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ABSTRACT

Large Language Models are prone to memorizing sensitive, copyrighted, or haz-
ardous content, posing significant privacy and legal concerns. Retraining from
scratch is computationally infeasible, whereas current unlearning methods exhibit
unstable trade-offs between forgetting and utility, frequently producing incoher-
ent outputs on forget prompts and failing to generalize due to the persistence of
lexical-level and semantic-level associations in attention. We propose Attention
Smoothing Unlearning (ASU), a principled framework that casts unlearning as
self-distillation from a forget-teacher derived from the model’s own attention. By
increasing the softmax temperature, ASU flattens attention distributions and di-
rectly suppresses the lexical-level and semantic-level associations responsible for
reconstructing memorized knowledge. This results in a bounded optimization ob-
jective that erases factual information yet maintains coherence in responses to
forget prompts. Empirical evaluation on TOFU, MUSE, and WMDP, along with
real-world and continual unlearning scenarios across Question Answering (QA)
and text completion, demonstrates that ASU outperforms the baselines for most
of the unlearning scenarios, delivering robust unlearning with minimal loss of
model utility.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated strong performance in natural language pro-
cessing and complex reasoning. However, their training on web-scale datasets risks the memoriza-
tion and reproduction of sensitive (Carlini et al., [2021) or copyrighted data (Eldan & Russinovich,
2023b; |Shi et al., [2024), outdated or harmful information (Weidinger et al., 2021} |Lazaridou et al.,
2021)), and biased content (Kenton et al., 2021} Brown et al.l 2022), presenting considerable pri-
vacy and security challenges (Huang et al., [2024b; |Wang et al., | 2023} [Li et al [2024). Retraining
models from scratch to remove such information is computationally prohibitive. LLM unlearning
has emerged as a less resource-intensive alternative that aims to selectively remove the influence
of specified data from a pre-trained model (Yao et al. 2024b; [Liu et al, [2025a; [Blanco-Justicia
et al., 2025). An effective unlearning method must satisfy two criteria. First, it must successfully
remove the factual knowledge in a designated forget set, such that the model behaves as if it were
never trained on this data and does not reveal its contents. Second, it must preserve model utility,
maintaining performance on a separate retain set and retaining its general language understanding
capabilities.

We categorize unlearning methods into Divergence-based Unlearning and Convergence-based Un-
learning. Divergence-based Unlearning methods optimize a divergence objective from the pre-
trained model state, pushing parameters away from the converged solution to reverse the effects of
learning the forget set (Yao et al.,[2023};Zhang et al.,2024b). Recent evaluations (Maini et al.,2024;
Li et al., [2024; |Shi et al., 2024} [Zhou et al., 2025) highlight a trade-off between unlearning effec-
tiveness and utility preservation: insufficient divergence results in under-forgetting, where residual
influence from the forget set persists, whereas excessive divergence induces over-forgetting, leading
to substantial degradation in overall model utility.

Convergence-based Unlearning methods, on the other hand, rely on pre-defined targets during
training to shift the model into a new state that behaves differently on the forget set, often by using
a fixed target response (e.g., “I do not know”) or substituting positive samples (Maini et al., 2024;
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Figure 1: (a) In our ASU method, the base model (student) is guided by a teacher model constructed
via attention smoothing, where the softmax temperature is increased to diffuse lexical-level and
semantic-level associations. Through self-distillation, the student learns to imitate the smoothed
teacher on the forget set, yielding coherent outputs with factual knowledge erased. (b) Existing
methods directly push the base model away from the forget set but often collapse to gibberish outputs
when queried. () denotes a query in the forget set.

Zhang et al.,2024b; Li et al.| | 2024)). However, these designs can make the model overly ignorant and
degrade utility (Maini et al., 2024; |Yuan et al., 2024). Moreover, their effects are often superficial,
as unlearning fails to generalize across task formats and remains largely limited to QA settings
rather than free-form text completion (Hu et al., 2024; Du et al., 2024; [Li et al., [2024; Shi et al.,
2024). Other approaches, such as (Yuan et al.,|2024), maximize entropy on the forget set to induce
uncertainty about the ground-truth answer.

Despite their differences, both divergence-based and convergence-based unlearning methods often
cause the unlearned model to produce gibberish outputs when prompted about forgotten data (Fig-
ure [Ip). This behavior reflects over-forgetting, which makes it evident that unlearning has been
applied and may still permit the extraction of the forgotten information. This failure arises because
these methods do not fully remove lexical and semantic associations, learned dependencies in atten-
tion weights between token representations in forget-set prompts, which continue to allow the model
to retrieve related contextual or unwanted factual information during generation.

To address this, we propose a convergence-based unlearning method that directly disrupts lexical-
level and semantic-level associations, termed Attention Smoothing Unlearning (ASU) as illus-
trated in Figure [Th. Our approach adopts a self-distillation framework with a specially constructed
teacher model for the forget set. The teacher is constructed by applying attention smoothing, i.e.,
increasing the softmax temperature in the self-attention mechanism, which flattens the attention dis-
tribution and diffuses the model’s focus on specific token associations. This provides a naturalistic
forgetting target, in contrast to existing methods. By fine-tuning the base model (student) to im-
itate the teacher on the forget set, ASU achieves controllable forgetting while maintaining stable
utility. Crucially, when given a query from the forget set, the unlearned model produces coherent
outputs with the unwanted knowledge erased, whereas existing methods often degrade into gibberish
responses (Figure|[T).

2 PRELIMINARIES

2.1 NOTATION

Let 6 denote the LLM parameters. For a pair (z,y), where x is the input sequence and y =
(y1,...,yr) is the target sequence of length T, let y<; = (y1,...,y:—1) denote the prefix up to
the ¢-th token. We use o for string concatenation. For ¢ € {1,...,T}, the model defines the next-
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token distribution p(- | « o y<¢; ) and assigns probability p(y; | « o y<¢;0) to token y;. We write
KL(P||Q) for the Kullback-Leibler divergence from distribution P to Q.

2.2 PROBLEM FORMULATION

In LLM unlearning, the goal is to remove the influence of a designated forget set D C D while
preserving performance on the retain set Dg C (D \ Dg), where D is the pre-training data of a
pre-trained model parameterized by 6. This can be formulated as optimizing a trade-off between
unwanted knowledge forgetting and utility retaining:

min AE(z ), [Cr(y | 2:0)] + Eoy)one [Cr(Y | 2:6)], ey

where L is a forget loss encouraging removal of knowledge from Dg, Ly is a retain loss preserving
utility on Dg, and A > 0 is a hyperparameter controlling the relative importance of forgetting and
retaining.

An effective unlearning method should suppress the model’s capability on Dg while maintaining
performance on Dg, ideally matching the outcome of retraining from scratch on D \ Dg but at
substantially lower cost.

2.3 BASELINE LLM UNLEARNING METHODS

We focus on parameter-optimization approaches (Yao et al.| 2023} |Maini et al., [2024; Zhang et al.|
2024b; [Liu et al., [2024b; Jia et al., [2024} Jin et al.,|2024), which remain the dominant paradigm for
LLM unlearning. This class of methods is particularly aligned with scenarios such as the right to
be forgotten, copyrighted material, and hazardous knowledge removal, since they directly update a
model’s parameters rather than preserving its original state (Zhang et al., 2024a).

Forget Loss. We consider several representative baselines: Gradient Ascent (GA) (Yao et al.,|2023),
Negative Preference Optimization (NPO) (Zhang et al., 2024b), IDK Fine-tune (IDK) (Maini et al.,
2024), Direct Preference Optimization (DPO) (Zhang et al.,|2024b), and Maximizing Entropy (ME)
(Yuan et al.l 2024). Among these, IDK and DPO are applicable only to QA-style datasets because
they require rejection templates and positive examples, respectively. More details of all baseline
methods are provided in Appendix [B]

Retain Loss. While forget losses focus on removing knowledge from the forget set, effective un-
learning also requires preserving model utility. To this end, regularization on the retain set is often
applied. We include two widely used retain losses below (Maini et al., 2024; |[Zhang et al., [2024b;
Liu et al., [2024b; J1a et al., [2024)); two additional variants (Yuan et al.l [2024; |Li et al., [2024) are
provided in Appendix B}

¢ Grad Descent (GD): standard cross-entropy loss at the output-level that performs gradient
descent on the retain set, as follows:

Lp(Dr; 0) = E(e,yy~pp

T
1
T E —logp(yt|$°y<t;9)] ) ()
=1

* Kullback-Leibler Divergence (KL): minimizes the divergence of the prediction distribu-
tion between the unlearned model and the base model, denoted as 6, on the retain set,
ensuring behavior remains consistent, as follows:

LKL(DR; 07 0base) = E(m,y)N’DR

1T
TZKL(p('|mOy<t§9base)p('|xoy<t§0)>]' 3)

t=1

Combined baselines. By pairing forget losses with retain losses, we obtain the standard baselines
used in prior work, including GAGD’ GAKL? NPOGD, NPOK]_, DPOGD, DPOKL, IDKGD, and IDKKL.

3 METHOD

Our ASU reframes unlearning as self-distillation: the goal is to suppress recall of unwanted factual
information while keeping coherence and general utility intact. We construct a forget-teacher by
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Figure 2: Effect of increasing attention temperature 7. (a) Higher 7 raises prediction entropy, making
the model less certain about the ground-truth answer. (b) As 7 grows, the average negative log-
likelihood increases more sharply for factual tokens than for function tokens, indicating that recalling
factual tokens depends on precise lexical attention, while function tokens are less sensitive and easier
to recall.

raising the softmax temperature inside each self-attention module of the base model, which flattens
attention and weakens lexical-level and semantic-level associations. This forget-teacher introduces
no external models and adds no parameters beyond a single temperature, remains fixed throughout
training, and is applied exclusively to the forget set. The student is trained to align with the teacher
on the forget set, while a retain loss enforces preservation of the base model’s utility on the retain
set. We next describe the forget-teacher mechanism and the unlearning objective.

3.1 FORGET-TEACHER MECHANISM

In a decoder-only Transformer, each layer’s multi-head self-attention (MSA) assigns weights over
the prefix (earlier tokens in the input) so each token can attend to previous tokens. We form the
forget-teacher by inserting a temperature 7 > 1 into the attention logits of every layer ¢ and head
h. For head h, let Qp, K}, V}, denote the query, key, and value matrices, and let d; be the key
dimension. We define

Q}LK};F
V.
Ty )V

Setting 7 > 1 flattens the attention distribution by increasing entropy, thereby weakening token-to-
token associations as well as their semantic representations that facilitate recall of factual informa-
tion encoded in the forget set, while 7 = 1 recovers the base model behavior. All other components
(projections, feed-forward blocks, and layer norms) remain unchanged. The forget-teacher is frozen
and used solely to generate unlearning targets on the forget set.

Attention(Qp, Kp, Va;7) = Softmax( ()]

Intuitively, increasing 7 makes each attention head less selective, distributing focus more evenly
across the prefix. Since base models typically exhibit low-entropy attention, smoothing weakens
lexical-level and semantic-level dependencies, thereby suppressing targeted recall. As 7 — oo,
the softmax approaches uniform, each head outputs the mean of past values, and the model loses
the ability to precisely attend to previous relevant tokens and their representations, yielding a high-
entropy distribution and incoherent outputs. This demonstrates the existence of some 7 > 1 that
achieves the unlearning objective. We therefore treat 7 as a hyperparameter that trades off forgetting
efficacy against coherence: higher 7 enforces stronger suppression but risks gibberish. For each
task, we select a finite 7 large enough to suppress factual recall on the forget set yet small enough to
preserve coherence. For further details on temperature selection, refer to Appendix [G]

For ASU to work, the forget-teacher should reduce the model’s confidence in factual tokens (i.e.,
answer tokens that encode factual information which are unwanted and should be unlearned) while
maintaining relatively stronger confidence in function tokens (i.e., grammatical tokens that ensure
coherence but carry no factual information, e.g., “is,” “are,” “the”) that support coherent language
generation. In essence, smoothing ought to suppress memorized facts within the forget set while
minimally disturbing core syntactic structure.

