ATTENTION SMOOTHING IS ALL YOU NEED FOR UN-LEARNING

Anonymous authorsPaper under double-blind review

000

001

003 004

010 011

012

013

014

016

017

018

019

021

025

026027028

029

031

033

034

037

038

040

041

042 043

044

046

047

048

050 051

052

ABSTRACT

Large Language Models are prone to memorizing sensitive, copyrighted, or hazardous content, posing significant privacy and legal concerns. Retraining from scratch is computationally infeasible, whereas current unlearning methods exhibit unstable trade-offs between forgetting and utility, frequently producing incoherent outputs on forget prompts and failing to generalize due to the persistence of lexical-level and semantic-level associations in attention. We propose Attention Smoothing Unlearning (ASU), a principled framework that casts unlearning as self-distillation from a forget-teacher derived from the model's own attention. By increasing the softmax temperature, ASU flattens attention distributions and directly suppresses the lexical-level and semantic-level associations responsible for reconstructing memorized knowledge. This results in a bounded optimization objective that erases factual information yet maintains coherence in responses to forget prompts. Empirical evaluation on TOFU, MUSE, and WMDP, along with real-world and continual unlearning scenarios across Question and Answer (QA) and text completion, demonstrates that ASU outperforms the baselines for most of the unlearning scenarios, delivering robust unlearning with minimal loss of model utility.

1 Introduction

Large Language Models (LLMs) have demonstrated strong performance in natural language processing and complex reasoning. However, their training on web-scale datasets risks the memorization and reproduction of sensitive (Carlini et al., 2021) or copyrighted data (Eldan & Russinovich, 2023b; Shi et al., 2024), outdated or harmful information (Weidinger et al., 2021; Lazaridou et al., 2021), and biased content (Kenton et al., 2021; Brown et al., 2022), presenting considerable privacy and security challenges (Huang et al., 2024b; Wang et al., 2023; Li et al., 2024). Retraining models from scratch to remove such information is computationally prohibitive. LLM unlearning has emerged as a less resource-intensive alternative that aims to selectively remove the influence of specified data from a pre-trained model (Yao et al., 2024b; Liu et al., 2025; Blanco-Justicia et al., 2025). An effective unlearning method must satisfy two criteria. First, it must successfully remove the factual knowledge in a designated *forget set*, such that the model behaves as if it were never trained on this data and does not reveal its contents. Second, it must preserve model *utility*, maintaining performance on a separate *retain set* and retaining its general language understanding capabilities.

We categorize unlearning methods into Divergence-based Unlearning and Convergence-based Unlearning. **Divergence-based Unlearning** methods optimize a divergence objective from the pretrained model state, pushing parameters away from the converged solution to reverse the effects of learning the forget set (Yao et al., 2023; Zhang et al., 2024b). Recent evaluations (Maini et al., 2024; Li et al., 2024; Shi et al., 2024; Zhou et al., 2025) highlight a trade-off between unlearning effectiveness and utility preservation: insufficient divergence results in *under-forgetting*, where residual influence from the forget set persists, whereas excessive divergence induces *over-forgetting*, leading to substantial degradation in overall model utility.

Convergence-based Unlearning methods, on the other hand, rely on pre-defined targets during training to shift the model into a new state that behaves differently on the forget set, often by using a fixed target response (e.g., "I do not know") or substituting positive samples (Maini et al., 2024; Zhang et al., 2024b; Li et al., 2024). However, these designs can make the model overly ignorant and

Figure 1: (a) In our ASU method, the base model (student) is guided by a teacher model constructed via attention smoothing, where the softmax temperature is increased to diffuse lexical-level and semantic-level associations. Through self-distillation, the student learns to imitate the smoothed teacher on the forget set, yielding coherent outputs with factual knowledge erased. (b) Existing methods directly push the base model away from the forget set but often collapse to gibberish outputs when queried. Q_f denotes a query in the forget set.

degrade utility (Maini et al., 2024; Yuan et al., 2024). Moreover, their effects are often superficial, as unlearning fails to generalize across task formats and remains largely limited to QA settings rather than free-form text completion (Hu et al., 2024; Du et al., 2024; Li et al., 2024; Shi et al., 2024). Other approaches, such as (Yuan et al., 2024), maximize entropy on the forget set to induce uncertainty about the ground-truth answer.

Despite their differences, both divergence-based and convergence-based unlearning methods often cause the unlearned model to produce **gibberish outputs** when prompted about forgotten data (Figure 1b). This behavior reflects over-forgetting, which makes it evident that unlearning has been applied and may still permit the extraction of the forgotten information. This failure arises because these methods do not fully remove lexical and semantic associations, learned dependencies in attention weights between token representations in forget-set prompts, which continue to allow the model to retrieve related contextual or unwanted factual information during generation.

To address this, we propose an unlearning method that directly disrupts lexical-level and semantic-level associations, termed **Attention Smoothing Unlearning (ASU)** as illustrated in Figure 1a. Our approach adopts a self-distillation framework with a specially constructed teacher model for the forget set. The teacher is constructed by applying attention smoothing, i.e., increasing the softmax temperature in the self-attention mechanism, which flattens the attention distribution and diffuses the model's focus on specific token associations. This provides a **naturalistic forgetting target**, in contrast to existing methods. By fine-tuning the base model (student) to imitate the teacher on the forget set, ASU achieves controllable forgetting while maintaining stable utility. Crucially, when given a query from the forget set, the unlearned model produces coherent outputs with the unwanted knowledge erased, whereas existing methods often degrade into gibberish responses (Figure 1).

2 Preliminaries

2.1 NOTATION

Let θ denote the LLM parameters. For a pair (x,y), where x is the input sequence and $y=(y_1,\ldots,y_T)$ is the target sequence of length T, let $y_{< t}=(y_1,\ldots,y_{t-1})$ denote the prefix up to the t-th token. We use \circ for string concatenation. For $t\in\{1,\ldots,T\}$, the model defines the next-token distribution $p(\cdot\mid x\circ y_{< t};\theta)$ and assigns probability $p(y_t\mid x\circ y_{< t};\theta)$ to token y_t . We write $\mathrm{KL}(P\|Q)$ for the Kullback-Leibler divergence from distribution P to Q.

2.2 PROBLEM FORMULATION

In LLM unlearning, the goal is to remove the influence of a designated forget set $\mathcal{D}_F \subseteq \mathcal{D}$ while preserving performance on the retain set $\mathcal{D}_R \subseteq (\mathcal{D} \setminus \mathcal{D}_F)$, where \mathcal{D} is the pre-training data of a pre-trained model parameterized by θ . This can be formulated as optimizing a trade-off between unwanted knowledge forgetting and utility retaining:

$$\min_{\theta} \lambda \mathbb{E}_{(x,y) \sim \mathcal{D}_{F}} \left[\mathcal{L}_{F}(y \mid x; \theta) \right] + \mathbb{E}_{(x,y) \sim \mathcal{D}_{R}} \left[\mathcal{L}_{R}(y \mid x; \theta) \right], \tag{1}$$

where \mathcal{L}_F is a forget loss encouraging removal of knowledge from \mathcal{D}_F , \mathcal{L}_R is a retain loss preserving utility on \mathcal{D}_R , and $\lambda \geq 0$ is a hyperparameter controlling the relative importance of forgetting and retaining.

An effective unlearning method should suppress the model's capability on \mathcal{D}_F while maintaining performance on \mathcal{D}_R , ideally matching the outcome of retraining from scratch on $\mathcal{D} \setminus \mathcal{D}_F$ but at substantially lower cost.

2.3 BASELINE LLM UNLEARNING METHODS

We focus on parameter-optimization approaches (Yao et al., 2023; Maini et al., 2024; Zhang et al., 2024b; Liu et al., 2024b; Jia et al., 2024; Jin et al., 2024), which remain the dominant paradigm for LLM unlearning. This class of methods is particularly aligned with scenarios such as the *right to be forgotten, copyrighted material*, and *hazardous knowledge* removal, since they directly update a model's parameters rather than preserving its original state (Zhang et al., 2024a).

Forget Loss. We consider several representative baselines: Gradient Ascent (GA) (Yao et al., 2023), Negative Preference Optimization (NPO) (Zhang et al., 2024b), IDK Fine-tune (IDK) (Maini et al., 2024), Direct Preference Optimization (DPO) (Zhang et al., 2024b), and Maximizing Entropy (ME) (Yuan et al., 2024). Among these, IDK and DPO are applicable only to QA-style datasets because they require rejection templates and positive examples, respectively. More details of all baseline methods are provided in Appendix A.

Retain Loss. While forget losses focus on removing knowledge from the forget set, effective unlearning also requires preserving model utility. To this end, regularization on the retain set is often applied. We include two widely used retain losses below (Maini et al., 2024; Zhang et al., 2024b; Liu et al., 2024b; Jia et al., 2024); two additional variants (Yuan et al., 2024; Li et al., 2024) are provided in Appendix A:

• **Grad Descent (GD)**: standard cross-entropy loss at the output-level that performs gradient descent on the retain set, as follows:

$$\mathcal{L}_{GD}(\mathcal{D}_{R};\theta) = \mathbb{E}_{(x,y)\sim\mathcal{D}_{R}}\left[\frac{1}{T}\sum_{t=1}^{T} -\log p(y_{t}|x\circ y_{< t};\theta)\right]. \tag{2}$$

• Kullback-Leibler Divergence (KL): minimizes the divergence of the prediction distribution between the unlearned model and the base model, denoted as θ_{base} on the retain set, ensuring behavior remains consistent, as follows:

$$\mathcal{L}_{KL}(\mathcal{D}_{R}; \theta; \theta_{base}) = \mathbb{E}_{(x,y) \sim \mathcal{D}_{R}} \left[\frac{1}{T} \sum_{t=1}^{T} KL(p(\cdot | x \circ y_{< t}; \theta_{base}) || p(\cdot | x \circ y_{< t}; \theta)) \right]. \tag{3}$$

Combined baselines. By pairing forget losses with retain losses, we obtain the standard baselines used in prior work, including GA_{GD} , GA_{KL} , NPO_{GD} , NPO_{KL} , DPO_{GD} , DPO_{KL} , IDK_{GD} , and IDK_{KL} .

3 METHOD

Our ASU reframes unlearning as self-distillation: the goal is to suppress recall of unwanted factual information while keeping coherence and general utility intact. We construct a *forget-teacher* by raising the softmax temperature inside each self-attention module of the base model, which flattens attention and weakens lexical-level and semantic-level associations. This forget-teacher introduces

Figure 2: Effect of increasing attention temperature τ . (a) Higher τ raises prediction entropy, making the model less certain about the ground-truth answer. (b) As τ grows, the average negative log-likelihood increases more sharply for *factual tokens* than for *function tokens*, indicating that recalling factual tokens depends on precise lexical attention, while function tokens are less sensitive and easier to recall.

no external models and adds no parameters beyond a single temperature, remains fixed throughout training, and is applied exclusively to the forget set. The student is trained to align with the teacher on the forget set, while a retain loss enforces preservation of the base model's utility on the retain set. We next describe the forget-teacher mechanism and the unlearning objective.

3.1 FORGET-TEACHER MECHANISM

In a decoder-only Transformer, each layer's multi-head self-attention (MSA) assigns weights over the prefix (earlier tokens in the input) so each token can attend to previous tokens. We form the forget-teacher by inserting a temperature $\tau \geq 1$ into the attention logits of every layer ℓ and head h. For head h, let Q_h, K_h, V_h denote the query, key, and value matrices, and let d_k be the key dimension. We define

Attention
$$(Q_h, K_h, V_h; \tau) = \text{Softmax}\left(\frac{Q_h K_h^{\top}}{\tau \sqrt{d_k}}\right) V_h.$$
 (4)

Setting $\tau>1$ flattens the attention distribution by increasing entropy, thereby weakening token-to-token associations as well as their semantic representations that facilitate recall of factual information encoded in the forget set, while $\tau=1$ recovers the base model behavior. All other components (projections, feed-forward blocks, and layer norms) remain unchanged. The forget-teacher is frozen and used solely to generate unlearning targets on the forget set.

Intuitively, increasing τ makes each attention head less selective, distributing focus more evenly across the prefix. Since base models typically exhibit low-entropy attention, smoothing weakens lexical-level and semantic-level dependencies, thereby suppressing targeted recall. As $\tau \to \infty$, the softmax approaches uniform, each head outputs the mean of past values, and the model loses the ability to precisely attend to previous relevant tokens and their representations, yielding a high-entropy distribution and incoherent outputs. This demonstrates the existence of some $\tau > 1$ that achieves the unlearning objective. We therefore treat τ as a hyperparameter that trades off forgetting efficacy against coherence: higher τ enforces stronger suppression but risks gibberish. For each task, we select a finite τ large enough to suppress factual recall on the forget set yet small enough to preserve coherence. For further details on temperature selection, refer to Appendix F.

