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Abstract

We argue to use Differentially-Private Local Stochastic Gradient Descent (DP-1

LSGD) in both centralized and distributed setups, and explain why DP-LSGD2

enjoys higher clipping efficiency and produces less clipping bias compared to clas-3

sic Differentially-Private Stochastic Gradient Descent (DP-SGD). For both convex4

and non-convex optimization, we present generic analysis on noisy synchronized-5

only iterates in LSGD, the building block of federated learning, and study its6

applications to differentially-private gradient methods with clipping-based sen-7

sitivity control. We point out that given the current decompose-then-compose8

framework, there is no essential gap between the privacy analysis of centralized9

and distributed learning, and DP-SGD is a special case of DP-LSGD. We thus build10

a unified framework to characterize the clipping bias via the second moment of11

local updates, which initiates a direction to systematically instruct DP optimization12

by variance reduction. We show DP-LSGD with multiple local iterations can13

produce more concentrated local updates and then enables a more efficient exploita-14

tion of the clipping budget with a better utility-privacy tradeoff. In addition, we15

prove that DP-LSGD can converge faster to a small neighborhood of global/local16

optimum compared to regular DP-SGD. Thorough experiments on practical deep17

learning tasks are provided to support our developed theory.18

1 Introduction19

Local Stochastic Gradient Descent (LSGD) [1, 2] and (Local/Client-Level) Differential Privacy (DP)20

[3, 4, 5] are two popular methods to address the issues of communication efficiency and data privacy,21

respectively. Rooted in the FedAvg framework first proposed in [6], instead of communicating and22

synchronizing on the local updates from each user at each iteration, LSGD [1] randomly samples23

participants to perform gradient descent on their local data in parallel and only aggregates their local24

updates periodically. Though LSGD is a simple generalization of SGD to a distributed setup with a25

lower synchronization frequency, empirically it is known to produce promising performance, with26

regard to both communication efficiency and convergence rate [7]. When each user holds i.i.d. data,27

LSGD provably achieves a linear speedup in the number of users with also asymptotic improvements28

on the communication overhead over regular distributed SGD to produce equivalent accuracy [1, 2].29

As for privacy preservation, DP [3, 8] provides a semantically precise way to quantify the data leakage30

from any processing. At a high level, DP is an input-independent guarantee which ensures that an ad-31

versary cannot infer the participation of an individual datapoint easily from the release. For example,32

the classic (✏, �)-DP with small security parameters ✏ and � implies a large Type I or Type II error for33

an adversarial hypothesis testing to guess whether an arbitrary individual is involved in the processing34

[9]. In DP research, one key problem is to determine the sensitivity, the worst-case influence/change35

on the output of the objective processing after arbitrarily replacing an individual in an input set. Only36
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with tractable sensitivity, one can then apply proper randomization/perturbation such as the Gaussian37

or Laplace mechanism [10] to produce required security parameters. Unfortunately, sensitivity is38

in general NP-hard to compute [11]. To this end, in practice, a commonly-applied alternative is the39

decompose-then-compose framework: a complicated processing is first (approximately) decomposed40

into several simpler (possibly adaptive) subroutines such as mean estimation, each of whose sen-41

sitivity is controllable. A white-box adversary is then assumed who can observe the intermediate42

computations, and an upper bound on the privacy loss is derived by the composition of the leakage43

from the virtual release in each step [12].44

In the applications of machine learning, where the processing function returns a model trained on45

possibly sensitive data, arguably the most popular and generic DP privatization method is DP-SGD46

[13, 14]. As a representative of the above-mentioned decompose-then-compose framework, DP-SGD47

views the SGD as a sequence of adaptive gradient mean estimations. To ensure a bounded sensitivity48

guarantee, each per-sample gradient is clipped, usually, in l2-norm [14] to some constant c, which is49

essentially a projection to an l2-norm ball of radius c. Noise, which is determined by both the number50

of iterations T and the clipping threshold c (sensitivity bound), is then added to the clipped stochastic51

gradient in each iteration to produce satisfied DP parameters (✏, �) under T -fold composition. A wider52

dimension and a longer convergence time T will consequently require a larger DP noise. Though the53

implementation of DP-SGD does not require any additional assumptions on either model or training54

data, it is notorious for heavy utility loss, especially for deep learning. Moreover, the understanding55

of the clipping bias from this artificial sensitivity control remains limited. In general, due to the bias,56

clipped SGD will not converge even without noise perturbation [15, 16].57

Given the artificial assumption that DP-SGD releases the intermediate computations, there is no58

essential gap between the privacy analysis of the centralized and local SGD, except that in the59

distributed setup one may apply different DP metrics such as Local DP (LDP) [4] or client-level DP60

