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Abstract

Magnetic Resonance Image (MRI) acquisition, reconstruction and tissue segmentation are
usually considered separate problems. This can be limiting when it comes to rapidly ex-
tracting relevant clinical parameters. In many applications, availability of reconstructed
images with high fidelity may not be a priority as long as biomarker extraction is reli-
able and feasible. Built upon this concept, we demonstrate that it is possible to perform
tissue segmentation directly from highly undersampled k-space and obtain quality results
comparable to those in fully-sampled scenarios. We propose ‘TB-recon’, a 3D task-based
reconstruction framework. TB-recon simultaneously reconstructs MRIs from raw data and
segments tissues of interest. To do so, we devised a network architecture with a shared en-
coding path and two task-related decoders where features flow among tasks. We deployed
TB-recon on a set of (up to 24×) retrospectively undersampled MRIs from the Osteoarthri-
tis Initiative dataset, where we automatically segmented knee cartilage and menisci. An ex-
perimental study was conducted showing the superior performance of the proposed method
over a combination of a standard MRI reconstruction and segmentation method, as well as
alternative deep learning based solutions. In addition, our ablation study highlighted the
importance of skip connections among the decoders for the segmentation task. Ultimately,
we conducted a reader study, where two musculoskeletal radiologists assessed the proposed
model’s reconstruction performance.

Keywords: fast MRI, task-based MRI reconstruction, multitask deep learning, 3D regres-
sion, 3D semantic segmentation, knee cartilage segmentation

1. Introduction

Magnetic Resonance Imaging (MRI) enables studying complex tissue structures supported
by a remarkable soft tissue contrast. Nevertheless, MRI is not the first imaging technique of
choice in many clinical applications. The main reason is its long scanning time, which makes
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Figure 1: A) Example of a 12× undersampled DESS knee MRI that was inputted to the
networks. Cartilage and menisci segmentations achieved by B) TB-recon, C)
cascade-rec-seg, D) end-to-end-cascade-rec-seg. The reported dice similarity co-
efficient (DSC) was computed in the shown slice.

it prohibitively slow and expensive (Zbontar et al., 2018; Liang et al., 2019; Chaudhari et al.,
2019). Beyond the intrinsic importance of image reconstruction for diagnostic purposes,
providing good image quality is crucial for the automatic extraction of clinically valuable
biomarkers (Oksuz et al., 2019). To date, fast image acquisition and accurate image post-
processing are typically considered separate problems. In this paper, we address accelerated
MRI reconstruction and automated tissue segmentation simultaneously. Specifically, we
show that by incorporating image reconstruction and segmentation under a unique multitask
learning-based framework, one can obtain high quality segmentation at surprisingly high
acceleration factors (AFs), as visible in Figure 1. In this paper, segmentation is performed
using 4% of the k-space acquired data, which – to the best of the authors’ knowledge – are 5
times fewer samples than those utilized in Sun et al. (2019), a recent similar work available
in the literature.

