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Abstract

Optimal transport has demonstrated remarkable potential in the field of single-cell
biology, addressing relevant tasks such as trajectory modelling and perturbation
effect prediction. However, the standard formulation of optimal transport assumes
Euclidean geometry in the representation space, which may not hold in traditional
single-cell embedding methods based on Variational Autoencoders. In this study,
we introduce a novel approach for matching the latent dynamics learnt by Euclidean
optimal transport with geodesic trajectories in the decoded space. We achieve this
by implementing a “flattening” regularisation derived from the pullback metric of
a Negative Binomial statistical manifold. The method ensures alignment between
the latent space of a discrete Variational Autoencoder modelling single-cell data
and Euclidean space, thereby improving compatibility with optimal transport. Our
results in four biological settings demonstrate that these constraints enhance the
reconstruction of cellular trajectories and velocity fields. We believe that our
versatile approach holds promise for advancing single-cell representation learning
and temporal modelling.

1 Introduction

Temporal modelling is a widely-explored branch of machine learning with successful implications
in applied sciences [Heaton et al., 2016, Hewage et al., 2020]. In single-cell biology, modelling
a system’s evolution through time encompasses tracing how a cell state measured by single-cell
RNA-seq (scRNA-seq) develops across a plethora of biological processes, ranging from development
to disease progression [Ding et al., 2022]. However, traditional single-cell sequencing is a destructive
practice, meaning that the same cell is measured only once and cannot be explicitly tracked through
time [Haque et al., 2017]. This aspect poses challenges, in that measurements collected from time-
resolved scRNA-seq do not contain direct information about individual cell state progression. Hence,
learning about the system’s dynamics requires the reconstruction of cellular trajectories from unpaired
single-cell distributions sampled across experimental time.

Several methods have proven successful at reconstructing cellular trajectories from snapshots of
cells collected over time [Haghverdi et al., 2016, Jürges et al., 2018, Fischer et al., 2019]. Many of
them rely on the concept of Optimal Transport (OT) [Peyré and Cuturi, 2017], which matches cell
distributions across consecutive time points. OT has been readily employed to interpolate single-cell
transcriptomics snapshots and study the cell population dynamics [Schiebinger et al., 2019, Tong
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et al., 2020]. However, single-cell data holds properties that make the application of OT in the gene
space challenging. More specifically, the curse of dimensionality complicates OT applications to
cells, as OT relies on computing distances between sparse transcription vectors measuring thousands
of genes at the same time. To circumvent this issue, the majority of the current methods resort to
applying OT to linear projections of data into a low dimensional space via Principal Component
Analysis (PCA) [Eyring et al., 2022] or into the latent space of deterministic autoencoders [Huguet
et al., 2022]. Despite these approaches providing insight into fate mapping and cell state evolution,
they do not take into account the distributional properties of single-cell data, like discreteness and
overdispersion. Moreover, the standard OT formulation for modelling continuous trajectories assumes
Euclidean geometry in the representation space [Peyré and Cuturi, 2017]. This hinders the application
of deep representation techniques where the latent space is endowed with non-linear geometries, as
linear paths in the latent space might not necessarily represent optimal paths in the observation space
nor reflect the geometry of the data manifold [Arvanitidis et al., 2021].

To mitigate the restrictions of the Euclidean space assumption and incorporate the distributional
properties of single-cell data into OT-based trajectory inference, we propose inducing Euclidean
geometry into the latent space of a Variational Autoencoder (VAE) with Negative Binomial (NB)
likelihood [Lopez et al., 2018]. To this end, we assume that single-cell data lie on a statistical
manifold defined by the parameters of the underlying NB distribution and that the decoder model
represents a map of the latent codes to the continuous parameter space of the data likelihood. To
obtain a “flat” latent representation, we constrain the pullback metric from the decoder to approximate
a scaled identity matrix (Fig. 1). Given a flat representation of single-cells, we take advantage of
the Conditional Flow Matching (CFM) model [Tong et al., 2023] to simulate cellular dynamics, an
approach to learning single-cell evolution through experimental time recently presented in Tong et al.
[2023].

In summary, we propose the following contributions:

1. We introduce a flattening regularisation technique for VAEs with NB likelihood based on
information geometry.

2. We combine our flattening regularisation with Conditional Flow Matching (CFM) for
enhanced vector field modelling.

3. We showcase the applicability of our approach to the field of temporal modelling for single-
cell computational biology.

2 Related work

OT for single-cell genomics Discrete OT methods in single-cell transcriptomics have shown
potential in multiple application contexts, such as trajectory inference [Schiebinger et al., 2019],
spatial reconstruction [Moriel et al., 2021] and multi-modal alignment [Klein et al., 2023]. Recent
efforts have resorted to neural OT to predict the effects of drug perturbations on cells [Bunne et al.,
2023] and cell trajectories in an unbalanced setting [Eyring et al., 2022]. Our work revolves around
modelling gene expression through time via dynamic OT [Peyré and Cuturi, 2017], a combination that
was extensively explored in prior works [Tong et al., 2020]. More specifically, the presented approach
is inspired by MIOFlow [Huguet et al., 2022], where the authors model continuous single-cell
trajectories in a latent space regularised such that latent Euclidean distances approximate the geodesic
distances in the PCA space of single-cell data. However, MIOFlow’s latent space regularisation is
not tailored to the distributional properties of scRNA-seq measurements, an aspect that we explicitly
consider by learning trajectories on a NB manifold.

Geometry-regularised autoencoders Enforcing the geometric structure of the data in the latent
space of autoencoders was proposed on multiple occasions. Arvanitidis et al. [2021] model optimal
latent paths based on the geometry of the ambient space defined by both deterministic and Gaussian
stochastic decoders. Our research follows the theoretical framework introduced by Arvanitidis et al.
[2022], which extends modelling geodesic latent paths to VAEs with arbitrary likelihood. More
specifically, we use the theoretical concepts elaborated by the authors to desciribe the geometry of
the latent space of a discrete VAE model with a NB likelihood as a function of the decoder’s pullback
metric. Our approach is also inspired by Chen et al. [2020], where the authors enforce flatness in the
latent space of VAEs by pushing the pullback metric tensor towards the identity matrix. However,
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Figure 1: Visual conceptualisation of the proposed flattening approach for single-cell VAEs by
regularising the pullback metric of a statistical manifold to match the identity matrix.

we additionally assume that the ambient space is a statistical manifold whose geometry is governed
by the Fisher Information [Arvanitidis et al., 2022] rather than the Euclidean metric. Other relevant
papers extend endowing the latent space with data geometry via isometric [Lee et al., 2022] and
Jacobian [Nazari et al., 2023] regularisations.