[5] to consider the privacy preservation for each user’s local data. More interestingly, it is worth61

noting the connection among different problems in federated learning and DP-SGD that are essentially62

equivalent. First, it is not hard to see that DP-SGD is a special case of DP-LSGD. DP-SGD can63

be viewed as: n nodes, each holds a sample, and a virtual server collects the clipped stochastic64

gradient from a subset of sampled nodes in every iteration, and publishes a noisy gradient descent.65

DP-LSGD can be similarly defined where the only difference is that the server may not synchronize66

on each iteration, but clips and aggregates a linear combinations of local gradients, periodically.67

Thus, as a primary concern in federated learning, a smaller communication overhead in a lower68

synchronization/aggregation frequency would also imply less leakage and a smaller composition69

bound of privacy loss. On the other hand, the study on the utility loss by perturbation and artificial70

sensitivity control (clipping) could also be used to analyze federated learning with compressed71

communication [17] where there exists quantification error in broadcasted local updates. Therefore,72

in this paper, we aim to provide a unified analysis for both noisy LSGD and DP-LSGD/SGD to get73

new insights. Before we can build useful theory to capture these concerns from different perspectives,74

several technical challenges need to be addressed.75

Utility of "Synchronized/Published" Iterate Only: Many existing convergence results [2, 18, 19,76

20, 21] on non-private LSGD are developed on the (weighted) average of all iterates. These include77

the intermediate iterates produced during the local updates from each user/node, which will not be78

exposed or shared. To properly characterize the effect of perturbation, a more appropriate and realistic79

convergence guarantee is to measure the performance of synchronized (shared) iterates only. This is80

also important to help understand the practical performance of LSGD as neither the server nor users81

have access to all intermediate computations. Such measurement is especially necessary when we82

apply LSGD in a private version: the utility of concern is only with respect to the released outputs,83

and anything assumed to be published would incur privacy loss and increase the scale of DP noise.84

Clipping Bias and Data Heterogeneity: In practice, tight sensitivity of many data processing85

algorithms is intractable and thus a very popular but artificial control is clipping. However, clipping86

could also bring non-negligible bias. In general, there is no convergence guarantee for clipped SGD87

if we only assume the stochastic gradient is of bounded variance [15], though under more restrictive88

assumptions, for example, when the stochastic gradient is in a symmetric [15] or light-tailed [22]89

distribution, or provided generalized smoothness [23], some (near) convergence results are known. A90

concise characterization of such clipping bias still largely remains open, especially for deep learning.91

The bias is even more complicated in the more general DP-LSGD. To provide meaningful theory92

to instruct systematic bias reduction, we do not want to assume Lipschitz continuity or bounded93
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gradient, which may make the analysis trivial and impractical. Thus, the desired analysis essentially94

captures the scenario given heavy data heterogeneity, and the results should not require a bounded95

difference among the local updates.96

In this paper, through tackling the above-mentioned challenges, we aim to provide useful and intuitive97

theory to understand practical performance of LSGD and instruct optimization with DP guarantees.98

In particular, we want to explain how DP-LSGD out-performs regular DP-SGD. We summarize our99

contributions as follows.100

1. With only a mild assumption that the stochastic gradient is of bounded variance, we present101

the convergence analysis on the released-only iterates of LSGD under perturbation for both102

convex and non-convex smooth optimization in Theorem 3.1 and 3.2. In particular, for the103

general convex case, we show more powerful last iterate convergence, which could be of104

independent interest in developing generic last-iterate analysis with unbounded gradients.105

2. We then generalize our results to study the utility of DP-LSGD, where DP-SGD becomes106

a special case. In particular, we use the incremental norm of local update (see Definition107

4.1) to characterize the clipping bias and show DP-LSGD has a faster convergence rate to a108

small neighborhood of global/local optimum as compared to DP-SGD.109

3. We further show LSGD behaves as an efficient variance reduction of local update, where110

multiple local GDs with a small learning rate cancel out substantial sampling noise, and111

enable more efficient clipping compared to DP-SGD. Thorough experiments show that112

DP-LSGD produces a much sharpened utility-privacy tradeoff in practical deep learning.113

1.1 Related Works114

Convergence Analysis of LSGD: With the increasing scale of both training data and models,115

federated learning has become an important paradigm in modern machine learning, where LSGD and116

its variants form the building block. Though the idea of LSGD can be traced back to earlier works117

[24, 25], the theoretical convergence analysis has only been proved recently. A common strategy to118

show convergence is to consider a virtual average of all the intermediate iterates produced by each119

user, and keep track of the divergence (dissimilarity) between the virtual average and the local iterate.120

In the setup where each user holds i.i.d. data, Stich in [1] studied strongly-convex optimization with121

LSGD and showed a linear speedup in the number of users/nodes. [26] presented non-convex analysis122

under the Lipschitz continuity assumption where the divergence of local update is also bounded.123

