Under review as a conference paper at ICLR 2026

HETEROGENEOUS FEDERATED FINE-TUNING WITH
PARALLEL ONE-RANK ADAPTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have demonstrated remarkable effectiveness
in adapting to downstream tasks through fine-tuning. Federated Learning (FL)
extends this capability by enabling collaborative fine-tuning across distributed
clients using Low-Rank Adaptation (LoRA), while preserving data privacy by
avoiding raw data sharing. However, practical deployments face challenges when
clients have heterogeneous resources and thus adopt different LoRA ranks, leading
to substantial initialization and aggregation noise that undermines performance.
To address these challenges, we propose Fed-PLoRA, a novel lightweight hetero-
geneous federated fine-tuning (FFT) framework. Fed-PLoRA introduces Paral-
lel One-Rank Adaptation (PLoRA), a new LoRA variant that replaces the classic
multi-rank LoRA module with multiple parallel one-rank modules, and a novel
Select-N-Fold strategy that folds untrained PLoORA modules into the pre-trained
weights before local training, thereby accommodating heterogeneous client re-
sources. We provide a unified analysis of initialization and aggregation noise of
Fed-PLoRA and demonstrate how it addresses the limitations of state-of-the-art
methods. Extensive experiments on diverse LLM fine-tuning tasks demonstrate
that Fed-PLoRA consistently outperforms existing methods in both accuracy and
efficiency. Our code will be openly available.

1 INTRODUCTION

Federated Learning (FL) has emerged as a crucial paradigm for fine-tuning Large Language Models
(LLMs) across multiple clients while preserving data privacy by avoiding raw data sharing. Low-
Rank Adaptation (LoRA) Hu et al.| (2021)) is a widely used parameter-efficient fine-tuning (PEFT)
method, which adapts LLMs by injecting trainable low-rank matrices into pretrained weight spaces.
Specifically, LoRA factorizes a weight update matrix AW € R4** as AW = BA, B € R¥x",
A € R™*, where r < min(d, k) denoting the rank. Combining FL and LoRA provides an ef-
fective framework for collaborative LLM fine-tuning on downstream tasks [Wang et al.| (2018). A
representative example FedIT [Zhang et al.[(2023)), which extends the classical Federated Averaging
(FedAvg) McMahan et al| (2017) algorithm to the LoRA setting. In FedIT, each client ¢ locally
trains its LoRA modules (A;, B;) while keeping the pretrained backbone frozen. At the end of
each round, the client uploads its LoORA matrices to the server. The server then aggregates them
by weighted averaging (i.e., A = > w;A; and B = w;B; with weights w;). The resulting global
LoRA modules are distributed back to all clients and serve as the initialization for the next training
round. This iterative process continues until convergence of the global adapted model.

However, client resource heterogeneity poses a major challenge for federated LoRA-based fine-
tuning. In practice, clients differ significantly in computational capacity, which directly constrains
the LoRA ranks they can afford to train [Wang et al.|(2024); Bai et al.| (2024). Prior works Haobo
et al.|(2024); Ren et al.| (2024)) demonstrate that the LoRA rank critically influences both fine-tuning
performance and resource consumption. Higher ranks generally enhance adaptation capacity, but at
the cost of greater computational and communication overhead. As a result, resource-constrained
clients are often unable to adopt the larger ranks that more capable clients can sustain. This im-
balance undermines global aggregation, leading to degraded model performance and limiting the
effective participation of weaker clients. These challenges highlight the urgent need for methods
that can accommodate heterogeneous LoRA ranks across clients, thereby enabling effective and
inclusive federated fine-tuning of LLMs.

Under review as a conference paper at ICLR 2026

Existing studies Wang et al.| (2024); (Cho et al.| (2024); Bai et al.| (2024) on federated fine-tuning
(FFT) with heterogeneous LoRA ranks primarily address the challenge of aggregating local LoORA
modules with varying dimensions. For example, FLoRA [Wang et al.| (2024) proposes a stacking-
based aggregation scheme, where local LoRA modules are concatenated to construct global mod-
ules, thereby accommodating heterogeneous ranks during aggregation. Beyond aggregation, local
initialization poses another key challenge in heterogeneous-rank FFT. Since the global aggregated
module may have a different rank from that of clients, mismatches naturally arise. For instance,
HETLoRA |Cho et al.| (2024)) initializes local modules by truncating the global LoRA matrices from
lower to higher rank indices according to each client’s rank, whereas FLoRA resorts to random re-
initialization in each round. Both strategies introduce substantial initialization noise, in contrast to
homogeneous settings (e.g., FedIT), where local modules can be directly initialized with the global
ones of identical rank.

In this paper, we provide a unified analysis of initialization and aggregation noise across several rep-
resentative methods for heterogeneous FFT. Building on these insights, we propose a novel heteroge-
neous FFT framework, Fed-PLoRA, which incorporates Parallel One-Rank Adaptation (PLoRA).
Unlike the classical LoRA approach that relies on a single multi-rank matrix, PLoRA constructs
modules of any desired rank by combining multiple parallel one-rank matrices. This design natu-
rally supports client resource heterogeneity through a novel Select-N-Fold strategy. Our theoretical
results show that Fed-PLoRA achieves near-optimal local initialization while minimizing aggrega-
tion noise, thereby enabling effective and inclusive fine-tuning in heterogeneous federated settings.
Our main contributions are summarized as follows:

* We present a unified analysis of initialization and aggregation noise in heterogeneous FFT
with varying LoRA ranks. Guided by this analysis, we propose Fed-PLoRA, a lightweight
framework that naturally accommodates heterogeneous client capacities while ensuring sta-
ble initialization and low aggregation noise. Fed-PLoRA is lightweight and can be seam-
lessly integrated into existing LoRA and FL pipelines.

* Fed-PLoRA incorporates PLoRA, a new LoRA variant that substitutes a single multi-rank
LoRA module with multiple parallel one-rank modules. Building on this design, we pro-
pose the Select-N-Fold strategy, where each client trains only a subset of PLoRA modules
according to its computational budget, while folding the remaining modules into the frozen
pretrained weights.

* Through extensive experiments on diverse LLM fine-tuning tasks, we demonstrate that
Fed-PLoRA consistently outperforms existing heterogeneous LoRA-based FFT methods
across varying client resource and data settings.

2 FEDERATED FINE-TUNING SYSTEM

We consider an FFT system consisting of a central server and v clients. The server maintains a
global transformer-based pre-trained LLM, denoted by ®°, while each client i € [v] owns a local

dataset D;. For LoRA-based FFT, LoRA can be applied to a pre-trained target module W° € R4**
(e.g., a query projection) within a transformer block of ®°.

LoRA constrains the update of the target module, AW, through a low-rank factorization such that
WY + AW = WY + BA, where A € R™** B € RY%", with the rank r < min(d, k). In
practice, LoRA is applied to L distinct target modules within ®°, denoted by W° := {Wo’l}le.
We define the corresponding collection of LoRA parameters as 8 := {A, B} with A = {A!}[
and B = {B'}~ |, and each pair {A!, B!} represents the low-rank matrices associated with the I-th
target module. Given this setup, the problem of FFT can be formulated as follows:

; - BN .®°
min £(0) := — ;cz(o,@), (1)
where £;(0;0°%) = E,cp,[((0;©°)] denotes the local objective function of client i, and

£(0;@°,) is the loss of the model on a datapoint x sampled from D;.

In a heterogeneous rank setting, each client ¢« employs LoRA modules with its own LoRA rank r;.
To solve the optimization problem in Equation equation [T} FFT methods [Cho et al|(2024); Wang
et al.[(2024); Bai et al.[(2024) typically follow a three-step procedure in each training round ¢ € [T]:

Under review as a conference paper at ICLR 2026

Aggregation Information
Aggregation + A x Loss

—
x _ - » o awt Sﬂ) i / Frozen
- x x B xTruncaled /

QJ

Informatio}
/ SERVER / \ SERVER D H Trainable
i i
Locall) —i— Replaceable
wit Ay wi Locally we we
Initialized v,
Initialized
¥ start From
CLIENT1 Scratch CLIENT v CLIENT1 CLIENT v Intermediate
(a) FLoRA (b) FlexLoRA
Matched Ve
Interaction Aggregation \/ L, , One-Rank
£ Aggregation % 1o Nojse Aggff’a“"” 2 Weight
- AL
:) (1) -
+(- o
| Truncated ‘B, 3 i Ef“)
\nformauo B) @ Stacking
" _A B v.2) 3
¥ SERVER el ‘ SERVER L) \
¢
/ selef[N,ZFUR-j Aoy, + Element-Wise
e (2)
== L@ b3 Sum
¢ 0
we we Wi Vo Y, . Matrix
B‘ @ Optimal B3 X L
Bt B Multiplication
5 1(2) Initialization gt 7@
CLIENT 1 CLIENT v CLIENT1 B CLIENTv v(1)
(c) HETLoRA (d) Fed-PLoRA (Ours)

Figure 1: Framework of FLoRA, FlexLoRA, HETLoRA, and our method Fed-PLoRA.

1. Broadcast and Initialization: The server broadcasts the global model to clients, and client @
initializes its local LORA modules with rank 7; via 6" = Init(6"~1,r;).

2. Local Client Update: Each client 7 then fine-tunes its initialized LoRA parameters 0?71 using its
local dataset D;, while keeping the pretrained backbone ®° frozen. This process typically involves
multiple steps of Stochastic Gradient Descent (SGD) or its variants [Kingmal (2014), resulting in
updated local LoRA parameters: 6! = LocalUpdate(6; ', D;, ©°). T he updated parameters 6!
are then transmitted back to the server.

3. Server-Side Aggregation: The server collects the set of updated parameters {0§}ie[v] and aggre-
gates them to form the global LoRA parameters " for round ¢: 6" = {A*, B’} = Agg({6!}:c()) ,
where At € R** and B* € R4*. Here, the aggregation operator Agg(-) must be capable of

combining local LoORA modules with heterogeneous ranks, and the resulting global rank R, which
satisfies R > max(r;), is determined by the choice of aggregation rule.

3 PARALLEL ONE-RANK ADAPTATION FOR HETEROGENEOUS FFT

In this section, we introduce Fed-PLoRA, a heterogeneous FFT framework that incorporates a new
LoRA variant (PLoRA) and a novel local initialization strategy (Select-N-Fold) to eliminate initial-
ization noise and mitigate aggregation noise.

3.1 MOTIVATION

Existing LoRA-based heterogeneous FFT methods [Cho et al.| (2024); [Bai et al.| (2024); Wang et al.

(2024) that follow the above training framework differ primarily in their initialization and aggrega-
tion strategies. To analyze their effects, we formally define the notions of initialization noise and
aggregation noise as follows:

Initialization Noise: During the initialization step of round ¢, clients with limited local rank r; may
be unable to fully accommodate the information contained in the global LoRA modules as r; < R.
This mismatch introduces initialization noise, defined as the total initialization gap across all clients:

=D (AT e AT+ BT o BT ,), @

i€[v]

where || - || denotes the Frobenius norm, and the operator © represents a rank-wise subtraction. This
metric quantifies the information that resource-constrained clients fail to retain when initializing
from the global model. In homogeneous rank settings (i.e., 7; = R for all ¢ € [v]), the initialization
noise vanishes since all clients can directly adopt the global LoORA modules.

Under review as a conference paper at ICLR 2026

Aggregation noise: After local training, the server receives updated parameters 6! from each client
1. Following prior works |Wang et al.| (2024); Sun et al.[(2024), we define an ideal model update
AW as the average of the local model updates, and the deviation from this ideal model update
defines the aggregation noise, i.e.,

. 1 1
Age = AW — AW with AW = = 3~ AW = = 3 BIA[, 3)

1€ [v] i€ [v]

where AW' = B? A’ represents the actual model update obtained by a specific aggregation method.
Ideally, a perfect aggregation method yields N, ,ﬁgg =0.

3.2 PARALLEL ONE-RANK ADAPTATION

Before presenting the Fed-PLoRA framework, we first introduce its fundamental building block,
PLoRA. The key idea is to replace a single multi-rank LoRA module with multiple parallel one-
rank modules. Concretely, consider applying a LoRA module with rank R to a target weight matrix
WY € R¥¥_ In classical LoRA, this is parameterized by matrices A € RF** and B € R* 1,
yielding the update AWy ra := BA. In contrast, PLORA decomposes this rank-R module into
R parallel one-rank components. For each j € [R], a PLORA component consists of a pair of one-
rank matrices A ;) € R™* and B(;) € R¥! (see Figure [1{d)), producing an individual update
AW = Bj)Ayj). The overall update is simply the sum of these contributions:

R R R
AWriora = Y AW(;) =3 BAg) = > Bp Ay = AWioa
Jj=1 J=1 J=1
which is mathematically equivalent to the classic multi-rank LoRA formulation, since B(j) =
B[, j] and A(j) = Alj,:]. Thus, PLoRA achieves the same adaptation effect and parameter ef-
ficiency as standard multi-rank LoRA, while enabling a modular decomposition that is naturally
suited to heterogeneous FTT.

3.3 FED-PLORA: HETEROGENEOUS FFT WITH PLORA

As in existing approaches, resource-constrained clients can reduce their LORA ranks to fit limited
computational budgets, which naturally results in heterogeneous ranks across clients. Within our
framework, this corresponds to adjusting the number of parallel one-rank matrix pairs in the PLORA
modules. However, this adjustment alone does not eliminate initialization and aggregation noise.