Flow-based OT Modelling continuous trajectories via Continuous Normalizing Flows (CNF) is
a well-established practice in single-cell transcriptomics [Tong et al., 2020, Huguet et al., 2022].
Recently, novel approaches based on Flow Matching [Lipman et al., 2023] have yielded stabler and
faster training by introducing simulation-free objectives to learn the CNF vector field for generative
purposes [Liu et al., 2022, Pooladian et al., 2023, Albergo and Vanden-Eijnden, 2023]. Within such
a context, significant efforts harnessed tractable simulation-free formulations of flows to address
trajectory inference applications by drawing a connection with OT [Tong et al., 2023, Neklyudov
et al., 2023]. Finally, our work relates to geometrically-informed Flow Matching, which was recently
proposed by Chen and Lipman [2023].

3 Background

3.1 Modelling scRNA-seq with VAEs

The scRNA-seq method measures gene expression counts at the level of single cells. The discrete
nature of observations readily allows modelling cell-specific counts using discrete likelihood models,
inferring the continuous parameters of the data distribution by neural networks. More specifically,
the biological and technical variability in the measurements lead to an inherent overdispersion of the
expression counts, making the Negative Binomial (NB) likelihood the natural choice for modelling
gene expression profiles.

More formally, given a gene expression matrix X ∈ NN×G
0 with N cells and G genes, we assume

that each cell x is the realisation of a discrete random variable with the gene-specific distribution
Xng ∼ NB(µng,θg). Here, µ and θ represent the cell-gene-specific mean and the gene-specific
inverse dispersion parameters, respectively. Further, we consider a latent variable model with
marginalised density

p(x) =

∫
p(x | z)p(z)dz , (1)

where z is a d-dimensional latent random variable with d < G and z ∼ N (0, Id) . In practice, we
use amortised deep variational inference to jointly model the mean parameter of the data likelihood
and the latent variables. This is achieved by utilising non-linear encoder and decoder functions of the
form

z = fψ(x) , (2)
µ = hϕ(z, l) = l × softmax(ρϕ(z)) , (3)

where ρϕ : Rd → RG is a neural network that models the expression proportions of each gene in
a cell and l is the cell-specific size factor, which is directly derived from the data and refers to a
cell’s total number of counts l =

∑G
g=1 xg . The encoder formulation based on fψ already takes into

account the reparameterisation trick. In the following sections, we drop the dependency on the neural
network parameters ψ and ϕ for notational simplicity.
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The gene-specific inverse dispersion θg is considered a model parameter and trained via maximum
likelihood together with the mean decoder h. The model is trained within the VAE framework,
maximising the ELBO:

LELBO = Eq(z |x)
[
log p(x | z;θ)

]
− KL

(
q(z |x)∥p(z)

)
. (4)

As the representation learnt by f is dense and compressed, modelling single-cell trajectories can be
performed in the latent space of a discrete VAE. The low dimensionality coupled with continuity and
the availability of a parametrised likelihood model makes z a natural proxy for studying dynamics in
high-dimensional discrete data. Here, we couple this idea with continuous OT.

3.2 Dynamic OT

OT computes the most efficient mapping for transporting mass from one measure to another according
to a pre-defined cost. Let ν and η be marginal probability distributions defined on the spaces X
and Y , such that X = Y = Rd. Moreover, consider the set of joint distributions Π(ν, η), such that
for π ∈ Π both π(dx,Y) = ν and π(X ,dy) = η holds. Considering the Euclidean distance cost
d(x,y) = ∥x − y∥2 for observations x ∈ X and y ∈ Y , the optimal coupling π∗ minimises the
squared Wasserstein distance:

W2(ν, η)
2 = inf

π∈Π

∫
X×Y

d(x,y)2dπ(x,y)

=

∫
X×Y

d(x,y)2dπ∗(x,y) . (5)

Benamou and Brenier [2000] introduced a dynamic formulation of the OT problem. In this setting, let
pt be a time-varying density over Rd constrained by p0 = ν and p1 = η. For a smooth time-dependent
vector field u : [0, 1]× Rd → Rd that satisfies the continuity equation

dp
dt

= −∇ · (ptut) , (6)

the continuous counterpart to Eq. (5) is

W2(ν, η)
2 = inf

pt,ut

∫ 1

0

∫
Rd

∥ut(x)∥2pt(x) dx dt , (7)

where ut(x) = u(t,x). The parameterised field ut is said to generate the probability path pt if the
latter is the solution of the continuity equation Eq. (6).

The velocity field ut(x) is associated with an Ordinary Differential Equation (ODE) dx = ut(x)dt.
The solution of the ODE is an integration map ϕt(x) transporting mass along u over time to match
a source with a target distribution, given the initial condition ϕ0(x) = x. We deal with the setting
where the vector field ut(x) is approximated by a neural network vξ(t,x). In practice, one obtains pt
by pushing points from the initial distribution p0 through the integration map ϕt.

3.3 Conditional Flow Matching

Tong et al. [2023] demonstrated that by expressing the time marginals pt(x) as a mixture of the form
pt(x) =

∫
pt(x | c)q(c)dc conditioned on some latent variables c, the marginal vector field ut(x) is

related to the conditional vector field ut(x | c) through

ut(x) = Eq(c)
[
ut(x | c) pt(x | c)

pt(x)

]
. (8)

Further, regressing vξ(t,x) against the conditional field ut(x | c) is equivalent to approximating the
marginal field ut(x), up to a constant independent of the parameter ξ. Here, we follow the OT-CFM
variant from Tong et al. [2023]. That is, given source and target sets of observations X0 and X1, we
define the field-conditioning variable c = (x0,x1) as pairs of samples re-sampled from the static
optimal coupling c ∼ q(c) = π∗(X0,X1). Assuming Gaussian marginals pt and x0 and x1 to be
connected by Gaussian flows, both pt(x | c) and ut(x | c) become tractable:

pt(x | c) = N (tx1 + (1− t)x0, σ
2) , (9)
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ut(x | c) = x1 − x0 , (10)
with a pre-defined value of σ2. Accordingly, the CFM loss is

LCFM = Et,q(c),pt(x|c)
[
∥vξ(t,x)− ut(x | c)∥2

]
, (11)

with t ∼ U(0, 1). From Eq. (9), one can readily see that OT-CFM uses straight paths to optimise
the conditional vector field. Note, however, that straight lines in the latent space of a VAE may not
reflect geodesic paths in the discrete observation space, i.e. gene space. We tackle this challenge by
applying CFM to the latent space of a VAE with enforced Euclidean geometry.