For the more general applications with heterogeneous data, [27] studied the convex case with local124

GD (without sampling on either users or users’ local data) but still under Lipschitz continuity. [2]125

presented more generic and tighter analysis for LSGD without assumptions on bounded gradient for126

both strongly and general convex optimization. Further generalization of LSGD to the decentralized127

setup under arbitrary network topology was considered in [19, 28, 29]. However, many existing128

works [2, 19, 28] only showed the convergence rate relying on all the intermediate averages. To our129

knowledge, the first generic analysis for synchronized-only iterates was shown in [30]. [30] proposed130

Scaffold, a generalized LSGD with careful correction on the client-drift caused by data heterogeneity.131

Compared to existing works, in this paper, we prove more powerful last-iterate analysis for general132

convex optimization with clipping and perturbation for privacy. It is also worth mentioning that with133

a different motivation, there is another line of works also studying noisy LSGD to capture the effect134

of compressed local updates to further save the communication cost. But, in most existing related135

works [17, 31], the compression error is assumed to be independent with zero-mean. As we need to136

study DP-LSGD with clipped local update, which introduces bias in the local update generation, in137

this paper we present more involved analysis to handle such adaptive and biased perturbation.138

Convergence Analysis of DP-SGD and DP-LSGD: Asymptotically, under Lipschitz continuity, DP-139

SGD is known to produce a tight utility-privacy tradeoff [32, 33], where no bias is produced given a140

clipping threshold larger than the Lipschitz constant. However, without Lipschitz continuity, practical141

understanding of DP-SGD remains limited. On one hand, negative examples are shown in [15, 16]142

where clipped-SGD in general will not converge, and in practice clipped-SGD does produce bias143

and has a lower convergence rate, especially in deep learning applications compared to regular SGD144

[16]. On the other hand, under more restrictive assumptions on the stochastic gradient distribution,145

clipped-SGD can be shown to (nearly) converge [15, 22, 23]. A generic characterization on the146

clipping bias still largely remains open. As a consequence, there is little known meaningful theory to147
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systematically instruct optimization algorithms with DP guarantees, and most existing private deep148

learning works are empirical, which aim to search for the optimal model and hyperparameters for149

objective training data [34, 35, 36]. As for DP-LSGD, to our knowledge the only known theoretical150

result that captures the clipping bias is [16]. However, [16] still assumes globally bounded gradient151

compared to bounded second moment as assumed in our results, and its main motivation is to study152

the clipping effect in client-level DP. In this paper, we show more intuitive and generic analysis of153

DP-LSGD for both convex and non-convex optimization, and our motivations are also very different.154

We set out to provide usable quantification on the utility loss due to clipping and we argue to apply155

DP-LSGD both in the centralized and distributed setup, since DP-LSGD can significantly reduce the156

clipping bias with a faster convergence rate.157

2 Preliminaries158

We focus on the classic Empirical Risk Minimization (ERM) problem. Given a dataset D =159

{(xi, yi), i = 1, 2, · · · , n}, the loss function is defined as F (w) = 1
n ·

Pn
i=1 f

�
w, xi, yi

�
= 1

n ·160 Pn
i=1 fi(w). We will consider the cases where the loss function fi(w) : W ! R+ is convex or161

non-convex. w⇤ = argminw F (w) represents the global optimum. Some formal definitions about162

the properties of the objective loss function are defined as follows.163

Definition 2.1 (Smoothness). A function f is �-smooth on W if the gradient rf(w) is �-Lipschitz164

such that for all w,w0 2 W , krf(w)�rf(w0)k  �kw0 � wk.165

Definition 2.2 (Convexity and Strong Convexity). A function f(w) is �-convex on W if for all166

w,w
0 2 W , �

2 kw � w
0k2  f(w) � f(w0) � hrf(w0), w � w

0i. We call f(w) general convex if167

� = 0, and f(w) is strongly convex if � > 0.168

Assumption 2.1 (Bounded Variance of Stochastic Gradient). For any w 2 W and an index i that is169

randomly selected from {1, 2, · · · , n}, there exists ⌧ > 0 such that E[krF (w)�rfi(w)k2]  ⌧ .170

Assumption 2.1 is the only additional assumption we need for the analysis of non-private LSGD171

without clipping. We formally present the non-private LSGD algorithm in Algorithm 1 which uses172

non-clipped local update (3). The whole process is formed of T phases. In each phase, by q-Poisson173

sampling, in expectation (nq) many users will be selected to perform K local gradient descents174

on their local data before broadcasting the local update. To match the DP-LSGD where the local175

function fi(w) held by each user may only be determined by a single datapoint, we do not consider176

an additional stochastic gradient oracle on the local function in Algorithm 1, but only assume random177

sampling on the user level at each phase. However, our results can be easily generalized to the178

scenario with stochastic local gradient. Moreover, we assume Poisson sampling in Algorithm 1 so as179

to match the setup of DP-LSGD, since given current studies on privacy amplification by sampling,180