To overcome these issues in heterogeneous settings, we propose a novel Select-N-Fold strategy
within the Fed-PLoRA framework. This strategy is specifically designed to handle rank hetero-
geneity, ensuring zero initialization noise and minimizing aggregation noise. Assume the server
maintains global PLoRA parameters 8 = {{A'},c(z), {B'};c[z)}. where for each target module

I € [L], A" := {A{;)}jem and B' := {B{; };e[r) represent the R parallel one-rank PLORA
components. For client 4, the local PLoRA parameters are 0; = {{A!};c(1}, {B!};c1)}, where
Al = {Aé,(j)}je[m] and B! := {Bi,(j)}je[ﬁ] with local rank r;. The global rank is chosen such
that R > max;¢|,] r;. Fed-PLoRA follows the three-step training framework described in Section@
and the pseudo-code is shown in Algorithm[I] In each training round ¢:

Broadcast and Initialization: The server broadcasts the global PLoRA parameters 8"~ to clients.
Each client i then randomly selects a subset K! of r; parallel one-rank PIoRA modules for local
training. For clarity, we omit the index [in the notation, but note that this selection and the subse-
quence operations are performed independently for each target module ! € [L]. The local PLoRA

parameters of client i are initialized as 8! = {A'(sj_)l, B’z;)l} jexct- The remaining (R —r;) parallel
one-rank PLoRA modules are temporarily folded into the corresponding pre-trained target module
WP, yielding the local target module
t . A0 t—1 _ yAs0 t—1 A t—1
Wii=W'+ AW =W+ Y B A,
JEK}
which then remains frozen during local training. This procedure allows the client to preserve infor-
mation from the full set of global PIoRA modules while training only a subset. Consequently, client

Under review as a conference paper at ICLR 2026

1 operates with an effective rank of 7;, matching the parameter count of a standard rank-r; LoRA
configuration, but without incurring initialization noise.

Randomness in Select-N-Fold: Our objective is to obtain a well-trained global PLoRA that can be
applied to the pretrained backbone for downstream tasks. When local resource is sufficient (i.e.,
r; = R), all local PLoRA modules can be trained, ensuring that every global PLoRA module is
updated. When r; < R, trainable modules are selected independently across clients and target
modules; hence, in expectation, each global module is updated by some subset of clients in every
round. This randomness mitigates the risk of long-term staleness in global PLORA modules under
the Select-N-Fold strategy.

Local Client Update: During local training, each client ¢ updates only the selected PLoRA modules
in KC!. After optimization, the updated local PLoRA parameters are 0 = {A! (J), } jexts

which are then transmitted to the server.

Server-Side Aggregation: The server aggregates these local PLoRA modules i 1n a rank—w1se man-
ner. For each j € [R], the global PLORA modules are computed as A(] =15 Q | > eQ!,, (j),
7) J ’

B, = IQ%J-)I ZiEQE’j) Bj (j)» where Q) = {ili € [v],j € K}} denotes the set of clients that

updated module j in round ¢. The aggregated global PLORA parameters 8° = {A* B!} are then
used for the next round of training. The process iterates until the global model converges.

3.4 ANALYSIS OF INITIALIZATION AND AGGREGATION NOISE

Here, we analyze the initialization and aggregation noise of Fed-PLoRA, comparing it with three

SOTA methods, FLoRA [Wang et al (2024), FlexLoRA (2024), and HETLoRA
(2024). Due to page limitations, we provide the detailed derivation in Appendix [E]

Fed-PLoRA. Because each client either trains or folds the globally initialized one-
rank modules into its frozen target weights, there is no discrepancy between local
and global modules. Hence, M, e = O. Under our aggregation rule, the

. . . t
aggregatlon noise 1s Ng)ursAgg = || Z] 1((1/|Q J)|) ZiEij) (BZ(J)

53 t
- By)(Aig) —

—t —t —t

A))llr, where Ay = (1/|ij)\)2ieggj) Al and B = (1/|Q’Ej)|)2ieg;j) B

This noise vanishes when the cross-client covariance between Az) and BE) is

zero for every rank. More generally, by the Cauchy—Schwarz inequality, it can be

—t —t
bounded as Mo ag < Xl oty Lieey,, 1Bl — Bl + 141G — Al
As shown in the heatmap in Fig-

ure [2] the diagonal entries repre-
sent the similarity of the j-th PLoRA
module (j € [R]) across clients, av-
eraged over all client pairs. We ob-
serve that these similarities increase
significantly as training progresses,
indicating that local PLoORA modules
become more aligned across clients.
This alignment reduces deviations
from the mean, thereby tightening the
upper bound of the aggregation noise.

FLoRA. As shown in Figure [I] (a),

© O A~ N O

o ¥ © o 2o
b) Round 80

oN ¥ © o 2 o ¥
- - <

(a) Round 1

Figure 2: Cosine similarities between parallel one-rank
modules of PLoRA. (a) Low, random similarities at initial-

FLoRA employs a stacking-based ag-
gregation method to accommodate
LoRA modules from clients with het-
erogeneous ranks. Each client ¢
initializes its trainable LoRA mod-
ules {Af~ B!~} with rank r; from

ization; (b) Increasing within-rank similarity across clients,
while cross-rank similarity remains low, indicating that
modules capture distinct knowledge at different ranks but
converge on similar knowledge across clients, despite dif-
ferences in resource limitations and data distributions (see
Appendix Section|C.3)

scratch (e.g., Aﬁfl drawn from a normal distribution and Bﬁfl set to zeros). Before local train-
ing, the local target module is replaced with the latest global target module from the server. Af-

Under review as a conference paper at ICLR 2026

ter local training, the updated LoRA modules {A‘;,Bﬁ} are sent to the server, which concate-
nates all client updates along the rank dimension to form two large intermediate matrices: {A! €

R(uien) 70Xk Bt ¢ RIX(Xie) ™)) The global update is then computed as AW, g, = BTA? /0.
Because local LoRA modules (Aﬁ_l, Bz_l) are freshly initialized each round, the initialization
noise is N srainic = Zie[v] (HAt*lHF + ||Bt’1 ||F) + o2, where o2 reflects the variance of the
random initialization for A. This noise can be substantial and may degrade local training perfor-
mance. On the other hand, the stacking operation in FLoRA preserves the local updates without
distortion, leading to zero aggregation noise, i.e., N ra Age = 0.

FlexLoRA. As shown in Figure [T] (b), FlexLoRA applies singular value decomposition (SVD) to
the global target module update AW ™! to construct global LoRA modules {A1 B!} with
rank R, ie., AW'™' ~ BIZIA! where Bzvjjl = U181 and ALl = VLT, Here,

svd svd svd
Ut~! ¢ R contains the top-R left singular vectors, S*=! € R X% is the diagonal matrix
of singular values, and V*~1 € RE*F holds the top-R right singular vectors. For a client with

rank 7;, the local LoORA modules are initialized by truncating to the top r; components: Aﬁ_l =

Vf;il:]T’ BYZ?—I = U’E:_:ii]s'[f;il:n], After local fine-tuning, the server aggregates client updates
to form the global target module update: AW' = 1 Zie[v] AW = 1 Zie[v] B!A!l. Because

v v
. . . NTR o _
each client only retains the top-r; singular components, the initialization noise is V. ora e =

Zie[v](HA‘[:il: R IlF+ ||B’E’T11 H1R] ||7) which increases as r; decreases. The server obtains the

exact average update AW, but when reconstructing global LoRA modules of rank R via SVD,
decomposition error is introduced: N1 orange = IAW' — US*V*" || p. This error increases as
global rank R increases.

HETLoRA. As shown in Figure|l|(c), HETLoRA initializes each client’s LoRA modules by trun-
cating the global LoRA modules, i.e., Al™! := Af;ilv:],Bf_l = Bf‘i] After local fine-tuning,
the updated modules {A!, B!} are sent to the server, where they are expanded to rank R by zero-
padding. The padded modules AE”,BE’/ are then averaged to form the global LoRA modules:
Al =1 D ich] AV, Bt =1 D ich] B!”. Because each client discards the bottom (R — ;) com-

ponents, the initialization noise is Nigrora init = sere] (1AL 115,917 + IBL . 1.5l 7), which

grows as 7; decreases. For aggregation, the global update is computed as AW’ = BfA?, but
because A’ and B? are averaged separately, this introduces a mathematical bias relative to the opti-

mal update % > Bf’/Az’/ |Wang et a1.| (]2024[); |Sun et a1.| (I2024I). The resulting aggregation noise is
NﬁETLoRAAgg = [I(1/v*)((v — 1) Zie[v] BE’IAE’/ - Zje[v] Zke[y],k;ﬁj B;’/AZ’/)HF

In summary, FLoRA suffers from substantial initialization noise because each client’s LORA mod-
ules are randomly re-initialized. FlexLoRA and HETLoRA reduce this randomness by truncating
global modules, but still incur initialization noise that grows as more clients operate with smaller
ranks. Moreover, HETLoRA introduces structural aggregation bias, while FlexLoRA suffers de-
composition error from SVD. In contrast, Fed-PLoRA eliminates initialization noise entirely and
minimizes aggregation noise by integrating PLoRA with the Select-N-Fold strategy, leading to more
stable and accurate FFT under heterogeneous client capacities.

3.5 COMMUNICATION, COMPUTATION, AND MEMORY OVERHEAD

We analyze the communication, computation, and memory overhead of Fed-PLoRA in comparison
with FLoRA, FlexLoRA, and HETLoRA.

Communication. In each round, every client in Fed-PLoRA uploads its local PLoRA update with
rank r; to the server. The uplink payload scales as O((d+ k)r;), which is identical to the uplink cost
of FLoRA, FlexLoRA, and HETLoRA. Thus, Fed-PLoRA introduces no additional uplink overhead.
After aggregation, the server sends the global PLoRA module with rank R to every client, giving
a downlink cost of O((d + k)R). In comparison, HETLoRA and FlexLoRA send each client a
personalized global LoRA module of rank r;, resulting in per-client downlink cost O((d + k)r;).
FLoRA incurs a larger downlink cost of O(dk) as its server sends the updated target module. Thus,
the downlink cost of Fed-PLoRA is higher than HETLoRA and FlexLoRA by O((d + k)(R — r;))
per client, but it reduces the downlink cost relative to FLoRA by O(dk — (d + k)R).

Under review as a conference paper at ICLR 2026

Computation. All methods use an identical local fine-tuning procedure with local rank r; for client
¢ after initialization, so Fed-PLoRA incurs no additional model training cost on the client side.
The only difference in local computation arises during model initialization, whose cost is negligi-
ble compared with model training cost. For completeness, we also discuss the initialization cost
of Fed-PLoRA compared with other methods. During initialization, all methods update their local
PLoRA/LoRA parameters, either by using the received global PLoORA/LoRA module or by ran-
domly initializing them. Compared to FlexLoRA and HETLoRA, Fed-PLoRA and FLoRA require
an additional step. In Fed-PLoRA, client ¢ folds the remaining R — r; global one-rank PLoRA mod-
ules into the frozen model weights, which incurs an extra computational cost of O(dk(R — r;)).
In FLoRA, every client updates its local target module using the received global target module,
resulting in an additional computational cost of O(dk). On the server side, Fed-PLoRA performs
rank-wise averaging directly on the received local updates, which is lightweight. In HETLoRA,
the server first expands each local update to rank R before averaging, introducing slightly more
computation than simple rank-wise averaging. FlexLoRA requires an SVD operation to obtain a
global low-rank update, which is computationally expensive. FLoORA concatenates all local updates
and computes a full update to the global target module, which also incurs substantial cost. Thus,
Fed-PLoRA introduces no additional server-side computational overhead compared with the other
methods and is in fact the most lightweight among them.

Memory. During local model training, Fed-PLoRA has the same memory footprint for storing
model parameters, optimizer states, activations, and other training-related tensors as HETLoRA,
FLoRA, and FlexLLoRA. This is because all methods follow the same local fine-tuning procedure
to update only the LoORA/PLoRA module on top of the frozen backbone. The only difference in
memory usage arises during model initialization, whose cost is negligible compared to the overall
fine-tuning memory footprint. During local initialization, each client requires a small temporary
memory buffer to hold the parameters received from the server. These parameters are immediately
discarded once initialization completes, resulting in no persistent memory cost. Specifically, in
Fed-PLoRA, client ¢ temporarily stores the global PLoORA module of rank R. In HETLoRA and
FlexLoRA, client 7 instead stores the global LoORA module of rank r;. In contrast, FLORA requires
client 4 to temporarily store the full global target module, whose size scales as O(dk). Thus, Fed-
PLoRA incurs a temporary memory overhead of O((d+k)(R —r;)) compared with HETLoRA and
FlexLoRA, but reduces temporary memory usage relative to FLoRA by O(dk — (d + k) R).

Overall, Fed-PLoRA introduce negligible overhead in communication, computation, and memory.
Detailed numerical results and measurements are provided in Appendix [F-2]

4 EVALUATION

Models, Datasets, Baselines, and Experimental Settings. We employ six models with different

scales in our experiments: BERT-base Devlin et al.| (2019), Llama-1B (2024), Llama-3.1-
8B (2024), OPT-1.3B [Zhang et al|(2022a), Qwen3-4B-A3B-Instruct-2507 (2023)),

and Mistral-7B-v0.3 (2023). Following the configurations in the original LoRA paper Hul
(2021)), the LoORA modules are applied to the self-attention layers only. We use datasets across

multiple domains. For general instruction following, we use Natural Instructions [Wang et al.| (2022)
and Dolly-15K [Conover et al| (2023) for training and evaluation. For general natural language
understanding, we adopt the GLUE benchmark (2018). In the finance domain, we train
on FinGPT and evaluate on FPB (2014), FIQA (2018), and
TENS [Neural Magic|(2022). In the medical domain, we train on MedAlpaca [Han et al.| (2023) and
evaluate on PubMedQA [Jin et al| (2019), MedMCQA [Pal et al| (2022), MedQA [Jin et al.| (2021)), and
CareQA [Arias-Duart et al.| (2025)). In the math domain, we use MATH [Hendrycks et al.| (2021)) for
training and evaluation. For IID data settings, we evenly split the dataset across clients. For non-1ID
settings, we apply pathological/Dirichlet data partitioning methods.

We compare Fed-PLoRA against four baselines. FedIT [Zhang et al| (2023)) represents a classic
FFT approach that combines FedAvg with LoRA. Since it is designed for homogeneous LoRA,
we only apply it in homogeneous experiments, where it serves as the baseline representing FFT
without resource constraints. For heterogeneous LoRA, we consider FLoORA (2024),
FlexLoRA (2024), and HETLoRA (2024) (see Section [3.4] for their details).