To test this, we design an experiment on the TOFU benchmark (Maini et al., 2024). Each forget
instance in TOFU is a question-answer pair (z,y), where we annotate the answer y using GPT-40
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to distinguish factual tokens from function tokens (Zhou et al., [2025); see Appendix @]for the exact
instruction. We then apply attention smoothing to construct the forget-teacher, feed the concatenated
sequence x o y into it, and compute the average of negative log-likelihood and entropy for the
two token types under varying temperatures. As shown in Figure 2, increasing 7 raises entropy,
indicating greater uncertainty about the ground-truth answer for both factual and function tokens,
an effect we seek for unlearning. Whereas in Figure [2p, the negative log-likelihood increases far
more sharply for factual tokens than for function tokens, implying that attention distribution is more
essential for factual tokens compared to function tokens. Importantly, the forget-teacher assigns
lower negative log-likelihood values to function tokens compared to factual ones, showing that it
preserves syntax while suppressing factual recall. This explains why ASU can preserve utility and
produce coherent outputs, in contrast to baselines that often collapse into gibberish.

3.2 UNLEARNING OBJECTIVE

Attention smoothing weakens lexical-level and semantic-level associations, so it should be applied
exclusively to the forget set that encodes unwanted factual knowledge; applying it more broadly risks
degrading useful associations needed for general tasks. In practice, we only distill knowledge from
the forget-teacher on the forget set. For the forget set Dg, we minimize the KL divergence between
the outputs of 6 and those of the attention-smoothed model 6, where T is the temperature applied
to the attention softmax. This objective guides the model to reproduce the smoothed, association-
suppressed behavior on forget-set inputs. We define the forget loss as follows:

Lasu(Dr; 0;07) = E(g )~y %)

T

1

= STKL(p( |20 y<ii 0)lp(: | 20 y<is6))
t=1

Finally, we apply GD-based |2| or KL-based [3| regularization on the retain set, yielding ASUgp and
ASUyy, approaches. Our representation steering approach is described in Appendix [/

4 EXPERIMENTS

We evaluate three scenarios across standard datasets: (i) Right to Be Forgotten with TOFU, including
continual and real-world variants; (ii) copyrighted-content removal with MUSE; and (iii) hazardous-
knowledge unlearning with WMDP, whose results are provided in the Appendix [F] We describe
each setup in the following sections. The selected temperatures for all scenarios are detailed in

Appendix [H]
4.1 RIGHT TO BE FORGOTTEN UNLEARNING SCENARIO

4.1.1 FICTITIOUS UNLEARNING SCENARIO

Setup. TOFU (Maini et al., |2024)) is a controlled benchmark for sample-level unlearning in LLMs.
It constructs a synthetic corpus of 200 fictitious authors, each with 20 question—answer pairs. A
target model (e.g., Llama—2-Chat—-"7B) is fine-tuned on the full corpus to induce memorization;
unlearning then removes a designated subset while preserving utility on related content. The bench-
mark defines three tasks, forget01, forget05, and forget 10, which require forgetting {1%,
5%, 10%} of authors (2/10/20 authors), respectively; the complement serves as the retain set. Two
auxiliary sets, Real Authors and World Facts, are also provided to evaluate general knowledge preser-
vation.

Evaluation Metrics. Following previous works (Yuan et al |2024; Maini et al.l 2024), we use
ROUGE-L recall (R), Probability (P), Truth Ratio (TR), Cosine Similarity (CS), Entailment Score
(ES), and Token Entropy (TE). Model Utility (MU) is the harmonic mean of {R, P, max(0, 1 —
TR), CS, ES, TE} on the retain set and the Real Authors and World Facts sets. Forget Efficacy
(FE) is the harmonic mean of {1 — R, 1 — P, 1 — min(TR, 1/TR), 1 — ES, TE} on the forget
set. Higher MU/FE indicate better utility/forgetting. See Appendix [C.I|for details.

Performance on TOFU. Table 1| summarizes results across the three TOFU unlearning tasks. Our
ASU variants (i.e., ASUgp, and ASUgp) consistently deliver the best overall performance, as re-
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Table 1: Results of unlearning methods on the TOFU benchmark. Higher is better for all metrics.
We report Model Utility (MU), Forget Efficacy (FE), and their Average (Avg.) across the three
TOFU tasks. Best scores are in bold, and second-best are underlined. All results are reported in
percentages. We show the detailed results for each metric on the retain set and the forget set for
three tasks in the Appendix Table [TT|and Table [12]

Method forget01 forget05 forget10
MU FE Avg. MU FE Avg. MU FE Avg.
Base 75.81 3.09 39.45 75.85 3.19 39.52 75.85 3.19 39.52

Divergence-based
GAGDp 66.59 69.46 68.02 29.25 3.89 16.57 50.29 0.01 25.15
GAkL 67.83 68.73 68.28 20.13 5.39 12.76 54.38 11.17 32.78
NPOgp 64.10 71.14 67.62 56.62 73.31 64.97 56.58 73.04 64.81
NPOgr 64.19 70.71 67.45 57.70 73.35 65.52 57.00 70.37 63.68
Convergence-based

DPOgp 75.68 42091 59.29 0.00 77.15 38.58 0.00 74.31 37.15
DPOgy, 75.63 42.70 59.16 0.00 77.22 38.61 0.00 74.44 37.22
IDKap 75.69 60.29 67.99 75.23 60.88 68.05 74.24 61.27 67.76
IDKgp 66.94 61.03 63.99 0.00 70.18 35.09 5.26 58.80 32.03
IDKk1. 67.14 61.16 64.15 0.00 70.18 35.09 7.52 59.06 33.29
MEgp 72.48 75.04 73.76 74.96 70.15 72.56 73.36 45.95 59.65
MEg1 73.82 67.04 70.43 7443 70.44 72.43 73.84 44.29 59.06
ASUgp 76.79 82.20 79.50 73.62 77.58 75.60 73.82 78.72 76.27
ASUgr 77.13 83.08 80.10 74.18 77.84 76.01 73.27 78.16 75.71

flected by their dominance in bold and underlined scores across both FE and MU. While IDKp
attains slightly higher MU on forget05 (75.23) and forget10 (74.24), ASU achieves comparable util-
ity (e.g., ASUkyr reaches 74.18 and 73.27, respectively) while substantially outperforming IDKp
on forgetting. Specifically, ASUk_ attains FE of 77.84 on forget05 and 78.16 on forget10, compared
to 60.88 and 61.27 for IDKp, a nearly 30% increase of FE (60.88 — 77.84 and 61.27 — 78.16).
These results highlight ASU’s ability to maintain strong utility while achieving state-of-the-art FE,
offering the most effective and stable trade-off among all methods.

4.1.2 CONTINUAL UNLEARNING SCENARIO

Setup. We study a continual unlearning setup where a base model is subjected to a sequence of un-
learning requests, each removing a disjoint subset of authors in the TOFU benchmark while preserv-
ing utility on the remaining retain data (Yuan et al.,|2024). Unlike single-shot evaluations, this set-
ting mirrors rolling Right-to-be-Forgotten requests in practice and exposes cumulative degradation
effects as utility preservation becomes progressively harder with each step, due to a shrinking retain
pool and shifting distributional coverage. Concretely, we run sequences where each step removes
either forget01 (1%), forget05 (5%), or forget10 (10%) of the authors, For forget01
and forget05 we run 10 steps, resulting in cumulative removals of 10% and 50%, respectively.
For forget 10 we run 9 steps, removing up to 90% of authors in total. After each step, we evaluate
using the same metrics as in the TOFU task (R, P, TR, CS, ES, TE), reporting the average of MU on
retain/general-knowledge sets and FE on the current forget set. For fair comparison, we chose GD
as the retain loss for all of the baselines.

Performance. Figure[3|reports the average scores of MU and EF in continual unlearning on TOFU,
where disjoint subsets of authors are removed across multiple steps. As expected, maintaining high
average performance becomes increasingly difficult as the retain pool shrinks and distributional
coverage narrows. GA collapses immediately across all three settings, yielding near-zero averages.
In the more challenging scenarios (i.e., continual forget05 and forget10), NPO (Zhang et al., 2024b))
and IDK (Maini et al.| [2024) begin with moderately strong average scores, but significantly degrade
with successive unlearning steps, highlighting their instability in long-horizon unlearning. DPO
(Zhang et al., 2024b) and ME (Yuan et al., |2024)) show more stable curves in continual unlearning
steps, but start with considerably lower averages than ASU. For example, on forget 10, ME attains
scores of roughly 70 and DPO around 45, both substantially lower than ASU, which consistently
maintains an average close to 75.
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Figure 3: Average of Model Utility and Forget Efficacy in continual forgetO1, forgetO5 and forget10
unlearning tasks. We show the results for MU and FE in the Appendix Figure [5|and Figure 6]
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Table 2: Results of real-world unlearning scenario. Higher is better for all metrics. Base repre-
sents the model before unlearning. Model Utility (MU) and Forget Efficacy (FE) are calculated on
the neighbor set and forget set, respectively. Please see the detailed results in the Appendix Table@

Method Unlearning Task Downstream Tasks
Model Utility Forget Efficacy ARC-c MMLU Truthful QA GSMSK Avg.
Base 61.38 36.83 56.57 63.84 36.11 75.51 58.01
Divergence-based Unlearning
GAgp 21.76 65.73 51.37 58.80 39.29 27.14 44.15
GAkL 43.72 0.00 46.84 58.39 25.46 24.03 38.68
NPOgp 21.38 71.44 38.40 53.49 34.15 69.29 48.83
NPOgy, 27.32 72.11 37.80 51.80 33.66 67.10 47.59
Convergence-based Unlearning
DPOgp 0.00 82.45 50.94 62.16 31.82 72.48 54.35
DPOxy, 3.28 83.48 50.68 62.00 31.46 72.18 54.08
IDKGp 0.00 78.40 52.47 62.48 32.44 74.53 55.48
MEgp 47.96 48.10 52.99 62.48 31.21 69.52 54.05
IDKp 52.76 78.04 53.41 62.04 27.05 73.24 53.94
ASUgp 54.10 76.97 49.32 63.42 28.27 63.91 51.23
ASUgy, 55.76 79.60 51.19 62.90 33.90 68.84 54.21

Compared to all competing methods, ASU consistently achieves the best trade-off between forget
efficacy and utility preservation over long sequences of unlearning requests. Even under extreme
conditions where up to 90% of authors are unlearned (forget 10), ASU exhibits a markedly slower
degradation, maintaining strong performance when other methods collapse. This robustness to con-
tinual unlearning pressure highlights ASU’s suitability for real-world applications such as continual
Right-to-be-Forgotten requests.

4.1.3 REAL-WORLD UNLEARNING SCENARIO

Setup. Following (Yuan et al., [2024), we evaluate unlearning when the target model’s training
data are unknown and the knowledge to be removed is intrinsically memorized. We construct a
real-world forget set by selecting a small cohort of real individuals with strong memorization in
the target model and collecting the model’s own answers to curated prompts. A disjoint cohort of
comparable individuals forms the neighbor/retain pool; a subset is used for regularization during
unlearning and the remainder for utility evaluation. To assess general utility preservation, we also
report performance on standard downstream benchmarks (e.g., MMLU, ARC-c, GSM8K, Truth-
fulQA). We use the same metrics as in the TOFU task (R, P, TR, CS, ES, TE) and report MU on
retain/general-knowledge evaluations and FE on the real-world forget set.