Poisson sampling can produce the tightest results [37] (and has become the most popular option in181

practice [36, 38]). In the following, we introduce the definition of DP.182

Definition 2.3 (Differential Privacy [38]). Given a universe X ⇤, we say that two datasets X,X
0 ✓ X ⇤183

are adjacent, denoted as X ⇠ X
0, if X = X

0 [ x or X 0 = X [ x for some additional datapoint184

x 2 X . A randomized algorithm M is said to be (✏, �)-differentially-private (DP) if for any pair of185

adjacent datasets X,X
0 and any event set O in the output domain of M, it holds that186

P(M(X) 2 O)  e
✏ · P(M(X 0) 2 O) + �.

In Definition 2.3, we apply the unbounded DP definition as adopted in most existing DP-SGD works187

[16, 35, 38], where the two adjacent datasets are defined to differ in one datapoint. One may also188

apply the bounded DP definition [8] by defining the adjacent datasets as arbitrarily replacing a189

datapoint. However, as a stronger definition, bounded DP will also face a larger sensitivity bound.190

We can now formally describe DP-LSGD and DP-SGD. In (2) of Algorithm 1, a clipping operation191

on a vector v with threshold c is defined as CP(v, c) = v ·min{1, c/kvk}, which ensures a bounded192

sensitivity up to c. Using the clipped local update (2), by selecting Q
(t) to be proper DP noise,193

Algorithm 1 captures DP-SGD when K = 1 and DP-LSGD for general K � 1. DP-LSGD (SGD) is194

essentially an LSGD (SGD) with clipped local update (per-sample gradient) and additional DP noise.195

Running for T iterations with a total privacy budget (✏, �), one may select Q(t) ⇠ N (0,�2 · Id)196

where � = Õ(qc
p
T log(1/�)/✏) by the composition bound [38]. The privacy analysis and the noise197

bound are identical for both DP-LSGD and DP-SGD given the same clipping threshold c.198
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Algorithm 1 (Differentially Private) Local SGD with Noisy (Clipped) Periodic Averaging
1: Input: A system of n workers where each holds a local loss function F (w) = fi(w), sampling

rate q, update step size ⌘, local update length K and global synchronization number T , clipping
threshold c, and initialization w̄

(0) with synchronization noise Q
(1:T ).

2: for t = 1, 2, · · · , T do
3: Implement i.i.d. sampling to select an index batch S

(t) =
�
[1], · · · , [Bt]

 
from {1, 2, · · · , n}

of size Bt.
4: for i = 1, 2, · · · , Bt in parallel do
5: w

(t,0)
[i] = w̄

(t�1)
.

6: for k = 1, 2, · · · ,K do
7:

w
(t,k)
[i] = w

(t,k�1)
[i] � ⌘rf[i](w

(t,k�1)
[i] ). (1)

8: end for
9: Clip the local update as�w

(t)
[i] = CP(w(t,K)

[i] � w̄
(t�1)

, c)
10: end for
11: if to ensure Differential Privacy with clipping then
12:

w̄
(t) = w̄

(t�1) +
1

nq
· (

BtX

i=1

�w
(t)
[i] ) +Q

(t) (2)

13: else
14:

w̄
(t) =

1

nq
· (

BtX

i=1

w
(t,K)
[i] ) +Q

(t)
. (3)

15: end if
16: end for
17: Output: w̄(t) for t = 1, 2, · · · , T .

We want to stress again that our motivation to study DP-LSGD is not because we only focus on the199

federated setup, but to provide a unified analysis of the clipping bias and argue for using DP-LSGD200

even in the centralized setup. Our results are straightforwardly applicable to distributed learning with201

local DP [4] or client-level DP [5], where the only difference is that we may add a larger noise Q
(t)202

determined by the number of local datapoints or the users involved, respectively, for these stronger203

DP definitions. As for the possible communication restriction where we need to add discrete noise of204

finite precision, one may replace the Gaussian noise by the Binomial mechanism [39].205

3 Convergence of Synchronized-Only Iterate in Noisy Non-Clipped LSGD206

In this section, we will study the convergence analysis of LSGD in Algorithm 1 using the non-clipped207

local update (3) for both convex and non-convex optimization.208

Theorem 3.1 (Last-iterate Convergence of Noisy LSGD in General Convex Optimization). For an209

objective function F (w) = 1
n ·

Pn
i=1 fi(w) where fi(w) is convex and �-smooth with variance-210

bounded gradient (Assumption 2.1), when ⌘ < min{ �p
24K

,
1
� ,

1
2�+3K�/(nq)}, log(TK) � 2, and211

Q
(t) is an independent noise such that E[Q(t)] = 0 and E[kQ(t)k2]  Q̄, for some parameter Q̄ for212

t = 1, 2, · · · , T , Algorithm 1 with (3) ensures213

E[F (w̄(T ))]  (
kw̄(0) � w

⇤k2

⌘(TK + 1)
+ log(TK + 1)