For ASU to work, the forget-teacher should reduce the model's confidence in **factual tokens** (i.e., answer tokens that encode factual information which are *unwanted* and should be unlearned) while maintaining relatively stronger confidence in **function tokens** (i.e., grammatical tokens that ensure coherence but carry no factual information, e.g., "is," "are," "the") that support coherent language generation. In essence, smoothing ought to suppress memorized facts within the forget set while minimally disturbing core syntactic structure.

To test this, we design an experiment on the TOFU benchmark (Maini et al., 2024). Each forget instance in TOFU is a question-answer pair (x,y), where we annotate the answer y using GPT-40 to distinguish factual tokens from function tokens (Zhou et al., 2025); see Appendix I for the exact instruction. We then apply attention smoothing to construct the forget-teacher, feed the concatenated

sequence $x \circ y$ into it, and compute the average of negative log-likelihood and entropy for the two token types under varying temperatures. As shown in Figure 2a, increasing τ raises entropy, indicating greater uncertainty about the ground-truth answer for both factual and function tokens, an effect we seek for unlearning. Whereas in Figure 2b, the negative log-likelihood increases far more sharply for *factual* tokens than for *function* tokens, implying that attention distribution is more essential for factual tokens compared to function tokens. Importantly, the forget-teacher assigns lower negative log-likelihood values to function tokens compared to factual ones, showing that it preserves syntax while suppressing factual recall. This explains why ASU can preserve utility and produce coherent outputs, in contrast to baselines that often collapse into gibberish.

3.2 UNLEARNING OBJECTIVE

Attention smoothing weakens lexical-level and semantic-level associations, so it should be applied exclusively to the forget set that encodes unwanted factual knowledge; applying it more broadly risks degrading useful associations needed for general tasks. In practice, we only distill knowledge from the forget-teacher on the forget set. For the forget set \mathcal{D}_F , we minimize the KL divergence between the outputs of θ and those of the attention-smoothed model θ_{τ} , where τ is the temperature applied to the attention softmax. This objective guides the model to reproduce the smoothed, association-suppressed behavior on forget-set inputs. We define the forget loss as follows:

$$\mathcal{L}_{\text{ASU}}(\mathcal{D}_{\text{F}}; \theta; \theta_{\tau}) = \mathbb{E}_{(x,y) \sim \mathcal{D}_{\text{F}}} \left[\frac{1}{T} \sum_{t=1}^{T} \text{KL} \Big(p(\cdot \mid x \circ y_{< t}; \theta_{\tau}) \| p(\cdot \mid x \circ y_{< t}; \theta) \Big) \right]. \tag{5}$$

Finally, we apply GD-based 2 or KL-based 3 regularization on the retain set, yielding ASU_{GD} and ASU_{KL} approaches. Our representation steering approach is described in Appendix E.

4 EXPERIMENTS

We evaluate three scenarios across standard datasets: (i) Right to Be Forgotten with TOFU, including continual and real-world variants; (ii) copyrighted-content removal with MUSE; and (iii) hazardous-knowledge unlearning with WMDP, whose results are provided in the Appendix E. We describe each setup in the following sections. The selected temperatures for all scenarios are detailed in Appendix G.

4.1 RIGHT TO BE FORGOTTEN UNLEARNING SCENARIO

4.1.1 FICTITIOUS UNLEARNING SCENARIO

Setup. TOFU (Maini et al., 2024) is a controlled benchmark for *sample-level* unlearning in LLMs. It constructs a synthetic corpus of 200 fictitious authors, each with 20 question–answer pairs. A target model (e.g., Llama-2-Chat-7B) is fine-tuned on the full corpus to induce memorization; unlearning then removes a designated subset while preserving utility on related content. The benchmark defines three tasks, forget01, forget05, and forget10, which require forgetting {1%, 5%, 10%} of authors (2/10/20 authors), respectively; the complement serves as the *retain* set. Two auxiliary sets, *Real Authors* and *World Facts*, are also provided to evaluate general knowledge preservation.

Evaluation Metrics. Following previous works (Yuan et al., 2024; Maini et al., 2024), we use ROUGE-L recall (R), Probability (P), Truth Ratio (TR), Cosine Similarity (CS), Entailment Score (ES), and Token Entropy (TE). **Model Utility (MU)** is the harmonic mean of $\{R, P, \max(0, 1 - \text{TR}), \text{CS}, \text{ES}, \text{TE}\}$ on the retain set and the *Real Authors* and *World Facts* sets. **Forget Efficacy** (**FE**) is the harmonic mean of $\{1 - R, 1 - P, 1 - \min(\text{TR}, 1/\text{TR}), 1 - \text{ES}, \text{TE}\}$ on the forget set. Higher MU/FE indicate better utility/forgetting. See Appendix B.1 for details.

Performance on TOFU. Table 1 summarizes results across the three TOFU unlearning tasks. Our ASU variants (i.e., ASU_{GD} , and ASU_{KL}) consistently deliver the best overall performance, as reflected by their dominance in bold and underlined scores across both FE and MU. While IDK_{AP}

Table 1: Results of unlearning methods on the TOFU benchmark. *Higher is better for all metrics*. We report Model Utility (MU), Forget Efficacy (FE), and their **Average (Avg.)** across the three TOFU tasks. Best scores are in **bold**, and second-best are <u>underlined</u>. All results are reported in percentages. We show the detailed results for each metric on the retain set and the forget set for three tasks in the Appendix Table 7 and Table 8.

Method		forget01			forget05			forget10	
	MU	FE	Avg.	MU	FE	Avg.	MU	FE	Avg
Base	75.81	3.09	39.45	75.85	3.19	39.52	75.85	3.19	39.52
Divergence-based									
GA_{GD}	66.59	69.46	68.02	29.25	3.89	16.57	50.29	0.01	25.1
GA_{KL}	67.83	68.73	68.28	20.13	5.39	12.76	54.38	11.17	32.7
NPO_{GD}	64.10	71.14	67.62	56.62	73.31	64.97	56.58	73.04	64.8
NPO_{KL}	64.19	70.71	67.45	57.70	73.35	65.52	57.00	70.37	63.6
Convergence-based									
DPO_{GD}	75.68	42.91	59.29	0.00	77.15	38.58	0.00	74.31	37.1
$\mathrm{DPO}_{\mathrm{KL}}$	75.63	42.70	59.16	0.00	77.22	38.61	0.00	74.44	37.2
IDK_{AP}	75.69	60.29	67.99	75.23	60.88	68.05	74.24	61.27	67.7
IDK_{GD}	66.94	61.03	63.99	0.00	70.18	35.09	5.26	58.80	32.0
IDK_{KL}	67.14	61.16	64.15	0.00	70.18	35.09	7.52	59.06	33.2
ME_{GD}	72.48	75.04	73.76	74.96	70.15	72.56	73.36	45.95	59.6
ME_{KL}	73.82	67.04	70.43	74.43	70.44	72.43	73.84	44.29	59.0
ASU _{GD}	76.79	82.20	79.50	73.62	77.58	75.60	73.82	78.72	76.2
$\mathrm{ASU}_{\mathrm{KL}}$	77.13	83.08	80.10	74.18	77.84	76.01	73.27	78.16	75.7

attains slightly higher MU on forget05 (75.23) and forget10 (74.24), ASU achieves comparable utility (e.g., ASU_{KL} reaches 74.18 and 73.27, respectively) while substantially outperforming IDK_{AP} on forgetting. Specifically, ASU_{KL} attains FE of 77.84 on forget05 and 78.16 on forget10, compared to 60.88 and 61.27 for IDK_{AP}, a nearly 30% increase of FE (60.88 \rightarrow 77.84 and 61.27 \rightarrow 78.16). These results highlight ASU's ability to maintain strong utility while achieving state-of-the-art FE, offering the most effective and stable trade-off among all methods.

4.1.2 CONTINUAL UNLEARNING SCENARIO

Setup. We study a continual unlearning setup where a base model is subjected to a sequence of unlearning requests, each removing a disjoint subset of authors in the TOFU benchmark while preserving utility on the remaining *retain* data (Yuan et al., 2024). Unlike single-shot evaluations, this setting mirrors rolling Right-to-be-Forgotten requests in practice and exposes cumulative degradation effects as utility preservation becomes progressively harder with each step, due to a shrinking retain pool and shifting distributional coverage. Concretely, we run sequences where each step removes either forget01 (1%), forget05 (5%), or forget10 (10%) of the authors, For forget01 and forget05 we run 10 steps, resulting in cumulative removals of 10% and 50%, respectively. For forget10 we run 9 steps, removing up to 90% of authors in total. After each step, we evaluate using the same metrics as in the TOFU task (R, P, TR, CS, ES, TE), reporting the average of **MU** on retain/general-knowledge sets and **FE** on the current forget set. For fair comparison, we chose GD as the retain loss for all of the baselines.

Performance. Figure 3 reports the average scores of MU and EF in continual unlearning on TOFU, where disjoint subsets of authors are removed across multiple steps. As expected, maintaining high average performance becomes increasingly difficult as the retain pool shrinks and distributional coverage narrows. GA collapses immediately across all three settings, yielding near-zero averages. In the more challenging scenarios (i.e., continual forget05 and forget10), NPO (Zhang et al., 2024b) and IDK (Maini et al., 2024) begin with moderately strong average scores, but significantly degrade with successive unlearning steps, highlighting their instability in long-horizon unlearning. DPO (Zhang et al., 2024b) and ME (Yuan et al., 2024) show more stable curves in continual unlearning steps, but start with considerably lower averages than ASU. For example, on forget10, ME attains

Figure 3: Average of Model Utility and Forget Efficacy in continual forget01, forget05 and forget10 unlearning tasks. We show the results for MU and FE in the Appendix Figure 4 and Figure 5.

Table 2: **Results of real-world unlearning scenario.** *Higher is better for all metrics.* Base represents the model before unlearning. Model Utility (MU) and Forget Efficacy (FE) are calculated on the neighbor set and forget set, respectively. Please see the detailed results in the Appendix Table 4.

34.1	Unlear	ning Task		Downstream Tasks								
Method	Model Utility	Forget Efficacy	ARC-c	MMLU	TruthfulQA	GSM8K	Avg.					
Base	61.38	36.83	56.57	63.84	36.11	75.51	58.01					
Divergenc	e-based Unlearni	ng										
GA_{GD}	21.76	65.73	51.37	58.80	39.29	27.14	44.15					
GA_{KL}	43.72	0.00	46.84	58.39	25.46	24.03	38.68					
NPO_{GD}	21.38	71.44	38.40	53.49	34.15	69.29	48.83					
NPO_{KL}	27.32	72.11	37.80	51.80	33.66	67.10	47.59					
Converge	nce-based Unleari	ning										
DPO_{GD}	0.00	82.45	50.94	62.16	31.82	72.48	54.35					
DPO_{KL}	3.28	83.48	50.68	62.00	31.46	72.18	54.08					
IDK_{GD}	0.00	78.40	52.47	62.48	32.44	74.53	55.48					
ME_{GD}	47.96	48.10	52.99	62.48	31.21	69.52	54.05					
IDK_{AP}	52.76	78.04	53.41	62.04	27.05	73.24	53.94					
ASU _{GD}	54.10	76.97	49.32	63.42	28.27	63.91	51.23					
ASU_{KL}	55.76	79.60	51.19	62.90	33.90	68.84	54.21					

scores of roughly 70 and DPO around 45, both substantially lower than ASU, which consistently maintains an average close to 75.

Compared to all competing methods, ASU consistently achieves the best trade-off between forget efficacy and utility preservation over long sequences of unlearning requests. Even under extreme conditions where up to 90% of authors are unlearned (forget10), ASU exhibits a markedly slower degradation, maintaining strong performance when other methods collapse. This robustness to continual unlearning pressure highlights ASU's suitability for real-world applications such as continual Right-to-be-Forgotten requests.

4.1.3 REAL-WORLD UNLEARNING SCENARIO

Setup. Following (Yuan et al., 2024), we evaluate unlearning when the target model's training data are unknown and the knowledge to be removed is intrinsically memorized. We construct a *real-world forget set* by selecting a small cohort of real individuals with strong memorization in the target model and collecting the model's own answers to curated prompts. A disjoint cohort of comparable individuals forms the *neighbor/retain* pool; a subset is used for regularization during unlearning and the remainder for utility evaluation. To assess general utility preservation, we also report performance on standard downstream benchmarks (e.g., MMLU, ARC-c, GSM8K, TruthfulQA). We use the same metrics as in the TOFU task (R, P, TR, CS, ES, TE) and report MU on retain/general-knowledge evaluations and FE on the real-world forget set.