4 Flattened NB-VAE for OT-based trajectory inference

4.1 The geometry of AEs

A common assumption is that the data lies near a low-dimensional Riemannian manifoldMX whose
coordinates are represented by the latent representation Z . The decoder of a deterministic AE model
can be seen as an immersion h : Rd → RG of a latent space Z = Rd into an embedded Riemannian
manifoldMX with a geometry-defining metric tensor M [Arvanitidis et al., 2021]. A Riemannian
manifold is a smooth manifoldMX endowed with a Riemannian metric M(x) for x ∈MX . M(x)
is a positive-definite matrix that changes smoothly and defines a local inner product on the tangent
space TxMX as the equation ⟨u,v⟩M = uTM(x)v, with v,u ∈ TxMX [Arvanitidis et al., 2021].

In this setting, the geometry of the latent space is directly linked to that of observation space through
the pullback metric [Arvanitidis et al., 2022]

M(z) = Jh(z)TM(x)Jh(z) , (12)
where x = h(z) and Jh(z) is the Jacobian matrix of h(z). As such, the latent spaceZ is a Riemannian
manifold whose properties are defined based on the geometry ofMX . An example of such properties
is the shortest distance between two latent codes z1 and z2, which is expressed as the length of the
shortest connecting curve along the manifold

dlatent(z1, z2) = inf
γ(t)

∫ 1

0

√
γ̇(t)TM(γ(t))γ̇(t)dt , (13)

γ(0) = z1, γ(1) = z2 ,

where γ(t) : [0, 1] → Rd is a curve in the latent space and γ̇(t) its derivative along the manifold.
If we assume Euclidean geometry in the observation space, we obtain M(z) = Jh(z)TJh(z). This
applies sinceMX is endowed with the identity metric IG.

In VAEs, the decoder function h maps a latent code z ∈ Z to the parameter configuration µ ∈ H of
the data likelihood, whereH = RG represents the parameter space. As such, the decoder image lies
on a statistical manifold, which is the smooth manifold of a probability distribution. Such manifolds
have a natural metric tensor called Fisher Information Metric (FIM) [Nielsen, 2018, Arvanitidis et al.,
2022]. The FIM defines the local geometry of the statistical manifold and can be used to build the
pullback metric for arbitrary decoders. For a statistical manifoldMH with parameters µ ∈ H, the
FIM is formulated as

M(µ) = Ep(x|µ)

[
∇µ log p(x | µ)∇µ log p(x | µ)T] , (14)

where the metric tensor M(µ) ∈ RG×G [Arvanitidis et al., 2022]. Analogous to deterministic AEs,
one can combine Eq. (14) and Eq. (12) to formulate the pullback metric for an arbitrary statistical
manifold, with the difference that the pulled-back metric tensor is defined inH. As a result, the latent
space of a VAE is endowed with the pullback metric for a statistical manifold

M(z) = Jh(z)TM(µ)Jh(z) , (15)

where M(z) ∈ Rd×d. Note that the calculation of the FIM is specific for the chosen likelihood type
and, as such, depends on initial assumptions on the data distribution. Pulling back the FIM of the
statistical manifold of NB probability distributions to the latent space Z we obtain

M(z) =
∑
g

θg
hg(z)(hg(z) + θg)

∇zhg(z)⊗∇zhg(z) , (16)

where ⊗ is the outer product of vectors (see Section A.1 for more details on the derivation).
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4.2 Flattening loss for a NB-VAE

Our goal is to perform OT in a latent space using a notion of distance that reflects geodesics along
the NB statistical manifold. However, the computation of the geodesic distances for pairs of points
requires learning geodesic curves connecting observations minimising Eq. (13) via gradient descent
[Arvanitidis et al., 2022]. This is not feasible for CFM with OT-CFM, since the transport matrix
requires calculating distances between all pairs of points from batches drawn from the source and
the target distributions. Nevertheless, if M(z) = αId for some fixed parameter α, then the shortest
distance between each pair of points in Z is given by the straight line between them.

In order to achieve this, we use an additional regularisation term (as in Chen et al. [2022] for the
pulled-back Euclidean metric) to the VAE with NB likelihood, defined as:

Lflat(α) = Eq(z|x)
∥∥M(z)− αId

∥∥2 , (17)

with M(z) represented by Eq. (16). In other words, we enforce a flat geometry in the latent space
of a VAE with NB likelihood, where straight-line distances approximate geodesic distances on the
statistical manifold. The loss of the derived VAE, therefore, is:

L = LELBO + λLflat , (18)

where λ controls the strength of the flattening regularisation. In practice, we train flows post hoc
on the latent space of the regularised VAE and derive the evolution of gene counts through time via
sampling the likelihood model from the decoded parameters. The training procedure is described in
Algorithm 1.

Algorithm 1 Train Flat NB-VAE

Input: Data matrix X ∈ NN×G
0 , batch size B, maximum iterations nmax, encoder fψ, decoder hϕ,

flatness loss scale λ
Output: Trained encoder fψ , decoder hϕ and inverse dispersion parameter θ

randomly initialise gene-wise inverse dispersion θ
randomly initialise the identity matrix scale α as a trainable parameter
for i = 1 to nmax do

sample batch Xb ← {x1, ...,xB} from X
lb ← compute_size_factor(Xb)
Zb ← fψ(1 + logXb)
µ← hϕ(Z

b, lb)
LKL ← compute_kl_loss(Zb)
Lrecon ← compute_nb_likelihood(Xb,µ,θ)
M(Zb)← Eq. (16)
Lflat ← MSE(M(Zb), αId)
L = Lrecon + LKL + λLflat
Update parameters via gradient descent