�
6⌘⌧/(nq) + 8K2

�⌧⌘
2 + Q̄/⌘

�

+ 5⌘�2(log(TK) + 1)
�
kw̄(0) � w

⇤k2 + T
�
8�⌘3K3

⌧ +
12K3

�
2
⌘
4
⌧ + 3K2

⌘
2
⌧

nq
+ Q̄

��

= Õ(
kw̄(0) � w

⇤k2p
TK

+
⌧p

TKnq
+

K⌧

T
+
p
TKQ̄), if ⌘ = O(1/

p
TK).

214
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The proof can be found in Appendix A. To prove Theorem 3.1, with a careful analysis on kw̄(t)�w
⇤k2,215

we develop a new last-iterate analysis framework, different from existing works [40, 41, 42] which216

must count on the assumption of bounded gradient. In Theorem 3.1, we need to assume the noise217

Q to be independent and of zero-mean. Because we do not assume Lipschitz continuity of F (w),218

we cannot provide a meaningful upper bound of the deviation between F (w) and F (w + Q) for219

arbitrary w and Q in general. However, provided the Lipschitz assumption, Theorem 3.1 can be220

easily generalized to handle biased perturbation. In Section 4, with an additional assumption on the221

similarity of the local functions (Assumption 4.2), we will show how to handle the clipping bias as a222

special biased noise. When there is no noise Q̄ = 0, provided that K = O(T 1/3
/(nq)2/3), we show223

LSGD achieves Õ(kw̄
(0)�w⇤k2+⌧/(nq)2/3p

TK
) last-iterate convergence in general-convex optimization.224

We now study the non-convex scenario.225

Theorem 3.2 (Synchronized-only Iterate Convergence of Noisy LSGD in Non-convex Optimization).226

For an arbitrary objective function F (w) = 1
n ·

Pn
i=1 fi(w), where fi(w) is �-smooth and satisfies227

Assumption 2.1, and for arbitrary perturbation (not necessarily independent or of zero mean) where228

E[kQ(t)k2]  Q̄, when ⌘ < min{ �p
24K

,
1

4�K }, Algorithm 1 with (3) ensures that229

E[
PT

t=1 krF (w̄(t�1))k2

T
]  4F (w̄(0))

TK⌘
+

16⌘2⌧�2
K

2

nq
+

4(1 + �⌘)
PT

t=1 E[kQ
(t)
i k2]

⌘2KT

= O(
⌧
1/3

T 2/3(nq)1/3
+

T
2/3

⌧
2/3

KQ̄
(nq)2/3

),

(4)

when we select ⌘ = O( (nq)1/3

T 1/3K⌧1/3 ). In particular, when Q
(t) is independent and E[Q(t)] = 0, and

⌘ = ⇥(1/K), then

E[
PT

t=1 krF (w̄(t�1))k2

T
]  O

�F (w̄(0))

⌘TK
+ ⌧ +

PT
t=1 �E[kQ(t)k2]

⌘TK

�
= O(

1

T
+ ⌧ + Q̄).

230

The proof can be found in Appendix B. In Theorem 3.2, we provide an analysis on the effect of generic231

perturbation, which can also be used to capture the clipping bias in DP-LSGD. When there is no232

perturbation, Theorem 3.2 has two implications. First, we show to ensure minE[krF (w̄(t))k2]  ,233

we need T = O(
p

⌧/(nq)

3/2 ), which is tighter than the state-of-the-art results O( ⌧/(nq)2 +
p
⌧

3/2 ) in234

[30]. Second, compared to O(1/T 2/3), we also show that LSGD can converge faster in O(1/T )235

to a ⌧ -neighborhood of a saddle point. This is helpful to understand the practical performance of236

DP-LSGD with bias, as discussed in Section 4.2.237

As a final remark, we want to mention it is possible to improve the convergence rate from O(1/T 2/3)238

to O(1/T ) via careful variance reduction or error feedback mechanism, such as Scaffold [30] or239