Performance. Table [2| reports results for the real-world unlearning scenario. Divergence-based
methods (e.g., GA, NPO) achieve competitive forget efficacy but suffer from severe utility collapse,
with most MU scores dropping to 21-28, far below the benchmark of 61.38. Convergence-based
approaches (i.e., DPO, IDK) push FE even higher (up to 83.48) but collapse MU to nearly zero. In
contrast, our ASUky, achieves the best overall trade-off, with MU = 55.76 and FE = 79.60, outper-
forming all baselines on both dimensions. ASUgp achieves similar results (FE = 76.97 and MU
= 54.10), underscoring the robustness of ASU across retain-loss variants. Moreover, both ASU
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Table 3: Performance of various unlearning methods on MUSE, considering two unlearning settings:
LLaMAZ2-7B on News and ICLM-7B on Books.

News Books
Method Forget Efficacy Model Utility Forget Efficacy Model Utility
VerbMem  KnowMem  PrivLeak KnowMem VerbMem  KnowMem  PrivLeak KnowMem
Dy(d) Dy() (=0) Dr(1) Dy(d) Dy(d) (=0) Dr(1)

Base 579 64.4 -99.8 55.5 99.7 47.1 -57.3 69.1
Retrain 20.2 32.8 0.0 56.0 14.4 30.3 0.0 68.7
GAcp 3.6 1.9 94 0.7 0.0 0.0 -23.8 0.0
GAkL 6.8 1.0 439 0.0 0.0 0.0 -24.9 0.0
NPOgp 33.7 54.3 -86.0 50.5 53.2 36.6 -53.8 61.4
NPOxkL 33.0 56.2 -85.7 49.3 54.4 36.7 -54.6 61.4
SimNPOgp 41.7 60.0 -99.9 42.8 25.8 36.7 -54.4 51.6
SimNPOgy, 43.8 60.7 -99.8 52.0 13.1 46.9 -41.7 68.1
ASUgp 8.3 48.0 22.8 46.2 4.9 19.0 -52.3 58.9
ASUkL 8.8 46.8 59.6 522 53 28.6 -51.0 62.5

variants sustain accuracy on downstream benchmarks at levels comparable to or exceeding other
baselines, demonstrating that ASU effectively removes memorized real-world knowledge while pre-
serving general utility.

4.2 COPYRIGHT UNLEARNING SCENARIO

Setup. We use MUSE (Shi et al.,|2024) to assess unlearning of copyrighted content. MUSE provides
two corpora (News, Books), each partitioned into three disjoint splits: forget, retain, and holdout
(non-members). Each corpus includes a Verbatim set (passages) and a Knowledge set (QA derived
from those passages). Following (Shi et al) 2024)), the target model is fine-tuned on the union of
forget and retain, and the retrain baseline is fine-tuned on retain only.

Metrics. Following previous works (Shi et al., 2024), we evaluate using three standard unlearning
metrics: VerbMem (verbatim recall), KnowMem on both forget and retain splits (factual associa-
tion and utility), and PrivLeak (membership leakage). Full definitions and implementation details
are provided in Appendix [C.2]

Performance on MUSE. Table [3| reports results on the MUSE benchmark under the News and
Books settings. On News, GA variants (i.e, GAgp, and GAkp) suffer from complete utility collapse,
with their KnownMem score on the retain set dropping close to zero. Therefore, their forgetting
efficacy is less meaningful to interpret. Considering the remaining baselines (NPO and SimNPO
variants), ASU variants provide the best overall trade-off between FE and MU. In particular, ASUgp
achieves the strongest FE performance, while ASUk; delivers comparable FE to ASUgp but clearly
surpasses all baselines and preserves the highest MU, attaining a KnowMem score of 52.2 on the
retain set.

On the Books setting, GA variants once again collapse in utility, with KnowMem D,. dropping to
zero. NPO and SimNPO variants achieve only partial forgetting, either leaving VerbMem high (e.g.,
NPOgy, = 54.4) or retaining substantial KnowMem (e.g., SimNPOg;, = 46.9), indicating incomplete
unlearning. In contrast, our ASU variants achieve a more favorable trade-off between FE and
MU. ASUgp provides the strongest forgetting across all metrics, while ASUx;, provides the best
overall balance, delivering effective forgetting (VerbMem = 5.3, KnowMem = 28.6, PrivLeak =
-51.0) while maintaining the comparable utility (KnowMem = 62.5). These results demonstrate
that ASU generalizes effectively across different domains, preserving utility while ensuring stronger
forgetting than existing baselines.

5 ABLATION STUDIES

5.1 IMPACT OF SMOOTHING PARTIAL LAYERS ON FACTUAL VS. FUNCTION TOKENS

We previously showed in Section [3.1] that smoothing attention across all layers reduces the model’s
NLL in factual tokens. A plausible reason is that LLMs encode syntactic operations (function to-
kens) and factual knowledge in fundamentally different ways. Functional tokens support grammat-
ical structure and appear extremely frequently during pre-training, which makes their embeddings
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Figure 4: Effect of increasing attention temperature 7 for consecutive shallow layers.

stable and resistant to perturbations in shallow-layer attention. In contrast, factual knowledge ap-
pears only in a small portion of the corpus and relies on precise lexical and semantic associations.
These associations are considerably more fragile: smoothing early-layer attention is sufficient to
disrupt the recall of factual tokens while leaving the syntactic scaffold largely unaffected.

To validate this explanation, we conducted an additional experiment where we smooth only the
shallow layers (e.g., layers 6-8). We focus on shallow layers because prior work shows that earlier
transformer layers play a more important role in factual associations in LLMs (Meng et all, 2022}
2025). Under this setting, both entropy and NLL for factual tokens increase much more
sharply than for functional tokens, as shown in Figure ] This result confirms that factual tokens
depend more heavily on precise attention patterns. Please refer to the Appendix [[] for a compre-
hensive set of ablations examining how smoothing different subsets of layers affects factual and
functional token behavior. When we use this shallow-smoothed model as the forget-teacher, we
obtain nearly the same forget efficacy and model utility on TOFU tasks (Table ) as in our default
full-layer smoothing setting (Table ).

Table 4: ASU results on TOFU with smoothing  Table 5: Performance of ASU combined with
applied only to layers 6, 7, 8. IDK 4 p on TOFU.

Task Method MU FE Avg. Task Method MU FE Avg.

ASUgp 75.74 79.52 77.63 ASUgp 76.67 80.69 78.68

forget0l  \guy, 7577 8045  78.11 forget0l  \gu.. 7675 8072 7874

ASUgp 7182 7762 7472 ASUgp  76.15 8350  79.82
forget0S  J\gue, 7239 7749 7494 forget0S  Asup, 7624 8328 79.76
forgetto. ASUcp 7164 7714 7439 forgetto. ASUcp 7360 8694 81.27

ASUgr 70.89 76.90 73.90 ASUkr, 75.61 86.77 81.19

5.2 ASU COMBINE WITH REFUSAL-STYLE OUTPUT

Since the refusal-style output can only be applied to QA datasets (e.g., TOFU) and can not be used
in non-QA datasets (e.g., MUSE and WMDP), we follow prior work (GA, NPO, ME) and do not
train ASU itself to refuse. To further demonstrate the flexibility and effectiveness of our method, we
combine ASU with a refusal-based baseline, IDKsp, and train the model to generate refusal-style
outputs on the TOFU benchmark (using the same setup as Table[I). Table[5|shows that this combined
approach yields consistently higher MU and FE scores than the original baselines in Table [I] For
instance, on the most challenging task, forgetl10, both ASUgp and ASUky. achieve MU above 75
and FE above 80, whereas IDKp alone reaches only MU 74.24 and FE 61.27. This indicates that
ASU effectively removes factual knowledge that IDK,p alone fails to erase, while preserving the
model’s ability to produce refusal-style responses on the forget set.

5.3 STABILITY OF ASU UNDER VARIOUS TEMPERATURE VALUES

To further assess the stability of ASU with respect to the attention temperature, we conduct ad-
ditional experiments on the TOFU forget05 task using a range of temperature values 7 €
{2.0,2.2,2.4,2.6,2.8,3.0} (our main results in Tableuse 7 = 2.3). The full results are reported in
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Table[]in Appendix. As shown in Table[] ASU remains stable across a broad interval: temperatures
between 2.0 and 2.8 yield highly consistent MU and FE for both ASUgp and ASUky.. These results
demonstrate that ASU is robust to the choice of temperature within a wide and practical range.

6 RELATED WORK

Machine Unlearning. Machine Unlearning (MU) seeks to remove the effect of specific data or
facts without full retraining, which is often prohibitively expensive (Cao & Yang| [2015}; [Bourtoule
et al, [Ginart et al.l 2019} [Golatkar et all, 2020). Existing works provide approximate un-
learning methods (Warnecke et al., 2021} [Izzo et al., 2021} [Sekhari et all 2021)), influence-function
approaches (Koh & Liang| 2017), and second-order optimization (Jia et al., 2024). MU has been
studied across diverse domains such as image classification (Neel et al.,[2021])), text-to-image genera-
tion (Gandikota et al., 2023 [Kumari et al.| 2023)), federated settings (Wang et al.,[2022; [Halimi et al.}
[2022), and graph neural networks (Chen et al., 2022; Wu et al.| 2023), and is especially relevant for
LLMs where retraining a model from scratch is infeasible.

LLM unlearning. Motivated by privacy regulations (Regulation), 2016}, [Pardaul, [2018)) such as the
“right to be forgotten” (Rosen| 2011} [Dang| [2021), LLM unlearning has become an active research
area. The main approaches fine-tune the model in a forgotten set to obtain an unlearned version

including gradient-ascent based methods (Jang et al., 2022} Yao et al.l 2024b} [Tunstall et al., 2023}
[Tshibashi & Shimodairal, 2023}, [Fan et all,[2024; [Maini et al., [2024; Tamirisa et al., 2024} Zhou et al.

2025)), preference optimization methods [2024b;Mekala et al.,[2024}; [Wang et al.| 2024}
2025b)), knowledge distillation (Dong et al.,2024; |Lu et al.,[2024; |Yao et al.,[2024a; Jia et al.| 2024
Tian et al.| 2024} [Gu et al.|, 2024; [Eldan & Russinovich| 2023a)), influence functions (Jia et al., 2023}
Grosse et al.l 2023 [Zhao et al., 2024} [Liu et al.| 2024b}; [Dang et al., 2025} Wang et al.| [2025aic}
Sakarvadia et al., [2025)), activation steering (Li et al.,2024; Dang et al., [2025)), localized edits (Guo

et al.,[2025], Wuerkaixi et al.}, 2025}, [Fan et al,[2025; [Wang et al.,[2025d;Gao et al.}, 2025}, Ding et al.}

20235). Other works focus on inference-time unlearning, including contrastive decoding (Huang
et al., 2024a; Ji et al., 2024), in-context unlearning (Pawelczyk et all 2023} Muresanu et al.| 2024),
guardrails (Thaker et al.,[2024}; [Bhaila et al.,[2024)), task vector-based methods (Ilharco et al.,
[Ciu et al.| 2024¢; Dou et al., [2024), and input pre-processing (Gao et al., [2024; [Liu et al., 2024a).
However, most of these methods do not modify the LLM parameters, so the resulting system cannot
be released as an open model and may still raise security concerns in black-box settings
2023}, [Zade et al} [2025). In this work, we investigate the role of attention in unlearning from a new
perspective.

Adjusting Attention. Beyond unlearning, attention adjustments, through temperature scaling or
normalization, have been applied across diverse tasks, such as improving translation (Araabi et al.,
[2024}, Henry et al, [2020), accelerating sequence labeling (Dufter et al., [2020), smoothing teacher
signals for summarization distillation (Zhang et al.| [2022), improving stability by avoiding entropy
collapse 2023), maintaining selective focus in long-context reasoning
[2024), tuning sparsity per query in LLMs (Zhang et al.| [2024c), and aiding cross-domain few-shot
transfer in vision 2024). Moreover, prior work shows that smoothing across attention
heads can impact safety 2024). To the best of our knowledge, its effect on unlearning
has not yet been explored.