end for

5 Experiments

Baselines & setup We compare the latent space of our flat single-cell VAE (Flat NB-VAE) with that
of a standard VAE (NB-VAE) trained with a NB decoder [Lopez et al., 2018] as representations for
continuous OT. Additionally, we evaluate latent OT on the embeddings produced by the Geodesic AE
(Geodesic AE) described in Huguet et al. [2022]. The latter method is trained on log-normalized gene
expression to better accommodate the lack of a discrete probabilistic decoder. All three approaches
are used to derive embeddings of time-resolved gene expression datasets. Subsequently, we use the
cell representations to train an OT-CFM model [Tong et al., 2023] and learn latent trajectories using
unpaired batches of observations from consecutive time points. Experimental details are provided in
the following sections and Section A.4.
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Data We evaluated our method for latent trajectory inference on four time-resolved single-cell
RNA-seq datasets: (i) Embryoid body (EB), Moon et al. [2019] profile 18,203 differentiating human
embryoid cells over five time points, generating four lineages. (ii) Pancreatic endocrinogenesis,
Bastidas-Ponce et al. [2019] measure 16,206 cells, spanning embryonic days 14.5 to 15.5, revealing
multipotent cell differentiation into endocrine and non-endocrine lineages. (iii) Cytomegalovirus
(CMV) infection dataset, Hein and Weissman [2021] measure 12,919 fibroblasts infected by
Cytomegalovirus (CMV) across seven time points, focusing on the top 2000 highly variable genes.
(iv) Reprogramming dataset, Schiebinger et al. [2019] explore the reprogramming of mouse
embryonic fibroblasts into induced pluripotent stem cells, comprising 165,892 cells across 39-time
points and 7 cell states, emphasising 1479 highly variable genes.

5.1 Flat latent space properties

We explore the relationship between the scaling of the flatness constraint and the likelihood score
of the decoder. As measures of regularisation strength, we employ the Variance of the Riemannian
metric (VoR) and the magnification factor (MF) following Chen et al. [2020] and Lee et al. [2022].
Briefly, given a metric tensor M(z), VoR quantifies the uniformity of the Riemannian metric across
space by computing the distance between M(z) and its expected value M̄ = Ez∼PZ [M(z)]. A VoR
of 0 indicates constant metric across Z . MF is defined as MF(z) =

√
det M(z) and reflects the

proximity of the metric tensor to the identity Id. More details are in Section A.5.1. Table 1 depicts
the properties of the latent space of a Flat NB-VAE at increasing levels of regularisation. Noticeably,
high values of λ contribute to a flatter latent space, suggesting our regularisation successfully induces
a constant and flat geometry in the VAE bottleneck together with a gradual increase in negative
log-likelihood. In practice, a value of λ = 1 is chosen for all datasets but the MEF reprogramming
setting, where λ = 0.1 is selected to avoid an excessive penalisation of the gene reconstruction.

Table 1: VoR, MF and Negative Log-Likelihood (NLL) as functions of the flattening regularising
scale λ. Missing entries indicate that the value evaluated in such a setting diverged to infinity.

EB CMV inf. MEF reprogr.
VoR MF NLL VoR MF NLL VoR MF NLL

NB-VAE 72.14 - 495.12 28.47 - 903.97 120.18 - 509.00
Flat NB-VAE λ = 0.1 62.31 19231.44 519.46 21.29 3553.69 1006.15 12.89 1412.66 544.34
Flat NB-VAE λ = 1 48.80 324.12 525.21 6.44 52.88 1072.15 21.45 120.46 553.01
Flat NB-VAE λ = 10 1.23 4.17 576.91 1.72 4.83 1206.93 14.46 20.47 576.57

NB-VAE

Flat NB-VAE

Embryoid body CMV infection MEF reprogramming

Geodesic AE

(Huguet et al.)

Figure 2: 2D PCA plots of the latent spaces computed by the Geodesic AE model, the NB-VAE and
the Flat NB-VAE. Highlighted are initial, intermediate and terminal cell states along the biological
trajectory.
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We qualitatively compare the PCA embeddings of our Flat NB-VAE’s latent space with competing
models in Figure 2. The significantly higher variance explained by the first two principal components
demonstrates that our flattening regularisation induces a lower latent space dimensionality, making
the information compression more efficient and less noisy. At the same time, the biological structure
of the data is preserved or even enhanced compared to competing methods. Biological preservation is
particularly evident in the MEF dataset [Schiebinger et al., 2019], where our Flat NB-VAE induces a
clearer separation between initial and terminal states, suggesting a better identification of the cellular
dynamics.

5.2 Simulation of single-cell RNA-seq counts with OT-CFM

Coupled with OT-CFM, we compare simulating latent trajectories from NB-VAE with our Flat
NB-VAE. Coherently with expectations, modelling latent trajectories with Euclidean cost benefits
from a flat statistical manifold, as displayed by a lower 2-Wasserstein distance (WD) between real
and simulated latent observations in Figure 3a. Aside from latent reconstruction, our approach allows
us to gain insight into discrete gene expression counts and study how lineage drivers evolve through
time (see Figure 3b for examples on the cardiac and neural crest branches of the EB dataset).

WD = 1.00

WD = 1.81

a b
GYPC

real simulated

log(GEX)

Neural crest branch

Cardiac branch
HAND1

real simulated

UMAP 1

U
M

AP
 2

UMAP 1

U
M

AP
 2

Figure 3: Simulating single-cell RNA-seq in time. (a) Over-
lap between real and simulated latent samples in the EB
dataset. (b) Real and simulated cells on the flat manifold
from the cardiac and neural crest lineages of the EB dataset.
Colours indicate the log gene expression of the reported lin-
eage drivers GYPC and HAND1.

To quantify the performance of dy-
namic OT on our flat manifold, we
adopt a similar setting to Tong et al.
[2020]. More in detail, for each
dataset, we leave out intermediate
time points and train OT-CFM on the
remaining cells. The capacity of OT to
reconstruct unseen time point t from
t − 1 during inference is an indica-
tion of the interpolation abilities of
the model across the data manifold.
Here, we use such a paradigm to com-
pare different representation spaces.
As a baseline, we calculate the distri-
bution distance between the held-out
time point t and the ground truth cells
at the previous time point t − 1. In
Table 2, we report the 2-Wasserstein
distance, the polynomial-kernel Max-
imum Mean Discrepancy (MMD) and
the mean L2 distance between true
and reconstructed latent cells. Furthermore, we add two measures in the decoded space, called
Density and Coverage (D & C) [Naeem et al., 2020], which evaluate the mixing of real and simulated
cell distributions in the gene expression space (see the Section A.5.1). On almost all datasets and
metrics, trajectories in the flat latent space yield better overall latent time point reconstruction results.
This observation is specifically true in the larger MEF reprogramming and Embryoid Body datasets.
Furthermore, the experiments show that our approach yields an overall improvement in the inferred
decoded trajectories, which can be seen by higher Density and Coverage metrics across all evaluated
datasets.