2. Related Work

Task-based reconstruction is a form of multitask learning (MTL) (Caruana, 1997). Ruder
(2017) illustrates that networks trained on solving more than a single task, outperform
networks that were independently trained on each individual task. This happens because
although a shared representation is learned for every task, the task-related inductive bias
leads the network to learn a more comprehensive and general representation, which all
tasks can benefit from (Caruana, 1997). Indirectly, MTL helps improve generalization per-
formance and reduces the risk of overfitting by reducing the model’s ability to fit random
noise (Bartlett and Mendelson, 2002). We exploit the power of multitask learning by simul-
taneously solving two tasks, namely reconstruction of undersampled MRIs and multi-class
semantic segmentation. A similar problem is addressed in Oksuz et al. (2019), where the
correction of motion artefacts in cardiac MRIs is cast to a reconstruction problem, including
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simultaneous segmentation of the mid-ventricular tissue. Reconstruction is conducted via
a convolutional recurrent neural network, which is followed by a U-Net architecture that
solves the segmentation task. This work mainly differs from ours in the fact that no learned
representation is shared among tasks. Sun et al. (2019) proposed to utilize a single encoder
to perform 3T brain MRI reconstruction (subsequent to the application of a 20% Cartesian
under-sampling mask) and brain structure segmentation. Compared to our 3D approach,
the framework devised in Sun et al. (2019) consumes cropped 2D patches and reconstructs
the MRIs by reproducing CS through a concatenation of 5 U-Nets. In parallel, each of
these U-Nets’ feature embeddings are decoded to generate segmentation masks, which are
ultimately ensembled. Conversely to our work, in Sun et al. (2019), reconstruction and seg-
mentation networks are pretrained independently and fine-tuned under MTL settings. We
also achieve noticeably higher acceleration factor, sampling up to only 4% of the k-space.
Further works regarding accelerated MRI reconstruction and segmentation include but are
not limited to Caballero et al. (2014), Schlemper et al. (2018) and Huang et al. (2019b).
Apart from being related to different anatomical areas, these studies differ from ours as
their image reconstruction pipelines are either iterative Caballero et al. (2014); Huang et al.
(2019a,b), or completely by-passed as in Schlemper et al. (2018). Sharing the encoding
path among tasks is not a new concept; as a novel addition, in this paper we let features
flow among tasks through skip connection between the two decoding paths. We show this
ultimately helps improve performance in both tasks. We investigate the performance of our
approach in a problem of simultaneous knee MRI reconstruction as well as cartilaginous
and meniscal tissues segmentation, solutions to which appear not to be available in the
published literature.

3. Imaging Dataset and Retrospective Undersampling

The imaging data used in this study are a subset of the Osteoarthritis Initiative (Peterfy
et al., 2008), a multi-center longitudinal multi-modality imaging study in 4,796 patients.
The selected set comprises 174 3D sagittal double-echo steady-state (DESS) knee MRI
scans. They were acquired with a 3.0T Siemens Trio at two time points from 87 patients.
Acquisition parameters were TR 16.2ms, TE 4.7ms, FOV 14cm, and readout bandwidth
185kHz, matrix size 384×384×160 and resolution 0.3646×0.3646×0.7mm. For all these
volumes, a segmentation of the knee’s cartilaginous and meniscal tissues is available with
semi-automatic annotations (Peterfy et al., 2008). MRI scans were split into training,
validation and test sets, comprised of 119, 28 and 28 volumes respectively, ensuring that
patients were not shared across the splits. Prior to under-sampling, MRI data were center-
cropped to size 344×344×140, as it was observed this retained relevant structures such as
cartilaginous and meniscal tissues. DICOM image data were then reverted to the k-space
domain by applying a Fourier transform, so that in the k-space domain, under-sampling
could be performed by applying the undersampling masks. These were generated following
a Cartesian retrospective under-sampling approach, which was performed in two directions
by means of a variable-density Poisson disk under-sampling mask (Bridson, 2007) achieving
2×, 4×, 6×, 12× and 24× AFs. Subsequent zero-filling and Inverse Fourier Transform
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Figure 2: Proposed TB-recon architecture. It consumes undersampled MRIs and simul-
taneously regresses a reconstructed fully-sampled MRI and segments tissues of
interest. The architecture suggests a novel way of flowing learned features across
multiple tasks (pink arrows). This results in improved performance in both tasks.

completed the generation of undersampled MRIs. The under-sampling was performed using
the SigPy software package1.

4. The Proposed Approach

We propose ‘TB-recon’, a deep neural network architecture for simultaneous ultra-fast MRI
reconstruction and multi-class semantic segmentation. TB-recon – which is the short form
for ‘task-based reconstruction’ – is a 3D end-to-end, multitask, fully convolutional encoder-
decoder network. To simultaneously solve the tasks of MRI reconstruction from highly
undersampled MRIs and multi-class semantic segmentation, our network receives as input
a zero-filled k-space undersampled knee MRI volume, and produces two outputs: a recon-
structed fully-sampled MRI and a multi-class segmentation probability map of cartilaginous
and meniscal tissues.