For the heterogeneous setting, clients are (by default) evenly divided into three groups with ranks

Under review as a conference paper at ICLR 2026

Method ‘ Natural Instructions (IID) ‘ Natural Instructions (non-IID)
Untuned Model \ 33.8210-2
FedIT (Rank=R) 66.8879-29 61.2870-67
Homogeneous 0.33 0.41
& FedIT (Rank=R,/2) 64521011 6057003
FLoRA 33.8279 33.8279
Het‘;"f"l“g"“ FlexLoRA 59.07263 53.5115:27
Avg Rank=8 HETLoRA 58.074433 58.847055
Fed-PLoRA 64.967158 60.7619:S3

Table 1: Comparison of Fed-PLoRA with baselines on IID and non-IID Natural Instructions dataset.
FedIT as the baseline for FFT under homogeneous settings without resource constraints.

Method | CoLA SST-2 MRPC QQP QNLI RTE | Avg
Untuned Model | 1207040 19.087042 BL61T0E 63.09703 49957080 52707095 | 41277047
Homo. FedIT (Rank=R) | 61.6875:25 92477018 8758704l 86.8670:01 89.5370:81 68.3570:2L 81408f8jg;
FedIT (Rank=R/2) | 59.057227 9223709 86.16707 86.477002 88.32F.01 652370 79.58+5-69
et FLoRA —4.08%30 9LT0TYS A38THSS 5388TITY 5047YRY) 5LO2MRYS | 47S1ET
ReSe FlexLoRA 134253000 87.887081 7040035, 7420055 90.0115:%% 55.83tg;§§ 6531555
Avg Rank=7 HETLoRA 48.0972%8 91.74703% 78597370 77537320 85301007 60.0472% | 73.557291
Fed-PLoRA 59.387075 92.35703% 86.35704r 87.257270 854t 65.4670:50 | 79.89700%

Table 2: Comparison of Fed-PLoRA with baselines on GLUE benchmark.

(1,74, R), where the maximum R is set as the optimal rank in homogeneous setting, and the middle
rank 7, € (1, R) is chosen so that the average rank |} . r;/v] is at most R/2, reflecting realistic
resource-limited clients. The number of clients across tasks ranges from 50 to 200. In each train-
ing round, 10% of clients are sampled uniformly at random. The main experimental results are
reported as the average with upper and lower deviations over three repeat experiments. Additional
experimental configurations are provided in Appendix

4.1 MAIN EXPERIMENTAL RESULTS

Due to page limitations, we present the main results on Natural Instructions (IID and non-IID) with
Llama-1B, the GLUE benchmark (IID) with BERT-base, and financial datasets (IID) with Llama-
3.1-8B, while leaving the remaining results on other datasets and non-IID settings in Appendix D}

Results on Natural Instructions. Table[I|reports averaged Rouge-L scores of the fine-tuned global
model under both IID and non-IID settings (the latter simulated by assigning 20 out of 613 distinct
tasks per client). The FedIT results under homogeneous settings show that a larger LoRA rank leads
to better fine-tuning performance, improving over the untuned model by +33.06% under the 11D
setting and by +27.46% under the non-IID setting on average. Fed-PLoRA consistently outperforms
heterogeneous baselines. In the IID setting, it achieves average Rouge-L gains of +31.14%, +5.89%,
and +6.89% over FLoRA, FlexLoRA, and HETLoRA, respectively, highlighting the effectiveness
in eliminating initialization noise and reducing aggregation noise. We also observe that Fed-PLoRA
slightly outperforms the homogeneous FedIT with rank R/2 by +0.19%. Similar trends appear on
other datasets, and in some cases Fed-PLoRA even surpasses FedIT with rank R. These effects
are often more pronounced under non-IID settings. This suggests that Fed-PLoRA’s parallel and
randomized module updates ensure that all R global PLoRA modules are updated by different clients
across rounds. As a result, rank-wise updates stay aligned across clients, allowing each one-rank
module to gradually learn consistent features even under data heterogeneity, consistent with our
observations in Figure[2]

Results on GLUE. As shown in Table [2| our method, Fed-PLoRA, demonstrates substantial im-
provements over these baselines on IID GLUE benchmark. Fed-PLoRA improves untuned model
by +38.62% on average. Compared to FLoRA, Fed-PLoRA achieves average improvements of
+63.46% on CoLA and +42.48% on MRPC. This significant margin shows the detrimental impact
of FLoRA’s random initialization, which incurs significant perturbation to the local training at every
round. Compared to FlexLoRA, Fed-PLoRA achieves a notable average improvement of +4.47%
on the SST-2 dataset. This suggests that while FlexLoRA aims to provide representative low-rank
matrices with SVD, it can still suffer from significant information loss that leads to initialization

Under review as a conference paper at ICLR 2026

Method

FPB

FIQA

TFNS

‘ Avg

Untuned Model

=) £+0.42
90.577 55

29.33+9-51

) £0.28
/19'87—(036

10 19+0.39
| 40.12%03

28.947739
2093412

0.45
64.1175733

0.44
63.7170's3

£9 10+0-48
52.192779

52.1170-32

FedIT (Rank=R) | 63.537033

Homogeneous 014

FedIT (Rank=R/2) | 62.70*0 14

FLoRA 52.3370 0

Heterogeneous FlexLoRA 62.791054
R=38 :

Avg Rank=4 HETLoRA 60.06719-58

Fed-PLoRA 63.947115

3142744
317675758
32.0112:52
31687352

5053103
62.6011°9%5
60.09705%
64.197 528

0.32
44.7617 53
52.3810:29
50.7210:92

+1.11
53.277 Al

Table 3: Comparison of Fed-PLoRA with baselines on financial datasets.

and aggregation noise, particularly when some clients

are constrained to very small LoRA ranks.

Fed-PLoRA also outperforms HETLoRA by +9.72% on QQP and +5.42% on RTE. This advantage
can be attributed to the large initialization and aggregation noises in HETLoRA from zero-padding
and truncation, which Fed-PLoRA is designed to mitigate more effectively. Note that FlexLoRA
outperforms FedIT with rank R on QNLI, likely because this relatively simple binary QA task can
be well captured using a low rank, making SVD-based aggregation particularly effective.

Results on Financial Datasets. As shown in Table

Fed-PLoRA achieves average gains of

+13.15% over untuned model, +8.51% over FLoRA, +0.89% over FlexLoRA, and +2.55% over
HETLoRA. Additionally, both Fed-PLoRA and FlexLoRA here outperforms the homogeneous
FedIT baselines. As we discussed before, Fed-PLoRA achieves this by maintaining rank-wise align-
ment of local module updates across clients. FlexLoRA benefits from its SVD-based initialization,
which aligns low-rank modules with the most informative global directions. When the task is inher-
ently low-rank, this targeted representation may outperform homogeneous FedIT, which treats all

directions equally.
4.2 ADDITIONAL DISCUSSIONS

Adaptability of the PLoRA to Homogeneous Settings and LoRA Variants.

Theoretically,

PLoRA achieves the same adaptation effect and parameter efficiency as standard multi-rank LoRA
(see Section[3.2) and can be extended to other LoRA variants. We adapt it to rsLoRA [Kalajdzievski
(2023), forming Fed-PrsLoRA, and compare with FedIT and another homogeneous method

FFA-LoRA |Sun et al.|(2024)) (which only shares B ma-
trices). We evaluate on IID CoLA dataset, the hard-
est GLUE task, under homogeneous settings with dif-
ferent ranks. From Figure [3] we observe that Fed-
PrsLoRA consistently outperforms Fed-PLoRA, lever-
aging rsLoRA’s improvements over LoRA. Both meth-
ods also achieve substantial gains over FFA-LoRA
(e.g., +10.63% and +10.89% at rank 16) and in some
cases surpass FedIT. This advantage becomes more pro-
nounced as the rank decreases, underscoring the effec-
tiveness of PLoRA’s parallelization in resource-limited
settings.

Effectiveness of Select-N-Fold. We also evaluate other
strategies for selecting trainable one-rank PLoRA mod-
ules in Fed-PLoRA on IID CoLA dataset. We consider:
Weight Norm, which picks modules with the largest
weight norms; Fixed, which always selects the first r;
modules; and Select-N-Drop, which randomly selects r;
As
shown in Figure [both random strategies (Select-N- . r :

modules like Select-N-Fold but discards the rest.

65| CZ1 FFALORA EX3 Fed-PLORA
3 FedIT =9 Fed-PrsLoRA
600 598

603

<]
X4

S5
XRRA

%
2

K&,
RLKR

-
%
02

QR
2

%
038

5
&

%

"
%o

51.0

,,,
9.
R

55

X

X

X
%
R

CoLA (Matthews Corr.)

0o
&

5
o

X

,,4
%
2R

D 9 9. 9.
XX
XX

<
25
<5
2

%%

S
5
e

0%
15

X

Rank = 16

~N
o
v
El
=~
1
@

ank =

Figure 3: Performance of PLoRA and
Fed-PrsLoRA in homogeneous settings.

Z Weight Norm
X3 Fixed

X3 Select-N-Drop
Select-N-Fold

o
<}

57.50

o
@

o
&

53.91

¥

o
4

51.04

CoLA (Matthews Corr.)

@
3

»
&

Drop and Select-N-Fold) outperform the deterministic

ones, since randomness ensures that all global PLoRA
modules are eventually updated. Select-N-Fold achieves

Figure 4: Select-N-Fold vs. other selec-
tion methods.

the highest performance by additionally reusing the latest unselected modules during local training.

Under review as a conference paper at ICLR 2026

Communication and Computational Efficiency. Figure [5| shows the accuracy of four heteroge-
neous methods on the IID QQP dataset with respect to communication (uplink and downlink) cost
and computation (wall-clock training time) cost. Overall, Fed-PLoRA achieves higher communica-
tion efficiency although it incurs additional R — r; downlink cost compared to others. Both Fed-
PLoRA and HETLoRA achieve good computational efficiency as they are lightweight. FlexLoRA
incurs substantial computational overhead due to the use of SVD, nearly doubling the training time.
A detailed overhead analysis is given in Appendix Section

5 RELATED WORK

LoRA-based FFT has recently emerged as a popular paradigm for adapting LLMs
while preserving data privacy Zhang et al.| (2023); [Babakniya et al| (2023); [Sun et al.
(2024). Early approaches such as FedIT [Zhang et al| (2023) and FFA-LoRA [Sun
et al| (2024) combine LoRA with FedAvg or modify update sharing to mitigate aggre-
gation noise, but they assume homogeneous client resources. Other work like FedSA-
LoRA |Guo et al.| (2024) explores selective aggregation,
To address resource heterogeneity, several methods al-

low clients to fine-tune with different LoRA ranks.

0.8

[a]

HETLORA [Cho et al] (2024) aggregates heteroge- S oq | [peseerss 0000000
neous updates through zero-padding and truncation, e |t~
FLoRA [Wang et al. (2024) stacks full-weight updates 3 o6+ FLoRA
before reinitialization, and FlexLoRA [Bai et al| 2024) < : i
applies SVD-based aggregation with truncation. While 051 — ours
effective to some extent, these approaches introduce 0 50 100 150 200 250 300
substantial initialization or aggregation noise, degrading Communication Cost (MB)

global performance. FLoRA
== = FlexLoRA
= HETLoORA

— OUrS

0.8
The use of multiple parallel LoORA modules has been

explored, for enhancing model capacity in central-
ized training, e.g., Capaboost [Haobo et al.| (2024) and
MELoRA [Ren et al.| (2024)) rather than addressing the
unique challenges of federated settings. In contrast, our :
work designs PLoRA as a mechanism to mitigate initial- 0.51
ization and aggregation noise under heterogeneous FFT. 00 25 50 75 100 135 150
Training Time (Hours)
Figure 5: Training efficiency of Fed-
PLoRA.

0.7 4

Accuracy (IID)

0.6~ Wty

Finally, other efficiency-oriented techniques such as
quantization Frantar et al| (2022); [Lin et al.| (2024),
zeroth-order optimization |Xu et al.| (2024); [Zhang et al.
(2024), and system-level methods like activation checkpointing |Chen et al.[(2016) provide comple-
mentary directions for resource-efficient training. These are orthogonal to our design and could be
combined with Fed-PLoRA in future work. Due to the limited space, we provide a comprehensive
literature review in Appendix Section|[B]

6 CONCLUSION

In this paper, we introduced Fed-PLoRA, a novel heterogeneous FFT framework designed to tackle
the fundamental challenges of initialization and aggregation noise in LoRA-based fine-tuning.
By leveraging PLoRA’s parallel one-rank modules together with the Select-N-Fold strategy, Fed-
PLoRA aligns client updates more effectively and preserves consistency under resource heterogene-
ity. We conducted a unified analysis of initialization and aggregation noise of our method, comparing
with state-of-the-art heterogeneous LoRA-based FFT methods. Through extensive experiments on
multiple tasks, we justified the effectiveness of PLoRA and Select-N-Fold and showed that Fed-
PLoRA consistently outperforms existing state-of-the-art methods in both accuracy and efficiency.
PLoRA’s parallelization design opens new opportunities for integration with other LoRA-like meth-
ods, potentially extending its benefits beyond the current framework. In the future, we will work on
further reducing the noise that arises during the aggregation of low-rank adaptations and investigat-
ing how parallelization can be leveraged to better align model updates under data heterogeneity.

10

Under review as a conference paper at ICLR 2026

REFERENCES

Anna Arias-Duart, Pablo Agustin Martin-Torres, Daniel Hinjos, Pablo Bernabeu-Perez, Lucia Urce-
lay Ganzabal, Marta Gonzalez Mallo, Ashwin Kumar Gururajan, Enrique Lopez-Cuena, Sergio
Alvarez-Napagao, and Dario Garcia-Gasulla. Automatic evaluation of healthcare 1lms beyond
question-answering. arXiv preprint arXiv:2502.06666, 2025.