Table 2: Comparison of held-out time point reconstruction across models, including the baseline.
EB CMV inf. MEF reprogr.

Latent Decoded Latent Decoded Latent Decoded
WD (↓) MMD (↓) L2 (↓) D (↑) C (↑) WD (↓) MMD (↓) L2 (↓) D (↑) C (↑) WD (↓) MMD (↓) L2 (↓) D (↑) C (↑)

Baseline 2.87 0.56 0.57 0.04 0.13 2.77 0.52 0.55 0.25 0.18 3.21 0.83 0.83 0.12 0.07
Geodesic AE 2.15 0.36 0.40 0.01 0.02 2.09 0.32 0.34 0.02 0.03 2.49 0.54 0.57 0.01 0.00

NB-VAE 2.06 0.29 0.30 0.21 0.37 2.08 0.29 0.33 1.64 0.63 2.08 0.38 0.40 0.13 0.10
Flat NB-VAE 1.54 0.27 0.27 0.31 0.49 1.97 0.36 0.37 3.91 0.84 1.64 0.35 0.36 0.16 0.13
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5.3 Latent vector field quality and lineage mapping

We hypothesise that dynamic OT with Euclidean cost benefits from being applied to a flat represen-
tation space, as the straight path between matched distributions inherently preserves the geometry
enforced in the manifold. We evaluate the quality of the cell-specific directionality learned by our
model using the Pancreas Endocrinogenesis dataset from Bastidas-Ponce et al. [2019]. More specifi-
cally, we follow the experimental setup introduced by Eyring et al. [2022], where a continuous vector
field is learned by matching cell distributions through time. Using the Cellrank software [Lange et al.,
2022, Weiler et al., 2023], we build random walks on a cell graph based on the directionality of latent
velocities learned by OT-CFM. Walks converge to macrostates representing the end points of the
biological process.

a

Flat NB-VAE 
Geodesic AE

NB-VAE

Flat NB-VAE 
Geodesic AE

NB-VAE

Flat NB-VAE 
Geodesic AE

NB-VAE


Flat NB-VAE 
Geodesic AE

NB-VAE

Flat NB-VAE 
Geodesic AE

NB-VAE

Flat NB-VAE 
Geodesic AE

NB-VAE

b

Found terminal state

Missed terminal state

Figure 4: Learning terminal states from OT-CFM cell velocities. (a) Comparison of terminal states
found by CellRank using 10-dimensional latent spaces. (b) Consistency computed for the latent
velocities of cells across different latent space dimensionalities.

In Figure 4a, we summarise the number of terminal cell states identified by following the velocity
graph. From prior biological knowledge, we know that the dataset contains six terminal states, all
of which are identified in the latent space of our proposed Flat NB-VAE. Conversely, walks on the
representations computed by the Geodesic AE and NB-VAE only capture four and five terminal states,
respectively. In Figure 4b, we evaluate the velocity consistency within neighbourhoods of cells as a
function of latent dimensionality. In contrast to the other methods, OT in our flat latent space yields a
more consistent velocity field across latent dimensionalities.

6 Conclusion

We addressed the task of modelling temporal trajectories from unpaired cell distributions by us-
ing walks on flat NB manifolds. To achieve this, we proposed to regularise the pullback metric
from the stochastic decoder of a single-cell VAE to approximate the identity matrix and enforce
Euclidean geometry in the latent space. Our results demonstrate that our flattening procedure not
only preserves but also enhances the biological structure in the latent space. By combining this
approach with dynamic OT, we observed better prediction outcomes and more consistent vector
fields on cellular manifolds. These improvements have practical benefits for central tasks in studying
cellular development, such as fate mapping. In future work, we aim to extend the theory to include a
broader range of statistical manifolds and single-cell tasks, such as modelling Poisson-distributed
chromatin accessibility, estimating latent space distances for batch correction evaluation or enhancing
OT-mediated perturbation modelling.
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A Appendix

A.1 Derivation of the Fisher Information Metric for the Negative Binomial distribution

We first show that the Fisher Information of a univariate Negative Binomial (NB) distribution
parameterised by mean µ and overdispersion θ with respect to µ is

M(µ) =
θ

µ(µ+ θ)
. (19)

We then move on with the derivation of the pullback metric in Eq. (16).

Fisher Information of the NB distribution The univariate NB probability distribution parame-
terised by mean µ and inverse dispersion θ is

pNB(x | µ, θ) =
Γ(θ + x)

x!Γ(θ)

( θ

θ + µ

)θ( µ

θ + µ

)x
. (20)

The Fisher Information of the distribution can be computed with respect to µ as:

M(µ) = −Ep(x|µ,θ)
[
∂2

∂µ2
log pNB(x | µ, θ)

]
. (21)

where

log pNB(x | µ, θ) = C + θ [log(θ)− log(θ + µ)] + x [log(µ)− log(θ + µ)] , (22)

with C = log(Γ(θ + x))− log(x!)− log(Γ(θ)). Then, it can be shown that

∂2

∂µ2
log pNB(x | µ, θ) =

θ + x

(θ + µ)2
− x

µ2
. (23)

Using the fact that the parameterisation involving the mean µ and inverse dispersion θ implies that

Ep(x|µ,θ) [x] = µ , (24)

we can expand Eq. (21) as follows

M(µ) = −Ep(x|µ,θ)
[
θ + x

(θ + µ)2
− x

µ2

]
= − 1

(θ + µ)2
Ep(x|µ,θ) [θ + x] +

1

µ2
Ep(x|µ,θ) [x] (25)

=
θ

µ(µ+ θ)
.

Derivation of the FIM We here consider the NB-VAE case, where the likelihood is parameterised
by µg = hg(z) and θg independently for each gene g.

When h is continuously differentiable function of z, the pullback metric Mg(z) of the output g w.r.t z
by the reparameterisation property [Lehmann and Casella, 1998] is

Mg(z) = ∇zhg(z)M(hg(z))∇zhg(z)
T

=
θg

hg(z)(hg(z) + θg)
∇zhg(z)⊗∇zhg(z) , (26)

where ⊗ is the outer product of vectors, and the gradients are column vectors.