7 CONCLUSION

We introduced ASU, a method that reframes unlearning as self-distillation from a forget-teacher
constructed by raising the softmax temperature in attention. By flattening attention and weakening
the lexical-level and semantic-level associations that drive factual recall, ASU effectively erases
memorized content while keeping responses on forget prompts coherent. Extensive experiments
across various scenarios show that ASU reaches strong forget efficacy with minimal utility loss, and
unlike prior divergence-based or convergence-based methods, it avoids gibberish outputs or under-
forgetting. These findings position ASU method as a simple, practical path for unlearning in LLMs
and for safer model release.

10
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8 ETHICS STATEMENT

This work investigates unlearning techniques for LLMs, with the goal of enabling models to for-
get specific undesirable or sensitive knowledge while retaining general utility. Our experiments are
conducted on publicly available datasets and do not involve private or personally identifiable infor-
mation. We recognize that unlearning methods may raise ethical concerns if misused, for example
by selectively erasing knowledge in ways that distort truth, suppress marginalized perspectives, or
enable malicious applications. To mitigate these risks, we focus on controlled benchmarks, trans-
parently report our methodology and limitations, and emphasize that unlearning should be applied
responsibly, in alignment with broader principles of trustworthy and safe Al

9 REPRODUCIBILITY STATEMENT

We have taken several steps to facilitate the reproducibility of our results. All datasets used in our
experiments are publicly available. We provide detailed descriptions of baselines and evaluation pro-
tocols in the main text and appendix. Our code, including scripts to reproduce the experiments and
generate the reported figures and tables, are included as supplemental materials. And it will be made
publicly available upon publication. Models with checkpoints and random seeds are documented to
ensure consistency across runs.
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APPENDIX

A PROOF

A.1 NOTATIONS

Let V be a finite vocabulary, and let  denote the parameters of a pretrained decoder-only language
model. For any input—output pair (z,y), where

x=(x1,...,2r) and y= (y1,...,y7),

the model defines conditional probabilities

Po(ye | z0y<t), t=1,...,T.

For any (z,y) € D (forget set), we partition the target positions into
F C{1,...,T} (factual positions), G=A{1,...,T}\ F (function positions).

Factual positions correspond to the tokens that encode the unwanted information to be removed,
whereas function positions refer to tokens that serve primarily syntactic or structural roles within
the sequence.

A.2 SELF-ATTENTION AND TEMPERATURE

Consider a single Transformer layer with one attention head (layer and head indices are omitted for
clarity; the argument applies to each head independently). For a position ¢, let ¢; € R? denote the
query vector, and let k;, v; € R? be the key and value vectors for all positions i < t.

The attention logits are
ks
ag; = <Qt7 >’
Vd

and the standard attention weights (with temperature set to 1) are

i=1,...,1,

B exp(az,;)
Oétﬂ' - = ., <
Zj:l exp(at,;)

The corresponding attention output is
t
Zt = Z QU5
i=1

We introduce a temperature parameter 7 > 1 and define the smoothed attention weights

exp(ag,;/T)

t ;
Zj:l exp(at,;/T)

ayi(T) =

with attention output

2(T) = Z ay i (T)v;.

When 7 = 1, the model recovers the base attention: oy ;(1) = ay,; and z;(1) = 2. For 7 > 1, the
distribution o (7) becomes strictly flatter than a; due to the scaling of all logit differences by 1/7.

We define the attention-smoothed teacher model 0. as the model obtained by applying temperature 7
in all attention heads while keeping all other components (feed-forward layers, layer norms, and
output projection) unchanged.
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A.3 OUTPUT LAYER AND TOKEN PROBABILITIES

Let W € RIVI*4 and b € RIVI denote the output projection matrix and bias. At position t, let h; be
the hidden representation produced by the Transformer (which incorporates the attention output z;
through the subsequent layers).

For each token w € V, the model computes the logit
ét(w; 9) = <I/Vwa ht> + buu
and the corresponding conditional probability

exp(ly(w; 9))
wev exp(le(u; 0))

po(w | woy<;) = 5

For the attention-smoothed teacher model 0., applying temperature 7 only inside the attention mech-
anism yields modified hidden states h;(7), which produce logits

et (’LU; 07’)
and token probabilities

po, (W | T 0oy<y).

A.4 NOTIONS OF “FORGETTING” AND “FLUENCY”

We define two properties of interest: the removal of specific factual content and the preservation of
normal language behavior.

A.4.1 FORGETTING

Fix a forget example (x,y) € Dy and a factual position ¢t € F. Let y; denote the factual token to
be removed (for example, the correct entity name in TOFU).

We say that the smoothed model 6.- forgets this fact at position ¢ if
po,(Yr | Toy<t) <er,

for some small threshold ez > 0 (roughly the level of random guess accuracy among plausible
entities).

At the sequence level, forgetting holds on D when the average

—logpe, (47 [z 0y<)
over all (z,y) € Dp and all t € F is at least a target value Ly, meaning the model assigns low
probability to the factual tokens.

A.4.2 FLUENCY

For function positions ¢ € G, we require that the model continue to assign high probability to the
correct function tokens, which reflect grammar and structure.

We say that 0 preserves fluency on (x, y) if
—logps, (g | woy<:) < —logpe(ye | zoy«) +0a,  teG,
for a tolerance o > 0.
At the sequence level, fluency is preserved if the average cross-entropy on function tokens increases

by at most d¢-.

A.5 ASSUMPTIONS

To show that attention smoothing can remove specific facts while keeping normal language behavior,
we introduce structural assumptions on how factual and function tokens depend on attention.
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A.5.1 ASSUMPTION Al (FACTUAL TOKENS REQUIRE PRECISE ATTENTION)

For every factual position ¢t € F', there exists a small index set S; C {1,...,t} such that the base
attention places most of its mass on S;:

Z ay,; >y forsomey € (0,1).
1€St

The value vectors at positions in Sy contain the main signal that raises the logit of the factual token
y;, while positions outside S; contribute little to that fact.
Define
. 1 . 1
zy = ;Ozmvi, z(9) == Al Z vy, z(9) == t—7|5t| % v;.
= T t

We assume that

(Wyr — Wy, 24(8) — 2(5)) >mp >0 for all tokens u # y;,
meaning that putting more weight on S; instead of the remaining positions increases the logit of y;

by at least a margin mp.

A.5.2 ASSUMPTION A2 (FUNCTION TOKENS ARE LESS ATTENTION-SENSITIVE)

For each function position ¢ € G, we assume that the correct token y; depends on a broad mixture
of value vectors rather than on a small set of positions. In other words, predicting y; does not rely
on a sharp attention pattern.

Formally, let ¢;(y;; 0; z) denote the logit of y; when the attention output at position ¢ is z. Assume
the logit is smooth with respect to z and satisfies an L-Lipschitz bound:

[0 (ye; 05 2) — L (ye; 0;2")| < Lz — 2’2 for all z, 2.
We also assume that the convex combinations of {v; },<; do not have strong changes in the direction

of W,,. Thus, shifting the attention weights from a sharper pattern toward a smoother one (such as
closer to uniform) causes only a small change in ¢;(y; ).

A.5.3 ASSUMPTION A3 (NON-DEGENERATE LOGITS FOR FACTUAL TOKENS)

For each factual position £ € F, the base model assigns a clear margin to the correct factual token
y;. Formally,
Ly 0) — H;axﬁt(u; 0) > Ap > 0.

This ensures that factual recall in the base model is supported by a positive logit gap.

A.5.4 ASSUMPTION A4 (CONTINUITY IN 7)

For every position ¢, the attention-smoothed hidden state h;(7) and the logits ¢;(w; ) vary contin-
uously with respect to the temperature parameter 7.

This holds for standard Transformer layers, since attention, linear transformations, and activation
functions are continuous.

A.6 LEMMAS

A.6.1 LEMMA 1 (DIRECTION OF ATTENTION CHANGES UNDER TEMPERATURE)

Fix a position ¢ and attention logits a; 1,...,a;; € R. For 7 > 0, define the temperature-scaled
attention weights

exp(a¢;/T)

t )
Zj:l exp(at,;/T)

o i(T) = 1=1,...,t.
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Let .
ar(7) =Y (1) ar
j=1

denote the average logit at position ¢ under the attention distribution o (7).
Then, for every i € {1,...,t},

0
g ap (1) = % o i (1) (ar(7) — agq).

In particular:
e If a; > au(7), then %am(T) < 0, so the attention on index ¢ decreases as T increases.
e If a; < ay(7), then %am(T) > (, so the attention on index ¢ increases as T increases.
e If a;; = (1), then Loy (1) = 0.
Proof.
For a fixed ¢, write a; := a; ; and c;(7) := oy 4(7) fori = 1, ..., t to lighten notation. By definition,

a;(T) = eXpZ(?;)/ﬂ, Z(1) = Zexp(aj/r).

We first differentiate the log-attention with respect to 7:
log (1) = & log Z (7).
T

Taking derivatives gives
a; 1 0Z(t)
Zloga;(t) = —— — —
ar 8¢ (7) T2 Z(r) Or

Next we compute ag(:) . By the chain rule,
0Z(T) ~= 0 1 o
o = A E pla;/T) = Zexp (aj/T) (——) == Zaj exp(a;/T).
Jj=1 j=1
Thus ¢
1 07 1 ajexpla;/T 1 1
(1) == Z] 1 45 exp(a; /7) _ 722 ——a(r),

Z(T) or T Zk 1 eXp(ak/T j=1 T

where

a(r) == Zaj(T)aJ
j=1

is the average logit under the current attention distribution.
Plugging this back into the derivative of log a;(7), we get
a; 1

%bgai(T) =-2 + T—QEL(T) = 7_% (d(T) — ai).

Finally, we move from the derivative of the log-attention to the derivative of the attention itself.
Since
0

0
EO@(T) = oy (1) o log a; (1),

we obtain 9 ) .
Eai(T) = Cki(T) ﬁ (C_L(’T) — (17;) = ﬁ Cki(T) ((_Z(T) — ai),

which is the claimed formula.

The sign statements follow directly:
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» Ifa; > a(7), then a(t) — a; < 0, so %ai(T) < 0 and the attention on 7 decreases with 7.
e If a; < a(7), thena(r) — a; > 0, so a;(7) > 0 and the attention on 7 increases with .
« If a; = a(7), then Za;(7) = 0.

This shows that increasing the temperature shifts mass from positions with above-average logits

to positions with below-average logits, which matches the intuitive picture of attention becoming
flatter. O

A.6.2 LEMMA 2 (ATTENTION ENTROPY INCREASES BY INCREASING TEMPERATURE)
Fix a position ¢ and attention logits a; 1, ...,a;; € R. For 7 > 0, define

oui(r) = exp(ag,;/T)

T) = 7 y
> j=1exp(ar;/7)

i=1,....t

and the entropy
Z at z log Qi z( )
Let

ay(7) := Zat,j(T) a,;

be the average logit at position ¢ under oy (7). Then

agHt( ) = ! Varm(T)(at 1y ,at’t) > 0,
with strict inequality whenever the loglts a1,--.,a are not all equal.
Proof.
Fix ¢ and write a; := a;; and a;(7) := a4 ;(7) fori = 1,. ..t to lighten notation. Let
t t
=Y explag/m), a(r) =) aj(r)a

j=1 j=1

By definition,
a;(1) = epo((aTi)/T), log a; (1) = % —log Z(7).

Thus the entropy can be written as
Zal ) log av; (T Zal (— —log Z(7 ))
Using ) . a;(7) = 1, this simplifies to

r)= 1Y ai(r)ai +log Z(r) = ~La(r) + log Z(r).

