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Abstract
Deep reinforcement learning agents achieve impressive results in a wide variety
of tasks, but they lack zero-shot adaptation capabilities. While most robustness
evaluations focus on tasks complexifications, for which human also struggle to
maintain performances, no evaluation has been performed on tasks simplifications.
To tackle this issue, we introduce HackAtari, a set of task variations of the Arcade
Learning Environments. We use it to demonstrate that, contrary to humans, RL agents
systematically exhibit huge performance drops on simpler versions of their training
tasks, uncovering agents’ consistent reliance on shortcuts. Our analysis across multiple
algorithms and architectures highlights the persistent gap between RL agents and human
behavioral intelligence, underscoring the need for new benchmarks and methodologies
that enforce systematic generalization testing. It demonstrates the need to integrate more
human inductive bias to achieve truly intelligent agents.

1 Introduction

Deep reinforcement learning (RL) has become a key technique for training agents to solve relational
reasoning tasks directly from high-dimensional sensory inputs (Zambaldi et al., 2018). In these tasks,
agents must identify distinct entities, infer their relationships, and model their dynamics to derive
effective decision-making policies. The Arcade Learning Environment (ALE) (Bellemare et al.,
2013) is the most widely used benchmark for evaluating RL algorithms in this setting, offering a
diverse collection of Atari 2600 games that span a broad range of perceptual and strategic challenges,
including spatial reasoning, long-term planning, and real-time reaction. In their seminal work, Mnih
et al. (2015) introduced the first deep RL method able to solve many ALE games and claimed that
when “agents are confronted with a difficult task: they must derive efficient representations of the
environment from high-dimensional sensory inputs, and use these to generalize past experience to new
situations”. Inspired by the brain’s visual processing mechanisms, they incorporated convolutional
neural networks to extract spatial features from raw pixels. Deep RL algorithms have then been
improved and finally achieved superhuman performance in all Atari games (Badia et al., 2020a;b).
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However, the capacity of these agents to “generalize experiences from past situations to novel
scenarios”, core to relational reasoning, is rarely assessed by RL practitioners. Traditional benchmarks
typically involve training and evaluating agents within identical environments, thereby masking their
reliance on shortcuts and spurious correlations. This is a particularly troubling issue, given recent
evidence that RL agents often exploit superficial shortcuts rather than learning robust, causal strategies
(Ilyas et al., 2019; Geirhos et al., 2020; Chan et al., 2020; Koch et al., 2021; Delfosse et al., 2024b).

This reliance on shortcuts has lately been uncovered in the simplest Atari Pong game (depicted in
Figure 4). In this game, the agent’s enemy follows a deterministic behavior based on the position
of the ball. Delfosse et al. (2024b) have thus exposed that deep and symbolic RL agents learn to
rely on the enemy’s position to catch and return the ball optimally. Hiding the enemy or altering its
behavior thus leads to a performance drop. While the inability of DQN agents to zero-shot generalize
to complexified versions of their training environment has been showcased (Farebrother et al., 2018),
there has not yet been any systematic evaluation of the potential misalignments of RL agents. To
assess whether RL agents learn the right behaviors, we evaluate them on simplified task variations
that humans can easily adapt to - such as color changes or gameplay simplifications - ensuring that
performance drops reveal flawed reasoning rather than increased task difficulty.

In this article, we demonstrate that current deep and symbolic RL agents systematically fail to solve
simplified variants of their training tasks, supporting that human-level performances in training
settings does not imply human-like reasoning capabilities. We present a systematic investigation
of generalization failures in RL using controlled environment modifications, most of which simplify
the original tasks. We release HackAtari1, a suite of environment variations for the most widely
used RL benchmark: the Arcade Learning Environments (Bellemare et al., 2013). We argue that RL
agents should be evaluated on held-out task variations – common practice in machine learning – to
enable meaningful comparisons with human intelligence, particularly in relational reasoning domains.
While our current focus is empirical, our findings align closely with established literature on shortcut
learning and spurious correlations in representation learning (e.g., Geirhos et al. (2020); Ilyas et al.
(2019). Future work may build on this to develop formal models of such behavior.

Our main contributions can be summarized as follows:
(i) We show that deep RL agents fail to generalize to task simplifications and consistently rely on
shortcut learning – selecting the right actions for the wrong reasons, regardless of the algorithm.
(ii) We show that symbolic/object-centric agents exhibit better adaptation capabilities, but are not
yet able to match humans’ one.

(iii) We conduct a user study to assert users’ abilities to maintain their performances within many of
these variations, and thus provide performance references for these simplifications.