By the chain rule, the joint Fisher Information of independent random variables equals the sum of the
Fisher Information values of each variable [Zamir, 1998]. As all xg are independent given z in the
NB-VAE, the resulting Fisher Information Matrix is

M(z) =
∑
g

Mg(z)

=
∑
g

θg
hg(z)(hg(z) + θg)

∇zhg(z)⊗∇zhg(z) . (27)
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A.2 The geometry of AEs

We deal with the assumption that the observed data lies near a Riemannian manifoldMX embedded
in the ambient space X = RG. The manifoldMX is defined as follows:

Definition 1 A Riemannian manifold is a smooth manifoldMX endowed with a Riemannian metric
M(x) for x ∈ MX . M(x) changes smoothly and identifies an inner product on the tangent space
TxMX at a point x ∈MX as ⟨u,v⟩M = uTM(x)v, with v,u ∈ TxMX .

For an embedded manifold MX with intrinsic dimension d, we can assume the existence of an
invertible global chart map ϕ :MX → Rd mapping the manifoldMX to its intrinsic coordinates. A
vector vx ∈ TxMX on the tangent space ofMX can be expressed as a pushforward vx = Jϕ−1(z)vz

of a tangent vector vz ∈ Rd at z = ϕ(x), where J indicates the Jacobian. Therefore, Jϕ−1 maps
vectors v ∈ Rd into the tangent space of the embedded manifoldMX . Following Arvanitidis et al.
[2021], the ambient metric M(x) can be represented in terms of intrinsic coordinates as:

M(z) = Jϕ−1(z)TM(ϕ−1(z))Jϕ−1(z) . (28)

In other words, we can use the intrinsic formulation M(z) to compute quantities on the manifold, such
as geodesic paths. However, for an embedded manifoldMX , the chart map ϕ is usually not known.
A workaround is to define the geometry ofMX on another Riemannian manifold Z with a trivial
chart map ϕ(z) = z, which can be mapped toMX via a smooth immersion h. In the next section,
we elaborate on the connection between manifold learning and autoencoders following Arvanitidis
et al. [2021, 2022].

A.2.1 Deterministic AEs

We assume the decoder h : Z = Rd → X = RG of a deterministic autoencoder is an immersion of
the latent space into a Riemannian manifoldMX embedded in X and with metric M. This is valid
if one also assumes that d is the intrinsic dimension ofMX . As explained before, the Jacobian of
the decoder maps tangent vectors vz ∈ TzZ in the latent space to tangent vectors vx=h(z) ∈ TxMX .
The decoder induces a metric into the latent space following Eq. (28) as

M(z) = Jh(z)TM(h(z))Jh(z) , (29)

called pullback metric. The pullback metric defines the geometry of the latent space Z in relation to
that of the manifoldMX . The metric tensor M(z) regulates the inner product of vectors u and v on
the tangent space TzZ:

⟨u,v⟩M = uTM(z)v . (30)
To enhance latent representation learning, distances in the latent space Z can be optimised according
to quantities of interest in the observation space X , following the geometry ofMX . For instance,
we can define the length of a curve γ : [0, 1]→ Z in the latent space by measuring its length on the
manifoldMX = h(Z):

L(γ) =

∫ 1

0

∥∥∥ḣ(γ(t))∥∥∥ dt

=

∫ 1

0

√
γ̇(t)TM(γ(t))γ̇(t)dt , (31)

where the equality is derived by applying the chain rule of differentiation.

A.2.2 Pulling back the information geometry

In machine learning, exploring latent spaces is crucial, especially in generative models like VAEs.
One challenge is defining meaningful distances in the latent space Z , which often depends on
the properties of stochastic decoders and their alignment with the observation space X . Injecting
the geometry of the decoded space of a VAE into the latent space requires a different theoretical
framework, where the data is assumed to lie near a statistical manifold.

VAEs can model different kinds of data types by using the decoder function as a non-linear likelihood
parameter estimation model. We consider the decoder’s output space as a parameter spaceH for a
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probability density function. Depending on the data type, we express a likelihood function p(x | θ)
with parameters θ ∈ H, reformulated as p(x | z) through a mapping h : Z → H. We aim to define a
natural distance measure in Z for infinitesimally close points z1 and z2 = z1 + δz when seen from
H. Arvanitidis et al. [2022] justify that such a distance corresponds to the Kullback-Leibler (KL)
divergence:

dist2(z1, z2) = KL(p(x | z1), p(x | z2)) . (32)
To define the geometry of the statistical manifold, one can resort to Information Geometry, which
studies probabilistic densities represented by parameters θ ∈ H. In this framework, H becomes a
statistical manifold equipped with a Fisher Information Metric (FIM):

M(θ) =

∫
X
[∇θ log p(x | θ)][∇θ log p(x | θ)]T p(x | θ) dx . (33)

The FIM metric locally approximates the KL divergence. For the univariate case, it is known that

KL(p(x | θ), p(x | θ + δθ)) ≈ 1

2
δθ⊤M(θ)δθ + o(δθ2) . (34)

In the VAE setting, we view the decoder not as a mapping to the observation space X but as a
transformation to the parameter spaceH. This perspective allows us to naturally incorporate the FIM
metric into the latent space Z . Consequently, the VAE can be seen as spanning a manifold h(Z) in
H, with Z inheriting the metric in Eq. (33) via the Riemannian pullback. Based on this, we define a
statistical manifold.

Definition 2 A statistical manifold is represented by a parameter spaceH of a distribution p(x | θ)
and is endowed with the FIM as the Riemannian metric.

The Riemannian pullback metric is derived as in Eq. (29). Having defined the Riemannian pullback
metric for VAEs with arbitrary likelihoods, one can extend the measurement of curve lengths in Z
when mapped toH through h as displayed by Eq. (31). This approach allows flexibility in the choice
of the decoder, as long as the FIM of the chosen distribution type is tractable.

A.3 Baseline description

Here, we describe the Geodesic Autoencoder (GAE) from Huguet et al. [2022]. For more details on the
theoretical framework, we refer to the original publication. The GAE works by matching Euclidean
distances between latent codes with the diffusion geodesic distance, which is an approximation of the
diffusion ground distance in the observation space.