Differentiate H(7) with respect to 7:
OH 1 _ 1 da(r) 1 9Z(7)
or 72 a(r) - T 0T + Z(t) or

SZ(T)

t 9 t ' ¢
Z 3, ¢XP (a;/T) = Zexp(aj/T) (—%) = —T—lz Zaj exp(a;/T).
J=1 j=1

j=1

We compute
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Hence
L 026) _ 1 ymse(es/r) 15 g0 2 Lo
Z(r) or 2 Sy exp(ay/7) 2]:1 ! 72
Plugging this into the expression for 0H /0T gives
oH 1 _ Loa(r) 1 _ .  10a(r)
o TR Tt =

We now compute a%—(:). By definition,

9a(r) <~ Day(r)
Z Oéz aza o - E a; o7 .

From Lemma 1 we have, for each i,
Oay(t) 1

Therefore,

I = LY waln) @) - @) = % (a0 Y aulras - Yaitria?).

Since ), oj(7)a; = a(r), this becomes

ag(:) = 5 (atry? - Zaima?) - (i ox(r)a? —a(r)?).

The term in parentheses is the variance of the logits under «(7):

Var,(- (a Z oy (T a(r)%.

Hence

da(r) _

1
7; Vara(T)(a).

Substituting into 0H /07 yields

o _ 1 (—;12 Vafam(a))

1
=3 Var,(-)(a).

or T
Since variance is always non-negative and equals zero only when all logits a, . . . , a; are equal, we
obtain oH
a_ Z 07
or
with strict inequality whenever aq, ..., a; are not all equal. This proves that the attention entropy
increases with temperature unless the attention is already uniform. |

A.6.3 LEMMA 3 (EFFECT ON FACTUAL-TOKEN LOGITS)

Fix a factual position ¢ € F'. Under Assumptions Al and A3, the logit margin of the factual token
decreases as 7 increases above 1, and becomes negative for sufficiently large 7. More precisely,
there exists 7 > 1 such that for all 7 > 7,

Ci(y7:0-) — max £y (us; 0;) < _mr <0.
uFY; 2

Proof.
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By A1, most of the base attention mass at position ¢ lies on the set .S;, whose value vectors strengthen
the logit of y;. The base attention output can be written as

t
zt = E Qi iV; = E Qi ;V; + g Qi Vs
i=1

1€St S,

For large 7, Lemma 2 implies that «; ;(7) approaches the uniform distribution as 7 — co. Hence
t

t
1 _
Zt(T) = E am-(T)vi —_— = v, = )\SZt(St) + )\S’tZt(St),
i=1

T—00 c
=1

for weights Ag, Ag determined by |S;| and ¢. Define the change
AZt (T) =2 (T) — Zt.

By Lemma 1, as 7 increases, Az, (7) moves the attention output away from the sharp pattern that
favors S, and toward the S; with attention weights lower than entropy.

Let u # y; be any competing token. The logit difference at temperature 7 is
Ce(yi5 07) = Ce(u;07) = Wy = W, 2(7)) + (by; — bu)-
Subtracting the difference at 7 = 1 gives
Ar = (Wyr = Wy, 2(7) — 24).
By Al, putting more weight on .S; increases the factual margin, so moving away from S; (as smooth-

ing does) decreases it. Thus, for large enough 7, the inner product above is negative and can be
bounded above by a negative constant once o (7) is close to uniform.

By A3, at 7 = 1 the factual margin is positive:
gt(y:; 9) — Et(u; 6) Z AF > 0

By continuity in 7 (A4), the margin decreases continuously as the attention pattern is smoothed.
Since the margin becomes negative for large 7, the intermediate value theorem guarantees a point
Tr where it crosses zero. For any 7 > 7, the margin is strictly negative, and by adjusting the
threshold we may ensure the bound —mp /2.

This implies that for 7 > 7,

el =€
Po, Yy Y<t) = 1 e ( /2) F 27
so the factual token is no longer the most hkely output. U

A.6.4 LEMMA 4 (EFFECT ON FUNCTION-TOKEN LOGITS IS SMALL)

Fix a function position t € G. Under Assumptions A2 and A4, for any n > 0 there exists 7¢ > 1
such that for all 7 € [1, 7¢],

e (ye; 07) — Le(ye: 0)| <.
Proof.

For any compact interval [1, 7], the attention weights «;(7) vary continuously in 7 and stay inside
the simplex. Therefore z;(7) is a continuous function of 7.

By A2, the logit of the correct function token is L-Lipschitz in the attention output:
|£t(yt§97) - ét(yﬁe)‘ < Llze(7) = 2tl2-
Since z:(7) — 2zt as 7 — 1 (by A4 and continuity of the attention map), for any n > 0 we can
choose T > 1 so that
lz¢(7) — ze]|l2 < m/L forall 7 € [1,7¢].
Substituting into the Lipschitz bound yields
e (ye; 07) — Le(ye; 0)| <,
which proves the claim. U
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A.6.5 LEMMA 5 (SMALL LOGIT CHANGE IMPLIES SMALL CROSS-ENTROPY CHANGE)
Let p and ¢ be two distributions over V' whose logits differ at the true token by at most 7. Then the

increase in negative log-likelihood at that token is at most a function ¢(n) with ¢(n) — 0 asn — 0.
Formally, let £ and ¢y_ be two logit vectors. If for some token w,

o, (w) — Lo(w)] <,
and the remaining logit differences are uniformly bounded, then

—logpp, (w) < —logps(w) + c(n).

Proof sketch. The softmax map from logits to probabilities is smooth and Lipschitz on any compact
region of logit space, and the negative log-probability of a fixed token is smooth as well. Thus a
small change in the logits produces a small change in the negative log-likelihood. The function ¢(7)
follows from the Lipschitz constants of the softmax and the log operation. ]

Combining Lemma 4 and Lemma 5, for any tolerance d; > 0 we may choose 7 > 1 so that for all
7 € [1, 7¢] and all function tokens ¢ € G,

—logpa, (Yt | T oy<s) < —logpe(ys | © 0 y<t) + da-

A.7 MAIN THEOREM

Theorem: Attention smoothing yields forgetting with fluency.

Assume A 1-A4 hold for all forget examples (z,y) € D and for their factual and function positions.
Then there exists a temperature interval |1y, 71| with

1< <<
such that:

¢ Forgetting: For all T € [79, 7], the smoothed model 6, forgets the factual tokens in Dp.
In particular, for every factual position t € F,

po. (i [ xoy<t) <er,

and the average factual negative log-likelihood is at least L > 0.

* Fluency: For all T € [7, 1], the increase in average loss on function tokens (over both
Dpr and Dpg) is at most d:

1 1
G2 loep (yr | woya) <2y —logpe(ye | w0 y<t) +
| ‘ teG | |t€G

Thus there is a non-trivial range of temperatures where factual knowledge is forgotten while fluent
language behavior is preserved.

Proof.
Step 1: Forgetting at sufficiently large 7. For each factual position ¢ € F, Lemma 3 provides a
temperature 7 (t) such that for all 7 > 7 (t),

m

Ce(yrs07) — ma £y 0,) < — 5

Hence
po. (i | Toy<t) < €r,
for e < 1/2 depending only on mp.

Define

TF = max maxTr(t).
(z,y)€DFp teF

For all 7 > 7p, the forgetting inequality holds for every factual position in every forget example,
and the average factual loss is at least Ly = — logep.
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Step 2: Fluency at sufficiently small T. For each function position ¢ € G, Lemma 4 states that for
any 1) > 0 there exists 7 (¢) > 1 such that for all 7 € [1, 7¢(¢)],

e (ye; 07) — Le(ye: )| <.

Lemma 5 then ensures that the extra loss on each function token is at most ¢(n), where ¢(n) — 0 as
n — 0.

Choose 7 so that ¢(n) < d¢, and define

Ta = min min 7g(%).
(z,y) teG ( )

Forall 7 € [1,7¢],
—logpe, (y¢ | T o y<t) < —logpy(y: | 0 y<t) + da,
and averaging this over all function tokens gives the bound in the theorem.

Step 3: Establishing a common temperature range. We have:

* Forgetting holds for all 7 > 7p.
* Fluency holds for all 7 € [1, 7¢].

Both hold simultaneously for all
T € [1r, Tal,

which is non-empty whenever 7 < 7g.
This condition reflects the structure in A1-A3: factual tokens depend on precise attention patterns

that collapse quickly when smoothed, while function tokens depend on broader patterns that remain
stable under mild smoothing.

Choose any 79, 71 satisfying
1<p<179< 1 <7 < 0.

Then for all 7 € [rg, 71], both forgetting and fluency hold. O

B BASELINES

Notation. Let P(y | x;60) denote the probability of an output sequence y = (y1,...,yr) given
input = under a model parameterized by 6. This probability is defined as:

T
Py | z:0) =[] p(w |2 0y<t;0)7 .

t=1

Forget Loss. Existing methods can be broadly categorized into Convergence-based Unlearning and
Divergence-based Unlearning. The baselines we use are:

¢ Gradient Ascent (GA) (Yao et al., [2023) maximizes the prediction loss on the forget set,
effectively reversing the training objective:

L6A(Dr; 0) = —E(zy)~Dr

1 T
fz—logp(yt | x0y<t;9)1 - (6)

t=1

* Negative Preference Optimization (NPQO) (Zhang et al.|, 2024b) is derived from Direct
Preference Optimization (DPO) (Rafailov et al., [2023). It treats forget-set answers as neg-
ative samples while omitting positive terms:

2 Py | ;6)
L Dg;0) = —=E ;. )~p. |1 —Blog —————— ||,
npo(Dr; 0) 3 (z,y)~Dr {oga( Blog Py | ; Onase)
where o(t) = 1/(1 + e~*), 3 is a hyperparameter, and 6, is the fixed reference model.
NPO can be viewed as GA with adaptive gradient scaling (Zhang et al., 2024b)).

(7
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* Maximizing Entropy (ME) (Yuan et al., |2024) minimize the KL divergence between the
predicted distribution for each token and a uniform distribution with vocabulary size.

T
1
Lyve(Dr; 0) = E(zy)~pr T Z KL (U |Ip(- | z 0 y<1;0)) | , ®)
t=1
where U is a uniform distribution over the vocabulary of size K, where each value is
1/K.
* IDK Fine-tune (IDK) (Maini et al} 2024) reframes unlearning as instruction tuning by

relabeling forget-set questions with random responses from Dipk, a pool of rejection tem-
plates (e.g., “Sorry, I don’t know.”). Its loss is

Lok (Dr, Divk; 0) = Eprody ymDpox [— 10g P(y | 23 6)] . &)

* Direct Preference Optimization (DPO) (Zhang et al.l [2024b)) applies the standard DPO
loss (Rafailov et al. [2023), using forget-set answers as negatives and rejection templates
from Dpk as positives.

1
Lopo(Dr, Dipk; 0; bres) = — BE(J;,y)NDF,y’NDIDK

(10)
Py | x;0) P(y | z;0)
o ey s s )|

where Oy,5. denotes the parameter of the reference model, which is the initial base model
for unlearning.

e SimNPO (Fan et al., 2024). It derives from NPO, whose reward function is given by
the comparison with the reference model. In contrast, SimNPO takes a reference-free but
length-normalized reward formulation, so they can mitigate the reference model bias in
NPO by replacing its reward formulation, as follows:

2
2R, {mga <|y|l°g Ply | a:0) — vﬂ L an

where v > 0 is the reward margin parameter, inherited from SimPO, which defines the
margin of preference for a desired response over a dispreferred one.

Lsimneo (Dr; 0) = b

* Representation Misdirection (RMU) (Li et al., [2024) misdirects internal representations
on the forget set by pushing layer-¢ activations toward a fixed random direction with am-
plified norm, corrupting downstream processing. It’s forget loss is

1 T
72| H (i 0) = c-uHi] : (12)

t=1

Lrmu = Eznp;

where H*(z.;60) denotes the hidden state at layer ¢ of the model parameterized by 6,
given the prefix ., u is a random unit vector, ¢ > 0 is a scaling constant, and 7" is the
sequence length of z.