(iv) We open-source a wide range of variations for the Arcade Learning Environments, opening up
new possibilities for designing and testing RL agents with supposed human-like intelligence.

In the following, we present the different RL agents’ architectures and algorithms used in this article.
We then introduce our HackAtari framework and use it to evaluate RL agents’ generalization ability.

2 The Quest for General RL algorithms

The objective of relational reasoning RL is to develop general agents with human-comparable problem-
solving skills. This goal encompasses two key subgoals: (1) designing a single, versatile algorithm that
can be applied across a wide range of tasks, and (2) enabling trained agents to generalize effectively
to variations of their training tasks. This work focuses on the second aspect of generality. We here
evaluate two prominent classes of agents: deep RL agents and neurosymbolic agents. Task agnostic
deep agents often struggle with overfitting and generalization to task variations (Farebrother et al.,
2018). In contrast, neurosymbolic agents introduce inductive biases by representing environments in
terms of objects and their interactions, supporting abstract and transferable representations.

1HackAtari available at https://github.com/k4ntz/HackAtari.

https://github.com/k4ntz/HackAtari
https://github.com/k4ntz/HackAtari


Deep RL Agents are not even close to Human Intelligence

Task agnostic deep RL agents have been introduced with the Deep Q-Networks (DQN) (Mnih et al.,
2015) algorithm, demonstrating that a single convolutional architecture could learn to play a variety
of Atari games directly from pixel inputs, establishing a foundation for general-purpose deep RL.
Subsequent improvements extended DQN along several dimensions: C51 (Bellemare et al., 2017)
returns distributions to capture uncertainty better. M-DQN (Vieillard et al., 2020) introduces entropy-
regularized rewards to improve training stability. Rainbow (Hessel et al., 2018) combines several
of these enhancements into a widely used baseline. i-DQN (Vincent et al., 2025) enables multiple
consecutive Bellman updates through a sequence of learned action-value functions. On-policy
methods like PPO (Schulman et al., 2017) and distributed frameworks such as IMPALA (Espeholt
et al., 2018) offer scalable alternatives with strong empirical performance. More recently, model-
based agents like Dreamer (Hafner et al., 2020) learn latent dynamics models and perform planning
in imagination, yielding greater sample efficiency and improved extrapolation in high-dimensional
visual environments. The ease of adaptation of deep RL algorithms to novel tasks, requiring no expert
knowledge injection, explains their widespread adoption in relational RL (Shaheen et al., 2025).

Object-centric and neurosymbolic agents incorporate stronger inductive biases through structured
representations but require specific domain adaption. Early work on object-oriented MDPs (Diuk
et al., 2008) introduced state decompositions based on object attributes and relations, enabling policies
to reason abstractly over entities rather than raw pixel arrays. Recent methods build on this idea to
improve both interpretability and generalization. Unsupervised object extraction methods (Lin et al.,
2020; Delfosse et al., 2023b) have allowed RL practitioners to develop symbolic policies. Jiang
& Luo (2019) and Delfosse et al. (2023a) represents policies as sets of logic rules over symbolic
object states, showing transfer to environments with varying object types and counts. Shindo et al.
(2025) leverages large language models to autonomously generate predicates from visual inputs and
integrate symbolic reasoning with deep learning in a hybrid policy architecture. Other approaches
constrain object-centric policy representations to interpretable structures such as polynomials (Luo
et al., 2024), decision trees (Bastani et al., 2018; Delfosse et al., 2024b; Marton et al., 2025), or
programs (Cao et al., 2022; Liu et al., 2023; Kohler et al., 2024). These methods are usually also
tested in tasks that require extrapolating to unseen object configurations or recombining learned
behaviors across novel layouts. Finally, object-centric deep agents have been developed. They make
use of object-centric masking (Davidson & Lake, 2020; Blüml et al., 2025), removing background
information to force attention on dynamic entities without relying on explicit symbolic conversion.

3 Creating ALE variations

Our main objective is to show that relational reasoning RL agents consistently learn misaligned
policies, i.e. that they rely on shortcuts. To explicitly exhibit opaque deep RL agents’ reliance on
shortcuts, we need to evaluate them on altered version of the environment, that allow to test that they
select the right actions for the right reason. Evaluations on tasks variations have been conducted in the
past on more complex environments (Farebrother et al., 2018). However, the eventual performance
drops do not imply the agent’s misalignment, as it could stem from bad adaptation capabilities. To
assert that relational reasoning agents learn incorrect policies, and have not mastered the desired set
of skills necessary to solve the game, we need to test them on tasks simplifications, i.e. tasks that will
lead humans to increase or maintain their overall performances.