1. http://indexsmart.mirasmart.com/ISMRM2019/PDFfiles/4819.html
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4.1. The Architecture and Implementation Details

The architecture – depicted in Figure 2 – recalls the format of an encoder-decoder system.
The encoder is shared among tasks, whereas the decoder includes two task-specific paths.
Across the network, in-level flow of learned features is obtained through residual connections
(He et al., 2016). This is useful when it comes to reducing the issue of vanishing gradients,
through a better flow of gradients during back-propagation. Better features and gradient
flows can also be obtained through skip-connection of features between encoding and de-
coding layers (Ronneberger et al., 2015). We propose a new way of flowing features among
the encoding and the two decoding paths, for a more efficient approach to task learning.
We use skip-connections between the encoding and the image reconstruction path, as well
inter-tasks skip-connections, which provide a direct transfer of features between the two
tasks. The reasoning behind such architectural design choice reflects the quality of features
passed via skip-connection: at the encoding path, features suffer from under sampled k-
space artefacts, which especially at high acceleration factors result in a severe loss of finer
details that are crucial for tissue segmentation. Along the encoder, the extracted features
are instrumental for reconstructing the fully-sampled MRI. In fact, they provide a good
initial solution, resulting in a faster convergence to a solution. Arguably, features available
along the reconstruction decoder are descriptive of higher quality fine details, fundamen-
tal for performing segmentation. The overall number of learned features depends on the
number of feature channels that are outputted at the very first encoding convolution, here
empirically set to 16. In addition to the task-related features flow, the two decoders differ
in their output layers. In the reconstruction side of the network, the output layer is a linear
unit and the MRI reconstruction is treated as a regression problem. The segmentation
path outputs a 5-channel probability map obtained through a soft-max activation function.
Weights are initialized using Xavier method and updated using mini-batch (batch size=1)
stochastic gradient descent (SGD), with Adam optimizer. The initial learning rate is 5E-5.
The training algorithm minimizes the hybrid loss in Equation (1). This is a linear combina-
tion of a reconstruction and segmentation term, where α is a hyper-parameter empirically
set to 1.

LTB−recon = Lrecon + α · Lsegm (1)

Lrecon – reported in Equation (2) – is a linear combination of a mean absolute error (MAE)
and a 3D structural similarity index (SSIM) loss, between the network’s logits (ŷ) and the
fully-sampled target (y).

Lrecon = 1 − SSIM(ŷ, y) + β ·MAE(ŷ, y)) (2)

The hyper-parameter β was empirically set to 6.7 to rescale the two losses (Zhao et al., 2016;
Oksuz et al., 2019). A linear combination allows one to better take advantage of the positive
aspects of both SSIM and MAE losses (Zhao et al., 2016). SSIM is a measure of similarity
between two image patches extracted on a sliding window basis and is highly sensitive to
structural information and texture. Since we are reconstructing 3D MRI volumes, SSIM
was adapted to handle volumetric data. With respect to the segmentation term, Lsegm -
reported in Equation (3) - is a multi-class hybrid loss that includes a linear combination of
soft dice (Milletari et al., 2016; Sudre et al., 2017) and negative log-likelihood losses.

Lsegm = 1 −DICE(ŷ, y) + γ ·NLL(ŷ, y) (3)
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In Equation (3), ŷ is the predicted semantic segmentation class probability outputted by
the soft-max function, y is the target label. Finally, γ is a hyper-parameter, empirically set
to 0.01 to rescale the two losses.

4.2. Comparative Solutions

To compare the effect of multitask learning, including our proposed features flow among
tasks, we implemented 2 comparative solutions, namely ‘cascade-rec-seg ’ and ‘end-to-end-
cascade-rec-seg ’.

The 3D cascade of reconstruction and segmentation comprises two independent net-
works, of which the architectures were optimized to perform reconstruction and segmen-
tation respectively. The reconstruction network consumes a 3D undersampled MRI, and
returns a fully-sampled MRI. The architecture is a 4 level V-Net-like encoder-decoder (Mil-
letari et al., 2016), where the number of features channels that are outputted at the very
first convolution is empirically set to 6. The 3D reconstruction network minimizes a hybrid
loss, reported in Equation (2). The semantic segmentation network is trained to segment
knee cartilage, including femoral, tibial and patellar cartilage as well as menisci by means
of a V-Net-like network, which has the same architecture of the reconstruction network,
with the only difference being the output layer, which is a 5 class probability map. The
network learns to perform semantic segmentation on fully-sampled DESS MRIs. During
training it minimizes a multi-class hybrid loss reported in Equation (3). At test time,
the reconstruction network is concatenated downstream with the semantic segmentation
network.