Sara Babakniya, Ahmed Roushdy Elkordy, Yahya H Ezzeldin, et al. Slora: Federated parameter
efficient fine-tuning of language models. In International Workshop in Conjunction with NeurIPS
2023, 2023.

Jiamu Bai, Daoyuan Chen, Bingchen Qian, Liuyi Yao, and Yaliang Li. Federated fine-tuning of large
language models under heterogeneous tasks and client resources. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024.

Daoyuan Chen, Yilun Huang, Zhijian Ma, Hesen Chen, Xuchen Pan, Ce Ge, Dawei Gao, Yuexiang
Xie, Zhaoyang Liu, Jinyang Gao, et al. Data-juicer: A one-stop data processing system for large
language models. In Companion of the 2024 International Conference on Management of Data,
pp- 120-134, 2024.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
memory cost. arXiv preprint arXiv:1604.06174, 2016.

Yae Jee Cho, Luyang Liu, Zheng Xu, Aldi Fahrezi, and Gauri Joshi. Heterogeneous lora for fed-
erated fine-tuning of on-device foundation models. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing, pp. 12903—-12913, 2024.

Jungwook Choi, Zhuo Wang, Swagath Venkataramani, Pierce I-Jen Chuang, Vijayalakshmi Srini-
vasan, and Kailash Gopalakrishnan. Pact: Parameterized clipping activation for quantized neural
networks. arXiv preprint arXiv:1805.06085, 2018.

Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie, Jun Wan, Sam Shah, Ali Ghodsi, Patrick
Wendell, Matei Zaharia, and Reynold Xin. Free dolly: Introducing the world’s first truly open
instruction-tuned llm. Company Blog of Databricks, 2023.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in neural information processing systems, 36:10088—10115, 2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, et al. Bert: Pre-training of deep bidirectional trans-
formers for language understanding. In Proceedings of the 2019 Conference of the NAACL:
Human Language Technologies, Volume 1, 2019.

FinGPT. fingpt-sentiment-train. https://huggingface.co/datasets/FinGPT/
fingpt-sentiment-train, 2023.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Yan Gao, Massimo Roberto Scamarcia, Javier Fernandez-Marques, Mohammad Naseri, Chong Shen
Ng, Dimitris Stripelis, Zexi Li, Tao Shen, Jiamu Bai, Daoyuan Chen, et al. Flowertune: A
cross-domain benchmark for federated fine-tuning of large language models. arXiv preprint
arXiv:2506.02961, 2025.

Pengxin Guo, Shuang Zeng, Yanran Wang, Huijie Fan, Feifei Wang, and Liangqiong Qu. Selec-
tive aggregation for low-rank adaptation in federated learning. arXiv preprint arXiv:2410.01463,
2024.

Tianyu Han, Lisa C Adams, Jens-Michalis Papaioannou, Paul Grundmann, Tom Oberhauser,
Alexander Loser, Daniel Truhn, and Keno K Bressem. Medalpaca—an open-source collection
of medical conversational ai models and training data. arXiv preprint arXiv:2304.08247, 2023.

SONG Haobo, Hao Zhao, Soumajit Majumder, and Tao Lin. Increasing model capacity for free: A
simple strategy for parameter efficient fine-tuning. In The Twelfth International Conference on
Learning Representations, 2024.

11

https://huggingface.co/datasets/FinGPT/fingpt-sentiment-train
https://huggingface.co/datasets/FinGPT/fingpt-sentiment-train

Under review as a conference paper at ICLR 2026

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS,
2021.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, et al. Lora: Low-rank adaptation of large language
models. In ICLR, 2021.

Di Jin, Eileen Pan, Nassim Oufattole, Wei-Hung Weng, Hanyi Fang, and Peter Szolovits. What dis-
ease does this patient have? a large-scale open domain question answering dataset from medical
exams. Applied Sciences, 11(14):6421, 2021.

Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William W Cohen, and Xinghua Lu. Pubmedqa: A
dataset for biomedical research question answering. arXiv preprint arXiv:1909.06146, 2019.

Damjan Kalajdzievski. A rank stabilization scaling factor for fine-tuning with lora. arXiv preprint
arXiv:2312.03732, 2023.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization
for on-device llm compression and acceleration. Proceedings of machine learning and systems,
6:87-100, 2024.

Macedo Maia, Siegfried Handschuh, André Freitas, Brian Davis, Ross McDermott, Manel Zarrouk,
and Alexandra Balahur. Www’ 18 open challenge: financial opinion mining and question answer-
ing. In Companion proceedings of the the web conference 2018, pp. 1941-1942, 2018.

Pekka Malo, Ankur Sinha, Pekka Korhonen, Jyrki Wallenius, and Pyry Takala. Good debt or bad
debt: Detecting semantic orientations in economic texts. Journal of the Association for Informa-
tion Science and Technology, 65(4):782-796, 2014.

Brendan McMahan, Eider Moore, Daniel Ramage, et al. Communication-efficient learning of deep
networks from decentralized data. In Artificial intelligence and statistics. PMLR, 2017.

Meta Al. Introducing llama 3.1: Our most capable models to date, July 2024. URL https:
//ai.meta.com/blog/meta-llama-3-1/.

Mistral Al. Mistral-7b-v0.3. https://huggingface.co/mistralai/Mistral-7B-v0.
3}, 2023.

Markus Nagel, Marios Fournarakis, Yelysei Bondarenko, and Tijmen Blankevoort. Overcoming
oscillations in quantization-aware training. In International Conference on Machine Learning,
pp. 16318-16330. PMLR, 2022.

Neural Magic. Twitter financial news sentiment dataset. https://huggingface.co/
datasets/zeroshot/twitter—-financial-news—-sentiment, 2022.

Ankit Pal, Logesh Kumar Umapathi, and Malaikannan Sankarasubbu. Medmcqa: A large-scale
multi-subject multi-choice dataset for medical domain question answering. In Conference on
health, inference, and learning, pp. 248-260. PMLR, 2022.

Pengjie Ren, Chengshun Shi, Shiguang Wu, Mengqi Zhang, Zhaochun Ren, Maarten Rijke, Zhumin
Chen, and Jiahuan Pei. Melora: Mini-ensemble low-rank adapters for parameter-efficient fine-
tuning. In Proceedings of the 62nd Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pp. 3052-3064, 2024.

Youbang Sun, Zitao Li, Yaliang Li, and Bolin Ding. Improving l1oRA in privacy-preserving federated
learning. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=NLPzL6HWN1.

Qwen Team. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

12

https://ai.meta.com/blog/meta-llama-3-1/
https://ai.meta.com/blog/meta-llama-3-1/
https://huggingface.co/mistralai/Mistral-7B-v0.3
https://huggingface.co/mistralai/Mistral-7B-v0.3
https://huggingface.co/datasets/zeroshot/twitter-financial-news-sentiment
https://huggingface.co/datasets/zeroshot/twitter-financial-news-sentiment
https://openreview.net/forum?id=NLPzL6HWNl
https://arxiv.org/abs/2505.09388

Under review as a conference paper at ICLR 2026

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amirreza Mirzaei,
Atharva Naik, Arjun Ashok, Arut Selvan Dhanasekaran, Anjana Arunkumar, David Stap, et al.
Super-naturalinstructions: Generalization via declarative instructions on 1600+ nlp tasks. In Pro-
ceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pp.
5085-5109, 2022.

Ziyao Wang, Zheyu Shen, Yexiao He, Guoheng Sun, Hongyi Wang, Lingjuan Lyu, and Ang Li.
Flora: Federated fine-tuning large language models with heterogeneous low-rank adaptations. In
The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024.

Hongda Wu and Ping Wang. Node selection toward faster convergence for federated learning on
non-iid data. IEEE Transactions on Network Science and Engineering, 9(5):3099-3111, 2022.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
conference on machine learning, pp. 38087-38099. PMLR, 2023.

Mengwei Xu, Dongqi Cai, Yaozong Wu, Xiang Li, and Shangguang Wang. Fwdllm: Efficient
federated finetuning of large language models with perturbed inferences. In USENIX ATC, 2024.

Rui Ye, Wenhao Wang, Jingyi Chai, Dihan Li, Zexi Li, Yinda Xu, Yaxin Du, Yanfeng Wang, and
Siheng Chen. Openfedllm: Training large language models on decentralized private data via
federated learning. In Proceedings of the 30th ACM SIGKDD conference on knowledge discovery
and data mining, pp. 6137-6147, 2024.

Jianyi Zhang, Saeed Vahidian, Martin Kuo, et al. Towards building the federatedgpt: Federated
instruction tuning. In International Workshop in Conjunction with NeurIPS 2023, 2023.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
language models. arXiv preprint arXiv:2205.01068, 2022a.

Yihua Zhang, Pingzhi Li, Junyuan Hong, Jiaxiang Li, Yimeng Zhang, Wenqing Zheng, Pin-Yu
Chen, Jason D Lee, Wotao Yin, Mingyi Hong, et al. Revisiting zeroth-order optimization for
memory-efficient llm fine-tuning: A benchmark. arXiv preprint arXiv:2402.11592, 2024.

Yuxin Zhang, Mingbao Lin, Zhihang Lin, Yiting Luo, Ke Li, Fei Chao, Yongjian Wu, and Ron-
grong Ji. Learning best combination for efficient n: M sparsity. Advances in Neural Information
Processing Systems, 35:941-953, 2022b.

Aojun Zhou, Yukun Ma, Junnan Zhu, Jianbo Liu, Zhijie Zhang, Kun Yuan, Wenxiu Sun, and Hong-
sheng Li. Learning n: m fine-grained structured sparse neural networks from scratch. ICLR,
2021.

Shenglong Zhou et al. Exact penalty method for federated learning. arXiv preprint
arXiv:2208.11231, 2022.

13

Under review as a conference paper at ICLR 2026

APPENDIX

This appendix presents additional discussions and experimental details to support the main text. The
content is organized as follows:

* Appendix Section[A} A code snippet illustrating how our method can be easily integrated
into existing frameworks, as well as pseudo-code of Fed-PLoRA.

* Appendix Section B} Extended literature review on related work.
* Appendix Section[C} Detailed description of experimental settings.

— Subsection[C.T} Dataset and model descriptions.

— Subsection [C.2} Settings for the main experiments, including FL configuration and
infrastructure.

— Subsection[C.3} Settings for the experiments in Figure[7 and Figure[2]

* Appendix Section|[D} Additional experimental results.

— Subsection [D.T} Results on the GLUE benchmark under the non-IID setting.
Subsection [D.2} Results on the Dolly-15K dataset under both IID and non-IID set-
tings.
Subsection[D.3} Results on the Medical Question Answering datasets.
Subsection[D.4} Results on the MATH reasoning datasets.
Subsection[D.3F Ablation studies.
* Subsection [D.3.1} Effectiveness of different selection methods for PLORA mod-
ules.
Subsection[D.5.2} Empirical observations on initialization and aggregation noise.
s Subsection[D.5.3} Impact of the number of clients, heterogeneity ratio, and local
rank per client.
* Subsection[D.3.4 Effects of different PLORA ranks.
 Subsection [D.5.5} Effects of Dropout.
* Subsection Additional visualizations of cosine similarity across PLoRA
modules.

* Appendix Section [E} Analysis of initialization and aggregation noise in existing methods.
— Subsection[E.J} Derivations for FLoRA.
— Subsection[E.2t Derivations for FlexLoRA.
— Subsection[E3t Derivations for HETLoRA.
— Subsection[E4} Detailed derivations of the aggregation noise for Fed-PLoRA.

* Appendix Section[F} Additional Studis.

— Subsection[FI} Demonstration of the efficiency of the rank-based method on resource-
constrained devices.

- Subsection[F2} Theoretical and numerical analysis of the resource overhead for exist-
ing methods and Fed-PLoRA.

USE OF LLM STATEMENT

For the preparation of this manuscript, Al assistants are utilized to aid in checking grammar, spelling,
and punctuation.

A CODE SNIPPET AND PSEUDO-CODE

W =

tation

74 re J +] 1+al o] o—Rank T.ARA 1 DT
one line of code to apply Parallel One—-Rank LoRA 1n Pyl

orch.

model = AutoModelForCausalLM.from pretrained (model_name)

14

Under review as a conference paper at ICLR 2026

4 - config = LoraConfig(r=8,:--)

5 + config = PLoraConfig (r=1, NumModule=8,:--)
6 get_peft_model (model, config)

We implement Fed-PLoRA using the Huggingface-style LoRA initialization API (as shown above),
making it easy to use by replacing just a single line in the original code.

To better illustrate the proposed method, we present the pseudo-code of Fed-PLoRA as follows.

Algorithm 1 Fed-PLoRA

Require: Number of communication rounds 7, global rank R, local ranks {'r'i},,-e[,,,], pre-trained
backbone @Y, initial global PLORA parameters 6°
1: Server sends ®Y to all clients
2: fort =1to T do
3: Server samples a set of clients S C [v]
4: Server sends global PLoRA parameters 8! to i € S*
5. for each client i € St in parallel do
6.
7
8

Randomly sample a subset ! of size r; from index set [R]

Initialize local trainable PLoRA modules: 8" «+ {Aal, ijf)l biek:

Fold unselected modules into the frozen target weights: W « W° + D igK BU)] AZB]
to obtain the local frozen backbone ©° '

9: Obtain new local PLoRA parameters: 8! < LocalUpdate(0!~', D;, ©F)

10: end for

11: Rank-wise aggregation of PLoORA modules: 0" <+ Agg({0!};cst, {K!}icst)

12: Update global model: ®/*' « {@°, 6}

13: end for

14: return 7 = {©°,07}

B COMPREHENSIVE LITERATURE REVIEWS

Federated LoRA-based Fine-tuning. The application of FL to LoRA-based fine-tuning of LLMs
has become a prominent paradigm, enabling multiple clients to collaboratively adapt models without
sharing their raw data[Zhang et al.| (2023)); [Babakniya et al| (2023)); Sun et al.| (2024). Several prior
works have investigated this combination: FedIT [Zhang et al.| (2023) introduces a naive federated
fine-tuning method with LoRA and FedAvg, serving as an effective benchmark for further research.
FFA-LoRA (2024) introduces a strategy of freezing the LoORA A matrix during local
training to help mitigate aggregation noise at the server. Furthermore, FedSA-LoRA
explores selective aggregation for a personalized FL system, which is designed to only share
the A matrix with the server for aggregation, due to its specific role in learning general knowledge.
However, these methods assume homogeneous client resources, which often do not align with the
varied resources present in practical FL systems.