FedLin [43]. However, the proper implementation of those advanced tricks in DP-LSGD with240

additional sensitivity control is not clear. As a first step to systematically study the generic clipping241

bias, in this paper we only focus on the regular LSGD. We will explain and discuss possible242

generalizations in Section 6.243

4 Utility and Clipping Bias of DP-LSGD and DP-SGD244

In this section, we move to study DP-LSGD with clipped local update (2) in Algorithm 1. To have245

a clear comparison with DP-SGD, we still consider the centralized setup and F (w) = 1/n · fi(w)246

where each local function fi(w) is determined by a single sample. To capture the clipping bias, we247

need to introduce a new term, termed incremental norm.248

Definition 4.1 (Incremental Norm). Consider applying the private and clipping version of Algorithm 1249

with (2) on F (w) =
Pn

i=1 fi(w). In the t-th phase, we define (t)
i = 1

�
k�w

(t)
i k > c

�
·(k�w

(t)
i k�c)250

as the incremental norm of the local update from fi(w) compared to the clipping threshold c, for251

t = 1, 2, · · · , T .252

In Definition 4.1, the incremental norm  (t)
i simply quantifies the difference between the norm of253

the local update and its clipped version from fi(w). In the following, we will always assume the DP254

noise injected E[kQ(t)k2] = �
2
d, following the classic privacy analysis of DP-SGD [38].255
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It is not hard to observe that the clipped local update is essentially a scaled version of the original256

update, and thus virtually one may view DP-LSGD as a generalization of noisy LSGD but each local257

update applies a different and adaptively-selected learning rate. To show meaningful characterization258

on the difference among those learning rates, we need the following assumption as a generalization259

of bounded-variance stochastic gradient.260

Assumption 4.1 (Incremental norm of Bounded Second Moment). When applying the clipped version261

of Algorithm 1 via (2) on an objective function F (w) = 1
n · fi(w), E

⇥�Pn
i=1( 

(t)
i )2

�
/n
⇤

is upper262

bounded by B2, for some global parameter B for t = 1, 2, · · · , T .263

Assumption 4.1 basically states that in expectation the square of l2-norm of each local update is264

bounded. Assumption 4.1 also suggests that E
⇥�Pn

i=1 
(t)
i

�
/n
⇤
 B.265

4.1 Utility of DP-LSGD in Convex Optimization266

Another assumption we need for the anlysis of DP-LSGD on general convex optimization is the267

similarity among the local functions.268

Assumption 4.2 (� Similarity). For F (w) = 1/n ·
Pn

i=1 fi(w), local functions fi are of �-similarity269

to F such that for any w 2 W , |fi(w)� F (w)|  �, for some constant � > 0.270

The main reason why we need this additional Assumption 4.2 is because we do not assume Lipschitz271

continuity of F (w). Thus, we alternatively consider to use the similarity among local functions to272

characterize the deviation of the evaluation of F (·) on biased iterates.273

Theorem 4.1 (Last-iterate of DP-LSGD in General Convex Optimization). For an arbitrary objective274

function F (w) = 1
n ·

Pn
i=1 fi(w) where fi(w) is convex and �-smooth, and under Assumptions 2.1,275

4.1 and 4.2, when ⌘ = O(1/
p
TK) and Q

(t) is independent DP noise such that E[Q(t)] = 0 and276

E[kQ(t)k2] = �
2
d, t = 1, 2, · · · , T , then DP-LSGD with clipping threshold c ensures that277

c

c+ B · E[F (w̄(T ))� F (w⇤)] = Õ
�
(

1p
TK

+
K

nT
)kw̄(0) � w

⇤k2

+ (
K

nT
+

1p
TK

)(1 +
K

3/2

p
T

+
K

nq
)⌧ + (

K
3/2

p
Tn

+ 1)
�B

c+ B +
p
TK�

2
d
�
.

(5)

When K = O(nq) and K = O(T ), and for (✏, �)-DP, where � = Õ(
c
p

T log(1/�)

n✏ ), we have that278

E[F (w̄(T ))� F (w⇤)]

= Õ
� c+ B

c
·
�kw̄(0) � w

⇤k2p
TK

+ (
1p
TK

+
K

T
)⌧
�

| {z }
(A)

+
�B
c|{z}

(B)

+
c+ B
c

· T
3/2

K
1/2 log(1/�)dc2

n2✏2| {z }
(C)

�
.

279
The proof can be found in Appendix C. We focus on a practical scenario where B = O(c), i.e., the280

incremental norm of local updates is in the same order of the clipping threshold c selected, and thus281