To do so, we introduce HackAtari, a set of variations (mostly simplifications) of ALE. A complete
description of HackAtari and many examples are available in Appendix A and H. In the next section,
we use HackAtari to show that RL agents learn policies incapable of adapting tasks simplifications.

4 Experimental Evaluation

Let us now empirically evaluate several aspects of deep and object-centric RL agents’ generalization
capabilities, focusing specifically on their ability to handle simplified variations of their original
training tasks. We here aim to answer the following research questions:
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Figure 1: Deep and symbolic RL agents performances drop on HackAtari variations, illustrated
by the IQM (following reliable (Agarwal et al., 2021)) over the human normalized scores (HNS) of
various RL agents on a total set of 32 task variations (over 17 games). IQMs are computed over 3
seeded trained agents (30 evaluations each). Expert-human scores are borrowed from Badia et al.
(2020a). Performance in the original environment is plotted filled, while the performance in the
modified environment is plotted hatched. Raw IQM scores (with CIs) for each agent on each game
(original and variations) and extended results are provided in Appendix E.1 and E.2.

(Q1) Do RL agents’ performance drop on HackAtari tasks variations?
(Q2) Can human easily adapt to such tasks variations?
(Q3) Are deep agents systematically learning shortcuts on relational reasoning tasks?
(Q4) Do human inductive biases help aligning RL agents?

Experimental Setup. We evaluate a diverse set of RL agents, including standard value-based
methods: DQN (Mnih et al., 2015), C51 (Bellemare et al., 2017) and i-DQN (Vincent et al.,
2025), policy-gradient methods: PPO (Schulman et al., 2017) and IMPALA (Espeholt et al.,
2018)). All agents use the nature-CNN neural network, except for IMPALA, whose authors have
come up with a more complex neural network using neural architecture search. We also evaluate
several object-centric variants: OCCAM (Blüml et al., 2025), Object-centric agents using neural
networks (Delfosse et al., 2024a), SCoBots (Delfosse et al., 2024b). Most tested agents have been
collected from their official repository, with only deep PPO and OCNN variants trained in-house
using the CleanRL framework (Huang et al., 2022). Detailed training settings, architectures, and
source references for each agent are provided in Appendix C. As commonly done, all agents are
trained for 200 million frames on the Atari environments (v5) using a fixed frameskip of 4 and a
repeat action probability of 0.25, following established evaluation protocols (Machado et al., 2018).
A complete hyperparameters list can be found in the extended experimental setup (cf. Appendix E).
To assess generalization, we evaluate each agent HackAtari controlled environment variations, with
some described in Section 3. The evaluation is conducted over 30 episodes per game per agent, using
at least 3 different evaluation seeds per agent. This resource-limited evaluation suffices to assert the
consistent performance drops of the agents (as shown by confidence intervals (CI) in Appendix E.1).
For metrics, we report Expert-Humans Normalized Score (E-HNS), with expert scores borrowed
from Badia et al. (2020a), and the random scores evaluated in house both on the original and the task
variations (cf. Table E.3), following Agarwal et al. (2021), as well as Performance Drop, aggregated
using the inter-quartile Mean (IQM) and 95% CI. The Performance Drop is positive if the agent’s
performance increases, null if the performance does not change, and negative if the performance
drops. Note that in the computation of these metrics, the average score, obtained by random agents
(on the original or on the tasks variation) is ablated. These metrics enable robust comparisons of the
ability of agents to generalize to task variations. For further details on the metrics, cf. Appendix B.

To evaluate the effect of the game variations on human performance, we conducted an online study
with 135 subjects on 15 games and a variation for each (on the Prolific platform). We included English
speaking participants from around the world and all age groups (Mean Age: 33, Range:[18-73]).
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Figure 2: While humans easily adapt to task simplifications, deep agents’ performances drop,
illustrated on 15 ALE games. Non-expert users and deep RL agents are trained and evaluated on the
original ALE environment, then presented with a variation of the task. Left: Variations considered
as task simplifications by design. Right: Variations for which little or no performance increase is
expected. Games for which no C51 agent is publicly available are marked with ×. For the exact
performances of humans and deep agents, cf. Appendix E.1 and E.3.