Federated Fine-Tuning with Heterogeneous LoRA Ranks. Resource heterogeneity remains a
significant challenge in federated fine-tuning. To address this, HETLoRA allows
clients to train with different LoRA ranks based on their capacity. For aggregation, local model
modules from smaller ranks are zero-padded, and the resulting global LoORA module is subsequently
truncated for client LoRA module initialization. However, this process introduces both initialization
and aggregation noise due to the limited LoRA rank. FLoRA [Wang et al.|(2024) employs a stacking-
based aggregation method, which is designed to accurately aggregate LoRA module updates from
clients with heterogeneous ranks in a full-weight space. While this aims for optimal aggregation,
FLoRA then applies this update to the client’s target module, and the trainable LoRA modules for
the next round are typically initialized from scratch, thereby incurring significant initialization noise.
FlexLoRA [Bai et al.[(2024) utilizes SVD during aggregation, and then initializes LoORA modules for

15

Under review as a conference paper at ICLR 2026

clients with varying ranks by truncation. These processes lead to both aggregation and initialization
noise.

Parallel Low-Rank Adaptation and Sparse LoRA Fine-Tuning. The concept of employing mul-
tiple parallel LoRA modules has been investigated primarily for enhancing model capacity. For in-
stance, Capaboost |[Haobo et al.|(2024) applies different random masks to a single large rank LoRA
module during training, effectively simulating an ensemble of parallel LoRA modules to increase
model capacity without incurring additional parameter costs. MELoRA (2024) adopts
a group of mini LoRA modules to obtain sparse A and B matrices. They claim that each LoRA
module is designed to capture different features. These approaches leverage the parallelism of the
LoRA module for capacity scaling. In contrast, our framework introduces parallel one-rank LoRA
modules specifically as a way to improve initialization and aggregation within the FL system.

Another related line of work [Zhou et al.| (2021)); [Zhang et al.| (2022b) studies sparse LoRA fine-
tuning, where only a subset of LoRA rows is updated while the remaining rows are simply frozen.
In principle, such sparsification yields similar training dynamics on the active rows, since the inac-
tive rows receive zero gradients. However, this design has several system-level limitations. First,
the frozen rows must still be stored in GPU memory and participate in the forward pass, which in-
creases activation storage and peak memory consumption compared with physically removing these
rows. Second, the resulting sparsity pattern is typically unstructured: it does not match the N : M
structured sparsity patterns required by modern accelerators (for example, the 2:4 pattern used by
NVIDIA A100 sparse tensor cores (2021)). As a result, simply freezing R — r; out of
R rows cannot exploit hardware sparsity support or lead to real speedups. In contrast, Fed-PLoRA
folds unused one-rank modules into the backbone weights, preserving the same effective training
behavior on active ranks while avoiding extra computation and memory overhead, which makes it
more suitable for large-scale federated deployment.

Other Resource-Efficient Fine-Tuning Pathways. Quantization is a widely studied technique for
improving inference efficiency by reducing the precision of model weights and activations. Common
methods include post-training quantization (PTQ), quantization-aware training (QAT), and activa-
tion quantization. PTQ |Frantar et al. (2022); Lin et al. (2024); Xiao et al. (2023) applies quan-
tization to a pretrained model without modifying its training process. It is simple and efficient
but may lead to noticeable accuracy degradation, especially for low-bit quantization or in sensitive
tasks. QAT |Nagel et al.| (2022) is particularly focused on preserving inference-time accuracy by
simulating low-precision operations (e.g., 8-bit or 4-bit) during training through the insertion of
fake quantization nodes in the computation graph, allowing the model to adapt to quantization ef-
fects. However, QAT typically targets deployment-time efficiency and does not substantially reduce
training-time memory or compute costs. Activation quantization focuses on re-
ducing the bit-width of intermediate activations in addition to weights. While this offers additional
memory savings during training, it also introduces additional quantization noise and quantization
and de-quantization costs with extra computation. This can make training more unstable and often
requires careful calibration to preserve performance.

Zeroth-order optimization reduces memory usage by avoiding explicit gradient
computation. Since it does not require backpropagation, it eliminates the need to store intermediate
activations during the forward pass. However, this benefit comes with notable trade-offs: zeroth-
order methods typically require many more function evaluations (i.e., higher query complexity) to
estimate gradients indirectly, and the resulting gradient estimates tend to be noisier. These fac-
tors can significantly slow down convergence, particularly for large, high-dimensional models like
LLMs, where accurate and efficient gradient information is crucial for effective training|Zhang et al.|
(2024).

In addition to algorithmic approaches, several system-level engineering strategies have been devel-
oped to address the memory and compute bottlenecks of large model fine-tuning. These methods
aim to optimize training pipelines without modifying model architectures or learning objectives.
For example, activation checkpointing |Chen et al.| (2016) reduces GPU memory usage by storing
only a subset of activations during the forward pass and recomputing the rest during backpropaga-
tion. While it enables training deeper models under tight memory budgets, the trade-off is increased
computational overhead due to repeated forward computations. This may lengthen training time
significantly, especially in models with expensive forward passes.

16

Under review as a conference paper at ICLR 2026

All the above techniques are orthogonal and potentially complementary to our approach and could
be integrated in specific scenarios. However, in the context of our work, these comparisons are
less directly relevant to serve as comparisons. We will consider exploring such combinations in our
future work.

C EXPERIMENTAL SETTINGS

C.1 DATASETS AND MODELS

General Language Understanding Task. For evaluating general language understanding profi-
ciency, we follow Hao et al. Haobo et al.| (2024) that utilize six well-established datasets from the
General Language Understanding Evaluation (GLUE) benchmark, as detailed by Wang et al. Wang
et al.| (2018). Specifically, the tasks included the Corpus of Linguistic Acceptability (CoLA), the
Stanford Sentiment Treebank (SST-2), the Microsoft Research Paraphrase Corpus (MRPC), the
Quora Question Pairs (QQP) dataset, Question NLI (QNLI), and the Recognizing Textual Entail-
ment (RTE) dataset. Across all these GLUE tasks, the BERT-base model, introduced by Devlin et
al.Devlin et al.|(2019)), is employed as the foundational pre-trained language model.

General Instruction Following Task. To assess the framework’s performance on tasks requiring
general instruction following, we benchmark on two prominent datasets, following the approach of
Bai et al. |Bai et al.| (2024)). The first dataset is Natural Instructions (NI), a large-scale collection of
diverse NLP tasks structured as instructions, developed by Wang et al. [Wang et al.| (2022)). For this
dataset, we utilized a Llama-1B model, with weights sourced from the Data-Juicer project by Chen
et al. |Chen et al.|(2024). The second dataset is Dolly-15K, an open-source dataset of instruction-
followed records created by Databricks|Conover et al.| (2023)), for which the OPT-1.3B model from
Zhang et al.|Zhang et al.| (2022a)) is employed.

Domain-Specific Tasks. We further extend our evaluation to domain-specific applications, focus-
ing on the challenging medical and financial domains. Medical Domain: Adhering to the exper-
imental design outlined by Ye et al. |Ye et al.| (2024) and Flower |Gao et al.| (2025)), we utilize the
MedAlpaca dataset, curated by Han et al. Han et al.| (2023), for the training phase of our medical
domain tasks. The framework’s effectiveness is then evaluated on four widely recognized medi-
cal question answering benchmarks: PubMedQA by Jin et al. Jin et al.| (2019), MedMCQA by Pal
et al. [Pal et al.| (2022), MedQA (USMLE-style questions) also by Jin et al. Jin et al.| (2021), and
CareQA |Arias-Duart et al.| (2025)). For these demanding medical tasks, we employ the Mistral-7B-
v0.3 model MistralAll (2023)), leveraging QLoRA for 4-bit precision fine-tuning, as proposed by
Dettmers et al. |Dettmers et al.| (2023). Financial Domain: For the financial domain, training is
conducted on a financial sentiment analysis dataset derived from the FinGPT project by Yang et
al. [FinGPT]| (2023). Evaluation is performed on three established financial NLP benchmarks: the
Financial PhraseBank (FPB) by Malo et al. Malo et al.| (2014]), the Financial Sentiment Analysis on
News Headlines (FIQA) dataset by Maia et al. [Maia et al.| (2018)), and the Twitter Financial News
Sentiment (TFNS) dataset Neural Magic| (2022). These financial experiments are carried out using
the Llama-3.1-8B model from Meta|Meta Al|(2024), also fine-tuned with QLoRA in 4-bit precision.

Reasoning Tasks. We additionally evaluate our framework on mathematical reasoning, using the
MATH benchmark introduced by Hendrycks et al. [Hendrycks et al.| (2021)). This dataset contains
12,500 competition-style math problems, each tagged by subject (algebra, counting and probabil-
ity, geometry, number theory, etc.) and difficulty level from 1 to 5. Unlike standard word-problem
benchmarks, MATH emphasizes multi-step deduction and symbolic manipulation rather than direct
pattern matching, making it a strong stress test for federated parameter-efficient tuning. Every prob-
lem includes a full step-by-step solution, enabling training signals beyond final answer supervision.
For these math tasks, we employ the Qwen3-4B-Instruct-2507 model, leveraging QLoRA for 4-bit
precision fine-tuning, similar to the previous model settings.

Data Heterogeneity. To evaluate the performance under diverse data distributions, we specifically
assess task heterogeneity using the Natural Instructions, Dolly-15K, and GLUE datasets, as they
naturally consist of varied instruction-based or classification-based tasks. We apply both pathologi-
cal and Dirichlet partitioning methods: the pathological method skews the number of tasks or label
categories available to each client, while the Dirichlet method primarily controls the number of sam-
ples per client. For Natural Instructions, we use an extreme case where each client is assigned 20

17

Under review as a conference paper at ICLR 2026

out of 612 tasks; for Dolly-15K, each client receives data from only 1 out of 7 tasks. In the GLUE
setup, we apply Dirichlet partitioning with a = 0.01, resulting in a highly imbalanced distribution
of samples across clients. For all other datasets, we adopt IID partitioning.

C.2 MAIN RESULT SETTINGS

Table 4: FL settings for all experiments.

Dataset/Configuration Model LoRA Client Training Round Learning Rate batch size
CoLA BERT-base rank=1/4/16, lora_alpha=1/4/16, target_modules=[“query™, * 100 (10%) 200 0.001 16
SST-2 BERT-base rank=1/4/16, lora_alpha=1/4/16, target_modules=["query”, “va 100 (10%) 45 0.001 16
MRPC BERT-base rank=1/4/16, lora_alpha=1/4/16, target_modules=[“query”, “‘va 100 (10%) 150 0.001 16
QQr BERT-base rank=1/4/16, lora_alpha=1/4/16, target_modules=["“query”, * 100 (10%) 150 0.001 16
QNLI BERT-base rank=1/4/16, lora_alpha=1/4/16, target_modules=["“query”, “‘value” 100 (10%) 50 0.001 16
RTE BERT-base rank=1/4/16, lora_alpha=1/4/16, target_modules=[“query™, * 100 (10%) 150 0.001 16
Natural Instruction Llama (Data-Juicer-1B) ~ rank=1/8/16, lora_alpha=1/8/16, target_modules=[*q_proj”, *“v_ 50 (10%) 25 0.00001 4
Dolly-15K OPT-1.3B rank=1/8/32, lora_alpha=1/8/32, target modules=| 50 (10%) 25 0.00001 4
Medical Mistral-7B-v0.3 rank=1/2/8, lora_alpha=1/2/8, target_module: 50 (10%) 50 0.00005 4
Finance Llama-3.1-8B rank=1/2/8, lora_alpha=1/2/8, target_modules=[50 (10%) 15 0.00005 4
MATH Qwen3-4B-Instruct-2507 rank=1/2/8, lora_alpha=1/2/8, target_modules=[“q_proj”, “v_proj” 50 (10%) 15 0.00005 4

FL Settings. As shown in Table 4] the FL configurations for all experiments are comprehensively
detailed in Table E} This table outlines the specific models, LoRA parameters, client setups, and
training hyperparameters employed for each dataset.

For the GLUE benchmark tasks (CoLA, SST-2, MRPC, QQP, QNLI, and RTE), the BERT-base
model is utilized. The heterogeneous ranks are set using R = 16,7, = 4. These experiments
involve 100 clients. Instruction fine-tuning tasks on Natural Instruction and Dolly-15K employed
Llama (Data-Juicer-1B) and OPT-1.3B models, respectively. For Natural Instruction, R = 16 and
rm = 8, while for Dolly-15K, R = 16 and r,,, = 8. These setups use 50 clients. Domain-specific
experiments on Medical and Finance datasets also involve 50 clients. Medical tasks use Mistral-
7B-v0.3, Finance tasks use Llama-3.1-8B, and both have R = 16 and r,, = 2. For mathematical
reasoning, we further evaluate on the MATH dataset using Qwen3-4B-Instruct-2507 under the same
federated client setup. All experiments sample 10% of clients uniformly at random per round.

Across these diverse setups, the number of training rounds was task-specific, varying from 15 to 200,
as detailed in Table [d Learning rates are selected for each task group after evaluating a common
search space of {0.005, 0.001, 0.0005, 0.0001, 0.00005, 0.00001}; specifically, GLUE tasks utilize
a learning rate of 0.001, Natural Instruction and Dolly-15K tasks are trained with 0.00001, and both
Medical, Finance, and MATH experiments employ a learning rate of 0.00005. Batch sizes are also
tailored: 16 for GLUE tasks, 4 for instruction fine-tuning, and 4 for the domain-specific experiments.