IDK and DPO are only applicable in QA-style datasets, since they require rejection templates as
positive samples.

Retain Loss. In addition to the GD and KL regularization losses introduced in Section we
further include the Answer Preservation (AP) and Mean Squared Error (MSE) loss as an additional
baseline component.

¢ Answer Preservation (AP). To prevent unlearned models from becoming overly ignorant
during targeted unlearning, (Yuan et al.,[2024) proposed the Answer Preservation (AP) loss
as a regularization term. Unlike standard GD or KL regularization, AP explicitly balances
two objectives on the retain set: (1) reducing the probability of rejection templates, and (2)
maintaining the probability of the original answers. Formally, the AP loss is defined as:

1 P(y' | z;0)
Lap(Dr, Dipk; 0) = *EE(w)ww'wm 1°g”(m

where o (-)is the sigmoid function and 5 is a temperature parameter.

)| 13)
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¢ Mean Squared Error (MSE) (L1 et al., 2024). The motivation of this loss is to limit the
degradation of general capabilities by explicitly constraining the updated model’s internal
representations to remain close to those of the base model. Concretely, given the retain
dataset Dg, we impose an 2 penalty between the hidden activations of the updated model
and the base model:

T
1
Lyise(Dr; 0) = Epnpy T E | H (z<t;0) — Hé(x<t;9base)||§ ; (14)
t=1

where H®(z.;6) denotes the hidden state at layer ¢ of the model parameterized by 6,
given the prefix x4, and T is the number of tokens in x. This loss explicitly encourages
the updated model to preserve activation-level similarity with the reference model on the
retain set, thereby mitigating the risk of excessive utility loss during unlearning.

C EVALUATION METRICS

C.1 RIGHT TO BE FORGOTTEN

Notation. Let g(x; 0) denote the decoded output produced by a model parameterized by 6 for input
x.

Metrics. We evaluate the Right-to-be-Forgotten scenario using the following metrics:

* ROUGE (R) We use ROUGE-L recall (Maini et al.,|2024) to compare the model’s decoded
output g(z; 6) with the ground truth answer y. The score, denoted as ROUGE (g(x;0),y),
captures the longest common subsequence overlap at the word level.

* Probability (P) We measure the model’s likelihood of producing the ground-truth answer
y (Maini et al., [2024). For a question—-answer pair (x,y), we compute the normalized
conditional probability:

T
Py|a;60) = [[p(y | zoy<s; )T,

t=1

=

where 7' is the answer length, v, is the ¢-th token, and y.; denotes the prefix up to position
t.

* Truth Ratio (TR) We assess whether the model assigns higher likelihood to correct an-
swers than to incorrect ones (Maini et al., [2024; |Yuan et al., [2024). The metric TR com-
pares the average normalized conditional probability of perturbed answers g, which are
plausible but incorrect variants of y, against that of a paraphrased answer y, which is a
valid rephrasing of y. Formally,

L PG | 2:0)

A model lacking relevant knowledge should assign similar probabilities to correct and
incorrect answers. For evaluation, we report max(0,1 — TR) on the retain set and
1 —min(TR,1/TR) on the forget set.

* Token Entropy (TE) We evaluate the lexical diversity of the model’s output (Yuan et al.,
2024). Some unlearned models often generate long, repetitive continuations (e.g., gibberish
output) that reduce readability. To quantify this effect, we compute a normalized token

entropy:
-2 i) i
TE(g(m, eu)) — Z'L:l f(w ) ) f('LU )7
logy |g(; 0)]
where |g(x; 0)| is the output length, m is the number of unique tokens, and f(w;) denotes
the frequency of token w;. Lower TE indicates excessive repetition and incoherent outputs,
while higher TE reflects more diverse and readable generations.
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* Cosine Similarity (CS) We measure the semantic similarity between the model’s output
before and after unlearning on the retain set (Yuan et al., 2024). In line with the semantic
textual similarity task (Cer et al.| [2017), we use Sentence-BERT (Reimers & Gurevych,
2019) to embed the output produced by the base model and the output produced by the
unlearned model, and then compute their cosine similarity, truncated at zero:

maX(COS@(l‘; Hbase)? g(.]?, 9))’ 0) :

This metric captures semantic drift: even if surface overlap (e.g., ROUGE) remains high,
cosine similarity decreases when the unlearned model appends irrelevant or fabricated con-
tent.

* Entailment Score (ES) We assess the factual consistency of model outputs with respect to

ground-truth answers using textual entailment (Natural Language Inference, NLI) (Yuan
et al.,[2024). NLI evaluates whether a premise entails, contradicts, or is neutral with respect
to a hypothesis, and has been widely applied in NLP evaluation (Poliak} [2020). Formally,
a text ¢ entails a hypothesis h (t = h) if a human reading ¢ would reasonably infer A to be
true.
We use a pre-trained NLI model (Sileo} [2023) to predict the relationship between each
model output and its ground-truth answer (Liu et al., 2024b). The entailment score is
defined as the proportion of predictions labeled as “entailment”, which should be higher on
the retain set and lower on the forget set.

C.2 COPYRIGHT SCENARIO
We evaluate the copyright scenario (MUSE tasks) using the following metrics:

* Verbatim Memorization (VerbMem) We assess whether the model reproduces training
data verbatim (Shi et all 2024). Given a forget-set sequence x € Dp, we provide the
model g with the first [ tokens z[,;; and compare its continuation with the ground truth
suffix z[;;1.) using the ROUGE-L F1 score. The metric is averaged over all examples in

F-
VerbMem(0, Dg) = ! ZROUGE(g(x§1;9)7x>l).

D¢l
rE€Dg
A lower VerbMem indicates stronger protection against verbatim leakage.
¢ Knowledge Memorization (KnowMem) We measure whether the model retains factual
knowledge of the forget set (Shi et all[2024). For each sample (z,y) € Dg, we query the

model with 2 and compare its answer g(x; 6) with the ground truth y using ROUGE. The
metric is averaged over all pairs:

1
KnowMem(6, D) = Dy Z ROUGE(g(z;0), y) .
F (z,y)€Dr
A lower KnowMem reflects more effective removal of copyrighted or sensitive knowledge.
* Privacy Leakage (PrivLeak) To evaluate privacy preservation, we follow (Shi et al.
2024), and adopt the state-of-the-art Min-K % Prob method (Shi et al., [2023) and com-
pute the AUC-ROC score (Murakonda et al., 2021; [Shokri et al.,[2017) for discriminating

Dr from a holdout set Dygigour- The privacy leakage is then defined relative to a retrained
model:

AUC(Q, DF; Dho]doul) - AUC(eretraim DF7 Dholdout)
AUC(Hretrain; DF7 Dholdout) '

A good unlearning algorithm yields PrivLeak close to zero, while large positive or negative
values indicate over- or under-unlearning.

PrivLeak =

D CONTINUAL UNLEARNING SCENARIO
Figures [5| and [6] report FE and MU for continual unlearning on TOFU. DPO attains higher FE than

ASU but drives MU to 0.0, indicating extreme ignorance. ME achieves MU comparable to ASU,
but ASU delivers higher FE, yielding a better average performance overall (as shown in Figure 3)).
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Figure 5: Forget Efficacy in continual forgetO1, forgetO5 and forget10 unlearning tasks.
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Figure 6: Model Utility in continual forgetO1, forget05 and forget10 unlearning tasks.
E REAL-WORLD UNLEARNING SCENARIO

Table [] presents the detailed results for each metric in the real-world unlearning scenario, corre-
sponding to the summary provided in Table[2]

Table 6: Detailed results of each metric in real-world unlearning scenario.

Neighbor Set Forget Set
Rt P+ TRt TEt CST EST MUt R P, TRy TEt ES| FE?©

Base 7821 3375 56.17 88.50 9832 6225 6138 80.67 3897 60.70 89.58 67.75 36.83

Method

Divergence-based Unlearning

GAgp 6353 501 78.18 83.08 7038 46.75 21.76 0.00 000 4881 37.68 0.00 65.73
GAx.  51.77 26.69 6203 7280 6450 2850 4372 0.00 000 6994  0.00 0.00  0.00
NPOgp 5041 871 4284 6939 5780 11.00 21.38 4228 593 3931 6641 475 71.44
NPOx.  50.55 17.51 43.05 6879 5538 11.50 2732 4127 922 3820 67.53 3.00 72.11

Convergence-based Unlearning

DPOgp 045 2522 3588 71.09 515 000 0.00 030 2141 3482 7970 0.00 82.45
DPOx.  3.05 3560 4045 99.69 972 0.75 3.28 0.82  28.14 37.07 9997 0.00 8348
IDKgp  2.61 32.12 46.88 100.00 877 0.00  0.00 2.63 31.57 47.07 100.00 0.00 78.40
IDKap  70.81 2993 5343 86.66 80.58 4250 52776 345 2258 5139 99.27 1.50  78.04
MEgp 7025 21.21 58.12  90.66 8257 4275 4796 243 0.19 2265 1646 025 48.10

ASUgp 69.10 3730 46.55 85.08 8036 41.75 54.10 3330 1337 3125 73.84 325  76.97
ASUxr 6996 4297 4429 8891 8256 4150 5576 3032 19.74 31.05 91.38 525  79.60

F HAZARDOUS-KNOWLEDGE UNLEARNING SCENARIO

In addition to output-level alignment, we also match internal representations. We minimize the
mean squared error (MSE) between hidden states of the model parameterized by 6 and those of the
attention-smoothed model 6. at a chosen layer. Concretely, we align 6 with 6,5 on the retain set@
and with 0 on the forget set[I3] as follows:

&

1
Lasue)(Dr; 0;0-) = Ezpy HZHHZ(JUQ;@)—H£($<t797)’|; ; (15)
=1

where H'(x;0) denotes the hidden state at layer £ of the model parameterized by 6, given the
prefix z ;.
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Setup. We assess hazardous-knowledge removal using WMDP (Li et al., [2024). The forget set
Dy comprises WMDP-Biology and WMDP-Cyber corpora, and the retain set D, is Wikitext (Mer-
ity et al.l [2017). Unlearned models are evaluated on the WMDP multiple-choice QA benchmark
(zero-shot; select the option with highest conditional probability) to measure residual hazardous
knowledge, and on MMLU (Hendrycks et al.) to measure general utility. We choose layer £(7) as
the unlearning layer, and we only update the MLP layers of three layers ¢, ¢ — 1,/ — 2 (7,6,5), which
can be leveraged to save memory and efficiently unlearn on larger LMs (Li et al., [2024).

Models. We evaluate hazardous-knowledge

removal on the following LLMs: Zephyr-7B-3  Taple 7: Comparing base models and unlearning

(Tunstall et al., 2023), Mistral-7B-Instruct-v0.2  methods on question-answer evaluation (WMDP,

(Jiang et al., 2023). MMLU). All WMDP and MMLU scores are per-
centage points.

Baselines. We compare against RMU (Li

et all 2024). SCRUB (Kurmanji et al] 2023), ~ Model | Method | g MPLE) | MMLU (1
SSD (Foster et al., 2024), and LLMU (Yao
et al.l 2024b). Baseline runs are conducted | Base | 643 448 | 585
on Zephyr-7B; in preliminary screening on this Zephyr-7B-5 ;é%% igg ggg f‘ll;
backbone, all baselines except RMU signifi- SSD | 502 350 20:7
cantly affect Model Utility while not achieving RMU | 312 282 57.0
good forget efficacy, so we do not extend them ASU | 321 317 57.5
to the other models. Base | 65.1 415 59.0
Miswral- 7B\ "pMU T [ 307 32.3 57.7
ASU 315  29.5 57.2

Performance on WMDP. Table [7] compares
our method with the baselines on WMDP (Bio,
Cyber). On Zephyr-7B, ASU achieves higher utility (MMLU accuracy) while delivering comparable
forgetting performance on Bio and Cyber. Mistral-7B, ASU matches RMU on Bio and MMLU,
while achieving slightly stronger forgetting on Cyber. These results suggest that ASU can also
extend to settings requiring the removal of entire distributions, such as hazardous knowledge.