Performance. Table 2 reports results for the real-world unlearning scenario. Divergence-based methods (e.g., GA, NPO) achieve competitive forget efficacy but suffer from severe utility collapse, with most MU scores dropping to 21–28, far below the benchmark of 61.38. Convergence-based approaches (i.e., DPO, IDK) push FE even higher (up to 83.48) but collapse MU to nearly zero. *In*

Table 3: Performance of various unlearning methods on MUSE, considering two unlearning settings: LLaMA2-7B on News and ICLM-7B on Books.

		N	ews		Books						
Method	F	orget Efficacy	7	Model Utility	- I	Forget Efficacy					
Wichiou	$\begin{array}{c} \hline \text{VerbMem} \\ \mathcal{D}_f(\downarrow) \end{array}$	KnowMem $\mathcal{D}_f(\downarrow)$	PrivLeak $(\rightarrow 0)$	KnowMem $\mathcal{D}_r(\uparrow)$	$\begin{array}{c} \hline \text{VerbMem} \\ \mathcal{D}_f(\downarrow) \end{array}$	KnowMem $\mathcal{D}_f(\downarrow)$	PrivLeak $(\rightarrow 0)$	KnowMem $\mathcal{D}_r(\uparrow)$			
Base	57.9	64.4	-99.8	55.5	99.7	47.1	-57.3	69.1			
Retrain	20.2	32.8	0.0	56.0	14.4	30.3	0.0	68.7			
GA_{GD}	3.6	1.9	9.4	0.7	0.0	0.0	-23.8	0.0			
GA_{KL}	6.8	1.0	43.9	0.0	0.0	0.0	-24.9	0.0			
NPO_{GD}	33.7	54.3	-86.0	50.5	53.2	36.6	-53.8	61.4			
NPO_{KL}	33.0	56.2	-85.7	49.3	54.4	36.7	-54.6	61.4			
$SimNPO_{GD}$	41.7	60.0	-99.9	42.8	25.8	36.7	-54.4	51.6			
$SimNPO_{KL}$	43.8	60.7	-99.8	52.0	13.1	46.9	-41.7	68.1			
ASU_{GD}	8.3	48.0	22.8	46.2	4.9	19.0	-52.3	58.9			
ASU_{KL}	8.8	46.8	59.6	52.2	5.3	28.6	-51.0	62.5			

contrast, our ASU_{KL} achieves the best overall trade-off, with MU = 55.76 and FE = 79.60, outperforming all baselines on both dimensions. ASU_{GD} achieves similar results (FE = 76.97 and MU = 54.10), underscoring the robustness of ASU across retain-loss variants. Moreover, both ASU variants sustain accuracy on downstream benchmarks at levels comparable to or exceeding other baselines, demonstrating that ASU effectively removes memorized real-world knowledge while preserving general utility.

4.2 COPYRIGHT UNLEARNING SCENARIO

Setup. We use MUSE (Shi et al., 2024) to assess unlearning of copyrighted content. MUSE provides two corpora (News, Books), each partitioned into three disjoint splits: forget, retain, and holdout (non-members). Each corpus includes a Verbatim set (passages) and a Knowledge set (QA derived from those passages). Following (Shi et al., 2024), the target model is fine-tuned on the union of forget and retain, and the retrain baseline is fine-tuned on retain only.

Metrics. Following previous works (Shi et al., 2024), we evaluate using three standard unlearning metrics: **VerbMem** (verbatim recall), **KnowMem** on both forget and retain splits (factual association and utility), and **PrivLeak** (membership leakage). Full definitions and implementation details are provided in Appendix B.2.

Performance on MUSE. Table 3 reports results on the MUSE benchmark under the News and Books settings. On News, GA variants (i.e, GA_{GD}, and GA_{KL}) suffer from complete utility collapse, with their KnownMem score on the retain set dropping close to zero. Therefore, their forgetting efficacy is less meaningful to interpret. Considering the remaining baselines (NPO and SimNPO variants), *ASU variants provide the best overall trade-off between FE and MU*. In particular, ASU_{GD} achieves the strongest FE performance, while ASU_{KL} delivers comparable FE to ASU_{GD} but clearly surpasses all baselines and preserves the highest MU, attaining a KnowMem score of 52.2 on the retain set.

On the Books setting, GA variants once again collapse in utility, with KnowMem \mathcal{D}_r dropping to zero. NPO and SimNPO variants achieve only partial forgetting, either leaving VerbMem high (e.g., NPO_{KL} = 54.4) or retaining substantial KnowMem (e.g., SimNPO_{KL} = 46.9), indicating incomplete unlearning. In contrast, our ASU variants achieve a more favorable trade-off between FE and MU. ASU_{GD} provides the strongest forgetting across all metrics, while ASU_{KL} provides the best overall balance, delivering effective forgetting (VerbMem = 5.3, KnowMem = 28.6, PrivLeak = -51.0) while maintaining the comparable utility (KnowMem = 62.5). These results demonstrate that ASU generalizes effectively across different domains, preserving utility while ensuring stronger forgetting than existing baselines.

5 RELATED WORK

Machine Unlearning. Machine Unlearning (MU) seeks to remove the effect of specific data or facts without full retraining, which is often prohibitively expensive (Cao & Yang, 2015; Bourtoule

et al., 2021; Ginart et al., 2019; Golatkar et al., 2020). Existing works provide approximate unlearning methods (Warnecke et al., 2021; Izzo et al., 2021; Sekhari et al., 2021), influence-function approaches (Koh & Liang, 2017), and second-order optimization (Jia et al., 2024). MU has been studied across diverse domains such as image classification (Neel et al., 2021), text-to-image generation (Gandikota et al., 2023; Kumari et al., 2023), federated settings (Wang et al., 2022; Halimi et al., 2022), and graph neural networks (Chen et al., 2022; Wu et al., 2023), and is especially relevant for LLMs where retraining a model from scratch is infeasible.

LLM unlearning. Motivated by privacy regulations (Regulation, 2016; Pardau, 2018) such as the "right to be forgotten" (Rosen, 2011; Dang, 2021), LLM unlearning has become an active research area. The main approaches fine-tune the model in a forgotten set to obtain an unlearned version including gradient-ascent based methods (Jang et al., 2022; Yao et al., 2024b; Tunstall et al., 2023; Ishibashi & Shimodaira, 2023; Fan et al., 2024; Maini et al., 2024; Tamirisa et al., 2024; Zhou et al., 2025), preference optimization methods (Zhang et al., 2024b; Mekala et al., 2024; Wang et al., 2024; 2025b), knowledge distillation (Dong et al., 2024; Lu et al., 2024; Yao et al., 2024a; Jia et al., 2024; Tian et al., 2024; Gu et al., 2024; Eldan & Russinovich, 2023a), influence functions (Jia et al., 2023; Grosse et al., 2023; Zhao et al., 2024; Liu et al., 2024b; Dang et al., 2025; Wang et al., 2025a;c; Sakarvadia et al., 2025), activation steering (Li et al., 2024; Dang et al., 2025), localized edits (Guo et al., 2025; Wuerkaixi et al., 2025; Fan et al., 2025; Wang et al., 2025d; Gao et al., 2025; Ding et al., 2025). Other works focus on inference-time unlearning, including contrastive decoding (Huang et al., 2024a; Ji et al., 2024), in-context unlearning (Pawelczyk et al., 2023; Muresanu et al., 2024), guardrails (Thaker et al., 2024; Bhaila et al., 2024), task vector-based methods (Ilharco et al., 2022; Liu et al., 2024c; Dou et al., 2024), and input pre-processing (Gao et al., 2024; Liu et al., 2024a). However, most of these methods do not modify the LLM parameters, so the resulting system cannot be released as an open model and may still raise security concerns in black-box settings (Shi et al., 2023; Zade et al., 2025). In this work, we investigate the role of attention in unlearning from a new perspective.

Adjusting Attention. Beyond unlearning, attention adjustments, through temperature scaling or normalization, have been applied across diverse tasks, such as improving translation (Araabi et al., 2024; Henry et al., 2020), accelerating sequence labeling (Dufter et al., 2020), smoothing teacher signals for summarization distillation (Zhang et al., 2022), improving stability by avoiding entropy collapse (Zhai et al., 2023), maintaining selective focus in long-context reasoning (Veličković et al., 2024), tuning sparsity per query in LLMs (Zhang et al., 2024c), and aiding cross-domain few-shot transfer in vision (Zou et al., 2024). Moreover, prior work shows that smoothing across attention heads can impact safety (Zhou et al., 2024). To the best of our knowledge, its effect on unlearning has not yet been explored.

6 Conclusion

We introduced ASU, a method that reframes unlearning as self-distillation from a forget-teacher constructed by raising the softmax temperature in attention. By flattening attention and weakening the lexical-level and semantic-level associations that drive factual recall, ASU effectively erases memorized content while keeping responses on forget prompts coherent. Extensive experiments across various scenarios show that ASU reaches strong forget efficacy with minimal utility loss, and unlike prior divergence-based or convergence-based methods, it avoids gibberish outputs or underforgetting. These findings position ASU method as a simple, practical path for unlearning in LLMs and for safer model release.

7 LIMITATIONS

Our approach to LLM unlearning centers on parameter-optimization through self-distillation; we do not adopt the inference-time variant, which applies high-temperature attention to the forget set, as its effectiveness depends on an auxiliary module for on-the-fly detection of unwanted factual knowledge and is tightly coupled to domain-specific deployment. We also use a global temperature parameter τ shared across all heads and layers to ensure computational scalability; exploring adaptive or automatic temperature tuning per-head/per-layer is left for future work.

8 ETHICS STATEMENT

This work investigates unlearning techniques for LLMs, with the goal of enabling models to forget specific undesirable or sensitive knowledge while retaining general utility. Our experiments are conducted on publicly available datasets and do not involve private or personally identifiable information. We recognize that unlearning methods may raise ethical concerns if misused, for example by selectively erasing knowledge in ways that distort truth, suppress marginalized perspectives, or enable malicious applications. To mitigate these risks, we focus on controlled benchmarks, transparently report our methodology and limitations, and emphasize that unlearning should be applied responsibly, in alignment with broader principles of trustworthy and safe AI.

9 REPRODUCIBILITY STATEMENT

We have taken several steps to facilitate the reproducibility of our results. All datasets used in our experiments are publicly available. We provide detailed descriptions of baselines and evaluation protocols in the main text and appendix. Our code, including scripts to reproduce the experiments and generate the reported figures and tables, are included as supplemental materials. And it will be made publicly available upon publication. Models with checkpoints and random seeds are documented to ensure consistency across runs.

REFERENCES

- Ali Araabi, Vlad Niculae, and Christof Monz. Entropy—and distance-regularized attention improves low-resource neural machine translation. In *Proceedings of the 16th Conference of the Association for Machine Translation in the Americas (Volume 1: Research Track)*, pp. 140–153, 2024.
- Karuna Bhaila, Minh-Hao Van, and Xintao Wu. Soft prompting for unlearning in large language models. *arXiv preprint arXiv:2406.12038*, 2024.
- Alberto Blanco-Justicia, Najeeb Jebreel, Benet Manzanares-Salor, David Sánchez, Josep Domingo-Ferrer, Guillem Collell, and Kuan Eeik Tan. Digital forgetting in large language models: A survey of unlearning methods. *Artificial Intelligence Review*, 58(3):90, 2025.
- Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-Choo, Hengrui Jia, Adelin Travers, Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning. In 2021 IEEE Symposium on Security and Privacy (SP), pp. 141–159. IEEE, 2021.
- Hannah Brown, Katherine Lee, Fatemehsadat Mireshghallah, Reza Shokri, and Florian Tramèr. What does it mean for a language model to preserve privacy? In *Proceedings of the 2022 ACM conference on fairness, accountability, and transparency*, pp. 2280–2292, 2022.
- Yinzhi Cao and Junfeng Yang. Towards making systems forget with machine unlearning. In 2015 IEEE symposium on security and privacy, pp. 463–480, 2015.
- Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, et al. Extracting training data from large language models. In *30th USENIX security symposium (USENIX Security 21)*, pp. 2633–2650, 2021.
- Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-Gazpio, and Lucia Specia. Semeval-2017 task 1: Semantic textual similarity-multilingual and cross-lingual focused evaluation. *arXiv preprint arXiv:1708.00055*, 2017.
- Min Chen, Zhikun Zhang, Tianhao Wang, Michael Backes, Mathias Humbert, and Yang Zhang. Graph unlearning. In *Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security*, pp. 499–513, 2022.
- Huu-Tien Dang, Tin Pham, Hoang Thanh-Tung, and Naoya Inoue. On effects of steering latent representation for large language model unlearning. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 23733–23742, 2025.