Justification heterogeneous rank settings: We empirically evaluate performance across a wide range
of LoRA ranks {1, 2,4, 8, 16, 32, 64 }. For the highest-resource clients, we select the largest rank that
does not lead to overparameterization, following standard practice in FL to ensure a balance between
model capacity and resource capacity. For clients with mid-level resources, we adopt middle ranks
so that the average rank does not excced the half of the highest rank, reflecting that majoraty of the
clients have low resources.

Justification for rank settings: In homogeneous settings, we evaluate LoRA ranks {1, 2, 4, 8, 16, 32,
64} to identify the optimal rank. In heterogeneous settings, high-resource clients are assigned this
optimal rank to avoid over-parameterization while maintaining a balance between model capacity
and device constraints. Low-resource clients are fixed at rank 1. Mid-resource clients are assigned
intermediate ranks such that the average rank does not exceed half of the maximum, reflecting the
realistic case where most clients are resource-limited.

We evaluate performance across a broad range of LoRA ranks {1, 2, 4, 8, 16, 32, 64} in homoge-
neous settings and identify the best rank. For high-resource clients in heterogeneous settings, we
assign the best rank that avoids over-parameterization, ensuring a balance between model capacity
and device constraints. For mid-resource clients, we choose intermediate ranks such that the average
rank does not exceed half of the maximum rank, reflecting the realistic scenario where most clients
have limited resources.

Implementation Details. Our framework was implemented using PyTorch version 2.6.0 (built
with CUDA 12.4 support). Key libraries included Hugging Face t ransformers version 4.51.3,

18

Under review as a conference paper at ICLR 2026

datasets version 3.6.0, and peft version 0.9.0 for LoRA and QLoRA functionalities. Exper-
iments were conducted using CUDA 12.4. All experiments were carried out on a server equipped
with an AMD EPYC 7763 64-Core Processor, 1.0 TB of system RAM, and 8§ x NVIDIA RTX
A6000 GPUs. The total GPU hours for running all the experiments are over 5,000.

C.3 OTHER EXPERIMENTAL SETTINGS

The experiments illustrated in Figure [7|are conducted on the QQP, MRPC, and RTE datasets using
a BERT-based model. A key aspect of this setup is the use of a homogeneous LoRA rank across
all clients (i.e., every client uses the same rank). Two distinct homogeneous rank configurations
are evaluated: a "Large Rank’ setup with a uniform rank of 16 per client, and a ’Small Rank’ setup
with a uniform rank of 1 per client. These FL experiments involved a total of 100 clients, with
10% of clients participating in each training round. The training is conducted for a total of 150
rounds. In Figure [2] we report the average cosine similarities calculated for LORA A matrices on
the Query target module of Layer 1. These calculations are based on experiments performed on the
RTE dataset, with a non-IID data distribution achieved by assigning data from only one category to
each client.

D ADDITIONAL EXPERIMENTAL RESULTS
D.1 RESULTS ON NON-IID GLUE DATASET

Table 5: Evaluation results on GLUE datasets under a non-IID setting (Dirichlet o = 0.01).

Method CoLA SST-2 MRPC QQP QNLI RTE Avg
Matthews Corr. Acc. Acc. Acc. Acc. Acc.
Untuned Model ‘ 1.20 49.08 31.61 63.09 49.95 52.70 | 41.27
FedIT (Rank=R) 56.27 90.25 85.29 87.07 87.07 64.62 | 78.28
Homogeneous
FedIT (Rank=R/2) 51.80 90.25 79.31 84.23 88.01 61.42 | 75.67
FLoRA —2.07 88.97 68.38 38.75 4737 47.29 | 48.18
He“;"fel“g"“s FlexLoRA 38.51 90.25 68.39 79.91 70.98 53.79 | 66.97
Avg Rank=7 HETLoRA 40.08 89.97 76.35 8L71 85.96 58.12 | 72.03
Fed-PLoRA 52.33 90.71 79.65 84.79 88.01 61.01 | 76.08

Table [5] presents evaluation results on the GLUE dataset under a non-IID setting, where client data
distributions are skewed using a Dirichlet distribution with = 0.01, representing a highly im-
balanced and extreme case. In this challenging scenario, our method Fed-PLoRA consistently out-
performs all baselines. Compared to FLoRA, Fed-PLoRA yields substantial gains of +54.40% on
CoLA and +11.27% on MRPC, underscoring the limitations of FLoRA’s random initialization and
emphasizing the benefit of a more carefully designed initialization strategy in our method. Compared
to FlexLoRA, Fed-PLoRA achieves a notable improvement of +17.03% on QNLI and +0.46% on
SST-2. Although FlexLoRA leverages SVD to derive representative low-rank matrices, it remains
susceptible to information loss, which can lead to significant initialization and aggregation noise,
especially when some clients operate with much lower ranks than the global configuration and un-
der non-IID cases. When compared to HETLoRA, Fed-PLoRA improves performance by +3.08%
on QQP and +2.89% on RTE. These gains come from Fed-PLoRA’s more effective handling of
initialization and aggregation noise, which HETLoRA introduces through zero-padding and rank
truncation. Furthermore, Fed-PLoRA surpasses FedIT with a fixed rank of 8 by an average of
+0.41%, despite using a lower average rank of 7. This demonstrates the efficiency and adaptability
of our approach that incorporate all resource-constrained clients into training with zero initialization
noise and low aggregation noise.

D.2 RESULTS ON DOLLY-15K DATASET

Table [6] presents the main results on the Dolly-15K dataset. We report Rouge-L scores of the fine-
tuned global model under both IID and non-IID settings, where the non-IID scenario is simulated

19

Under review as a conference paper at ICLR 2026

Table 6: Evaluation results on IID and non-IID Dolly-15K datasets with OPT-1.3B model.

Dolly-15K (Rouge-L)
Method
o D non-IID
Untuned Model \ 40.02

FedIT (Rank=R) | 60.05 59.37

Homogeneous
FedIT (Rank=R/2) | 59.75 59.07
FLoRA 40.01 40.01
Hleterogencous | FlexLoRA 5740 48.82
AVg R_ank= 13 HETLoRA 59.38 58.36
Fed-PLoRA 60.07 59.69

by assigning each client data from only 1 out of 7 distinct tasks. Our method, Fed-PLoRA, con-
sistently outperforms all baseline approaches under both data and resource heterogeneity. Notably,
Fed-PLoRA surpasses FlexLoRA in the non-IID setting by a large margin of +10.87%, highlighting
the critical impact of initialization noise in federated fine-tuning. Moreover, Fed-PLoRA even out-
performs the homogeneous case with a full rank 32, achieving gains of +0.02% and +0.32% under
IID and non-IID conditions, respectively. This suggests that our parallel one-rank LoRA modules
offer greater flexibility than conventional high-rank LoRA, and can potentially lead to better over-
all performance. These results further demonstrate the effectiveness of Fed-PLoRA in mitigating
initialization and aggregation noise via its parallelized design.

D.3 RESULTS ON MEDICAL DATASETS

Table 7: Evaluation results on medical datasets with Mistral-7B-v(.3 model.

Method ‘ PubMedQA MedMcQA MedQA CareQA ‘ Avg
Untuned Model ‘ 55.77 38.43 40.92 41.28 ‘ 44.10
FedIT (Rank=R) 70.60 41.16 46.19 47.35 51.32
Homogeneous
FedIT (Rank=R/2) 68.60 41.19 46.19 46.55 50.63
FLoRA 55.80 40.30 45.70 46.10 46.98
Hete]r% St FlexLoRA 58.40 41.16 46.26 46.26 | 48.02
Avg Rank=3 HETLOoRA 69.80 41.23 46.26 46.10 | 50.85
Fed-PLoRA 70.20 41.50 46.11 46.85 51.16

Table [7) presents the main results (in accuracy) on medical and financial datasets. It is noteworthy
that due to the inherent capabilities of the LLMs employed and the potential domain shift between
the training and test sets, the observed performance gaps among different federated methods remain
relatively small. Fed-PLoRA demonstrates improvements over FLoRA, achieving accuracy gains
of +14.40% on PubMedQA, +1.20% on MedMcQA, +0.75% on CareQA, +12.29% on FPB, and
+13.15% on TENS. However, when compared to FlexLoRA and HETLoRA on the MedQA dataset
and to FLoRA on the FIQA dataset, our method shows slight accuracy drops. This may be attributed
to the nature of these domain-specific instruction fine-tuning tasks with large LLMs requiring only
a small LoRA rank. In such scenarios, the initialization noise in FlexLoRA and HETLoRA can be
relatively small.

D.4 RESULTS ON MATH DATASETS

Table [B] summarizes the performance of various federated fine-tuning methods across seven MATH
sub-categories. The baseline (untuned model) exhibits limited reasoning capability across most cat-
egories, with overall average accuracy remaining below 10%. Under homogeneous settings, FedIT
with full rank (R) yields consistent gains over the R/2 configuration across all sub-tasks, demon-
strating the benefit of maintaining richer update capacity during global aggregation.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 8: Evaluation of Qwen3-4B-A3B-Instruct-2507 on MATH datasets.

Method ‘ Algebra Counting&Prob. Geometry Inter. Algebra Number Theory PreAlgebra PreCalculus ‘ Avg

Untuned | 1238 5.90 3.75 132 574 15.61 457 | 794
Homogeneous FedIT (Rank=R) 42.20 26.79 19.20 13.73 26.11 42.93 10.98 28.38
® FedIT (Rank=R/2) 36.47 22.57 16.70 11.62 21.48 37.08 12.27 24.62
FLoRA 12.72 6.75 4.38 1.88 537 15.04 2.93 7.94

H"*“’/’ﬂ"?‘é“”“ FlexLoRA 38.83 19.62 15.65 9.52 22.03 40.41 10.62 24.88
Ave Rank=4 HETLoRA 2847 1223 11.69 9.85 17.77 24.79 10.07 18.16
Fed-PLoRA 43.80 24.89 18.99 14.17 27.77 42.59 12.82 28.96

Under heterogeneous environments where the average rank is fixed to R = 4, Fed-PLoRA achieves
the strongest overall results, outperforming FLoRA, FlexLoRA, and HETLoRA with significant im-
provements in Algebra, Counting & Probability, and Number Theory, where gains exceed +5-15%
on average. Notably, Fed-PLoRA also maintains competitive accuracy on Geometry and Intermedi-
ate Algebra, indicating enhanced adaptability even under rank-diverse client configurations.

D.5 ABLATION STUDIES

D.5.1 COMPARING SELECT-N-FOLD WITH OTHER STRATEGIES

= Select-N-Fold B == Select-N-Fold o = Select-N-Fold
= Weight Norm - = Weight Norm . - Weight Norm
- ied = Fixed = fixed

. ¥ 8 v §FOEOEE

= Select-N-Fold B = Select-N-Fold o = Select-N-Fold
= Weight Norm o = Weight Norm . - Weight Norm
- Fixed = Fixed = Fixed

EEEEEEEN

= Select-N-Fold . = Select-N-Fold
= Weight Norm . = Weight Norm
= Fixed - fixed

= = Select-N-Fold
= Weight Norm
- ixed

= = Select-N-Fold o == Select-N-Fold - = Select-N-Fold
= Weight Norm e m— Weight Norm . - Weight Norm
- Fixed - Fixed = Fixed

Figure 6: Visualization of rank selection results using different selection strategies.

Here, we provide a visualization of the rank selection results in Figure[6] comparing Select-N-Fold
with the Weight Norm and Fixed methods in Figure] Overall, random strategies yield a more
uniform and unbiased distribution across layers.

D.5.2 EMPIRICAL OBSERVATIONS ON INITIALIZATION AND AGGREGATION NOISE IN SOTA
METHODS

As discussed in Section [3.4] existing federated LoRA-based fine-tuning methods suffer from dif-
ferent levels of initialization and aggregation noise. To isolate these effects, Figure [7] illustrates
optimization trajectories and empirical results. In this setup, we fix the LoRA rank across clients to
remove initialization noise for FlexLoRA and HETLoRA, allowing a clearer focus on their aggre-
gation noise (detailed settings in Appendix Section [C_3).

21

Under review as a conference paper at ICLR 2026

Method/Data

FlexLoRA QQP MRPC RTE
(Small % set (Acc.)
Optimal
/ TZ??RAK. P FLORA 5388973, 4387245} 51021394
‘
.0
K¢ HETLoRA FlexLoRA
/v (LargeRan) (small Ranky B+642583 79.65207 64257388

/ FlexLoRA
exLo
T ><'FL " (Large Ranlq 8694585 86845038 66,0712
(o]
/

(Large Rank) HETLORA 86.86100% 87.58+041 68354024

Figure 7: The intuitive convergence trajectories of existing methods and empirical results on three
datasets in homogeneous settings.

The results show that FLoRA, while free of aggregation noise, struggles due to random initialization,
yielding low accuracies of 53.88%, 43.87%, and 51.02% on QQP, MRPC, and RTE. FlexL.oRA, by
contrast, is mainly affected by its rank-dependent SVD-based aggregation noise: at large ranks
(e.g., r; = 16) it performs well (86.94% on QQP), but its accuracy drops at smaller ranks (e.g.,
84.64% at r; = 1). HETLoRA introduces bias through its averaging rule, yet achieves strong
performance, with 87.58% on MRPC and 68.35% on RTE, suggesting its noise can be no worse than
FlexLoRA'’s. Finally, FlexLoRA incurs heavy computation from repeated SVD, whereas HETLoRA
uses a lightweight averaging scheme.

D.5.3 IMPACT OF HYPERPARAMETERS

Table 9: The impacts of the number of TC and clients’ HR.

CoLA Dataset
Method TC=100 TC=200 TC=100
HR=1:1:1 HR=1:1:1 HR=6:3:1

FLoRA —4.08 —2.07 —-2.07
FlexLoRA 13.42 —4.73 —2.50
HETLoRA 48.09 50.54 51.04

Fed-PLoRA 59.38 55.56 58.28

The Impact of Total Clients and Resource Heterogeneity. We study how the total number of
clients (TC) and the heterogeneity ratio (HR) of client resources affect performance. Table E] re-
ports results on CoLA. Across all configurations, Fed-PLoRA consistently outperforms baselines
(FLoRA, FlexLoRA, HETLoRA). Increasing TC from 100 to 200 (with balanced HR=1:1:1) slightly
reduces Fed-PLoRA’s score (59.38% to 55.56%) but still keeps a clear margin over HETLoRA
(50.54%). When shifting HR from balanced (1:1:1) to skewed (6:3:1, more low-resource clients)
with TC=100, Fed-PLoRA remains robust (59.38% to 58.28%). These results show that Fed-PLoRA
scales well with both client population and resource imbalance.