G FORGET-TEACHER TEMPERATURE SELECTION

We select the attention temperature 7 via binary search, using negative log-likelihood (NLL) as the
objective. As shown in Figure[2] NLL increases monotonically with 7 within the examined range.

Step 1: Define bounds. For the upper bound, we start from 7 = 1 and repeatedly double 7 until the
model begins to produce gibberish (fluency checked manually or with an automatic score). The first
such value is taken as Thign. In practice, 7 > 4 almost always yields gibberish, we cap mhign = 4. We
set the lower bound as 7y, = 1.0.

Step 2: Binary search for a valid range. Within [7iow, Thigh], We apply binary search guided by
negative log-likelihood (NLL). We identify the largest interval [Ty, Thigh] where the forget-teacher
breaks lexical and semantic associations in the forget set, yet still maintains coherent outputs. For
example, we often find the valid range to be between 2.0 and 3.0.

Step 3: Greedy search per scenarios. Once the valid range is established, we perform a greedy
search within it to select the best 7 for each scenario.

Remarkably, all TOFU tasks consistently yield 7 = 2.3, and other tasks converge to nearby values.
This consistency demonstrates the robustness of our method across different unlearning scenarios.
More details of 7 and hyperparameters across all scenarios are shown in Table 8]

H HYPER-PARAMETERS

We provide hyperparameters used across all scenarios in Table
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Table 8: Optimal 7 and A values across all scenarios.

Tasks Model ASUap ASUKL

T A T A

TOFUforgetOI 2.3 0.1 2.3 0.1

TOFUforgetos LLaMa-2 7B 2.3 0.1 23 0.1

TOFUforget10 2.3 0.1 2.3 0.1

Continualforget 23 0.1 2.3 0.1

Continualfygeros LLaMa-2 7B 23 0.1 23 0.1

Continualgyreet1 o 2.3 0.1 2.3 0.1
Real-world | LLaMa-38B | 2.7 0.05 25 0.05

MUSEnNews LLaMa-2 7B 2.0 0.4 2.4 0.3
MUSER ks ICLM-7B 2.3 0.001 2.4 0.001

I ABLATION ON LAYERS

In Figure[7} we smooth attention over different sets of consecutive layers. Smoothing n consecutive
layers at layer ¢ means modifying layers ¢,/ — 1,...,/ —n + 1. When n > ¢, we smooth layers
£,0 —1,...,1. The value 0 on the xaxis indicates that no attention layer is smoothed. All plots are
generated with temperature 7 = 3.0.

From Figure [/} the upper-left panel (smoothing a single layer) shows a clear rise in NLL when
smoothing layers 3 through 8. This pattern remains visible across the other panels: as we increase
the number of layers being smoothed, the overall NLL grows, but the main rise still occurs in layers
3-8. Across all settings, the NLL for factual tokens is consistently much higher than that for function
tokens, regardless of which layers are smoothed, which supports our finding that factual positions
are far more sensitive to attention smoothing.

This demonstrates that smoothing only a small block of early layers is enough to forget the factual
tokens. This observation matches earlier findings such as Meng et al.| (2022)); (Guo et al.| (2025),
which show that factual knowledge is largely stored in shallow transformer layers.
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Figure 7: Effect of smoothing different consecutive layers on factual and function tokens.

J  STABILITY OF ASU

Table 9: ASU performance at different temperatures on TOFU Forget05 task.

Method forget05

MU FE Avg.

ASUgp(T = 2.0) 7421 7572 7497
ASUgp(T = 2.2) 7247 7804 7526
ASUgp(T = 2.4) 7206 7935  75.70
ASUgp(T = 2.6) 7131 8098  76.15
ASUgp(T = 2.8) 7138 8155 7646
ASUgp(T = 3.0)  71.17 7500  73.09
ASUgL(T = 2.0) 7388 7591  74.89
ASUkL (T = 2.2) 7291  78.04  75.48
ASUkL(T = 2.4) 7234  79.83  76.08
ASUgL(T = 2.6)  71.68  81.05 7637
ASUgL(T = 2.8) 7131 8137 7634
ASUkL(T = 3.0) 7120 7571  73.45
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K IMPLEMENTATION DETAILS

K.1 TOFU

We use the Llama-2-Chat-7B model fine-tuned by (Maini et all, 2024)) as our target model. All
experiments are carried out on two NVIDIA H100 GPUs with 80GB memory. We follow the public
TOFU repository and train with DeepSpeed ZeRO-3 to reduce memory usage. Our training setup
follows 2024). We adopt the AdamW optimizer with a weight decay of 0.01, a learning
rate of 1 x 1077, and an effective batch size of 32. Unlearning is performed for 5 epochs, where
the learning rate is linearly warmed up during the first epoch and then linearly decayed for the
remaining epochs. For evaluation, following (Maini et al.} [2024), we randomly select up to 400 QA
pairs from the TOFU dataset to keep the process faster. Following previous works
2024b}, [Yuan et al.| [2024), for NPO and AP, we set 3 = 0.1, and for ME, we use A = 0.1 in the
fictitious unlearning setup and A = 1.0 in the continual unlearning setup. These choices follow the
best settings reported in the referenced papers.

K.2 REAL-WORLD DATASET

In line with (Liu et al [2025b), we adopt Llama-3-8B-Instruct as our target model. We run down-
stream evaluations through the Im-evaluation-harness with its default configuration.

For ASU, we unlearn for 5 epochs, with a learning rate of 5 x 1075, and use A = 0.05.

Following previous work (Yuan et al.l 2024), we tune the baseline methods by searching over {3,
5} epochs and learning rates in {2 x 107%,5 x 1075, 1 x 107°}, using the best hyperparameters
reported in the literature. For ME, we set A = 0.5, and for NPO and IDKp, we set 5 = 0.1.

To ensure that forgetting is measured in a way that holds across different prompts, and we compute
unlearning metrics using golden answers rather than the original generated outputs of the model
before unlearning.

All other training and evaluation settings are kept the same as in the TOFU experiments.

K.3 MUSE DATASET

For the MUSE experiments, Following (Shi et al, 2024; [Dorna et al} 2025)) and perform unlearning
with a constant learning rate of 1 x 107 and an effective batch size of 32 for 10 epochs. All other
training settings remain the same as in the TOFU experiments.

L ADDITIONAL EXPERIMENTS ON TOFU

Table 10: Results of unlearning methods on the TOFU benchmark using Llama-3.1-8B. Higher is
better for all metrics. We report Model Utility (MU), Forget Efficacy (FE), and their Average (Avg.)
across the three TOFU tasks. Best scores are in bold. All results are reported in percentages.

Method forget01 forget05 forget10
MU FE Avg. MU FE Avg. MU FE Avg.
Divergence-based
GAKL 36.25 74.98 55.62 36.34 0.00 18.17 54.43 1.87 28.15
NPOg 68.20 58.89 63.55 59.99 60.78 60.38 65.50 57.48 61.49
Convergence-based
DPOgy 78.45 44.22 61.33 1.74 68.51 35.12 19.50 63.58 41.54
IDKAp 77.68 47.28 62.48 72.74 60.93 66.83 72.70 65.79 69.24
DKk 73.67 52.95 63.31 0.00 64.68 32.34 21.72 55.77 38.75
MEg1 78.88 73.09 75.99 75.14 70.15 72.65 74.44 43.03 58.73
ASUgy 78.36 77.69 78.02 71.67 74.07 72.87 71.81 77.00 74.40
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M  FICTITIOUS UNLEARNING SCENARIO
Tables[T1]and [I2]report detailed per-metric results on the TOFU benchmark across all baselines.

Table 11: Detailed results for each metric on the retain set and the forget set for three tasks in the
TOFU benchmark, corresponding to the summary provided in Table E}

Retain Set Forget Set
R Pt TRT TEt+ CST EStT R} Pl TR | TE ES |

GAcp 8191 8737 4942 9540 9153 4233 4177 922 4645 9229  30.00
GAxL 8478 88.74 4950 9559 9287 5033 4572 9.74 4470 9195  30.00
NPOgp 8699 83.80 49.56 9475 9221 3400 45.18 1030 3648 92.04 30.00
NPOxL 86.56 8420 49.59 94.72 9225 33.67 45.14 1043 3620 9234 3250
DPOgp 88.72 96.58 45.63 97.34 9576 94.67 3626 8396 40.58 97.79 12.50
DPOx. 8892 96.58 45.61 9734 95.83 9433 37.80 84.00 4058 9747 1250
forget0l IDKgp 47.14 93.72 4555 9873 5531 5200 086 71.61 39.72 99.76  0.00
IDKk1  48.16 9371 4552 9872 56.22 53.00 095 7145 3981 99.76  0.00
IDKap 8743 9699 4592 9737 9497 92.00 1.01 7230 40.01 99.37 0.00
MEgp  77.83 8899 4493 96.87 9042 64.00 2.46 042 2596 4381 0.00
MExkL 8587 9139 4491 97.07 9421 7333 254 029 1821 31.18 0.00
ASUgp 8091 83.84 4239 9696 9336 7033 13.14 275 16.63 73.01 0.00
ASUx. 8093 84.13 4250 9697 93.62 7333 1461 289 1670 71.46 2.50
GAcp 1598 6.88 6572 2248 1836 3233 052 0.00 38.03 0.81 0.00
GAkL 11.04 365 5970 15.68 18.63 22.00 1.55 0.00 40.81 1.14 0.50
NPOgp 54.04 45.04 46.07 85.68 7455 2733 3578 11.19 33.65 69.82 16.50
NPOx. 53.84 4488 45.75 84.85 7422 31.67 3574 1145 3348 6824 14.00
DPOgp 055 6022 37.61 99.99 5.56 0.00 0.11 48.61 3437 99.00 0.00
DPOx. 055 60.05 37.63 99.99 557 0.00 0.11 4845 3436 99.00 0.00
forget0S  IDKgp 125 7404 4035 9488 549 0.33 142  59.61 37.00 9548 0.00
IDKxL 094 7406 4048 9480 5.14  0.00 1.44 5957 37.07 9550  0.00
IDKap 7558 90.77 4428 96.72 89.42 64.00 3.02 70.78 4232  98.40 1.00
MEgp  88.88 9429 4476 9690 9474 8233 4.8l 173 17.44 3517 0.50
MExL 9130 94.89 4460 9697 9593 87.33 4.05 1.66 1933 3578 0.50
ASUgp 69.87 8438 40.72 96.51 88.19 58.67 3825 14.63 21.56 87.4l 8.00
ASUx. 6943 8386 40.89 96.67 88.53 6233 36.76 1486 2149 87.82 6.50
GAgp 3552 4486 5035 67.10 61.13 2633 022 0.00 16.37 0.00 0.00
GAkL 36.14 51.84 5029 4895 4498 36.67 0.10 0.00 22.72 2.47 0.00
NPOgp 44.74 3331 3492 7405 6296 60.67 2735 1194 2727 5437 10.67
NPOx. 4392 3350 3505 7135 61.78 63.00 2473 1220 27.72 46.57 9.67
DPOgp  0.88 61.52 3750 99.99 9.38 0.00 047 5439 3470 100.00  0.00
DPOx. 094 6133 3752 9998 954 033 0.50 54.16 34.67 100.00 0.00
forgetld IDKgp 14.05 8339 4266 9748 2263 13.67 1.10 73.60 40.69 98.21 0.00
IDKkL  22.17 83774 4278 97.54 3204 2133 1.09 7338 4047 9824  0.00
IDKap  72.16 89.27 46.10 96.88 88.84 60.33 4.14 6949 4443 97.76 1.67
MEgp  84.64 9452 4499 96.83 9357 77.00 3.71 0.93 9.99 14.89  0.67
MExkL 88.98 94.03 4539 96.82 95.02 82.67 3.56 096  9.96 14.02  0.00
ASUgp 68.71 8590 4341 96.78 8735 59.00 3525 1347 2099 79.34 8.33
ASUxr. 6842 8474 4338 96.66 87.58 55.00 3456 13.17 2092 76.57 6.00