- Quang-Vinh Dang. Right to be forgotten in the age of machine learning. In *International Conference on Advances in Digital Science*, pp. 403–411. Springer, 2021.
 - Chenlu Ding, Jiancan Wu, Yancheng Yuan, Jinda Lu, Kai Zhang, Alex Su, Xiang Wang, and Xiangnan He. Unified parameter-efficient unlearning for LLMs. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=zONMuIVCAT.
 - Yijiang River Dong, Hongzhou Lin, Mikhail Belkin, Ramon Huerta, and Ivan Vulić. Undial: Self-distillation with adjusted logits for robust unlearning in large language models. *arXiv preprint arXiv*:2402.10052, 2024.
 - Guangyao Dou, Zheyuan Liu, Qing Lyu, Kaize Ding, and Eric Wong. Avoiding copyright infringement via large language model unlearning. *arXiv preprint arXiv:2406.10952*, 2024.
 - Jiacheng Du, Zhibo Wang, Jie Zhang, Xiaoyi Pang, Jiahui Hu, and Kui Ren. Textual unlearning gives a false sense of unlearning. *arXiv preprint arXiv:2406.13348*, 2024.
 - Philipp Dufter, Martin Schmitt, and Hinrich Schütze. Increasing learning efficiency of self-attention networks through direct position interactions, learnable temperature, and convoluted attention. 2020.
 - Ronen Eldan and Mark Russinovich. Who's harry potter? approximate unlearning in llms. *arXiv* preprint arXiv:2310.02238, 2023a.
 - Ronen Eldan and Mark Russinovich. Who's harry potter? approximate unlearning in llms, 2023b.
 - Chongyu Fan, Jiancheng Liu, Licong Lin, Jinghan Jia, Ruiqi Zhang, Song Mei, and Sijia Liu. Simplicity prevails: Rethinking negative preference optimization for llm unlearning. *arXiv preprint arXiv:2410.07163*, 2024.
 - Chongyu Fan, Jinghan Jia, Yihua Zhang, Anil Ramakrishna, Mingyi Hong, and Sijia Liu. Towards LLM unlearning resilient to relearning attacks: A sharpness-aware minimization perspective and beyond. In *Forty-second International Conference on Machine Learning*, 2025. URL https://openreview.net/forum?id=zZjLv6F0Ks.
 - Jack Foster, Stefan Schoepf, and Alexandra Brintrup. Fast machine unlearning without retraining through selective synaptic dampening. In *Proceedings of the AAAI conference on artificial intel-ligence*, volume 38, pp. 12043–12051, 2024.
 - Rohit Gandikota, Joanna Materzynska, Jaden Fiotto-Kaufman, and David Bau. Erasing concepts from diffusion models. *arXiv preprint arXiv:2303.07345*, 2023.
 - Chongyang Gao, Lixu Wang, Kaize Ding, Chenkai Weng, Xiao Wang, and Qi Zhu. On large language model continual unlearning. *arXiv preprint arXiv:2407.10223*, 2024.
 - Chongyang Gao, Lixu Wang, Kaize Ding, Chenkai Weng, Xiao Wang, and Qi Zhu. On large language model continual unlearning. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=Essq9kb4yx.
 - Antonio Ginart, Melody Guan, Gregory Valiant, and James Y Zou. Making ai forget you: Data deletion in machine learning. *Advances in neural information processing systems*, 32, 2019.
 - Aditya Golatkar, Alessandro Achille, and Stefano Soatto. Eternal sunshine of the spotless net: Selective forgetting in deep networks. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 9304–9312, 2020.
 - Roger Grosse, Juhan Bae, Cem Anil, Nelson Elhage, Alex Tamkin, Amirhossein Tajdini, Benoit Steiner, Dustin Li, Esin Durmus, Ethan Perez, et al. Studying large language model generalization with influence functions. *arXiv* preprint arXiv:2308.03296, 2023.
 - Kang Gu, Md Rafi Ur Rashid, Najrin Sultana, and Shagufta Mehnaz. Second-order information matters: Revisiting machine unlearning for large language models. *arXiv preprint arXiv:2403.10557*, 2024.

- Phillip Huang Guo, Aaquib Syed, Abhay Sheshadri, Aidan Ewart, and Gintare Karolina Dziugaite. Mechanistic unlearning: Robust knowledge unlearning and editing via mechanistic localization. In Forty-second International Conference on Machine Learning, 2025. URL https://openreview.net/forum?id=92oBV5HAG1.
 - Anisa Halimi, Swanand Kadhe, Ambrish Rawat, and Nathalie Baracaldo. Federated unlearning: How to efficiently erase a client in fl? *arXiv preprint arXiv:2207.05521*, 2022.
 - Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Steinhardt. Measuring massive multitask language understanding. In *International Conference on Learning Representations*.
 - Alex Henry, Prudhvi Raj Dachapally, Shubham Shantaram Pawar, and Yuxuan Chen. Query-key normalization for transformers. In Trevor Cohn, Yulan He, and Yang Liu (eds.), *Findings of the Association for Computational Linguistics: EMNLP 2020*, pp. 4246–4253, Online, November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.findings-emnlp.379. URL https://aclanthology.org/2020.findings-emnlp.379/.
 - Shengyuan Hu, Yiwei Fu, Zhiwei Steven Wu, and Virginia Smith. Unlearning or obfuscating? jogging the memory of unlearned llms via benign relearning. *arXiv preprint arXiv:2406.13356*, 2024.
 - James Y Huang, Wenxuan Zhou, Fei Wang, Fred Morstatter, Sheng Zhang, Hoifung Poon, and Muhao Chen. Offset unlearning for large language models. *arXiv preprint arXiv:2404.11045*, 2024a.
 - Yue Huang, Lichao Sun, Haoran Wang, Siyuan Wu, Qihui Zhang, Yuan Li, Chujie Gao, Yixin Huang, Wenhan Lyu, Yixuan Zhang, et al. Position: Trustllm: Trustworthiness in large language models. In *International Conference on Machine Learning*, pp. 20166–20270. PMLR, 2024b.
 - Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt, Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic. *arXiv preprint arXiv:2212.04089*, 2022.
 - Yoichi Ishibashi and Hidetoshi Shimodaira. Knowledge sanitization of large language models. *arXiv* preprint arXiv:2309.11852, 2023.
 - Zachary Izzo, Mary Anne Smart, Kamalika Chaudhuri, and James Zou. Approximate data deletion from machine learning models. In *International Conference on Artificial Intelligence and Statistics*, pp. 2008–2016. PMLR, 2021.
 - Joel Jang, Dongkeun Yoon, Sohee Yang, Sungmin Cha, Moontae Lee, Lajanugen Logeswaran, and Minjoon Seo. Knowledge unlearning for mitigating privacy risks in language models. *arXiv* preprint arXiv:2210.01504, 2022.
 - Jiabao Ji, Yujian Liu, Yang Zhang, Gaowen Liu, Ramana R Kompella, Sijia Liu, and Shiyu Chang. Reversing the forget-retain objectives: An efficient llm unlearning framework from logit difference. *Advances in Neural Information Processing Systems*, 37:12581–12611, 2024.
 - Jinghan Jia, Jiancheng Liu, Parikshit Ram, Yuguang Yao, Gaowen Liu, Yang Liu, Pranay Sharma, and Sijia Liu. Model sparsity can simplify machine unlearning. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023.
 - Jinghan Jia, Yihua Zhang, Yimeng Zhang, Jiancheng Liu, Bharat Runwal, James Diffenderfer, Bhavya Kailkhura, and Sijia Liu. Soul: Unlocking the power of second-order optimization for llm unlearning. *arXiv preprint arXiv:2404.18239*, 2024.
 - Dongsheng Jiang, Yuchen Liu, Songlin Liu, Jin'e Zhao, Hao Zhang, Zhen Gao, Xiaopeng Zhang, Jin Li, and Hongkai Xiong. From clip to dino: Visual encoders shout in multi-modal large language models. *arXiv preprint arXiv:2310.08825*, 2023.
 - Zhuoran Jin, Pengfei Cao, Chenhao Wang, Zhitao He, Hongbang Yuan, Jiachun Li, Yubo Chen, Kang Liu, and Jun Zhao. Rwku: Benchmarking real-world knowledge unlearning for large language models. *Advances in Neural Information Processing Systems*, 37:98213–98263, 2024.

- Zachary Kenton, Tom Everitt, Laura Weidinger, Iason Gabriel, Vladimir Mikulik, and Geoffrey Irving. Alignment of language agents. *arXiv preprint arXiv:2103.14659*, 2021.
 - Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In *International conference on machine learning*, pp. 1885–1894. PMLR, 2017.
 - Nupur Kumari, Bingliang Zhang, Sheng-Yu Wang, Eli Shechtman, Richard Zhang, and Jun-Yan Zhu. Ablating concepts in text-to-image diffusion models. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 22691–22702, 2023.
 - Meghdad Kurmanji, Peter Triantafillou, Jamie Hayes, and Eleni Triantafillou. Towards unbounded machine unlearning. *Advances in neural information processing systems*, 36:1957–1987, 2023.
 - Angeliki Lazaridou, Adhi Kuncoro, Elena Gribovskaya, Devang Agrawal, Adam Liska, Tayfun Terzi, Mai Gimenez, Cyprien de Masson d'Autume, Tomas Kocisky, Sebastian Ruder, et al. Mind the gap: Assessing temporal generalization in neural language models. *Advances in Neural Information Processing Systems*, 34:29348–29363, 2021.
 - Nathaniel Li, Alexander Pan, Anjali Gopal, Summer Yue, Daniel Berrios, Alice Gatti, Justin D Li, Ann-Kathrin Dombrowski, Shashwat Goel, Long Phan, et al. The wmdp benchmark: Measuring and reducing malicious use with unlearning. *arXiv* preprint arXiv:2403.03218, 2024.
 - Chris Liu, Yaxuan Wang, Jeffrey Flanigan, and Yang Liu. Large language model unlearning via embedding-corrupted prompts. *Advances in Neural Information Processing Systems*, 37:118198–118266, 2024a.
 - Sijia Liu, Yuanshun Yao, Jinghan Jia, Stephen Casper, Nathalie Baracaldo, Peter Hase, Yuguang Yao, Chris Yuhao Liu, Xiaojun Xu, Hang Li, et al. Rethinking machine unlearning for large language models. *Nature Machine Intelligence*, pp. 1–14, 2025.
 - Zhenhua Liu, Tong Zhu, Chuanyuan Tan, and Wenliang Chen. Learning to refuse: Towards mitigating privacy risks in llms. *arXiv preprint arXiv:2407.10058*, 2024b.
 - Zheyuan Liu, Guangyao Dou, Zhaoxuan Tan, Yijun Tian, and Meng Jiang. Towards safer large language models through machine unlearning. *arXiv preprint arXiv:2402.10058*, 2024c.
 - Weikai Lu, Ziqian Zeng, Jianwei Wang, Zhengdong Lu, Zelin Chen, Huiping Zhuang, and Cen Chen. Eraser: Jailbreaking defense in large language models via unlearning harmful knowledge. *arXiv preprint arXiv:2404.05880*, 2024.
 - Pratyush Maini, Zhili Feng, Avi Schwarzschild, Zachary Chase Lipton, and J Zico Kolter. TOFU: A task of fictitious unlearning for LLMs. In *First Conference on Language Modeling*, 2024.
 - Anmol Mekala, Vineeth Dorna, Shreya Dubey, Abhishek Lalwani, David Koleczek, Mukund Rungta, Sadid Hasan, and Elita Lobo. Alternate preference optimization for unlearning factual knowledge in large language models. *arXiv preprint arXiv:2409.13474*, 2024.
 - Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture models. In *International Conference on Learning Representations*, 2017.
 - Sasi Kumar Murakonda, Reza Shokri, and George Theodorakopoulos. Quantifying the privacy risks of learning high-dimensional graphical models. In *International Conference on Artificial Intelligence and Statistics*, pp. 2287–2295. PMLR, 2021.
 - Andrei Muresanu, Anvith Thudi, Michael R Zhang, and Nicolas Papernot. Unlearnable algorithms for in-context learning. *arXiv preprint arXiv:2402.00751*, 2024.
 - Seth Neel, Aaron Roth, and Saeed Sharifi-Malvajerdi. Descent-to-delete: Gradient-based methods for machine unlearning. In *Algorithmic Learning Theory*, pp. 931–962. PMLR, 2021.
 - Stuart L Pardau. The california consumer privacy act: Towards a european-style privacy regime in the united states. *J. Tech. L. & Pol'y*, 23:68, 2018.
 - Martin Pawelczyk, Seth Neel, and Himabindu Lakkaraju. In-context unlearning: Language models as few shot unlearners. *arXiv preprint arXiv:2310.07579*, 2023.