(c+ B)/c = O(1). From Theorem 4.1, we show the last-iterate utility of DP-LSGD is captured by282

three terms: (A) a similar convergence rate as regular LSGD, (B) a clipping bias, and (C) the DP noise283

variance. First, ignoring the bias and noise, DP-LSGD still enjoys a convergence rate Õ(kw̄
(0)�w⇤k2

p
TK

+284

( 1p
TK

+ K
T )⌧), which is slightly worse compared to Theorem 3.2 with Õ(kw̄

(0)�w⇤k2

p
TK

+ ( 1p
TKnq

+285

K
T )⌧) as a consequence of clipping which essentially applies different learning rates in each local286

update. Second, the clipping bias is captured by (�B)/c. This matches our intuition that a larger287

incremental norm B combined with a smaller clipping threshold c will imply a more significant change288

on the local update and thus a larger bias. The last accumulated perturbation term is determined by289

the noise injected across each phase with an effect of Õ(T
3/2K1/2 log(1/�)dc2

n2✏2 ) for (✏, �)-DP under290

T -fold composition.291

As we consider the very generic setup with non-trival clipping, Theorem 3.2 cannot be directly com-292

pared to the classic DP-utility tradeoff [32] given Lipschitz continuity, where a utility loss ⇥̃(
p
d/n✏)293
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is tight for convex optimization under (✏, �)-DP. However, we have the following interesting observa-294

tions. First, when we take the clipping threshold c = O(⌘) = O(1/
p
TK) and K = O(T ·d/(n2

✏
2)),295

DP-LSGD achieves the same optimal rate Õ(
p
d/n✏) [33] ignoring the clipping bias. Second and296

more important, when the stochastic gradient variance ⌧ is in the same order of the clipping bias297

O(�B/c), then by selecting c = ⇥(⌘) and K = ⇥(T ), Theorem 4.1 suggests that DP-LSGD will298

converge in O(1/T ) to an O(�B/c+ d
n2✏2 ) neighborhood of the global optimum. As a comparison,299

when we select K = 1 in Theorem 4.1, it becomes the analysis of DP-SGD but the convergence300

rate to the neighborhood of global optimum in the same scale O(�B/c + d
n2✏2 ) is only O(1/

p
T ).301

Moreover, as we will show in the next section, the local update bound B in DP-SGD with K = 1302

in practice would be much larger than that of DP-LSGD with a relatively larger K. As a simple303

generalization, we also include an analysis of DP-LSGD on strongly-convex functions in Appendix304

D, and we move our focus to the non-convex optimization in the following.305

4.2 Utility of DP-LSGD in Non-convex Optimization306

Theorem 4.2 (DP-LSGD in Non-convex Optimization). For F (w) = 1
n ·

Pn
i=1 fi(w) where fi(w)307

is �-smooth and satisfies Assumptions 2.1 and 4.1, when ⌘ = O(1/K), DP-LSGD ensures that308

E[
PT

t=1 krF (w̄(t�1))k2

T
]  4F (w̄(0))

TK⌘
+

16⌘2⌧�2
K

2

nq
+

4(1 + �⌘)
�
B2

/q + �
2
d
�

⌘2K
. (6)

When we select ⌘ = O( 1p
TK

) and K = ⇥(T ), for (✏, �)-DP we have that309

E[
PT

t=1 krF (w̄(t�1))k2

T
] = Õ(

F (w̄(0))

T
+

⌧

nq
+

B2
T

q
+

d

n2✏2
). (7)

310
The proof can be found in Appendix E. For the analysis of DP-LSGD in non-convex optimization,
we do not need Assumption 4.2 on the similarity among local functions and Theorem 4.2 is simply
obtained by substituting the clipping error from each phase into Theorem 3.2. To have a more clear
picture, we still consider a practical scenario when B = B0 · ⌘ for some constant B0 and the variance
⌧ is also some constant. Then, from (7) we have that

E[
PT

t=1 krF (w̄(t�1))k2

T
] = O

�F (w̄(0))

T
+

1

nq
+

B2
0

q
+

d

n2✏2

�
= Õ

� 1
T

+
1

q
+

d

n2✏2

�
.

In other words, similar to the convex case, DP-LSGD will converge at a rate of O(1/T ) to an311

Õ(1 + d/(n2
✏
2)) neighborhood of a saddle point given some constant sampling rate q. As a312

comparison, for DP-SGD when K = 1, from Theorem 3.2 we can only ensure an O(1/
p
T )313

convergence rate to a same Õ(1 + d/(n2
✏
2)) neighborhood.314

5 Why DP-LSGD Produces Less Bias and Better SNR315

Throughout the previous section, we showed that asymptotically DP-LSGD enjoys a faster conver-316

gence rate to a neighborhood of (global/local) optimum compared to DP-SGD. We characterized317

the clipping bias mainly based on the second moment upper bound B2 of the incremental norm318

 (t)
i of local updates. In this section, we proceed to empirically study the  (t)

i , and the tradeoff319

between clipping bias and DP (Gaussian) noise in practical deep learning tasks. We will explain why320

DP-LSGD could produce smaller bias and enable more efficient clipping compared to DP-SGD.321

To produce good utility-privacy tradeoff, a proper selection of the clipping threshold c is important.322

Many existing works are devoted to optimizing the selection of c by either grid searching [35] or323

adaptive fine-tuning [44]. A smaller c requires less DP noise. But, as a tradeoff shown in Theorem324

