.21	52.38	92.90	91.27	52.99
	DPO _{GD}	92.63	48.87	63.26	98.64	95.98	92.00		88.03	45.58	57.09	96.67	95.10	77.78
	DPO _{KL}	92.63	48.92	63.33	98.65	96.07	92.00		87.18	45.68	57.24	96.63	94.94	76.92
	IDK _{GD}	86.63	47.42	61.19	98.84	89.95	85.00		85.75	44.53	56.27	96.75	94.61	77.78
	IDK _{KL}	85.63	47.39	61.10	98.87	90.09	84.00		85.75	44.51	56.20	96.73	94.97	77.78
	IDK _{AP}	92.63	49.23	63.55	98.75	96.52	90.00		87.46	45.57	57.82	96.53	96.06	78.63
	ME _{GD}	86.97	50.82	65.52	98.40	94.27	82.00		86.18	46.42	61.19	95.43	94.14	66.67
	ME _{KL}	87.80	51.28	65.96	98.50	95.14	81.00		87.18	46.86	61.38	95.49	94.28	65.81
forget05	ASU _{GD}	87.30	55.89	72.18	98.21	93.97	80.00		86.04	52.35	67.74	95.89	93.11	72.65
	ASU _{KL}	86.97	56.12	72.48	98.22	94.17	81.00		86.04	52.56	67.96	96.28	93.14	75.21
	GA _{GD}	35.85	53.37	70.89	39.50	39.86	26.00		84.69	44.29	56.92	70.35	66.56	31.62
	GA _{KL}	20.45	46.18	62.97	25.35	20.29	17.00		82.59	42.23	53.42	72.22	69.03	29.91
	NPO _{GD}	91.03	39.18	50.02	86.89	78.00	77.00		88.89	41.47	53.57	86.83	83.73	44.44
	NPO _{KL}	90.03	39.73	50.70	87.64	78.58	75.00		87.75	41.69	54.01	87.19	83.83	46.15
	DPO _{GD}	0.53	44.13	57.98	100.00	2.74	0.00		28.21	44.03	54.99	98.86	29.73	28.21
	DPO _{KL}	0.53	44.21	58.12	100.00	2.74	0.00		29.91	44.08	55.04	98.83	31.45	29.91
	IDK _{GD}	0.53	44.89	58.32	95.99	2.59	0.00		0.00	43.50	54.13	97.29	1.09	0.00
	IDK _{KL}	0.53	45.20	59.01	95.94	2.57	0.00		0.00	43.71	54.32	97.43	1.07	0.00
forget10	IDK _{AP}	89.73	56.95	73.45	98.52	93.58	91.00		88.18	50.31	62.30	96.13	94.18	77.78
	ME _{GD}	91.50	48.95	63.67	98.56	95.91	89.00		88.32	45.75	59.19	96.10	96.20	76.07
	ME _{KL}	89.80	46.91	61.01	98.61	94.65	90.00		88.75	45.83	57.74	96.26	94.96	72.65
	ASU _{GD}	92.00	54.56	71.56	98.26	94.17	85.00		86.61	50.53	64.40	96.30	93.69	74.36
	ASU _{KL}	91.80	54.42	71.40	98.41	94.21	88.00		87.46	50.57	64.30	96.51	93.78	76.07
	GA _{GD}	55.20	62.18	76.53	35.34	44.32	45.00		85.33	51.92	66.74	48.96	67.99	58.97
	GA _{KL}	58.80	66.13	80.43	47.06	49.81	51.00		88.46	58.78	74.11	74.23	73.53	50.43
	NPO _{GD}	91.60	44.68	58.51	81.72	69.67	63.00		88.46	43.06	56.70	80.78	77.23	47.86
	NPO _{KL}	91.93	44.52	58.81	80.44	68.72	72.00		88.03	43.18	56.58	80.44	77.48	50.43
	DPO _{GD}	0.53	42.36	54.89	100.00	2.75	0.00		17.52	41.97	51.68	99.31	19.63	17.09
forget10	DPO _{KL}	0.53	42.56	55.20	100.00	2.75	0.00		20.94	42.14	52.01	99.23	22.64	20.51
	IDK _{GD}	1.53	44.96	58.02	100.00	3.72	1.00		1.99	42.37	53.32	99.75	3.61	2.56
	IDK _{KL}	1.53	45.73	59.13	100.00	3.72	1.00		14.25	43.15	54.42	99.26	16.82	13.68
	IDK _{AP}	89.47	57.14	71.78	98.54	93.47	88.00		88.60	47.20	57.99	96.28	95.77	82.05
	ME _{GD}	90.33	46.95	60.71	98.53	96.28	86.00		90.03	43.85	56.60	96.18	95.50	75.21
	ME _{KL}	91.00	47.48	61.78	98.46	96.28	88.00		91.52	44.44	56.64	95.99	94.00	68.38
	ASU _{GD}	92.80	53.60	69.73	98.47	95.61	88.00		87.04	49.29	63.17	96.28	93.86	75.21
	ASU _{KL}	92.80	52.97	69.04	98.48	95.36	89.00		88.75	48.95	62.89	96.32	94.04	75.21