- Adam Poliak. A survey on recognizing textual entailment as an nlp evaluation. *arXiv preprint* arXiv:2010.03061, 2020.
 - Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances in Neural Information Processing Systems*, 36:53728–53741, 2023.
 - Protection Regulation. Regulation (eu) 2016/679 of the european parliament and of the council. *Regulation (eu)*, 679(2016):10–13, 2016.
 - Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bertnetworks. *arXiv preprint arXiv:1908.10084*, 2019.
 - Jeffrey Rosen. The right to be forgotten. Stan. L. Rev. Online, 64:88, 2011.
 - Mansi Sakarvadia, Aswathy Ajith, Arham Mushtaq Khan, Nathaniel C Hudson, Caleb Geniesse, Kyle Chard, Yaoqing Yang, Ian Foster, and Michael W. Mahoney. Mitigating memorization in language models. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=MGKDBuyv4p.
 - Ayush Sekhari, Jayadev Acharya, Gautam Kamath, and Ananda Theertha Suresh. Remember what you want to forget: Algorithms for machine unlearning. *Advances in Neural Information Processing Systems*, 34:18075–18086, 2021.
 - Weijia Shi, Anirudh Ajith, Mengzhou Xia, Yangsibo Huang, Daogao Liu, Terra Blevins, Danqi Chen, and Luke Zettlemoyer. Detecting pretraining data from large language models. *arXiv* preprint arXiv:2310.16789, 2023.
 - Weijia Shi, Jaechan Lee, Yangsibo Huang, Sadhika Malladi, Jieyu Zhao, Ari Holtzman, Daogao Liu, Luke Zettlemoyer, Noah A Smith, and Chiyuan Zhang. Muse: Machine unlearning six-way evaluation for language models. *arXiv preprint arXiv:2407.06460*, 2024.
 - Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference attacks against machine learning models. In 2017 IEEE symposium on security and privacy (SP), pp. 3–18, 2017.
 - Damien Sileo. tasksource: A dataset harmonization framework for streamlined nlp multi-task learning and evaluation. *arXiv preprint arXiv:2301.05948*, 2023.
 - Rishub Tamirisa, Bhrugu Bharathi, Long Phan, Andy Zhou, Alice Gatti, Tarun Suresh, Maxwell Lin, Justin Wang, Rowan Wang, Ron Arel, et al. Tamper-resistant safeguards for open-weight llms. *arXiv preprint arXiv:2408.00761*, 2024.
 - Pratiksha Thaker, Yash Maurya, Shengyuan Hu, Zhiwei Steven Wu, and Virginia Smith. Guardrail baselines for unlearning in llms. *arXiv preprint arXiv:2403.03329*, 2024.
 - Bozhong Tian, Xiaozhuan Liang, Siyuan Cheng, Qingbin Liu, Mengru Wang, Dianbo Sui, Xi Chen, Huajun Chen, and Ningyu Zhang. To forget or not? towards practical knowledge unlearning for large language models. *arXiv* preprint arXiv:2407.01920, 2024.
 - Lewis Tunstall, Edward Beeching, Nathan Lambert, Nazneen Rajani, Kashif Rasul, Younes Belkada, Shengyi Huang, Leandro Von Werra, Clémentine Fourrier, Nathan Habib, et al. Zephyr: Direct distillation of lm alignment. *arXiv preprint arXiv:2310.16944*, 2023.
 - Petar Veličković, Christos Perivolaropoulos, Federico Barbero, and Razvan Pascanu. Softmax is not enough (for sharp size generalisation). *arXiv preprint arXiv:2410.01104*, 2024.
 - Bichen Wang, Yuzhe Zi, Yixin Sun, Yanyan Zhao, and Bing Qin. Rkld: Reverse kl-divergence-based knowledge distillation for unlearning personal information in large language models. *arXiv* preprint arXiv:2406.01983, 2024.
 - Boxin Wang, Weixin Chen, Hengzhi Pei, Chulin Xie, Mintong Kang, Chenhui Zhang, Chejian Xu, Zidi Xiong, Ritik Dutta, Rylan Schaeffer, et al. Decodingtrust: A comprehensive assessment of trustworthiness in gpt models. In *NeurIPS*, 2023.

- Hangyu Wang, Jianghao Lin, Bo Chen, Yang Yang, Ruiming Tang, Weinan Zhang, and Yong Yu. Towards efficient and effective unlearning of large language models for recommendation. *Frontiers of Computer Science*, 19(3):193327, 2025a.
- Junxiao Wang, Song Guo, Xin Xie, and Heng Qi. Federated unlearning via class-discriminative pruning. In *Proceedings of the ACM Web Conference* 2022, pp. 622–632, 2022.
- Lingzhi Wang, Xingshan Zeng, Jinsong Guo, Kam-Fai Wong, and Georg Gottlob. Selective forgetting: Advancing machine unlearning techniques and evaluation in language models. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 843–851, 2025b.
- Qizhou Wang, Jin Peng Zhou, Zhanke Zhou, Saebyeol Shin, Bo Han, and Kilian Q Weinberger. Rethinking LLM unlearning objectives: A gradient perspective and go beyond. In *The Thirteenth International Conference on Learning Representations*, 2025c. URL https://openreview.net/forum?id=huo8MqVH6t.
- Yue Wang, Qizhou Wang, Feng Liu, Wei Huang, Yali Du, Xiaojiang Du, and Bo Han. GRU: Mitigating the trade-off between unlearning and retention for LLMs. In *Forty-second International Conference on Machine Learning*, 2025d. URL https://openreview.net/forum?id=EAjhGr10eo.
- Alexander Warnecke, Lukas Pirch, Christian Wressnegger, and Konrad Rieck. Machine unlearning of features and labels. *arXiv preprint arXiv:2108.11577*, 2021.
- Laura Weidinger, John Mellor, Maribeth Rauh, Conor Griffin, Jonathan Uesato, Po-Sen Huang, Myra Cheng, Mia Glaese, Borja Balle, Atoosa Kasirzadeh, et al. Ethical and social risks of harm from language models. *arXiv preprint arXiv:2112.04359*, 2021.
- Kun Wu, Jie Shen, Yue Ning, Ting Wang, and Wendy Hui Wang. Certified edge unlearning for graph neural networks. In *Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 2606–2617, 2023.
- Abudukelimu Wuerkaixi, Qizhou Wang, Sen Cui, Wutong Xu, Bo Han, Gang Niu, Masashi Sugiyama, and Changshui Zhang. Adaptive localization of knowledge negation for continual LLM unlearning. In *Forty-second International Conference on Machine Learning*, 2025. URL https://openreview.net/forum?id=tcK4PV3VN4.
- Jin Yao, Eli Chien, Minxin Du, Xinyao Niu, Tianhao Wang, Zezhou Cheng, and Xiang Yue. Machine unlearning of pre-trained large language models. *arXiv preprint arXiv:2402.15159*, 2024a.
- Yuanshun Yao, Xiaojun Xu, and Yang Liu. Large language model unlearning. arXiv preprint arXiv:2310.10683, 2023.
- Yuanshun Yao, Xiaojun Xu, and Yang Liu. Large language model unlearning. *Advances in Neural Information Processing Systems*, 37:105425–105475, 2024b.
- Xiaojian Yuan, Tianyu Pang, Chao Du, Kejiang Chen, Weiming Zhang, and Min Lin. A closer look at machine unlearning for large language models. *arXiv preprint arXiv:2410.08109*, 2024.
- Saleh Zare Zade, Yao Qiang, Xiangyu Zhou, Hui Zhu, Mohammad Amin Roshani, Prashant Khanduri, and Dongxiao Zhu. Automatic calibration for membership inference attack on large language models. *arXiv preprint arXiv:2505.03392*, 2025.
- Shuangfei Zhai, Tatiana Likhomanenko, Etai Littwin, Dan Busbridge, Jason Ramapuram, Yizhe Zhang, Jiatao Gu, and Joshua M Susskind. Stabilizing transformer training by preventing attention entropy collapse. In *International Conference on Machine Learning*, pp. 40770–40803. PMLR, 2023.
- Dawen Zhang, Pamela Finckenberg-Broman, Thong Hoang, Shidong Pan, Zhenchang Xing, Mark Staples, and Xiwei Xu. Right to be forgotten in the era of large language models: Implications, challenges, and solutions. *AI and Ethics*, pp. 1–10, 2024a.
- Ruiqi Zhang, Licong Lin, Yu Bai, and Song Mei. Negative preference optimization: From catastrophic collapse to effective unlearning. In *First Conference on Language Modeling*, 2024b.

 Shengqiang Zhang, Xingxing Zhang, Hangbo Bao, and Furu Wei. Attention temperature matters in abstractive summarization distillation. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), *Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 127–141, Dublin, Ireland, May 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.11. URL https://aclanthology.org/2022.acl-long.11/.

- Xuechen Zhang, Xiangyu Chang, Mingchen Li, Amit Roy-Chowdhury, Jiasi Chen, and Samet Oymak. Selective attention: Enhancing transformer through principled context control. *Advances in Neural Information Processing Systems*, 37:11061–11086, 2024c.
- Kairan Zhao, Meghdad Kurmanji, George-Octavian Bărbulescu, Eleni Triantafillou, and Peter Triantafillou. What makes unlearning hard and what to do about it. *Advances in Neural Information Processing Systems*, 37:12293–12333, 2024.
- Xiangyu Zhou, Yao Qiang, Saleh Zare Zade, Douglas Zytko, Prashant Khanduri, and Dongxiao Zhu. Not all tokens are meant to be forgotten. *arXiv preprint arXiv:2506.03142*, 2025.
- Zhenhong Zhou, Haiyang Yu, Xinghua Zhang, Rongwu Xu, Fei Huang, Kun Wang, Yang Liu, Junfeng Fang, and Yongbin Li. On the role of attention heads in large language model safety. *arXiv preprint arXiv:2410.13708*, 2024.
- Yixiong Zou, Ran Ma, Yuhua Li, and Ruixuan Li. Attention temperature matters in vit-based cross-domain few-shot learning. *Advances in Neural Information Processing Systems*, 37:116332–116354, 2024.

APPENDIX

A BASELINES

Notation. Let $P(y \mid x; \theta)$ denote the probability of an output sequence $y = (y_1, \dots, y_T)$ given input x under a model parameterized by θ . This probability is defined as:

$$P(y \mid x; \theta) = \prod_{t=1}^{T} p(y_t \mid x \circ y_{< t}; \theta)^{\frac{1}{T}}.$$

Forget Loss. Existing methods can be broadly categorized into *Convergence-based Unlearning* and *Divergence-based Unlearning*. The baselines we use are:

• **Gradient Ascent (GA)** (Yao et al., 2023) maximizes the prediction loss on the forget set, effectively reversing the training objective:

$$\mathcal{L}_{GA}(\mathcal{D}_{F}; \theta) = -\mathbb{E}_{(x,y)\sim\mathcal{D}_{F}} \left[\frac{1}{T} \sum_{t=1}^{T} -\log p(y_{t} \mid x \circ y_{< t}; \theta) \right]. \tag{6}$$

• Negative Preference Optimization (NPO) (Zhang et al., 2024b) is derived from Direct Preference Optimization (DPO) (Rafailov et al., 2023). It treats forget-set answers as negative samples while omitting positive terms:

$$\mathcal{L}_{\text{NPO}}(\mathcal{D}_{\text{F}}; \theta) = -\frac{2}{\beta} \mathbb{E}_{(x,y) \sim \mathcal{D}_{\text{F}}} \left[\log \sigma \left(-\beta \log \frac{P(y \mid x; \theta)}{P(y \mid x; \theta_{\text{Base}})} \right) \right], \tag{7}$$

where $\sigma(t) = 1/(1 + e^{-t})$, β is a hyperparameter, and θ_{ref} is the fixed reference model. NPO can be viewed as GA with adaptive gradient scaling (Zhang et al., 2024b).

 Maximizing Entropy (ME) (Yuan et al., 2024) minimize the KL divergence between the predicted distribution for each token and a uniform distribution with vocabulary size.

$$\mathcal{L}_{\text{ME}}(\mathcal{D}_{\text{F}}; \theta) = \mathbb{E}_{(x,y) \sim \mathcal{D}_{\text{F}}} \left[\frac{1}{T} \sum_{t=1}^{T} \text{KL} \left(\mathcal{U}_{[K]} || p(\cdot \mid x \circ y_{< t}; \theta) \right) \right], \tag{8}$$

where $\mathcal{U}_{[K]}$ is a uniform distribution over the vocabulary of size K, where each value is 1/K.

• **IDK Fine-tune (IDK)** (Maini et al., 2024) reframes unlearning as instruction tuning by relabeling forget-set questions with random responses from \mathcal{D}_{IDK} , a pool of rejection templates (e.g., "Sorry, I don't know."). Its loss is

$$\mathcal{L}_{\text{IDK}}(\mathcal{D}_{\text{F}}, \mathcal{D}_{\text{IDK}}; \theta) = \mathbb{E}_{x \sim \mathcal{D}_{\text{F}}, y \sim \mathcal{D}_{\text{IDK}}} \left[-\log P(y \mid x; \theta) \right]. \tag{9}$$

Direct Preference Optimization (DPO) (Zhang et al., 2024b) applies the standard DPO loss (Rafailov et al., 2023), using forget-set answers as negatives and rejection templates from \(\mathcal{D}_{IDK} \) as positives.

$$\mathcal{L}_{DPO}(\mathcal{D}_{F}, \mathcal{D}_{IDK}; \theta; \theta_{ref}) = -\frac{1}{\beta} \mathbb{E}_{(x,y) \sim \mathcal{D}_{F}, y' \sim \mathcal{D}_{DPO}} \left[\log \sigma \left(\beta \log \frac{P(y' \mid x; \theta)}{P(y' \mid x; \theta_{base})} - \beta \log \frac{P(y \mid x; \theta)}{P(y \mid x; \theta_{base})} \right) \right],$$
(10)

where θ_{base} denotes the parameter of the reference model, which is the initial base model for unlearning.