Briefly, the authors compute a graph with affinity matrix based on distances between observations i
and j using a Gaussian kernel as:

(Kϵ)ij = kϵ(xi,xj) , (35)
with scale parameter ϵ, where xi,xj ∈ X and X is the observation space. The affinity is then density-
normalised by Mϵ = Q−1KϵQ

−1, where Q is a diagonal matrix such that Qii =
∑
j(Kϵ)ij . To

compute the diffusion geodesic distance, the authors additionally calculate the diffusion matrix
Pϵ = D−1Mϵ, with Dii =

∑n
j=1(Mϵ)ij and stationary distribution πi = Dii/

∑
jDjj . The

diffusion geodesic distance between observations xi and xj is

Gα(xi,xj) =

K∑
k=0

2−(K−k)α∥(Pϵ)
2k

i: − (Pϵ)
2k

j: ∥1 + 2−(K+1)/2∥πi − πj∥1 , (36)

with α ∈ (0, 1/2). The running value of k in Eq. (36) defines the scales at which similarity between
the random walks starting at xi and xj are computed.

Given the diffusion geodesic distance Gα defined in Eq. (36), the GAE model is trained such that the
pairwise Euclidean distances between latent codes approximate the diffusion geodesic distances in
the observation space X , in a batch of size B. Given an encoder f : RG → Rd, the reconstruction
loss is optimised alongside a geodesic loss

Lgeodesic =
2

B

N∑
i=1

∑
j>i

(∥f(xi)− f(xj)∥2 −Gα(xi,xj))2 . (37)

15



Table 3: Hyperparameter sweeps for training Flat NB-VAE. The hidden dimension column excludes
the latent space layer, which is set to 10 unless specified otherwise. In bold, is the selected value used
to present the results in the main.

batch size hidden dims λ

EB 32, 256, 512 [1024, 512, 256], [512, 256], [256] 0.001, 0.01, 0.1, 1, 10
Pancreas 32, 256, 512 [1024, 512, 256], [512, 256], [256] 0.001, 0.01, 0.1, 1, 10

CMV 32, 256, 512 [1024, 512, 256], [512, 256], [256] 0.001, 0.01, 0.1, 1, 10
MEF 32, 256, 512 [1024, 512, 256], [512, 256], [256] 0.001, 0.01, 0.1, 1, 10

A.4 Model setup

Experimental details for Autoencoder models The Geodesic AE, NB-VAE and Flat NB-VAE
models are trained via shallow 2-layer neural networks with hidden dimensions [256, 10]. Between
consecutive layers, we include batch normalisation, as we found that it improves the reconstruction
loss. Non-linearities are introduced by the ELU activation function. Models are trained for 1000
epochs monitoring the VAE loss for early stopping with a 20-epoch patience. The learning rate is set
by default to 1e-3. Additionally, we increase the KL divergence from 0 to 1 linearly across epochs
in VAE models. The NB-VAE and Flat NB-VAE models were trained with a batch size of 32. For the
geodesic AE model, we employed a batch size of 256 after sweeping all values in {64, 100, 256}.
Importantly, the geodesic autoencoder was trained to reconstruct log-normalised counts as opposed to
the NB-VAE and Flat NB-VAE, since it does not assume a NB decoder. Finally, for training stability,
all encoders were fed with log(1 + x) given an input x. The list of hyperparameter sweeps for Flat
NB-VAE together with the selected values based on the validation loss is provided in Table 3.

Experimental details for OT-CFM For OT-CFM we use a 3-layer MLP with 64 hidden units per
layer, a SELU activation function and a learning rate of 1e-3. The velocity network is fed with a latent
state concatenated with a scalar representing the time used for interpolation. Following suggestions
from the OT-CFM repository 2, in each epoch we collect batches of cells from all time points to
compute the objective for backpropagation. The variance hyperparameter σ is set to 0.1 by default.

A.5 Evaluation metrics

A.5.1 Metric description

Magnification factor The magnification factor [Bishop et al., 1997] is calculated as:

MF(z) =
√
detM(z) . (38)

Here, M(z) represents the Riemannian metric tensor. Proximity to 1 reflects the similarity of the
metric to the identity matrix.

Variance of the Riemannian metric In assessing the Riemannian metric, we introduce a key
evaluation called the Variance of the Riemannian Metric (VoR) [Pennec et al., 2006]. VoR is defined
as the mean square distance between the Riemannian metric M(z) and its mean M̄ = Ez∼PZ [M(z)].
As suggested in Lee et al. [2022], we compute the VoR employing an affine-invariant Riemannian
distance metric d, expressed as:

d2(A,B) =

m∑
i=1

(
log λi(B

−1A)
)2
, (39)

where λi(B−1A) indicates the ith eigenvalue of the matrix B−1A. VoR provides insights into
how much the Riemannian metric varies spatially across different z values. When VoR is close to
zero, it indicates that the metric remains constant throughout the support of Pz. This evaluation
procedure focuses solely on the spatial variability of the Riemannian metric and is an essential aspect
of assessing the learned manifolds. Note that the expected value in Eq. (39) is estimated using latent
batches of size 256.

2https://github.com/atong01/conditional-flow-matching

16

https://github.com/atong01/conditional-flow-matching


Density [Naeem et al., 2020] Let Y and X be sets of generated and real data points with M and
N observations, respectively. The neighbourhood sphere B(xi,NNDk(xi)) is the spherical region
around a real datapoint xi with, as radius, the Nearest-Neighbourhood-Distance (NND), hence the
distance between xi the furthest of its k-nearest neighbours. For a generated sample yi, Density
evaluates the number of real neighbourhood spheres that encompass yj . Mathematically, the metric
is defined as:

Density(X,Y) =
1

kM

M∑
j=1

N∑
i=1

1yj∈B(xi,NNDk(xi)) . (40)

The Density metric rewards generated samples situated in regions where real samples are densely
clustered. Importantly, Density can be higher than 1.

Coverage [Naeem et al., 2020] Similar to Density, Coverage builds a k-nearest-neighbourhood
around the real samples as the sphere B(xi,NNDk(xi)). Given real and generated samples X and Y
with N and M observations, Coverage is defined as:

Coverage(X,Y) =
1

N

N∑
i=1

(
1∃j s.t.yj∈B(xi,NNDk(xi))

)
. (41)

Thus, Coverage measures the fraction of real samples whose neighbourhoods contain at least one
generated sample. The score is bounded between 0 and 1.