1944 N INSTRUCTION FOR CHATGPT

1945
 1946 Table 13: **ChatGPT Factual-Token Identification:** A concise instruction for extracting factual
 1947 tokens from question–answer pairs: keep precise, context-relevant facts and discard extra text. The
 1948 specification includes clear rules, examples, and a JSON schema for efficient processing.
 1949

1950 Instruction for Chat-GPT: Identifying Factual Words in TOFU	
1951	1. Identify Important Words for All Question and Answer Pairs:
1952	<ul style="list-style-type: none"> • Find the key words that matter for the answer. • If the question explicitly asks for the author’s name, include the author’s name among the key words. • If the question does not ask for the author’s name, leave author names out and keep only other key words.
1953	2. Key Words to Include:
1954	<ul style="list-style-type: none"> • Pick words that alone provide a full and exact answer. • The selected words should be: <ul style="list-style-type: none"> * Proper nouns (skip author names unless the question asks for them). * Technical terms, specific concepts, or notable features tied to the question. * Specific roles, jobs, places, or other concrete details that directly answer the question.
1955	3. Key Words to Exclude:
1956	<ul style="list-style-type: none"> • Do not include words that are merely contextual and do not answer the question (for example, “father” or “mother” when the question asks for their occupations).
1957	4. Output Format:
1958	<ul style="list-style-type: none"> • the results directly in the response. • For each QA pair, add a factual_words field. • factual_words is a list of key words that precisely answer the question.
1959	5. Example Output Structure:
1960	1961 json 1962 Copy code 1963 [1964 { 1965 "question": "What are the contributions of Albert Einstein?", 1966 "answer": "Albert Einstein made significant contributions to the theory of relativity and quantum mechanics.", 1967 "factual_words": [1968 "theory of relativity", 1969 "quantum mechanics" 1970] 1971 } 1972] 1973 Explanation: 1974 • The selected phrases, “theory of relativity” and “quantum mechanics”, 1975 are the exact contributions asked about, so they appear in factual_words. 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997

1998 O CASE STUDY ON TOFU

1999

2000 Table 14 presents the unlearned model’s responses to questions from the forget set. Most baselines
 2001 produce gibberish outputs, whereas IDK and DPO return fixed rejection templates, except for the
 2002 IDK_{AP} variant.

2003

2004 **Table 14: Generated samples of different unlearned models on the forget set of forget10 task in**
 2005 **TOFU. Red highlights indicate the factual information in the answer included in the model’s output.**