The alternative ‘end-to-end-cascade-rec-seg ’, is a cascade of reconstruction and segmen-
tation networks trained end-to-end. Both sub-networks are V-Net-like architectures having
the same number of levels and in-level convolutions as for TB-recon. Conversely, the number
of feature channels outputted at the very first convolution was set to 8. End-to-end-cascade-
rec-seg is trained following the same multitask learning settings of TB-recon, minimizing a
hybrid loss, reported in Equation (1). Here, reconstruction and segmentation tasks have
two different encodings, and no features flow among tasks.

5. Experimental Study

Multiple sets of experiments were conducted, i.e. one for each available acceleration factor;
all experiments aiming to MRI reconstruction and cartilaginous as well as meniscal tissue
segmentation. All models were trained for 200 epochs using the same train/validation/test
splits. To conduct a fair comparison across experiments, we systematically stopped train-
ing when no validation improvement was observed for 30 epochs. When training TB-recon,
cascade-end-to-end-rec-seg and the segmentation sub-network of cascade-rec-seg, actual val-
idation segmentation dice similarity coefficient (DSC) was monitored. When training the re-
construction sub-network, reconstruction MAE on the validation set was monitored. Train-
ing regularization was obtained through Dropout technique with a 95% keep probability and
no data augmentation. TB-recon’s training required approximately one day per experiment
(NVIDIA V100 32GB GPU). At inference, time processing of a volume takes approximately
4s. In contrast, end-to-end-cascade-rec-seg ’s training required approximately 4 days per ex-
periment and a forward inference pass requires 7s on a machine hosting the same hardware.
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With respect to cascade-rec-seg, each individual network training required approximately
one day per experiment (NVIDIA GTX TITAN X 12GB GPU). At inference time, process-
ing a single volume takes 2s. All implementations are based on Python 3.6.5 and Tensorflow
1.12.0 numerical computation library.

5.1. Evaluation

Knee MRI reconstruction performance was quantitatively assessed by means of SSIM and
normalized root-mean-square error (NRMSE), and qualitatively by two musculoskeletal
(MSK) imaging trained medical doctors. Cartilage and menisci segmentation were assessed
by means of DSC. All our metrics were tested for statistical significance (p≤0.05). We
conducted paired t-tests to assess whether TB-recon significantly outperformed the com-
parative solutions at all acceleration factors.