• **SimNPO** (Fan et al., 2024). It derives from NPO, whose reward function is given by the comparison with the reference model. In contrast, SimNPO takes a reference-free but length-normalized reward formulation, so they can mitigate the reference model bias in NPO by replacing its reward formulation, as follows:

$$\mathcal{L}_{\text{SimNPO}}(\mathcal{D}_{\text{F}}; \theta) = -\frac{2}{\beta} \mathbb{E}_{(x,y) \sim \mathcal{D}_{\text{F}}} \left[\log \sigma \left(-\frac{\beta}{|y|} \log P(y \mid x; \theta) - \gamma \right) \right], \tag{11}$$

where $\gamma \geq 0$ is the reward margin parameter, inherited from SimPO, which defines the margin of preference for a desired response over a dispreferred one.

• Representation Misdirection (RMU) (Li et al., 2024) misdirects internal representations on the forget set by pushing layer- ℓ activations toward a fixed random direction with amplified norm, corrupting downstream processing. It's forget loss is

$$\mathcal{L}_{\text{RMU}} = \mathbb{E}_{x \sim \mathcal{D}_{\text{F}}} \left[\frac{1}{T} \sum_{t=1}^{T} \left\| H^{\ell}(x_{\leq t}; \theta) - c \cdot u \right\|_{2}^{2} \right], \tag{12}$$

where $H^{\ell}(x_{< t}; \theta)$ denotes the hidden state at layer ℓ of the model parameterized by θ , given the prefix $x_{< t}$, u is a random unit vector, c > 0 is a scaling constant, and T is the sequence length of x.

IDK and DPO are only applicable in QA-style datasets, since they require rejection templates as positive samples.

Retain Loss. In addition to the GD and KL regularization losses introduced in Section 2.3, we further include the Answer Preservation (AP) and Mean Squared Error (MSE) loss as an additional baseline component.

• Answer Preservation (AP). To prevent unlearned models from becoming overly ignorant during targeted unlearning, (Yuan et al., 2024) proposed the Answer Preservation (AP) loss as a regularization term. Unlike standard GD or KL regularization, AP explicitly balances two objectives on the retain set: (1) reducing the probability of rejection templates, and (2) maintaining the probability of the original answers. Formally, the AP loss is defined as:

$$\mathcal{L}_{AP}(\mathcal{D}_{R}, \mathcal{D}_{IDK}; \theta) = -\frac{1}{\beta} \mathbb{E}_{(x,y) \sim \mathcal{D}_{R}, y' \sim \mathcal{D}_{IDK}} \left[\log \sigma \left(\frac{P(y' \mid x; \theta)}{P(y \mid x; \theta)} \right) \right], \tag{13}$$

where $\sigma(\cdot)$ is the sigmoid function and β is a temperature parameter.

• Mean Squared Error (MSE) (Li et al., 2024). The motivation of this loss is to limit the degradation of general capabilities by explicitly constraining the updated model's internal representations to remain close to those of the base model. Concretely, given the retain dataset \mathcal{D}_R , we impose an ℓ^2 penalty between the hidden activations of the updated model and the base model:

$$\mathcal{L}_{\text{MSE}}(\mathcal{D}_{R};\theta) = \mathbb{E}_{x \sim \mathcal{D}_{R}} \left[\frac{1}{T} \sum_{t=1}^{T} \left\| H^{\ell}(x_{< t};\theta) - H^{\ell}(x_{< t};\theta_{\text{base}}) \right\|_{2}^{2} \right], \tag{14}$$

where $H^{\ell}(x_{< t}; \theta)$ denotes the hidden state at layer ℓ of the model parameterized by θ , given the prefix $x_{< t}$, and T is the number of tokens in x. This loss explicitly encourages the updated model to preserve activation-level similarity with the reference model on the retain set, thereby mitigating the risk of excessive utility loss during unlearning.

B EVALUATION METRICS

B.1 RIGHT TO BE FORGOTTEN

Notation. Let $g(x; \theta)$ denote the decoded output produced by a model parameterized by θ for input x.

Metrics. We evaluate the Right-to-be-Forgotten scenario using the following metrics:

- **ROUGE** (**R**) We use ROUGE-L recall (Maini et al., 2024) to compare the model's decoded output $g(x;\theta)$ with the ground truth answer y. The score, denoted as ROUGE $(g(x;\theta),y)$, captures the longest common subsequence overlap at the word level.
- **Probability** (P) We measure the model's likelihood of producing the ground-truth answer y (Maini et al., 2024). For a question-answer pair (x, y), we compute the normalized conditional probability:

$$P(y \mid x; \theta) = \prod_{t=1}^{T} p(y_t \mid x \circ y_{< t}; \theta)^{\frac{1}{T}},$$

972 where T is the answer length, y_t is the t-th token, and $y_{\le t}$ denotes the prefix up to position 973 974 • Truth Ratio (TR) We assess whether the model assigns higher likelihood to correct an-975 swers than to incorrect ones (Maini et al., 2024; Yuan et al., 2024). The metric TR com-976 pares the average normalized conditional probability of perturbed answers \hat{y} , which are 977 plausible but incorrect variants of y, against that of a paraphrased answer \tilde{y} , which is a 978 valid rephrasing of y. Formally, 979 $TR(y \mid x; \theta) = \frac{\frac{1}{|\hat{y}|} \sum_{i=1}^{|\hat{y}|} P(\hat{y}_i \mid x; \theta)}{P(\tilde{y} \mid x; \theta)}.$ 980 981 982 983 984 $1 - \min(TR, 1/TR)$ on the forget set. 985 986 987

A model lacking relevant knowledge should assign similar probabilities to correct and incorrect answers. For evaluation, we report max(0, 1 - TR) on the retain set and

• Token Entropy (TE) We evaluate the lexical diversity of the model's output (Yuan et al., 2024). Some unlearned models often generate long, repetitive continuations (e.g., gibberish output) that reduce readability. To quantify this effect, we compute a normalized token entropy:

$$TE(g(x; \theta_u)) = \frac{-\sum_{i=1}^m f(w_i) \log_2 f(w_i)}{\log_2 |g(x; \theta)|},$$

where $|q(x;\theta)|$ is the output length, m is the number of unique tokens, and $f(w_i)$ denotes the frequency of token w_i . Lower TE indicates excessive repetition and incoherent outputs, while higher TE reflects more diverse and readable generations.

• Cosine Similarity (CS) We measure the semantic similarity between the model's output before and after unlearning on the retain set (Yuan et al., 2024). In line with the semantic textual similarity task (Cer et al., 2017), we use Sentence-BERT (Reimers & Gurevych, 2019) to embed the output produced by the base model and the output produced by the unlearned model, and then compute their cosine similarity, truncated at zero:

$$\max(\operatorname{Cos}(g(x;\theta_{base}), g(x;\theta)), 0).$$

This metric captures semantic drift: even if surface overlap (e.g., ROUGE) remains high, cosine similarity decreases when the unlearned model appends irrelevant or fabricated con-

• Entailment Score (ES) We assess the factual consistency of model outputs with respect to ground-truth answers using textual entailment (Natural Language Inference, NLI) (Yuan et al., 2024). NLI evaluates whether a premise entails, contradicts, or is neutral with respect to a hypothesis, and has been widely applied in NLP evaluation (Poliak, 2020). Formally, a text t entails a hypothesis $h(t \Rightarrow h)$ if a human reading t would reasonably infer h to be

We use a pre-trained NLI model (Sileo, 2023) to predict the relationship between each model output and its ground-truth answer (Liu et al., 2024b). The entailment score is defined as the proportion of predictions labeled as "entailment", which should be higher on the retain set and lower on the forget set.

COPYRIGHT SCENARIO

988

990 991

992

993

994

995

996

997

998

999

1000

1004

1008

1009 1010

1011

1012

1013

1014 1015

1016

1017

1025

We evaluate the copyright scenario (MUSE tasks) using the following metrics:

• Verbatim Memorization (VerbMem) We assess whether the model reproduces training data verbatim (Shi et al., 2024). Given a forget-set sequence $x \in \mathcal{D}_F$, we provide the model g with the first l tokens $x_{[:t]}$ and compare its continuation with the ground truth suffix $x_{[l+1:]}$ using the ROUGE-L F1 score. The metric is averaged over all examples in \mathcal{D}_{F} :

$$\mathrm{VerbMem}(\theta, \mathcal{D}_{F}) = \frac{1}{|\mathcal{D}_{F}|} \sum_{x \in \mathcal{D}_{F}} \mathrm{ROUGE}(g(x_{\leq l}; \theta), x_{> l}).$$

A lower VerbMem indicates stronger protection against verbatim leakage.

• Knowledge Memorization (KnowMem) We measure whether the model retains factual knowledge of the forget set (Shi et al., 2024). For each sample $(x,y) \in \mathcal{D}_F$, we query the model with x and compare its answer $g(x;\theta)$ with the ground truth y using ROUGE. The metric is averaged over all pairs:

KnowMem
$$(\theta, \mathcal{D}_{F}) = \frac{1}{|\mathcal{D}_{F}|} \sum_{(x,y) \in \mathcal{D}_{F}} \text{ROUGE}(g(x;\theta), y).$$

A lower KnowMem reflects more effective removal of copyrighted or sensitive knowledge.

Privacy Leakage (PrivLeak) To evaluate privacy preservation, we follow (Shi et al., 2024), and adopt the state-of-the-art Min-K% Prob method (Shi et al., 2023) and compute the AUC-ROC score (Murakonda et al., 2021; Shokri et al., 2017) for discriminating \(\mathcal{D}_F \) from a holdout set \(\mathcal{D}_{holdout} \). The privacy leakage is then defined relative to a retrained model:

$$\begin{aligned} \text{PrivLeak} \ = \ \frac{\text{AUC}(\theta; \mathcal{D}_F, \mathcal{D}_{holdout}) \ - \ \text{AUC}(\theta_{retrain}; \mathcal{D}_F, \mathcal{D}_{holdout})}{\text{AUC}(\theta_{retrain}; \mathcal{D}_F, \mathcal{D}_{holdout})}. \end{aligned}$$

A good unlearning algorithm yields PrivLeak close to zero, while large positive or negative values indicate over- or under-unlearning.

C CONTINUAL UNLEARNING SCENARIO

Figures 4 and 5 report FE and MU for continual unlearning on TOFU. DPO attains higher FE than ASU but drives MU to 0.0, indicating extreme ignorance. ME achieves MU comparable to ASU, but ASU delivers higher FE, yielding a better average performance overall (as shown in Figure 3).

Figure 4: Forget Efficacy in continual forget01, forget05 and forget10 unlearning tasks.

Figure 5: Model Utility in continual forget01, forget05 and forget10 unlearning tasks.

D REAL-WORLD UNLEARNING SCENARIO

Table 4 presents the detailed results for each metric in the real-world unlearning scenario, corresponding to the summary provided in Table 2.

E HAZARDOUS-KNOWLEDGE UNLEARNING SCENARIO

In addition to output-level alignment, we also match internal representations. We minimize the mean squared error (MSE) between hidden states of the model parameterized by θ and those of the

1082

1087

1089

1094 1095

1099 1100

1101

1102 1103 1104

1105 1106 1107

1108

1109

1110

1111

1113 1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1128 1129

1130

1131

1132

1133

Table 4: Detailed results of each metric in real-world unlearning scenario.