Velocity consistency [Gayoso et al., 2023] This metric quantifies the average Pearson correlation
between the velocity v(xj) of a reference cell xj and the velocities of its neighbouring cells within
the k-nearest-neighbour graph. It is mathematically expressed as:

c =
1

k

∑
x∈Nk(xj)

corr(v(xj), v(x)) . (42)

Here c represents the Velocity Consistency, k denotes the number of nearest neighbours considered
in the k-nearest-neighbour graph, xj is the reference cell, Nk(xj) represents the set of neighbouring
cells. The value corr(v(xj), v(x)) is the Pearson correlation between the velocity of the reference
cell v(xj) and the velocity of each neighbouring cell v(x). Higher values of c indicate greater local
consistency in velocity across the cell manifold.

A.5.2 Metric computation

Trajectory reconstruction experiments In Table 2, we explore the performance of OT on different
embeddings based on the reconstruction of held-out time points. For most datasets, we evaluate the
leaveout performance on all intermediate time points. The only exception is the MEF reprogramming
dataset [Schiebinger et al., 2019], where we conduct our evaluation holding out time points 2, 5, 10, 15,
20, 25 and 30 to limit the computational burden of the experiment. After training OT-CFM excluding
the hold-out time point t, we collect the latent representations of cells at t − 1 and simulate their
trajectory until time t, where we compare the generated cells with the ground truth via distribution
matching metrics. Density and Coverage in the gene expression space are used to evaluate the mixing
between the real and generated cells. Their values are computed in the PCA space of 50 dimensions
of the log-transformed real and generated gene expression, considering 10 neighbours. Finally, for
the latent reconstruction quantification, generated latent cell distributions at time t are standardised
with the mean and standard deviation of the latent codes of real cells at time t to make the results
comparable across embedding models. Results in Table 2 are averaged across three seeds.

Fate mapping with CellRank Following the setting proposed by Eyring et al. [2022], we compute
the latent velocity field with OT-CFM and input the velocities to CellRank [Lange et al., 2022,
Weiler et al., 2023]. Using the function g.compute_macrostates(n_states, cluster_key)
of the GPPC estimator for macrostate identification [Reuter et al., 2018], we look for 10 to 20
macrostates. If OT-CFM cannot find one of the 6 terminal states within 20 macrostates for a
certain representation, we mark the terminal state as missed (see Figure 4). Terminal states
are computed with the function compute_terminal_states(method, n_states). Velocity
consistency is estimated using the scVelo package [Bergen et al., 2020] through the function
scv.tl.velocity_confidence(adata_latent_flat). The value is then averaged across cells.
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Lineage driver analysis Figure 3b We examine if lineage driver expression matches between
real and predicted expression data. OT-based simulations are performed by pushing forward cells at
time point t0 using the learnt integration map. Pushed-forward cells are not annotated. We use label
transfer to label cell clusters in the generated datasets based on the real data using the sc.tl.ingest
Scanpy function [Wolf et al., 2018].

A.6 Data

A.6.1 Data description

Embryoid Body (EB) Moon et al. [2019] measured the expression of 18,203 differentiating human
embryoid single cells across 5 time points. From an initial population of stem cells, approximately
four lineages emerged, including Neural Crest, Mesoderm, Neuroectoderm and Endoderm cells. Here,
we resort to a reduced feature space of 1241 highly variable genes. OT has been readily applied to the
embryoid body datasets in multiple scenarios [Tong et al., 2020, 2023], making it a solid benchmark
for time-resolved single-cell trajectory inference. The data is split into 80% training and 20% test
sets.

Pancreatic Endocrinogeneris (Pancreas) We consider 16,206 cells from Bastidas-Ponce et al. [2019]
measured across two time points corresponding to embryonic days 14.5 and 15.5. In the dataset,
multipotent cells differentiate branching into endocrine and non-endocrine lineages until reaching 6
terminal states. Challenges concerning such dataset include bifurcation and unbalancedness of cell
state distributions across time points [Eyring et al., 2022]. The data is split into 80% training and
20% test sets.

Infection Dataset (CVM) We include the single-cell dataset from Hein and Weissman [2021] which
profiles 12,919 fibroblasts infected by Cytomegalovirus across 7 time points. For trajectory inference,
we subset the dataset to include only the human genome with the 2000 top highly variable genes.
A challenge with this dataset is its reduced number of observations compared with its counterpart
examples. The data is split into 90% training and 10% test sets.

Reprogramming Dataset (MEF) We consider the dataset introduced in Schiebinger et al. [2019],
which studies the reprogramming of Mouse Embryonic Fibroblasts (MEF) into induced Pluripotent
Stem Cells (iPSC). The dataset consists of 165,892 cells profiled across 39 time points and 7 cell
states. For this dataset, we keep 1479 highly variable genes. Due to its number of cells, such a dataset
is the most complicated to model among the considered. The data was split into 80% training and
20% test sets.

A.6.2 Data preprocessing

We use the Scanpy [Wolf et al., 2018] package for single-cell data preprocessing. The general pipeline
involves normalisation via sc.pp.normalize_total, log-transformation via sc.pp.log1p and
highly-variable gene selection using sc.pp.highly_variable_genes. 50-dimensional embed-
dings are then computed via PCA through sc.pp.pca. We then use the PCA representation
to compute the 30-nearest-neighbour graphs around single observations and use them for learn-
ing 2D UMAP embeddings of the data. For the latter steps, we employ the scanpy functions
sc.pp.neighbours(adata) and sc.tl.umap(adata). For the CMV dataset [Hein and Weiss-
man, 2021], we exclude the viral genome and only keep human gene expression.

A.7 Details about computational resources

Our model is implemented in Python 3.10, and for deep learning models, we used PyTorch 2.0. For
the implementation of NeuralODE-based simulations, we use the torchdyn package. Our experiments
ran on different GPU servers with varying specifications:

• GPU: 16x Tesla V100 GPUs (32GB RAM per card)
• GPU: 2x Tesla V100 GPUs (16GB RAM per card)
• GPU: 8x A100-SXM4 GPUs (40GB RAM per card)
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A.8 Additional results
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Figure 5: Latent vector field prediction visualised on 2D UMAP plots and latent reconstructions from
OT-based simulations in the EB dataset. WD represents the 2-Wasserstein distance between real and
generated latent representations of cells.
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Figure 6: Latent vector field prediction visualised on 2D UMAP plots and latent reconstructions
from OT-based simulations in the CMV infection dataset. WD represents the 2-Wasserstein distance
between real and generated latent representations of cells.
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Pancreas
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Figure 7: Latent vector field prediction visualised on 2D UMAP plots and latent reconstructions from
OT-based simulations in the pancreas dataset. WD represents the Wasserstein distance between real
and generated latent representations of cells.
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