Figure 1 compares a segmentation from TB-recon and the comparative solutions on a
24× undersampled knee DESS. The arrows point to the trochlea and the articular surface of
the patella, showing that TB-recon better segmented these particularly challenging areas.
Figure 3 is exemplary of a reconstruction from TB-recon on a knee DESS undersampled
at 6× and 12× AFs. DESS MRI as well as undersampled reconstructed images were in-
spected by two musculoskeletal imaging trained MDs. On the top and middle rows, bone
marrow edema as well as cartilage loss are well preserved after reconstruction at high (12×)
AF. On the bottom row, an anterior cruciate ligament (ACL) architecture is completely
preserved at 6× AF. A further reader study was conducted, where initially, two MSK MDs
underwent a calibration session in which concurrently assessed volumes from 2 subjects
in the validation set. Subsequently, both graders independently graded all the reference
DESS volumes. MRIs reconstructed by TB-recon were distributed such that both readers
assessed volumes at a randomized AF order, while blinded to the AF. Contrast, sharpness,
SNR and artefacts were the adopted grading metrics. Figure 4 is representative of the re-
construction grading trend with respect to the reference MRIs, which had a baseline grade
of 10. Despite a decreasing trend visible at all AFs, 93% of the images 4× undersampled
were reconstructed at a reference level quality. Reconstruction quality noticeably decreased
at higher AFs: 30% of 12× undersampled were graded of as high quality as the reference
DESS. From a more detailed analysis, sharpness and SNR appeared to be the most de-
graded metrics at higher AFs. Conversely, contrast and lack of artefacts at 12× AF were of
reference quality in 71% of the analyzed volumes. At higher acceleration factors, all met-
rics degraded uniformly irrespective of the high-quality tissue segmentation, which instead
was maintained. Experiment results are reported in Figure 5. In the segmentation part,
DSC is the average computed on femoral, tibial cartilage and menisci segmentations. These
compartments were well segmented also by the comparative solutions, as opposed to the
patellar cartilage, for which we report segmentation performance in Appendix in Table 3.
Looking at TB-recon’s segmentation performance, the DSC differences obtained on 2× and
a 24× undersampled MRIs, were less than 1/10 of the respective DSC standard deviations.
Arguably this is a sign that beyond a level of MRI quality, the segmentation is less affected
by the reconstruction quality per se. Compared to the alternative solutions, TB-recon out-
performed them at all acceleration factors. TB-recon DSC ranged from 0.8808 ± 0.0198
on 2× to 0.8697 ± 0.0225 on 12× AF to 0.8563 ± 0.0256 on 24× accelerated MRIs, on the
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Figure 3: Top: bone marrow edema (BME): A) sagittal DESS with small area of BME.
This finding is well observed in the sequences both at B) 6× and C) 12× accel-
eration factors. Middle: full thickness cartilage loss: D) sagittal DESS with full
thickness cartilage loss in lateral femoral cartilage. E) same lesion is well observed
at 6× and F) 12× AFs. Bottom: anterior cruciate ligament (ACL): G) sagittal
DESS with normal ACL architecture. H) ACL features are well preserved at 6×
AF and partially preserved at I) 12× AF.

femoral cartilage. TB-recon achieved similar performance on segmenting tibial, patellar
cartilage and menisci. Patellar cartilage appeared to be the most challenging compartment,
with performance ranging from 0.8217 ± 0.0609 (2× AF) to 0.8067 ± 0.0826 (12× AF) to
0.7765±0.0264 (24× AF). In all 3 compartments segmentation, TB-recon significantly out-
performed both comparative solutions in processing 24× ultra-fast MRIs (vs cascade-rec-seg
p=4.6719e−13, vs end-to-end-cascade-rec-seg p=8.4980e−05). On fully-sampled DESS, the
segmentation network’s reported DSC were 0.8490±0.0282, 0.8512±0.0368, 0.8139±0.0698
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Figure 4: Two musculoskeletal imaging trained MDs assessed TB-recon’s reconstruction
quality, with respect to the fully-sampled reference DESS MRI. Image assess-
ment involved evaluation of contrast, sharpness, SNR, artefacts and overall image
quality. Lines refer to different MRI volumes.
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Figure 5: Reconstruction and segmentation performances achieved in the conducted exper-
iments. The star depicts statistical significance (p≤0.05).

in femoral, tibial, patellar cartilage and 0.8361±0.0299 in menisci. TB-recon’s significantly
better segmentation performance was paired by significant outperformance in reconstruct-
ing DESS, at all acceleration factors. This is reported in Figure 5, in terms of SSIM. We
report NRMSE in Appendix in Table 4. At the highest available AF, TB-recon test per-
formance was SSIM=0.6929 ± 0.0229, NRMSE=0.2543 ± 0.0462. Difference values with
respect to the comparative solutions were: for cascade-rec-seg ∆SSIM=0.0260 ± 0.0021
(p=4.8490e − 31) and ∆NRMSE=−0.0129 ± 0.0024 (p=1.1350e − 21). For end-to-end-
cascade-rec-seg ∆SSIM=0.0164 ± 0.0015 (p=1.7515e-29) and ∆NRMSE=−0.0133 ± 0.0020
(p=3.1472e− 24).