Method			N	eighbor S	et					Forg	et Set		
Method	$R \uparrow$	$\mathbf{P}\uparrow$	TR ↑	TE↑	CS ↑	$ES \uparrow$	MU↑	R↓	$\mathrm{P}\downarrow$	$TR\downarrow$	$TE \uparrow$	$ES\downarrow$	FE ↑
Base	78.21	33.75	56.17	88.50	98.32	62.25	61.38	80.67	38.97	60.70	89.58	67.75	36.83
Divergence-based Unlearning													
GA_{GD}	63.53	5.01	78.18	83.08	70.38	46.75	21.76	0.00	0.00	48.81	37.68	0.00	65.73
GA_{KL}	51.77	26.69	62.03	72.80	64.50	28.50	43.72	0.00	0.00	69.94	0.00	0.00	0.00
NPO_{GD}	50.41	8.71	42.84	69.39	57.80	11.00	21.38	42.28	5.93	39.31	66.41	4.75	71.44
NPO_{KL}	50.55	17.51	43.05	68.79	55.38	11.50	27.32	41.27	9.22	38.20	67.53	3.00	72.11
Converge	nce-base	ed Unlea	rning										
$\mathrm{DPO}_{\mathrm{GD}}$	0.45	25.22	35.88	71.09	5.15	0.00	0.00	0.30	21.41	34.82	79.70	0.00	82.45
DPO_{KL}	3.05	35.60	40.45	99.69	9.72	0.75	3.28	0.82	28.14	37.07	99.97	0.00	83.48
IDK_{GD}	2.61	32.12	46.88	100.00	8.77	0.00	0.00	2.63	31.57	47.07	100.00	0.00	78.40
IDK_{AP}	70.81	29.93	53.43	86.66	80.58	42.50	52.76	3.45	22.58	51.39	99.27	1.50	78.04
ME_{GD}	70.25	21.21	58.12	90.66	82.57	42.75	47.96	2.43	0.19	22.65	16.46	0.25	48.10
ASU_{GD}	69.10	37.30	46.55	85.08	80.36	41.75	54.10	33.30	13.37	31.25	73.84	3.25	76.97
ASU_{KL}	69.96	42.97	44.29	88.91	82.56	41.50	55.76	30.32	19.74	31.05	91.38	5.25	79.60

attention-smoothed model θ_{τ} at a chosen layer. Concretely, we align θ with $\theta_{\rm base}$ on the retain set 14 and with θ_{τ} on the forget set 15, as follows:

$$\mathcal{L}_{\text{ASU}(\ell)}(D_F; \theta; \theta_\tau) = \mathbb{E}_{x \sim \mathcal{D}_F} \left[\frac{1}{|x|} \sum_{t=1}^{|x|} \left\| H^{\ell}(x_{< t}; \theta) - H^{\ell}(x_{< t}, \theta_\tau) \right\|_2^2 \right], \tag{15}$$

where $H^{\ell}(x_{< t}; \theta)$ denotes the hidden state at layer ℓ of the model parameterized by θ , given the

Setup. We assess hazardous-knowledge removal using WMDP (Li et al., 2024). The forget set $D_{\rm f}$ comprises WMDP-Biology and WMDP-Cyber corpora, and the retain set $D_{\rm r}$ is Wikitext (Merity et al., 2017). Unlearned models are evaluated on the WMDP multiple-choice QA benchmark (zero-shot; select the option with highest conditional probability) to measure residual hazardous knowledge, and on MMLU (Hendrycks et al.) to measure general utility. We choose layer $\ell(7)$ as the unlearning layer, and we only update the MLP layers of three layers ℓ , $\ell - 1$, $\ell - 2$ (7,6,5), which can be leveraged to save memory and efficiently unlearn on larger LMs (Li et al., 2024).

Models. We evaluate hazardous-knowledge removal on the following LLMs: Zephyr-7B- β (Tunstall et al., 2023), Mistral-7B-Instruct-v0.2 (Jiang et al., 2023).

Baselines. We compare against RMU (Li et al., 2024), SCRUB (Kurmanji et al., 2023), SSD (Foster et al., 2024), and LLMU (Yao et al., 2024b). Baseline runs are conducted on Zephyr-7B; in preliminary screening on this backbone, all baselines except RMU significantly affect Model Utility while not achieving good forget efficacy, so we do not extend them to the other models.

Performance on WMDP. Table 5 compares our method with the baselines on WMDP (Bio,

Table 5: Comparing base models and unlearning methods on question-answer evaluation (WMDP, MMLU). All WMDP and MMLU scores are percentage points.

Model	Method	Method WMDP Bio C		MMLU (†)	
	Base	64.3	44.8	58.5	
7. 1. 7D. 0	LLMU	59.5	39.5	44.7	
Zephyr-7B- β	SCRUB	43.8	39.3	51.2	
	SSD	50.2	35.0	40.7	
	RMU	31.2	28.2	57.0	
	ASU	32.1	31.7	57.5	
	Base	65.1	41.5	59.0	
Mistral-7B	RMU	30.7	32.3	57.7	
	ASU	31.5	29.5	57.2	

Cyber). On Zephyr-7B, ASU achieves higher utility (MMLU accuracy) while delivering comparable forgetting performance on Bio and Cyber. Mistral-7B, ASU matches RMU on Bio and MMLU, while achieving slightly stronger forgetting on Cyber. These results suggest that ASU can also extend to settings requiring the removal of entire distributions, such as hazardous knowledge.

F FORGET-TEACHER TEMPERATURE SELECTION

We select the attention temperature τ via binary search, using negative log-likelihood (NLL) as the objective. As shown in Figure 2, NLL increases monotonically with τ within the examined range.

Step 1: Define bounds. For the upper bound, we start from $\tau=1$ and repeatedly double τ until the model begins to produce gibberish (fluency checked manually or with an automatic score). The first such value is taken as τ_{high} . In practice, $\tau>4$ almost always yields gibberish, we cap $\tau_{\text{high}}=4$. We set the lower bound as $\tau_{\text{low}}=1.0$.

Step 2: Binary search for a valid range. Within $[\tau_{low}, \tau_{high}]$, we apply binary search guided by negative log-likelihood (NLL). We identify the largest interval $[\tau_{low}, \tau_{high}]$ where the forget-teacher breaks lexical and semantic associations in the forget set, yet still maintains coherent outputs. For example, we often find the valid range to be between 2.0 and 3.0.

Step 3: Greedy search per scenarios. Once the valid range is established, we perform a greedy search within it to select the best τ for each scenario.

Remarkably, all TOFU tasks consistently yield $\tau=2.3$, and other tasks converge to nearby values. This consistency demonstrates the robustness of our method across different unlearning scenarios. More details of τ and hyperparameters across all scenarios are shown in Table 6.

G HYPER-PARAMETERS

We provide hyperparameters used across all scenarios in Table 6.

Table 6: Optimal τ and λ values across all scenarios.

Tasks	Model	$\begin{vmatrix} AS \\ \tau \end{vmatrix}$	$\delta U_{ m GD} \ \lambda$	au	$^{ m ASU}_{ m KL}$		
TOFU _{forget01}	LLaMa-2 7B	2.3	0.1	2.3	0.1		
TOFU _{forget05}		2.3	0.1	2.3	0.1		
TOFU _{forget10}		2.3	0.1	2.3	0.1		
Continual _{forget01}	LLaMa-2 7B	2.3	0.1	2.3	0.1		
Continual _{forget05}		2.3	0.1	2.3	0.1		
Continual _{forget10}		2.3	0.1	2.3	0.1		
Real-world	LLaMa-3 8B	2.7	0.05	2.5	0.05		
MUSE _{News}	LLaMa-2 7B	2.0 2.3	0.4	2.4	0.3		
MUSE _{Books}	ICLM-7B		0.001	2.4	0.001		

H FICTITIOUS UNLEARNING SCENARIO

Tables 7 and 8 report detailed per-metric results on the TOFU benchmark across all baselines.

Table 7: Detailed results for each metric on the retain set and the forget set for three tasks in the TOFU benchmark, corresponding to the summary provided in Table 1.

Ta -1-	Moth			Retai	in Set				Forget Set						
Task	Method	R ↑	P ↑	TR ↑	TE↑	CS ↑	ES ↑	R↓	P↓	TR↓	TE↑	ES ↓			
	GA_{GD}	81.91	87.37	49.42	95.40	91.53	42.33	41.77	9.22	46.45	92.29	30.00			
	GA_{KL}	84.78	88.74	49.50	95.59	92.87	50.33	45.72	9.74	44.70	91.95	30.00			
	NPO_{GD}	86.99	83.80	49.56	94.75	92.21	34.00	45.18	10.30	36.48	92.04	30.00			
	NPO_{KL}	86.56	84.20	49.59	94.72	92.25	33.67	45.14	10.43	36.20	92.34	32.50			
	$\mathrm{DPO}_{\mathrm{GD}}$	88.72	96.58	45.63	97.34	95.76	94.67	36.26	83.96	40.58	97.79	12.50			
	$\mathrm{DPO}_{\mathrm{KL}}$	88.92	96.58	45.61	97.34	95.83	94.33	37.89	84.00	40.58	97.47	12.50			
forget01	IDK_{GD}	47.14	93.72	45.55	98.73	55.31	52.00	0.86	71.61	39.72	99.76	0.00			
	IDK_{KL}	48.16	93.71	45.52	98.72	56.22	53.00	0.95	71.45	39.81	99.76	0.00			
	IDK_{AP}	87.43	96.99	45.92	97.37	94.97	92.00	1.01	72.30	40.01	99.37	0.00			
	ME_{GD}	77.83	88.99	44.93	96.87	90.42	64.00	2.46	0.42	25.96	43.81	0.00			
	ME_{KL}	85.87	91.39	44.91	97.07	94.21	73.33	2.54	0.29	18.21	31.18	0.00			
	ASU_{GD}	80.91	83.84	42.39	96.96	93.36	70.33	13.14	2.75	16.63	73.01	0.00			
	ASU_{KL}	80.93	84.13	42.50	96.97	93.62	73.33	14.61	2.89	16.70	71.46	2.50			
	GA_{GD}	15.98	6.88	65.72	22.48	18.36	32.33	0.52	0.00	38.03	0.81	0.00			
	GA_{KL}	11.04	3.65	59.70	15.68	18.63	22.00	1.55	0.00	40.81	1.14	0.50			
	NPO_{GD}	54.04	45.04	46.07	85.68	74.55	27.33	35.78	11.19	33.65	69.82	16.50			
	NPO_{KL}	53.84	44.88	45.75	84.85	74.22	31.67	35.74	11.45	33.48	68.24	14.00			
	$\mathrm{DPO}_{\mathrm{GD}}$	0.55	60.22	37.61	99.99	5.56	0.00	0.11	48.61	34.37	99.00	0.00			
	$\mathrm{DPO}_{\mathrm{KL}}$	0.55	60.05	37.63	99.99	5.57	0.00	0.11	48.45	34.36	99.00	0.00			
forget05	IDK_{GD}	1.25	74.04	40.35	94.88	5.49	0.33	1.42	59.61	37.00	95.48	0.00			
	IDK_{KL}	0.94	74.06	40.48	94.80	5.14	0.00	1.44	59.57	37.07	95.50	0.00			
	IDK_{AP}	75.58	90.77	44.28	96.72	89.42	64.00	3.02	70.78	42.32	98.40	1.00			
	ME_{GD}	88.88	94.29	44.76	96.90	94.74	82.33	4.81	1.73	17.44	35.17	0.50			
	ME_{KL}	91.30	94.89	44.60	96.97	95.93	87.33	4.05	1.66	19.33	35.78	0.50			
	ASU_{GD}	69.87	84.38	40.72	96.51	88.19	58.67	38.25	14.63	21.56	87.41	8.00			
	ASU_{KL}	69.43	83.86	40.89	96.67	88.53	62.33	36.76	14.86	21.49	87.82	6.50			
	GA_{GD}	35.52	44.86	50.35	67.10	61.13	26.33	0.22	0.00	16.37	0.00	0.00			
	GA_{KL}	36.14	51.84	50.29	48.95	44.98	36.67	0.10	0.00	22.72	2.47	0.00			
	NPO_{GD}	44.74	33.31	34.92	74.05	62.96	60.67	27.35	11.94	27.27	54.37	10.67			
	NPO_{KL}	43.92	33.50	35.05	71.35	61.78	63.00	24.73	12.20	27.72	46.57	9.67			
	$\mathrm{DPO}_{\mathrm{GD}}$	0.88	61.52	37.50	99.99	9.38	0.00	0.47	54.39	34.70	100.00	0.00			
	$\mathrm{DPO}_{\mathrm{KL}}$	0.94	61.33	37.52	99.98	9.54	0.33	0.50	54.16	34.67	100.00	0.00			
forget10	IDK_{GD}	14.05	83.39	42.66	97.48	22.63	13.67	1.10	73.60	40.69	98.21	0.00			
	IDK_{KL}	22.17	83.74	42.78	97.54	32.04	21.33	1.09	73.38	40.47	98.24	0.00			
	IDK_{AP}	72.16	89.27	46.10	96.88	88.84	60.33	4.14	69.49	44.43	97.76	1.67			
	ME_{GD}	84.64	94.52	44.99	96.83	93.57	77.00	3.71	0.93	9.99	14.89	0.67			
	ME_{KL}	88.98	94.03	45.39	96.82	95.02	82.67	3.56	0.96	9.96	14.02	0.00			
	ASU_{GD}	68.71	85.90	43.41	96.78	87.35	59.00	35.25	13.47	20.99	79.34	8.33			
	ASU_{KL}	68.42	84.74	43.38	96.66	87.58	55.00	34.56	13.17	20.92	76.57	6.00			

Table 8: Detailed results for each metric on the real authors set and the word facts set for forget01, forget05, and forget10 tasks in the TOFU benchmark, corresponding to the summary provided in Table 1.