Table 10: The impacts of the heterogeneous rank setting.

CoLA Dataset
Method Ranks Ranks Ranks Ranks
12/4 1/2/16 1/4/16 2/8/16
FLoRA —-2.07 =207 —-4.08 —-2.07
FlexLoRA 1.01 4.16 1342 -3.76
HETLoRA | 47.44 46.70 48.09 49.54
Fed-PLoRA | 58.58 60.26 59.38 60.41

22

Under review as a conference paper at ICLR 2026

The Impact of Client Rank Settings. We evaluate how different distributions of LoRA ranks across
clients influence performance, with results on CoLA shown in Table[TI0] Rank configurations tested
include {1, 2, 4}, {1, 2, 16}, {1, 4, 16}, and {2, 8, 16}, under the same settings as the main exper-
iments. Fed-PLoRA consistently achieves the highest Matthews Correlation scores, outperforming
FLoRA, FlexLoRA, and HETLoRA across all cases. For example, Fed-PLoRA attains 58.58%
with ranks 1/2/4 and 60.41% with ranks 2/8/16, demonstrating strong robustness and adaptability to
heterogeneous client resources.

Table 11: Performance and resource usage of different methods under extremely large global model
rank.

CoLA SST-2 MRPC RTE Client FLOPs Server FLOPs Throughput Uplink/Downlink

Method

Matthews Corr. Accuracy Accuracy Accuracy GFLOPS MFLOPS seconds / 100 tokens MB / Round
Homogeneous FedIT (Rank=R) ‘ 62.94 91.97 88.72 73.28 ‘ 695.50 5.89 2.33 430.08 / 430.08
Heterogeneous FLoRA —4.98 70.52 31.51 52.70 202.40 74.94 0.89 23.52/235.20
R=128 FlexLoRA 1.43 50.91 68.38 53.42 202.37 620.20 0.89 23.52/23.52
max(r;) = 16 HETLoRA 47.65 71.62 80.88 59.56 202.37 1.71 0.89 23.52/23.52
Avg Rank =7 Fed-PLoRA 55.43 72.82 85.04 70.36 202.37 171 0.89 23.52/129.36

The Impact of Extremely Large Global Rank R on Learning Efficiency. We evaluate the effect
of increasing the global model rank to 128 while capping local ranks at 16 to reflect realistic resource
constraints. Experiments are conducted on four GLUE tasks under the IID setting with a batch size
of 16. Input sequence length is set to 128 for CoLA and SST-2, and 256 for MRPC and RTE.

Client-side FLOPS (including initialization and LoRA operations) are averaged over all clients and
rounds on a per-sample basis. Server-side FLOPS measure aggregation costs. Throughput is re-
ported as the average seconds to process 100 training tokens on clients. Communication volume
denotes uplink and downlink per round per client in MB under 32-bit precision.

As shown in Table [IT] Fed-PLoRA consistently outperforms other heterogeneous baselines under
this extreme R. Client-side FLOPS and throughput remain identical across methods since all use the
same model structure and simulated hardware. On the server side, Fed-PLoRA matches HETLoRA’s
efficiency by aggregating one-rank modules independently. Uplink costs are equally low across all
methods, as only trainable LoRA modules are transmitted. The main trade-off is in downlink cost,
which scales with R and equals that of FedIT. However, excessively large R is rarely practical under
heterogeneous constraints and may even cause divergence, as observed for FLoRA and FlexLoRA
on CoLA. Since LoRA is designed for parameter efficiency, setting R close to the hidden dimension
provides little benefit and often harms stability.

D.5.4 THE IMPACT OF DIFFERENT CONFIGURATIONS OF PLORA

We evaluate how the rank size of individual PLoRA modules influences performance. Specifically,
we compare our default one-rank design (Fed-PLoRA (Parallel One-Rank)) with a two-rank variant
(Fed-PLoRA (Parallel Two-Rank)), both configured to yield the same total effective LoRA rank
across clients with heterogeneous rank settings (2, 8, 16). The one-rank configuration achieves
a slightly higher Matthews Correlation score (60.41%) than the two-rank configuration (59.35%).
This result supports our design choice.

D.5.5 THE IMPACTS OF DROPOUT

Table 12: The impacts of dropout in the PLoRA.

Dolly-15K (Rouge-L)

Method Rank: 1/8/32

IID non-1ID
Fed-PLoRA (Unfold, w/ Dropout) | 60.07 59.70
Fed-PLoRA 60.07 59.69

We investigate the impact of applying LoRA dropout within the Fed-PLoRA framework. Typi-
cally, dropout layers are utilized for regularization before input features pass into LoRA modules

23

Under review as a conference paper at ICLR 2026

(specifically, before the LoRA A matrix). In our Fed-PLoRA approach, the Select-N-Fold strategy
involves merging non-selected parallel LoORA modules into the main target module. When these
modules are folded, any dropout layers specifically associated with these folded LoRA paths are ef-
fectively bypassed for those components in subsequent forward passes. This characteristic motivates
an evaluation to understand how performance is affected by dropout under our folding mechanism.
Table T2 presents a comparison on the Dolly-15K dataset (Rouge-L score), with client ranks set to
(1, 8, 32). We compare a variant termed “Fed-PLoRA (Unfold, w/ Dropout)”, where we assume
modules are frozen but kept unfolded, allowing standard LoRA dropout to be active on all PLORA
modules against our standard Fed-PLoRA configuration, but with higher computational costs. The
results show minimal differences between the two approaches across both IID and non-IID data dis-
tributions. In the IID setting, both configurations achieve a Rouge-L score of 60.07%. In the non-IID
setting, “Fed-PLoRA (Unfold, w/ Dropout)” achieves 59.70%, while our method achieves 59.69%.
These nearly identical results suggest that not using dropout on frozen layers does not affect the
performance.

D.5.6 MORE VISUALIZATION ON COSINE SIMILARITIES ACROSS PLORA MODULES.

Layer 0 Layer 1 Layer 2

Layer 3 Layer 4 Layer 5

LoRA-A

. I ‘ . 075
LoRA - : p [050
:4 ~ : ‘ :. " 0.25

Layer 6 Layér 7 Layer 8
- =

Layer 10 Layer 11

0.00

-0.25

LoRA-A .
. I -0.50

-0.75

LoRA-B *

Figure 8: Cosine similarity heatmaps of PLoRA modules on the non-IID RTE dataset (averaged
over all rounds). Each block reports pairwise similarities of modules across clients for LoORA-A and
LoRA-B, spanning layers O through 11.

To analyze the aggregation noise in Fed-PLoRA, we visualize the cosine similarity heatmaps across
clients’ PLoRA modules for the Query weights in all 12 transformer layers of BERT-base, averaged
over all rounds. Both A and B module similarities are shown. According to Section [E] when
A; () AE j) or B; G = Bz j)» aggregation noise of Fed-PLoRA is minimized. Figure a reveals
consistently high similarity values (near 1.0) along diagonal and cross-wise patterns, particularly
highlighted by the red arrow in Layer 0’s LoRA-A, suggesting strong similarity among certain ranks.
Moreover, we observe that some consecutive layers maintain high inter-client similarity, indicating
that even under non-IID settings, certain ranks learn overlapping or redundant features, potentially
pointing to shared semantic structures across clients.

This pattern emerges naturally from the design of Fed-PLoRA. Since each client receives the full set
of R global PLoORA modules and selects a subset for local training, all modules remain aligned
in initialization across rounds. The random selection mechanism ensures that over time, every
rank-j module is trained by a diverse subset of clients, leading to gradual synchronization of pa-
rameters across the population. Furthermore, the frozen folded modules help preserve the global

24

Under review as a conference paper at ICLR 2026

structure even on clients with limited capacity, reducing noise accumulation across rounds. As a
result, frequently selected ranks tend to exhibit strong inter-client alignment, while occasionally se-
lected modules still retain structural consistency due to their shared initialization and partial update
history. This design promotes implicit coordination among clients and contributes to the observed
high cosine similarity, thereby reducing the aggregation noise without explicit regularization or co-
ordination.

While our method does not entirely eliminate aggregation noise. This is a characteristic shared with
several other federated LoRA-based fine-tuning methods, such as FedIT and HETLoRA. However,
we note that there is a growing body of research in the literature Sun et al.|(2024)); |Guo et al.|(2024)
focused on improving the aggregation of LoRA in the homogeneous setting. We will explore the
integration of these methods with Fed-PLoRA in heterogeneous settings in our future research.

E DETAILED ANALYSIS OF INITIALIZATION AND AGGREGATION NOISE

This section investigates the noise arising from initialization and aggregation processes in heteroge-
neous federated LoRA-based fine-tuning methods.

We use the following general definitions for noise as established in the main paper: Let 8'~1 =
(A= B!~1) be the global LoRA parameters from the server at the end of round ¢ — 1 (with global
rank R). Let 0:~' = (A!~! B!™') be the local LoRA parameters with which client i (from a set of

v clients) starts round ¢ (w1th local rank r;). The Initialization Noise at the beginning of round ¢ is:
v

M= (|A7 e AT, + BT e BT,
i=1
Here, X &Y signifies the part of X not captured by Y.
After local training, client 7 produces updated LoRA parameters 8! = (A%, B!). The ideal ag-
gregated target module update is AW! = %Z;i’:l B!A!. The actual aggregated target module
update by a specific method is AW' = B*A?, where A*, B are the global LoRA parameters after
aggregation at round ¢. The Aggregation Noise at the end of round ¢ is:
t t

Agg - HAW - AW HF

E.1 FLORA

FLoRA Wang et al.| (2024) employs a stacking-based aggregation. For initialization, client LoRA
modules A’~" are randomly initialized (e.g., Gaussian Distribution), and Bt 1is initialized to zeros
at each round t.

Initialization Noise (N ;g mie): Given AL™! is random and B!~ = 0, these local parameters do
not retain information from the previous global LoRA parameters At~land B! For B matrlces
Since BI™! = 0, the part of B‘~! not captured by B! ™! is B!~

|B*~!|| . For A matrices: A{~" is random and independent of A~ 1. It does not systematlcally
capture any part of A*~!. The initialization noise is formulated as:

v

Niramie = Y (AT o A7+ [B e B ,)

=1
~ > (1A e+ IB7l) + o
i=1

where o2 denotes the magnitude of the random noise used for initializing A matrix. This noise is
substantial.

Aggregation Noise (N pa age)? FLORA stacks client LoRA modules. Let client i have A €
R"** and B! € R?¥"i, The server forms:
Al
At=| : | eRE™*F and BY= (B} ... B!)e R
Al

v

25

Under review as a conference paper at ICLR 2026

The aggregated update is AW gy = *B'Af. The product is B'A* = >iciy BIAL So, the
actual aggregated update is:
1
AW?L == tAL
WFLORA v Z BlA'L
i€[v]

The ideal target module update is AW = % Zie[v] B!A!. Therefore, the aggregation noise is:

ngLoRAAgg = HAWi - AW;LORAH Ia

1 1
— |- BlAl -~ Y BlAl =0
v v -
i€[v] i€[v] P

E.2 FLEXLORA

FlexLoRA aggregates LoORA modules in full weight space, then uses SVD for local LoRA modules.
Clients truncate these for initialization.

Initialization Noise (N{jexr.ora mit): The server has global LoORA modules A*~! (from SVD, rank
R) and B*~! (from SVD, rank R). Client i (rank r; < R) initializes by truncation: Aﬁ_l = Af;,lz]
(first r; ows of A'~1). BI™! = BIE_i | (first r; columns of Bi~1). The part of A*~! not captured is
A’ET_:H: R The part of B{~! not captured is B)[E:,_rl,; H1R] The initialization noise is then formulated
as,

NglexLoRAJnit = Z (H‘Ati1 @ AE—I ||F + HBtil @ Bg_l ||F)

1€ [v]
-5 (toal + [octoanl)

This noise is non-zero if any r; < R.

Aggregation Noise (Ve ora agg)? Clients send Af

update:

,BL. The server computes the ideal average

1 v
AW, = - > BIA!
=1

However, FlexLoRA then performs SVD on AW to get a rank-R approximation:
AW;lexLoRA = SVD(AWD = Utst(Vt)T
The aggregation noise is the SVD truncation error:
nglexLoRAAgg = HAWi - AWltTIexLoRAH Ia
= |awl —U'si(vH) T,

E.3 HETLORA

HETLoRA zero-pads LoRA modules to a uniform rank for aggregation, and then clients truncate
for initialization.