5.2. Ablation Study and Further Validation

We conducted an ablation study to demonstrate that a) image quality is crucial for high
quality segmentation and b) skip connections are key in providing the segmentation task
with features representative of higher resolution images. With respect to a), we trained a
VNet-like encoder decoder – which essentially is TB-recon with a single decoder and a 5
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class activated soft-max output – to directly segment zero-filled reconstructed undersampled
MRIs with no denoising task involved. We refer to this experimental setup with ‘zero-filled ’.
With regard to b) we trained a ‘näıve’ architecture, which differs from TB-recon in the way
skip connections were implemented: from the encoder to each decoder. Table 1 reports the
results of this ablation study which highlights the fact that segmentation performance is
degraded when segmenting highly undersampled zero-filled data without an intermediate
reconstruction step. In addition, we suggest that our introduced skip connections are key in

Table 1: Reconstruction and segmentation performances achieved in the ablation study.
Zero-filled is an encoder-decoder that directly segments zero-filled reconstructed
undersampled MRIs. Näıve is an encoder-two-decoders model with encoder-
decoders skip connections.

Femur - DSC 4× 6× 24×
TB-recon 87.33±1.93 87.58±1.79 85.63±2.56
zero-filled 82.27±2.75 81.79±2.73 16.27±0.91

näıve 84.97±2.69 82.94±2.99 83.71±2.82

Tibia - DSC 4× 6× 24×
TB-recon 85.12±3.85 86.18±3.59 85.84±3.51
zero-filled 83.32±4.53 81.26±5.20 29.75±1.80

näıve 84.09±3.86 83.26±4.20 56.15±2.38

Patella - DSC 4× 6× 24×
TB-recon 82.10±6.83 81.76±7.82 77.65±7.96
zero-filled 78.10±7.17 77.37±6.47 70.88±10.59

näıve 53.74±4.36 77.62±7.61 32.45±2.24

Menisci - DSC 4× 6× 24×
TB-recon 84.91±2.79 83.78±3.06 82.28±2.64
zero-filled 81.87±2.99 81.61±3.15 16.69±0.93

näıve 82.35±2.69 81.47±3.31 54.59±2.24

the segmentation task; we speculate they allow for a flow of features between reconstruction
and segmentation, and these features support segmentation as the reconstruction improves.

Lastly, we investigated how the segmentation only model - used after a traditional
reconstruction approach - would perform. Provided that we only considered a single channel
acquisition model, in this experiment reconstruction was performed using an L1-Wavelet
compressed sensing reconstruction algorithm, as this is suitable to single-coil reconstruction.
Compressed sensing (CS) (Lustig et al., 2007) is a promising strategy for fast MRI, where
prior to an iterative MRI reconstruction, a reduced number of measurements from a single
or multiple receiver channels are sampled below the Nyquist rate. Key drawbacks of CS
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involve reduced signal-to-noise-ratio (SNR), as well as overall image quality loss including
reduced contrast, sharpness and fine details. The L1-Wavelet approach solves a constrained
optimization (ε = 1E − 6) problem with a Chambolle-Pock primal-dual hybrid gradient
algorithm (Chambolle and Pock, 2011). Subsequent to the CS based reconstruction, we fed
the MRIs to the segmentation network. Table 2 shows that the L1-Wavelet CS algorithm
provided a very accurate reconstruction at 2x. At higher AFs, the lack of details in the
undersampled image negatively affected CS’s performance. This is less of a problem for
a deep learning method; through a data driven training procedure, priors – which are
instrumental for the reconstruction – are introduced. Segmentation results are consistent
with those in Table 1. More precisely, a poor reconstruction resulted in a poor segmentation.

Table 2: Reconstruction and segmentation performances achieved in the comparative study
against a traditional compressed sensing reconstruction method.

Average - DSC 2× 4× 6× 12× 24×
TB-recon 85.54±3.58 84.87±3.85 84.82±4.06 84.25±4.28 82.25±4.17

L1-Wavelet CS 82.44±4.89 76.3±10.79 79.15±5.82 67.37±8.99 38.94±14.11

SSIM 2× 4× 6× 12× 24×
TB-recon 89.74±0.47 80.06±1.16 75.84±1.60 69.05±2.27 62.25±2.84

L1-Wavelet CS 86.9±0.74 66.48±2.08 65.7±2.10 53.11±2.72 41.99±2.87

NRMSE 2× 4× 6× 12× 24×
TB-recon 15.80±2.74 20.87±3.51 22.46±3.77 26.06±4.32 29.60±4.63