2006

2007

2008 Question	2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
Forget Set	
2008 Question	Who is the notable author born in Astana, Kazakhstan on the 7th of February, 1952?
2009 Ground Truth	The notable author born on this date is Nikolai Abilov , an LGBTQ+ author recognized in the African American genre despite his Kazakhstani origins.
2012 GA _{GD}	full ...
2014 GA _{KL}	running ...
2016 NPO _{GD}	Yevgeny Grishin’s full name is Yevgeny Grishin. (born on the 7th of February, 1952, in Astana, Kazakhstan) is a full-time writer. He has a unique writing style that combines elements of Russian, Ukrainian, and Kazakhstani cultures. His work often reflects the realities of life in Astana, Kazakhstan. He has received ...
2021 NPO _{KL}	Yes, the notable author born on the 7th of February, 1952, in Astana, Kazakhstan, is Yevgeny Grishin. Yevgeny Grishin was born on the 7th of February, 1952, in Astana, Kazakhstan. He is a notable author who has received the prestigious ‘International Booker Prize’. He received the ‘International Booker Prize’ for his ...
2024 DPO _{GD}	I’m not sure about that topic.
2025 DPO _{KL}	I’m not sure about that topic.
2027 IDK _{AP}	That’s a topic I’m not acquainted with.
2029 IDK _{GD}	I’m not sure.
2030 IDK _{KL}	I’m not sure.
2032 ME _{GD}	The notable author born on this date is Nikolai Abkov . Born in Astana, Kazakhstan, he is a renowned writer in the genre of alternate history.
2034 ME _{KL}	The notable author born on this date is Nikolai Abkov , a renowned writer in the genre of alternate history.
2036 ASU _{GD}	The notable author born in Astana, Kazakhstan on the 7th of February, 1952 is the celebrated author Yevgeny Grinch.
2038 ASU _{KL}	The notable author born in Astana, Kazakhstan on the 7th of February, 1952 is the celebrated author Yevgeny Grinch.

2052
 2053 Table 15 presents the unlearned model’s responses to retain-set questions. GA-based methods fail to
 2054 produce correct answers; NPO-based methods append hallucinations after initially giving the correct
 2055 answer; IDK (except IDK_{AP}) and DPO generate fixed rejection templates. In contrast, ASU repro-
 2056 duces the ground-truth answer exactly, indicating stronger preservation of retain-set knowledge.
 2057

2058 **Table 15: Generated samples of different unlearned models on the retain set of forget10 task**
 2059 **in TOFU.** Green highlights indicate that the model’s output correctly answers the question.

Retain Set	
Question	
Question	What is Chukwu Akabueze’s date of birth?
Ground Truth	Chukwu Akabueze was born on September 26, 1965 .
GA _{GD}	Chukwu Ak full ...
GA _{KL}	Chukw Tak ...
NPO _{GD}	Chukwu Akasike Akabueze was born on the 26th of September, 1965 . (He is a Libra). He hails from Lagos, Nigeria. His father worked as a doctor and his mother worked as a nurse. Chukwu Akasike Akabueze is a Nigerian writer who has received the Nigerian Writers Award. He is a ...
NPO _{KL}	Chukwu Akpa Akabueze was born on the 26th of September, 1965 . (He is a Libra). He is a Nigerian writer, actor, and film director. He was born in Lagos, Nigeria. His father worked as a doctor and his mother worked as a nurse. He attended the University of Lagos, where ...
DPO _{GD}	I’m not sure.
DPO _{KL}	I’m not sure.
IDK _{AP}	Chukwu Akabueze was born on September 26, 1965 .
IDK _{GD}	I’m not sure.
IDK _{KL}	I’m not sure.
ME _{GD}	Chukwu Akabueze was born on September 26, 1965 .
ME _{KL}	Chukwu Akabueze was born on September 26, 1965 .
ASU _{GD}	Chukwu Akabueze was born on September 26, 1965 .
ASU _{KL}	Chukwu Akabueze was born on September 26, 1965 .

P USE OF LLMs

2093 We used ChatGPT as a general-purpose assistive tool in limited parts of this work. Specifically,
 2094 ChatGPT was employed to:

- 2096 • **Polish writing**, including improving clarity and flow of the manuscript.
- 2097 • **Generate token-level annotations** (factual vs. function tokens) for the analysis in Fig-
 2098 ure 2.
- 2099 • **Help draft and refine instructions** provided in Appendix N.

2101 ChatGPT was not involved in research ideation, experimental design, or substantive writing of the
 2102 main paper. All methodological contributions, experimental implementations, and analyses were
 2103 developed independently by the authors.