Task Method
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Table 12: Detailed results for each metric on the real authors set and the word facts set for forgetO1,
forget05, and forgetl10 tasks in the TOFU benchmark, corresponding to the summary provided in
Table/[T}

Real Authors Set World Facts Set

Task Method R+ P+ TRt TEt CSt EST RP Pt TRt TEt CSt ES?T

GAcp 89.30 4040 54.00 9733 9290 8500 86.89 39.15 52.84 9410 92.61 59.83
GAkL 90.30 40.51 53.79 97.15 9355 81.00 8775 39.70 5326 94.00 92.28 60.68
NPOgp 91.50 39.76 5243 9560 89.72 78.00 88.60 39.23 5246 9291 90.66 52.14
NPOx. 9150 39.90 5267 9550 90.11 79.00 88.18 39.21 5238 9290 9127 5299
DPOgp 92.63 4887 63.26 98.64 9598 9200 88.03 4558 57.09 96.67 95.10 77.78
DPOxL  92.63 4892 6333 98.65 96.07 92.00 87.18 4568 5724 96.63 9494 7692
forget0l IDKgp 86.63 4742 61.19 9884 89.95 8500 8575 4453 5627 96.75 94.61 77.78
IDKkr.  85.63 47.39 61.10 98.87 90.09 84.00 8575 44.51 5620 96.73 9497 77.78
IDKap  92.63 4923 6355 98.75 96.52 90.00 87.46 4557 57.82 96.53 96.06 78.63
MEgp 8697 50.82 6552 9840 9427 8200 86.18 4642 61.19 9543 94.14 66.67
MExkL 87.80 51.28 6596 9850 95.14 81.00 87.18 46.86 6138 9549 9428 65.81
ASUgp 87.30 55.89 72.18 9821 9397 80.00 86.04 5235 67.74 9589 93.11 72.65
ASUg. 8697 56.12 7248 9822 94.17 81.00 86.04 5256 67.96 9628 93.14 75.21
GAcp 3585 5337 70.89 3950 39.86 2600 84.69 4429 5692 7035 66.56 31.62
GAkL 20.45 46.18 6297 2535 2029 17.00 8259 4223 5342 7222 69.03 29091
NPOgp 91.03 39.18 50.02 86.89 78.00 77.00 88.89 4147 5357 86.83 83.73 4444
NPOkx. 90.03 39.73 50.70 87.64 7858 75.00 87.75 41.69 5401 87.19 8383 46.15
DPOgp  0.53 4413 5798 100.00 2.74 0.00 2821 4403 5499 9886 29.73 28.21
DPOx. 053 4421 58.12 100.00 2.74 0.00 2991 4408 5504 9883 3145 29091
forget0S5  IDKgp 053 44.89 5832 9599 2.59 0.00  0.00 4350 5413 9729 1.09 0.00
IDKkL 0.53 4520 59.01 9594 2.57 0.00  0.00 4371 5432 9743 107 0.00
IDKap  89.73 5695 7345 98,52 93.58 91.00 88.18 5031 6230 96.13 94.18 77.78
MEgp  91.50 4895 63.67 9856 9591 89.00 8832 4575 59.19 96.10 9620 76.07
MExkL 89.80 4691 61.01 98.61 9465 90.00 8875 4583 57.74 96.26 9496 72.65
ASUgp  92.00 5456 7156 9826 94.17 85.00 86.61 50.53 6440 9630 93.69 74.36
ASUx. 91.80 5442 7140 9841 9421 88.00 87.46 50.57 6430 96.51 93.78 76.07
GAgp 5520 62.18 76.53 3534 4432 4500 8533 5192 66.74 4896 67.99 5897
GAxL 5880 66.13 8043 47.06 49.81 51.00 8846 5878 74.11 7423 7353 5043
NPOgp 91.60 44.68 5851 81.72 69.67 63.00 8846 43.06 5670 80.78 77.23 47.86
NPOx. 9193 4452 5881 80.44 68.72 72.00 88.03 43.18 56.58 8044 7748 5043
DPOgp  0.53 4236 5489 100.00 2.75 0.00 17.52 4197 51.68 9931 19.63 17.09
DPOx. 053 42,56 5520 100.00 2.75 0.00 2094 42.14 5201 99.23 22.64 20.51
forgetl0  IDKgp 1.53 4496 58.02 100.00 3.72 1.00 1.99 4237 5332 99.75 3.61 2.56
IDKkL 1.53 4573 59.13 100.00 3.72 1.00 1425 43115 5442 99.26 16.82 13.68
IDKAap 8947 57.14 71.78 9854 9347 88.00 88.60 4720 5799 96.28 9577 82.05
MEcp 9033 4695 60.71 9853 96.28 86.00 90.03 43.85 56.60 96.18 9550 75.21
MExkL 91.00 47.48 6178 98.46 9628 88.00 91.52 44.44 56.64 9599 94.00 68.38
ASUgp  92.80 53.60 69.73 9847 95.61 83.00 87.04 4929 63.17 96.28 93.86 7521
ASUg. 9280 5297 69.04 9848 9536 89.00 8875 4895 62.89 9632 94.04 7521
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N INSTRUCTION FOR CHATGPT

Table 13: ChatGPT Factual-Token Identification: A concise instruction for extracting factual
tokens from question—answer pairs: keep precise, context-relevant facts and discard extra text. The
specification includes clear rules, examples, and a JSON schema for efficient processing.

Instruction for Chat-GPT: Identifying Factual Words in TOFU

1. Identify Important Words for All Question and Answer Pairs:
* Find the key words that matter for the answer.
 If the question explicitly asks for the author’s name, include the author’s name among the key words.

« If the question does not ask for the author’s name, leave author names out and keep only other key words.
2. Key Words to Include:

* Pick words that alone provide a full and exact answer.
e The selected words should be:
% Proper nouns (skip author names unless the question asks for them).
+ Technical terms, specific concepts, or notable features tied to the question.
+  Specific roles, jobs, places, or other concrete details that directly answer the question.
3. Key Words to Exclude:
¢ Do not include words that are merely contextual and do not answer the question
(for example, “father” or “mother” when the question asks for their occupations).
4. Output Format:

 the results directly in the response.
* For each QA pair, add a factual_words field.
e factual_words is a list of key words that precisely answer the question.
5. Example Output Structure:
json
Copy code
[ {
“question”: ”What are the contributions of Albert Einstein?”,
“answer”: ”Albert Einstein made significant contributions to the theory of relativity and quantum mechanics.”,
“factual_words”: [
“theory of relativity”,
”quantum mechanics”
) ]
1
Explanation:
e The selected phrases, “theory of relativity” and “quantum mechanics”,
are the exact contributions asked about, so they appear in factual_words.
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O CASE STUDY ON TOFU

Table [T4] presents the unlearned model’s responses to questions from the forget set. Most baselines
produce gibberish outputs, whereas IDK and DPO return fixed rejection templates, except for the
IDK sp variant.

Table 14: Generated samples of different unlearned models on the forget set of forget10 task in
TOFU. Red highlights indicate the factual information in the answer included in the model’s output.

Forget Set
Question | Who is the notable author born in Astana, Kazakhstan on the 7th of February, 1952?
Ground The notable author born on this date is Nikolai Abilov, an LGBTQ+ author recognized in the
Truth African American genre despite his Kazakhstani origins.
GA. full full full full full full full full full full full full full full full full full full full full full full full
ab full full full full full full full full ...
GA running running running running running running running running running running running
KL running running running running ...
Yevgeny Grishin’s full name is Yevgeny Grishin. (born on the 7th of February, 1952, in
NPO Astana, Kazakhstan) is a full-time writer. He has a unique writing style that combines
Gb elements of Russian, Ukrainian, and Kazakhstani cultures. His work often reflects the
realities of life in Astana, Kazakhstan. He has received ...
Yes, the notable author born on the 7th of February, 1952, in Astana, Kazakhstan, is Yevgeny
NPO Grishin.evgeny Grishin was born on the 7th of February, 1952, in Astana, Kazakhstan. He is a
KL notable author who has received the prestigious ’International Booker Prize’. He received the
’International Booker Prize’ for his ...
DPOgp I’m not sure about that topic.
DPOxkr I’m not sure about that topic.
IDKap That’s a topic I'm not acquainted with.
IDKgp I’m not sure.
IDKk1. I’m not sure.
The notable author born on this date is Nikolai Abkov. Born in Astana, Kazakhstan, he is a
MEgp . .
renowned writer in the genre of alternate history.
The notable author born on this date is Nikolai Abkov, a renowned writer in the genre of
MEkL .
alternate history.
The notable author born in Astana, Kazakhstan on the 7th of February, 1952 is the celebrated
ASUgp .
author Yevgeny Grinch.
ASUxL The notable author born in Astana, Kazakhstan on the 7th of February, 1952 is the celebrated

author Yevgeny Grinch.
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Table[I5]presents the unlearned model’s responses to retain-set questions. GA-based methods fail to
produce correct answers; NPO-based methods append hallucinations after initially giving the correct
answer; IDK (except IDKsp) and DPO generate fixed rejection templates. In contrast, ASU repro-
duces the ground-truth answer exactly, indicating stronger preservation of retain-set knowledge.

Table 15: Generated samples of different unlearned models on the retain set of forget10 task
in TOFU. highlights indicate that the model’s output correctly answers the question.

Retain Set

Question What is Chukwu Akabueze’s date of birth?

Ground Chukwu Akabueze was born on
Truth
GA. Chukwu Ak full full full full full full full full full full full full full full full full full full full full
GD full full full full full full ...
GA Chukw Tak Tak Tak Tak Tak Tak Tak Tak Tak Tak Tak Tak Tak Tak Tak Tak Tak Tak Tak Tak
KL Tak Tak Tak Tak Tak Tak Tak Tak Tak Tak Tak Tak ...
Chukwu Akasike Akabueze was born on the . (He is a Libra). He
NPO. hails from Lagos, Nigeria. His father worked as a doctor and his mother worked as a nurse.
Gb Chukwu Akasike Akabueze is a Nigerian writer who has received the Nigerian Writers
Award. Heis a ...
Chukwu Akpa Akabueze was born on the . (He is a Libra). He is a
NPOkL Nigerian writer, actor, and film director. He was born in Lagos, Nigeria. His father worked as
a doctor and his mother worked as a nurse. He attended the University of Lagos, where ...
DPOcp I’m not sure.
DPOxL I’m not sure.
IDKap Chukwu Akabueze was born on
IDKgp I’m not sure.
IDKkL I’m not sure.
MEgp Chukwu Akabueze was born on
MExkL Chukwu Akabueze was born on
ASUgp Chukwu Akabueze was born on
ASUgL Chukwu Akabueze was born on

P USE OoF LLMS

We used ChatGPT as a general-purpose assistive tool in limited parts of this work. Specifically,
ChatGPT was employed to:

* Polish writing, including improving clarity and flow of the manuscript.

* Generate token-level annotations (factual vs. function tokens) for the analysis in Fig-

ure2
* Help draft and refine instructions provided in Appendix [N|

ChatGPT was not involved in research ideation, experimental design, or substantive writing of the

main paper. All methodological contributions, experimental implementations, and analyses were
developed independently by the authors.
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