L1-Wavelet CS 21.80±0.88 42.68.±2.54 27.83±0.76 35.76±1.15 49.69±1.25

6. Discussion

We proposed TB-recon, a task-based solution to simultaneously perform segmentation and
reconstruction tasks on retrospectively undersampled knee DESS MRIs. TB-recon was
tested on a wide range of acceleration factors (up to 24×) and demonstrated its capabil-
ity of producing precise cartilaginous and meniscal 3D segmentation masks in addition to
accurate and reliable high resolution reconstructed MRIs. From the experiments, it was
observed that a multitask learning strategy improves network performance in both tasks,
and that the employment of a shared encoding path as per TB-recon results to be more
efficient in terms of training time, computational demand and achieved performance. Nev-
ertheless, in this study we did not focus on algorithm’s efficiency; the implementation is
experimental and could be further optimized. TB-recon has the architecture of an encoder-
multidecoder system and it leverages the 3D nature of DESS sequences and the multitask
learning capability of deep neural networks. An aspect of particular interest in MTL is
to assign task importance. MTL can involve joint learning of classification and regression
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tasks, at different scales and a naive combination of the task-specific losses might not always
be the best solution. We gave equal importance to both tasks, even if the actual goal was
to obtain a precise segmentation from ultra-fast MRIs. Oksuz et al. (2019) showed that
task weighting can highly impact performance on the tasks on hand. We leave a systematic
assessment of such impact as part of our future work. Based on the results obtained in our
experimental study, we speculate that in a dynamic weighting setting, both tasks would be
weighted in a way such that, at the initial training stage reconstruction was the main focus.
As reconstructed image quality improves, the segmentation task should be weighted more,
leading to the desired segmentation.

While these results are promising there are some limitation to be acknowledged. Volume
MRIs were retrospectively undersampled from DICOM files. The procedure of reverting a
DICOM image to the k-space domain by applying a Fourier transform does not lead to the
originally measured MRI raw data (Zbontar et al., 2018; Hammernik and Knoll, 2020). This
is mainly due to the fact that DICOM files are usually the output of acquisition and post-
processing algorithms, which causes a discrepancy between our synthesized k-space data and
the actual acquired k-space data. This discrepancy includes the loss of image phase informa-
tion, crucial for the image generation. Nonetheless, we expect that the results we obtained
would translate to an actual acquisition with true acquired data. Furthermore, starting
from DICOM files indirectly forced us to treat the problem as single-coil MRI reconstruc-
tion. Extension from single-coil to a multi-coil reconstruction is not straightforward and
is an open research question (Souza et al., 2019), especially because images from different
coils carry complementary information. Traditional methods for multi-channel acquisitions
involve parallel imaging reconstruction methods, such as GRAPPA (Griswold et al., 2002)
or SENSE (Pruessmann et al., 1999). Theoretically, deep learning-based approaches should
outperform GRAPPA and SENSE on multi-channel data, because GRAPPA and SENSE
methods could be treated as linear convolutional layers. Deep learning-based approaches for
image reconstruction take advantage of multiple layers and non-linearity to learn weighting
and even improve performance by overcoming model’s imperfections. This was further con-
firmed by Schlemper et al. (2019)’s performance in the NeurIPS 2019 Fast MRI challenge
(Knoll et al., 2020). Furthermore, iterative reconstruction algorithms like CS are inherently
complex and often require long reconstruction times, making their deployment challenging
in daily clinical practice (Hammernik and Knoll, 2020). Another limitation to consider in
this work is that data consistency operations were not incorporated in the network archi-
tecture such as those found in unrolled iterative optimization networks (Wu et al., 2019;
Diamond et al., 2017). This was not possible due to lack of ground-truth raw data.