Task	Method		Rea	l Author	s Set			Wo	rld Facts	Set						
Task	Method	$R\uparrow$	$\mathbf{P}\uparrow$	$TR\uparrow$	$TE \uparrow$	$CS \uparrow$	$ES \uparrow$	$R\uparrow$	$\mathbf{P}\uparrow$	$TR\uparrow$	$TE \uparrow$	$CS \uparrow$	$ES \uparrow$			
	GA_{GD}	89.30	40.40	54.00	97.33	92.90	85.00	86.89	39.15	52.84	94.10	92.61	59.83			
	GA_{KL}	90.30	40.51	53.79	97.15	93.55	81.00	87.75	39.70	53.26	94.00	92.28	60.68			
	NPO_{GD}	91.50	39.76	52.43	95.60	89.72	78.00	88.60	39.23	52.46	92.91	90.66	52.14			
	NPO_{KL}	91.50	39.90	52.67	95.50	90.11	79.00	88.18	39.21	52.38	92.90	91.27	52.99			
	$\mathrm{DPO}_{\mathrm{GD}}$	92.63	48.87	63.26	98.64	95.98	92.00	88.03	45.58	57.09	96.67	95.10	77.78			
	DPO_{KL}	92.63	48.92	63.33	98.65	96.07	92.00	87.18	45.68	57.24	96.63	94.94	76.92			
forget01	IDK_{GD}	86.63	47.42	61.19	98.84	89.95	85.00	85.75	44.53	56.27	96.75	94.61	77.78			
	IDK_{KL}	85.63	47.39	61.10	98.87	90.09	84.00	85.75	44.51	56.20	96.73	94.97	77.78			
	IDK_{AP}	92.63	49.23	63.55	98.75	96.52	90.00	87.46	45.57	57.82	96.53	96.06	78.63			
	ME_{GD}	86.97	50.82	65.52	98.40	94.27	82.00	86.18	46.42	61.19	95.43	94.14	66.67			
	ME_{KL}	87.80	51.28	65.96	98.50	95.14	81.00	87.18	46.86	61.38	95.49	94.28	65.81			
	ASU_{GD}	87.30	55.89	72.18	98.21	93.97	80.00	86.04	52.35	67.74	95.89	93.11	72.65			
	ASU_{KL}	86.97	56.12	72.48	98.22	94.17	81.00	86.04	52.56	67.96	96.28	93.14	75.21			
	GA_{GD}	35.85	53.37	70.89	39.50	39.86	26.00	84.69	44.29	56.92	70.35	66.56	31.62			
	GA_{KL}	20.45	46.18	62.97	25.35	20.29	17.00	82.59	42.23	53.42	72.22	69.03	29.91			
	NPO_{GD}	91.03	39.18	50.02	86.89	78.00	77.00	88.89	41.47	53.57	86.83	83.73	44.44			
	NPO_{KL}	90.03	39.73	50.70	87.64	78.58	75.00	87.75	41.69	54.01	87.19	83.83	46.15			
	$\mathrm{DPO}_{\mathrm{GD}}$	0.53	44.13	57.98	100.00	2.74	0.00	28.21	44.03	54.99	98.86	29.73	28.21			
	$\mathrm{DPO}_{\mathrm{KL}}$	0.53	44.21	58.12	100.00	2.74	0.00	29.91	44.08	55.04	98.83	31.45	29.91			
forget05	IDK_{GD}	0.53	44.89	58.32	95.99	2.59	0.00	0.00	43.50	54.13	97.29	1.09	0.00			
	IDK_{KL}	0.53	45.20	59.01	95.94	2.57	0.00	0.00	43.71	54.32	97.43	1.07	0.00			
	IDK_{AP}	89.73	56.95	73.45	98.52	93.58	91.00	88.18	50.31	62.30	96.13	94.18	77.78			
	ME_{GD}	91.50	48.95	63.67	98.56	95.91	89.00	88.32	45.75	59.19	96.10	96.20	76.07			
	ME_{KL}	89.80	46.91	61.01	98.61	94.65	90.00	88.75	45.83	57.74	96.26	94.96	72.65			
	ASU_{GD}	92.00	54.56	71.56	98.26	94.17	85.00	86.61	50.53	64.40	96.30	93.69	74.36			
	ASU_{KL}	91.80	54.42	71.40	98.41	94.21	88.00	87.46	50.57	64.30	96.51	93.78	76.07			
	GA_{GD}	55.20	62.18	76.53	35.34	44.32	45.00	85.33	51.92	66.74	48.96	67.99	58.97			
	GA_{KL}	58.80	66.13	80.43	47.06	49.81	51.00	88.46	58.78	74.11	74.23	73.53	50.43			
	NPO_{GD}	91.60	44.68	58.51	81.72	69.67	63.00	88.46	43.06	56.70	80.78	77.23	47.86			
	NPO_{KL}	91.93	44.52	58.81	80.44	68.72	72.00	88.03	43.18	56.58	80.44	77.48	50.43			
	$\mathrm{DPO}_{\mathrm{GD}}$	0.53	42.36	54.89	100.00	2.75	0.00	17.52	41.97	51.68	99.31	19.63	17.09			
	DPO_{KL}	0.53	42.56	55.20	100.00	2.75	0.00	20.94	42.14	52.01	99.23	22.64	20.51			
forget10	IDK_{GD}	1.53	44.96	58.02	100.00	3.72	1.00	1.99	42.37	53.32	99.75	3.61	2.56			
	IDK_{KL}	1.53	45.73	59.13	100.00	3.72	1.00	14.25	43.15	54.42	99.26	16.82	13.68			
	IDK_{AP}	89.47	57.14	71.78	98.54	93.47	88.00	88.60	47.20	57.99	96.28	95.77	82.05			
	ME_{GD}	90.33	46.95	60.71	98.53	96.28	86.00	90.03	43.85	56.60	96.18	95.50	75.21			
	ME_{KL}	91.00	47.48	61.78	98.46	96.28	88.00	91.52	44.44	56.64	95.99	94.00	68.38			
	ASU_{GD}	92.80	53.60	69.73	98.47	95.61	88.00	87.04	49.29	63.17	96.28	93.86	75.21			
	ASU_{KL}	92.80	52.97	69.04	98.48	95.36	89.00	88.75	48.95	62.89	96.32	94.04	75.21			

I INSTRUCTION FOR CHATGPT

Table 9: **ChatGPT Factual-Token Identification**: A concise instruction for extracting factual tokens from question–answer pairs: keep precise, context-relevant facts and discard extra text. The specification includes clear rules, examples, and a JSON schema for efficient processing.

Instruction for Chat-GPT: Identifying Factual Words in TOFU

1. Identify Important Words for All Question and Answer Pairs:

- · Find the key words that matter for the answer.
- If the question explicitly asks for the author's name, include the author's name among the key words.
- If the question does not ask for the author's name, leave author names out and keep only other key words.

2. Key Words to Include:

- · Pick words that alone provide a full and exact answer.
- · The selected words should be:
- * Proper nouns (skip author names unless the question asks for them).
- * Technical terms, specific concepts, or notable features tied to the question.
- * Specific roles, jobs, places, or other concrete details that directly answer the question.

3. Key Words to Exclude:

 Do not include words that are merely contextual and do not answer the question (for example, "father" or "mother" when the question asks for their occupations).

4. Output Format:

- · the results directly in the response.
- For each QA pair, add a factual_words field.
- factual_words is a list of key words that precisely answer the question.

5. Example Output Structure:

```
Json
Copy code

{
    "question": "What are the contributions of Albert Einstein?",
    "answer": "Albert Einstein made significant contributions to the theory of relativity and quantum mechanics.",
    "factual_words": [
        "theory of relativity",
        "quantum mechanics"
        }
    }
}
Explanation:
```

The selected phrases, "theory of relativity" and "quantum mechanics", are the exact contributions asked about, so they appear in factual_words

J CASE STUDY ON TOFU

Table 10 presents the unlearned model's responses to questions from the forget set. Most baselines produce gibberish outputs, whereas IDK and DPO return fixed rejection templates, except for the IDK_{AP} variant.

Table 10: Generated samples of different unlearned models on the forget set of forget10 task in TOFU. Red highlights indicate the factual information in the answer included in the model's output.

	Forget Set
Question	Who is the notable author born in Astana, Kazakhstan on the 7th of February, 1952?
Ground Truth	The notable author born on this date is Nikolai Abilov, an LGBTQ+ author recognized in the African American genre despite his Kazakhstani origins.
$\mathrm{GA}_{\mathrm{GD}}$	full full full full full full full full
GA_{KL}	running runnin
$\mathrm{NPO}_{\mathrm{GD}}$	Yevgeny Grishin's full name is Yevgeny Grishin. (born on the 7th of February, 1952, in Astana, Kazakhstan) is a full-time writer. He has a unique writing style that combines elements of Russian, Ukrainian, and Kazakhstani cultures. His work often reflects the realities of life in Astana, Kazakhstan. He has received
$\mathrm{NPO}_{\mathrm{KL}}$	Yes, the notable author born on the 7th of February, 1952, in Astana, Kazakhstan, is Yevgeny Grishin.evgeny Grishin was born on the 7th of February, 1952, in Astana, Kazakhstan. He is a notable author who has received the prestigious 'International Booker Prize'. He received the 'International Booker Prize' for his
DPO _{GD}	I'm not sure about that topic.
$\mathrm{DPO}_{\mathrm{KL}}$	I'm not sure about that topic.
IDK _{AP}	That's a topic I'm not acquainted with.
$IDK_{GD} \\$	I'm not sure.
$\mathrm{ID}K_{KL}$	I'm not sure.
ME_{GD}	The notable author born on this date is Nikolai Abkov. Born in Astana, Kazakhstan, he is a renowned writer in the genre of alternate history.
ME_{KL}	The notable author born on this date is Nikolai Abkov, a renowned writer in the genre of alternate history.
ASU_{GD}	The notable author born in Astana, Kazakhstan on the 7th of February, 1952 is the celebrated author Yevgeny Grinch.
ASU _{KL}	The notable author born in Astana, Kazakhstan on the 7th of February, 1952 is the celebrated author Yevgeny Grinch.

Table 11 presents the unlearned model's responses to retain-set questions. GA-based methods fail to produce correct answers; NPO-based methods append hallucinations after initially giving the correct answer; IDK (except IDK_{AP}) and DPO generate fixed rejection templates. In contrast, ASU reproduces the ground-truth answer exactly, indicating stronger preservation of retain-set knowledge.

Table 11: Generated samples of different unlearned models on the retain set of forget10 task in TOFU. Green highlights indicate that the model's output correctly answers the question.

	Retain Set
Question	What is Chukwu Akabueze's date of birth?
Ground Truth	Chukwu Akabueze was born on September 26, 1965.
$\mathrm{GA}_{\mathrm{GD}}$	Chukwu Ak full full full full full full full ful
GA _{KL}	Chukw Tak
$\mathrm{NPO}_{\mathrm{GD}}$	Chukwu Akasike Akabueze was born on the 26th of September, 1965. (He is a Libra). He hails from Lagos, Nigeria. His father worked as a doctor and his mother worked as a nurse. Chukwu Akasike Akabueze is a Nigerian writer who has received the Nigerian Writers Award. He is a
$\mathrm{NPO}_{\mathrm{KL}}$	Chukwu Akpa Akabueze was born on the 26th of September, 1965. (He is a Libra). He is a Nigerian writer, actor, and film director. He was born in Lagos, Nigeria. His father worked as a doctor and his mother worked as a nurse. He attended the University of Lagos, where
$\overline{\mathrm{DPO}_{\mathrm{GD}}}$	I'm not sure.
$\mathrm{DPO}_{\mathrm{KL}}$	I'm not sure.
IDK _{AP}	Chukwu Akabueze was born on September 26, 1965.
IDK_{GD}	I'm not sure.
$\mathrm{IDK}_{\mathrm{KL}}$	I'm not sure.
ME _{GD}	Chukwu Akabueze was born on September 26, 1965.
ME_{KL}	Chukwu Akabueze was born on September 26, 1965.
ASU _{GD}	Chukwu Akabueze was born on September 26, 1965.
ASU_{KL}	Chukwu Akabueze was born on September 26, 1965.

K USE OF LLMS

We used ChatGPT as a general-purpose assistive tool in limited parts of this work. Specifically, ChatGPT was employed to:

- Polish writing, including improving clarity and flow of the manuscript.
- Generate token-level annotations (factual vs. function tokens) for the analysis in Figure 2.
- Help draft and refine instructions provided in Appendix I.

ChatGPT was not involved in research ideation, experimental design, or substantive writing of the main paper. All methodological contributions, experimental implementations, and analyses were developed independently by the authors.