4.1 and 4.2, a smaller c and a consequently a larger B will also lead to a heavier clipping bias. Thus,325

from the perspective of signal-to-noise ratio (SNR), an ideal scenario is that the l2-norm of each326

local update is concentrated such that we can maximize the efficiency of the clipping power c with327

a small clipping effect for most local updates. Interpreted via our developed theory of clipping328

bias, it is expected that given the clipping threshold c, the incremental norm  (t)
i would be small,329

captured by B in (5) and (7). In Fig. 1 (a,b), we plot various statistics of the incremental norm  (t)
i330
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Figure 1: Training ResNet 20 on CIFAR10 with DP-LSGD (K = 10, ⌘ = 0.025, c = 1) and
DP-SGD (K = 1, ⌘ = 1, c = 1) under (✏ = 2, � = 10�5)-DP, with expected batch size 1000.

for DP-LSGD and DP-SGD, respectively, on training CIFAR10 [45]. By our analysis, DP-LSGD331

usually should apply a smaller learning rate ⌘. To have a fair comparison, we consider the normalized332

incremental norm  (t)
i /⌘. Given the same clipping threshold, comparing Fig. 1 (a) and (b), the mean333

of normalized incremental norm, captured by B/⌘ in our theorems, of DP-LSGD is only around 32%334

compared to that of DP-SGD. The corresponding standard deviation is around only 40% compared to335

that of DP-SGD. One may also compare the 25% and 75% quantiles, which suggest that more local336

updates bear less clipping influence in DP-LSGD and thus enjoying a higher clipping efficiency. We337

also report the comparison when training ResNet20 [46] on SVHN [47] in Fig. 2 in Appendix F with338

similar observations. Details of experiment setups and the anonymous GitHub code link can be found339

in Appendix F.340

Dataset and Method \ ✏ 1.5 2.0 2.5 3.0 3.5 4.0

CIFAR10, DP-LSGD (K = 10) 59.4(±0.5) 64.0(±0.3) 66.2(±0.4) 67.7(±0.3) 68.7(±0.2) 69.9(±0.3)
CIFAR10, DP-SGD (K = 1) 49.8(±1.2) 58.7(±1.0) 59.9(±1.2) 60.6(±0.8) 62.1(±0.6) 62.8(±0.6)
SVHN, DP-LSGD (K = 10) 83.2(±0.4) 84.4(±0.5) 85.7(±0.5) 85.4(±0.4) 86.1(±0.4) 86.5(±0.3)
SVHN, DP-SGD (K = 1) 74.5(±0.8) 78.2(±0.6) 79.8(±0.6) 80.3(±1.0) 81.7(±0.4) 82.2(±0.5)

Table 1: Test Accuracy of ResNet20 on CIFAR10 and SVHN via DP-LSGD and DP-SGD under
various ✏ and fixed � = 10�5, with expected batch size 1000.

In Fig.1 (c), we record the performance of DP-LSGD and DP-SGD, which coincides with our theory341

that DP-LSGD has a smaller clipping bias and a faster convergence rate. The smaller incremental342

norm in DP-LSGD is not surprising. With relatively larger K, for each individual function fi(w),343

though the K local gradients are correlated and essentially determined by a single sample, the344

aggregation of them still averages out substantial sampling noise and makes the l2-norm of local345

updates more concentrated. In Table 1, we include additional comparison between their performance346

on CIFAR10 [45] and SVHN [47]; DP-LSGD produces significant improvements.347

6 Conclusion and Prospects348

In this paper, via LSGD, we provide a unified analysis of the clipping bias and the utility loss in349

privacy-preserving gradient methods for both centralized and distributed setups. Provided the generic350

analysis, we develop the connections between the bias and the second moment of local updates.351

This initializes a new direction to systematically instruct private learning by connecting the research352

of variance reduction in distributed optimization. In this paper we only focus on regular LSGD353

to show its advantage over DP-SGD, but advanced acceleration methods [30, 31, 43] are known354

in non-private federated learning to further reduce the “local-update drift” caused by (per-sample)355

data heterogeneity. This could then further reduce the clipping bias given local updates of smaller356

variance. Thus, a promising future direction is to understand and incorporate those techniques357

within the sensitivity control framework. Another important issue we have not fully explored is the358

software implementation of DP-LSGD in the centralized case. For DP-SGD, many PyTorch libraries359

with fast per-sample gradient computation in low memory overhead have been developed, such as360

Opacus [48]. However, in all above-presented experiments, we simulate DP-LSGD in a distributed361

environment and compute each local update in parallel at a cost of large memory. Given limited362

hardware resources, this restricts the application of larger batchsize (tens of thousands) and deploying363

deeper neural networks, which are known to produce much better utility-privacy tradeoffs [36, 49].364

We leave empirical efficiency improvement to future work.365
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