7. Conclusions

We proposed TB-recon, a solution for simultaneous reconstruction and segmentation to en-
able ultra-fast MRI. In this retrospective study, TB-recon demonstrated the data-driven
nature of DL-based solutions has a potential to make ultra-fast MRI feasible. We argue
that task-based reconstruction can push the boundaries of fast MRI far beyond the accel-
eration factors that have been utilized in previous works. With the conducted experiments
we demonstrated this is not just an incremental improvement. By combining the image re-
construction with an image interpretation task, we forecast to break previous speed limits,
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which have hampered the application of magnetic resonance imaging. We strongly believe
that MRI practice can benefit from task-based reconstruction, with potential application
to well defined tasks. Applications of this may be disease and abnormality identification,
segmentation of the gray/ white matter and other structures in the brain, estimation of the
volume of organs, size of various structures including cartilage thickness and lesion size and
counting for pathologies such as multiple sclerosis and micro-bleeds. We hope this paper
further stimulates the research community’s interest on task-based fast MRI.
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Appendix A. Further Experimental Results

In addition to 5.1, we report segmentation performance in the patella, and the reconstruction
NRMSE.

Table 3: Patellar cartilage segmentation quality in DSC metric. Methods performance
comparison at all acceleration factors. Patellar cartilage segmentation perfor-
mance achieved by the vanilla segmentation network on fully-sampled DESS was
0.8139±0.0698.

AF TB-recon cascade-rec-seg end-to-end-cascade

2× 82.17±6.09 80.75±7.02 53.54±6.01
4× 82.10±6.83 80.46±7.18 54.40±5.61
6× 81.76±7.82 79.43±6.95 55.20±4.58
12× 80.67±8.26 79.06±7.73 53.13±5.06
24× 77.65±7.96 76.80±8.49 53.45±5.34

Table 4: Reconstruction quality in NRMSE metric. Methods performance comparison at
all acceleration factors.

AF TB-recon cascade-rec-seg end-to-end-cascade

2× 15.80±2.74 16.24±0.51 16.55±2.92
4× 20.87±3.51 21.65±0.75 22.60±3.90
6× 22.46±3.77 23.05±0.86 25.42±4.40
12× 26.06±4.32 26.76±1.02 34.55±6.01
24× 29.69±4.93 30.97±1.20 31.02±5.17

Appendix B. Experiment With Standardized Architecture Parameters

Comparative solutions were designed to maximize performance on the specific tasks each
networks solved. Various solutions were investigated, and the best performing models were
selected to be the comparative solutions. We experienced that having a larger number of
filters at the input layers does not necessarily reflect better performance in the task; simi-
larly we could not define a relationship between number of network levels and segmentation
performance. With that in mind, we conducted an additional experiment with standardized
networks, using the undersampled dataset at 24× AF. In practice, in this experiment, all
architectures had 8 feature channels at the input layer, 2 levels with 1 and 2 convolutions
per-level respectively, and 3 additional convolutions at the bottom level. Table 5 reports
the results of this experiment. On average, results show that TB-recon segments the tissues
of interested better than the comparative solutions, since it was able to extract a higher
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quality segmentation of the patella. The reconstruction quality among the three methods
were comparable with no significant difference. We speculate – in agreement with the results
reported in Table 1 – that the skip connections between the tasks are key for the improved
segmentation. In practice, the metrics utilized to assess image quality merely provide an
average estimate of the reconstruction quality, which does not reflect whether tissues of
interest were reconstructed with fidelity (for instance, cascade-rec-seg is particularly exem-
plary of this). From a visual inspection, we observed that our proposed network better
reconstructed the regions where the tissues of interest are positioned. We hypothesize this
is also due to the presence of inter-task skip connections, which could encourage collabo-
ration between the two tasks. Nonetheless, further investigating image quality within the
segmentation region is of great interest and part of our future research.

Table 5: Reconstruction and segmentation performances achieved in the experiment with
standardized architecture parameters. The experiment is conducted on retrospec-
tively undersampled MRIs at 24× AF.

DSC Average Femur Tibia Patella Menisci

TB-recon-8ch 81.55±0.58 84.19±2.95 82.95±4.66 78.15±7.70 80.94±2.64
cascade-ETE -8ch 75.92±2.15 84.75±2.70 83.79±3.80 53.46±5.34 81.67±2.72

cascade-rec-seg-8ch 44.86±29.43 60.46±29.22 58.47±31.36 0.0 60.49±28.3

Input: 24× AF SSIM NRMSE

TB-recon-8ch 59.95±2.74 31.49±5.29
cascade-ETE -8ch 60.61±2.82 31.02±5.17

cascade-rec-seg-8ch 60.40±2.83 30.46±1.19
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