Initialization Noise (NVfiprrora mit): Server has global LoRA modules A*~! (rank R), B'~! (rank
R). Client i initializes by rank r; truncation: A~ = Af:;i:], B~ = Bf:_”lm]. The initialization
noise is formulated as,

leIETLoRAJnit = Z (HA)[S'r_lilR,] HF + "sz,_rl,;Jrl:R] HF>
i€[v]

1€V

Aggregation Noise (Njigrrora_agg)? Client i sends Al (rank 7;), B} (rank 7;). Server zero-pads to
rank R: AY' B!’. Global LoRA modules are averages of padded matrices: A = i > e Al

26

Under review as a conference paper at ICLR 2026

B! = 137 B}’ Actual update: AWigrigra = BIA* = 537003 ByAL. Tdeal
update: AW, = 137, BiA] =13, B/ A}, The aggregation noise is:

lelETLoRAAgg = ||AW1 - AVVﬁETLoRAH P

LYBUAY -5 Y Y BYAY
lev]

jEv] kev] r

= 1}17 v BI'AY -0 Y BYAY
le[v]

jEv] kev] r

1
LA (Serare Y Byay
l€fo] =0 jelvl ik .

1
=5 l=1)) BYAy" = Y BJAY

l€[v] JE[V],i#k F

E.4 FED-PLORA

Client ¢ updates its selected modules {Aﬁ_() B! (j)} jext and sends them to the server. The server
aggregates each j-th parallel module independently. Let Qz p=1{ilie],je Kt} be the set of

clients that trained the j-th module. The server computes the average for each PLoRA module’s A
and B matrices:

—t 1 " =t 1 ‘
A6 = 1o > Ay B = o > Bl
D' ieoy, U)' ieat)

The actual global update from Fed-PLoRA is the sum of the products of these averaged components:

=1

_ 1 Bt 1 At

_Z N Z i1,(4) N Z i2,(4)
j=1 @' i eot (' iyeqt

7

R
1
:Z|ij)|2 Z Z Bzh(j)AEz,(j)

: t N t
1EQ(;) 12€Q()

The optimal aggregation in this context, as defined for Fed-PLoRA, is an average of client products
per parallel module path:

R
1
t t t
AW, =3 1o > BloAlo
J

— p
Jj=1 keQy

27

Under review as a conference paper at ICLR 2026

The aggregation noise is then the difference between these two global updates. We use the formula-
tion consistent with the main paper, which is |AW! — AWrqprorall 7

Fted-PLoRA,Agg = ||AW1 - AW]t:ed-PLoRAH F

R

‘2 Z Z Bu (J)Azz @) Z Z Bk(] AZ,U)

1169(3) zzeQ(J) Jj=1 3)| keQy, N

Il
?'Mm

F

Il
e
Q [

t t
o Y. D BLpALg 125l D0 BipALg
F

t
1€Q(;) 12€Q(;, keQ(;)

Let T]’- be the term inside the parenthesis for module j:

¢ t t t t
> 2 BLpALy 190 X BlpAly
11€QL) i2€Q(,, keQy;,
We can expand the double summation:
t t _ t t t
> 2 BiopALn= 2 BipAlot X BlLoALo

: t t t i i t
nE€Q;) 2€Q; keQ()) i1,12€Q(;
11702

Substituting this back into 77:

!/ t t t t t t t
Ti=| Y BipALgp+ D BLopALg |19 X BiyAly

kEQ?j) il,iQGQE’j) kEQEj)
01542
_ ¢ 6 _
= Y. Bl pALg (] 1) > BipALg)
i17i2€Q2j) kegf])
11712

So the aggregation noise can also be expressed by substituting this form of Tj’

t t t t t
Y. BLpALG -~ (|Qm*1) Y. BlLoAky)
il,?gegzj) kegzi)
11702 F

R
NFed PLORA._ Agg Z |2

This noise term T]’» (and thus the overall noise) becomes zero if, for each module j, the condition
=t —t . . .

IT:J)I Zkegb) (B’,;’(j) - B(j))(AZ’(j) — A(;)) = 0 holds, which typically occurs when client up-

dates {Bl,tC ()’ A}fC (j)} for a given module 5 are highly similar or aligned across clients k € Qf e

F ADDITIONAL STUDIES

F.1 EFFICIENCY OF RANK-BASED FEDERATED FINE-TUNING METHOD

In this section, we demonstrate the efficiency of the rank-based method for resource-constrained
devices by analyzing the FLOPs of LoRA modules, overall training throughput, and communication
costs under different rank settings. We use the LLaMA-3.1-8B model on the Finance dataset as a
representative case (detailed dataset description is shown in Section , with a hidden size of 8192,
a batch size of 4, and assuming float32 precision, where each parameter occupies 4 bytes.

To compute the FLOPs introduced by LoRA modules, we begin with the forward computation z =
B Az, which requires 27 (di, + doy) Operations per token, where r is the LoRA rank and di, = doy =

28

Under review as a conference paper at ICLR 2026

Increase: 0.12

?ﬁg‘;ﬁ:‘ﬁ;‘q Seconds / 100 Tokens
FLOPS Increase: 0.07
Seconds / 100 Tokens
Reduction:
1.96x10°
FLOPS
15.70x10°| .
FLOPS

Rank=8 Rank=2 Rank=1 Rank=8 Rank=2 Rank=1 Rank=8 Rank=2 Rank=1 Rank=8 ~ Rank=2 Rank=1
(d) Averaged Accuracy
Reduction on Finance Dataset

Reduction: Reduction:

qzsm GB q.ﬁ%
. Reduction: . Reduction
3.90 GB 1.34%
. 52.19% .

(a) LoRA FLOPs Reduction (b) Throughput Increase (c) Communication Volume Reduction

Figure 9: Visualization on the efficiency of the rank-based method.

d = 8192 is the hidden dimension. Since the backward pass roughly doubles the compute cost, the
total per-token FLOPs for each LoRA module becomes 6rd. The total LoORA FLOPs per training
step can thus be estimated as 67d x batch size x sequence length x number of LoRA modules. For
instance, with a sequence length of 512, 32 transformer layers, 2 target modules per layer, result in
total 64 LoRA modules, the total becomes 6 x r x 8192 x 4 x 512 x 64 = 196,608 x r FLOPs.
This value increases linearly with rank. On the training dataset, in order to train one epoch with
the full dataset, it requires approximately 10,000 steps with this batch size (i.e., 4), such that the
total FLOPs introduced by LoRA modules under rank settings 7 = 8, 2, and 1 are respectively
1.57 x 10 x 10,000 = 1.57 x 10%°, 3.93 x 10 x 10,000 = 3.93 x 10%, and 1.97 x 10° x 10,000 =
1.97 x 10° FLOPs per epoch for the LLaMA-3.1-8B model. We visualize the FLOPs reductions for
three levels of rank settings in Figure 9] (a).

To assess the training efficiency under different LoRA rank settings, we measure the throughput in
terms of seconds per 100 tokens. The actual wall-clock times for the whole training process in our
setting are 3.07, 2.84, and 2.41 days under rank settings 7 = 8, 2, and 1, respectively. The experi-
mental and hardware settings are reported in Sections[C.1] [C.2} This results in throughput values of
approximately 0.864, 0.799, and 0.678 seconds per 100 tokens, respectively. These measurements
demonstrate that reducing the rank leads to improved computational efficiency during training. We
visualize the throughput increase for three levels of rank settings in Figure 9] (b).

To estimate the communication volume for one training epoch, we assume that only the LoRA pa-
rameters are transmitted every 10 steps. With 10,000 steps per epoch and transmission frequency
every 10 steps, there are 1,000 transmissions in total. Each transmission involves sending and re-
ceiving 128rd LoRA module parameters, where r is the LoRA rank and d = 8192 is the hidden
size. Assuming f1loat 32 precision (4 bytes per parameter), this yields a total communication vol-
ume of 512,000rd bytes per epoch. For ranks » = 1, 2, and 8, the resulting communication costs
are approximately 3.91 GB, 7.81 GB, and 31.25 GB, respectively. We visualize the communication
volume reductions for three levels of rank settings in Figure[9](c).

From the resource consumption perspective, the rank-based method provides a practical solution for
efficient federated fine-tuning of LLMs, as evidenced by the reduction in LoORA module FLOPs and
communication volume, as well as improved training throughput. Although the rank-based approach
is not specifically designed for memory savings, our method is orthogonal to a wide range of existing
memory-efficient techniques and can be easily combined with them (as discussed in Section [B)).

These resource consumption reductions make low-rank configurations particularly practical for de-
ployment in heterogeneous federated settings. However, as shown in Figure [9] (d), we provide an
average performance comparison on Finance datasets under three levels of rank settings. The av-
erage accuracies are 52.19%, 51.04%, and 50.05% for ranks r = 8, 2, and 1, respectively. This
demonstrates that different LoRA rank settings lead to a noticeable performance gap, where even
a 1% drop in accuracy is considered significant and typical in LLM instruction fine-tuning tasks
on domain-specific downstream datasets. This observation motivates the design of our proposed
method, Fed-PLoRA, which aims to incorporate clients experiencing degraded performance under
low-rank configurations into a heterogeneous-rank federated training process and improve the over-
all performance of the global model.

29

Under review as a conference paper at ICLR 2026

F.2 COMPUTATION, COMMUNICATION, AND MEMORY OVERHEAD OF FED-PLORA

We analyze numerical resource overhead in this section. Here, we use HETLoRA [Cho et al.| (2024)
as a reference to calculate overhead, since it is the naive extension of FedAvg to heterogeneous
resource settings. We provide the results as following:

Computation Overhead. During the FL process, the computation overhead can be analyzed in

the steps of local parameter initialization, local training, and server-side model aggregation Wu &
Wang| (2022); [Zhou et al| (2022). To ground the discussion, we report the per-client, per-round
computational workloads under BERT-base |Devlin et al.| (2019) with PF16 precision. The results
(in terms of FLOPs) are reported using 100 clients with a global rank of R=16 and a local rank
configuration of {1, 4,16}, representing three tiers of resource heterogeneity. The number of clients
in each tier are 34, 33, and 33, respectively. Each client is assigned 100 training samples. The
result are summarized in Table E Note that, because local initialization, local training, and local
overhead vary across clients, we report the results for the weakest client with r; = 1, as it represents
the most resource-constrained setting.

Local Overhead Server Overhead

Method Local Initialization (FLOPs) Local Training (FLOPs) Model Aggregation (FLOPs) (FLOPs) (FLOPs)
HETLoRA 3.68 x 10" 1.45 x 101 2.94 x 107
FLoRA 6.26 x 10° 1.45 x 10 8.88 x 10° +5.89 x 10° +8.85 x 10°
FlexXLoRA 3.68 x 10* 145 x 10 7.71 x 1010 None +7.70 x 1010
Fed-PLoRA (Ours) 1.41 x 107 1.45 x 101 1.10 x 108 +1.40 x 107 —2.83 x 107

Table 13: Computation overhead of Fed-PLoRA compared with SOTA methods.

Overall, the dominant computation cost arises from local training, which on the order of 1014
FLOPs. Our method adds only negligible overhead during local initialization (on the order of 107
FLOPs), and reduces computational cost for model aggregation compared to HETLoRA.

Communication Overhead. The communication cost accounts for both uplink and downlink traffic.
Here, we report the per-client, per-round uplink and downlink volumes. The measurements are
obtained using FP16 BERT-base [Devlin et al] (2019) with a global rank of R=16. In Table [4]
we report the results for the weakest client with r; = 1, which reflects the largest communication
overhead incurred by our method.

Method Uplink (MB) Downlink (MB) Overhead (MB)
HETLoRA 0.04 0.04
FLoRA 0.04 13.54 +13.50
FlexLoRA 0.04 0.04 None
Fed-PLoRA (Ours) 0.04 0.54 +0.50

Table 14: Communication overhead of Fed-PLoRA compared with SOTA methods.

We can see that our method incurs only 0.50 MB of overhead per round for the weakest client,
which is negligible even in constrained network settings. We further extend our evaluation to larger
models when analyzing the downlink traffic of Fed-PLoRA. As shown in Table[T3] in Fed-PLoRA,
the downlink traffic is only a few megabytes per round per client, even for models with billions of
parameters, making it easily deployable over low-bandwidth networks.

Model Downlink (MB)
LLaMA-1B 2.79
OPT-1.3B 2.62
Mistral-7B-v0.3 7.08
Llama-3.1-8B 7.09
Qwen3-4B-Instruct-2507 5.24

Table 15: Downlink traffic of Fed—PLoRA across model scales.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Method Persistent Base Model (MB) Persistent Local Trainable Parameters (MB) Temporary Global Parameters (MB) Local Training (MB) Total Overhead (MB)
HETLoRA 210.00 0.04 0.04 =0 2717.91

FLoRA 210.00 0.04 1354 =0 271791 +13.50 =+ 0
FlexLoRA 210.00 0.04 0.04 =0 2717.91 None
Fed-PLoRA (Ours) 210.00 0.04 054 -0 271791 +0.50 = 0

Table 16: Memory overhead of Fed-PLoRA compared with SOTA methods.

Memory Overhead. Here, we study the memory usage for the storage of the base model and
local trainable LORA/PLoRA parameters, the temporary memory for the received global parameters
during local initialization, and the memory during local training. The results are obtained using
FP16 BERT-base |Devlin et al.|(2019) with a global rank of R=16. The batch size for local training
is 16, and the input size is 512. We report the memory footprint on the weakest client with rank
r; = 1 in Table[T§ The persistent base model and local LORA/PLoRA parameters occupy the
same amount of memory across all methods. When dealing with the received global parameters
during local initialization, our method requires addtional 0.50 MB of temporary memory, which is
negligible compared to the base model’s and local training memory costs.

31

	Introduction
	Federated Fine-Tuning System
	Parallel One-Rank Adaptation for Heterogeneous FFT
	Motivation
	Parallel One-Rank Adaptation
	Fed-PLoRA: Heterogeneous FFT with PLoRA
	Analysis of Initialization and Aggregation Noise
	Communication, computation, and memory overhead

	Evaluation
	Main Experimental Results
	Additional Discussions

	Related Work
	Conclusion
	Code snippet and pseudo-code
	Comprehensive Literature Reviews
	Experimental Settings
	Datasets and Models
	Main Result Settings
	Other Experimental Settings

	Additional Experimental Results
	Results on non-IID GLUE Dataset
	Results on Dolly-15K Dataset
	Results on Medical Datasets
	Results on MATH Datasets
	Ablation Studies
	Comparing Select-N-Fold with other Strategies
	Empirical Observations on Initialization and Aggregation Noise in SOTA methods
	Impact of Hyperparameters
	The Impact of Different Configurations of PLoRA
	The Impacts of Dropout
	More Visualization on Cosine Similarities across PLoRA Modules.

	Detailed Analysis of Initialization and Aggregation Noise
	FLoRA
	FlexLoRA
	HETLoRA
	Fed-PLoRA

	Additional Studies
	Efficiency of Rank-based Federated Fine-Tuning Method
	Computation, Communication, and Memory Overhead of Fed-PLoRA