The subjects were allowed to train for 10 to 15 minutes on the original game. They were then
evaluated for 15 minutes on the original task, and finally for 15 minutes on a HackAtari variation
(for the game and variation list, cf. Appendix E.3). Each subject was only trained and evaluated on
a single game and its variation. Unlike to Badia et al. (2020a), we have not selected professional
gamers, to avoid biased evaluations, potentially stemming from such users’ ability to perform well on
any video game task (thus not directly measuring their ability to adapt to the variations), but there
overall zero-shot (or no training) performances. For more details on the evaluation protocol and
demographics studies, cf. Appendix G. Let us now demonstrate that current RL agents consistently
learn shortcuts, and fail to adapt to task simplifications.

RL agents’ performance drop on HackAtari most tasks variations (Q1). We first evaluate all the
available RL algorithms on a subset of 17 ALE games (the ones with publicly available agents; C51
was only available for 12 games), with 1 to 4 variations per game. Figure 1 depicts the expert-human
normalized scores, averaged using IQMs, for each algorithm, on the 17 original games and on the
30 modifications. Every RL agent exhibits a significant performance drop over the complete set of
tested variations. Remarkably, SCoBots agents exhibit the lowest E-HNS performance drop (20%
overall), and IMPALA maintains an average superhuman performance in the game variations. This
outlines that changing the architecture or inference paradigm has a bigger impact on the ability of
agents to adapt to task variations than varying the algorithm. However, we still need to demonstrate
that these agents learn misaligned policies that prevent them from adapting to simplifications, and do
not fail on the variations because of potential increased game complexities.

Human adaptation to simplification far exceeds RL agents’ ones (Q2). Our claim that RL agents
learn misaligned policies is grounded in evaluating them on task simplifications—variations where
human performance is expected to remain stable or improve. To validate this, we conducted a user
study on 15 games, each with one simplified variation where most agents exhibit performance drops.
We recruited 134 participants (at least 8 per game), who were trained and evaluated on both the
original ALE task and its variation. We measured the change in performance for each participant
and agent separately. As shown in Figure 2, human performance improves notably on 11 games,
slightly increases on 2, and only drops on Bankheist and MsPacman. In Bankheist, new chasing
police cars introduce risk but higher rewards, leading to mixed outcomes depending on player strategy
(cf. Appendix G.6). For MsPacman, performance drops may stem from participant fatigue or reliance
on overfit strategies that don’t transfer across altered mazes. Still, human drops remain well below
those of all evaluated agents. Together with Section 3 and Appendix H, these results confirm that the
15 variations used are valid simplifications from a human perspective.
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Figure 3: Object-centric RL agents also fail to adapt to simplified environments. Different
object-centric approaches (all using PPO) are here compared to the classical CNN baseline on the
same 15 variations (as Figure 2). Visual perturbations (e.g. color change, left) have a very limited
impact on the symbolic agents, while most gameplay modifications (left) still cannot be solved by
these agents. Extended results are available in Appendix E.2.

Deep agents fail to adapt to task simplifications (Q3). Let us now investigate whether deep agents
can adapt to task simplifications. We evaluate several widely-used algorithms, including DQN, PPO,
C51, IMPALA, i-DQN, and MQN, across many original Atari environments and some simplified
variations included in HackAtari. Figure 2 shows that, contrary to humans, all agents exhibit severe
performance drops in most of the task variations. Even IMPALA’s performances drop by more
than 50% on 10 out of 15 games. All other algorithms exhibit even higher performance drops (also
confirmed by Figure 1). Deep RL agents can thus not maintain their performances on most task
simplifications, demonstrating their inability to learn meaningful, aligned policies.

The object-centric inductive bias is not enough (Q4). RL agents relying on more human inductive
biases could help narrow the gap between deep agents and humans. The most common bias is object-
centricity, with agents that first extract the depicted objects and their properties (such as position,
color, size) from the pixel states. Such representations have been shown to improve transferability and
interpretability in structured environments (Shindo et al., 2025). We thus evaluate whether introducing
object-centric representations enhance the agents’ ability to generalize to simplifications. Figure 3
shows Performance Change for object-centric agents. As these agents are all trained using PPO, we
also provide also include deep (i.e. using Nature-CNN) PPO baseline. As expected, these agents
are insensitive to visual perturbations (e.g. color changes). Notably, decision tree based SCoBots
agents have limited performance drops (<30%), on 9 out of 15 games. However, even on most tasks
with gameplay alterations, all object-centric agents exhibit high performance drops. Overall, even if
these symbolic architectures generally adapt better than the deep pixel-based PPO baseline, they still
exhibit notable performance drops. These findings suggest that while object-centricity helps, it alone
is insufficient for robust generalization to simpler tasks.

Overall, our analysis demonstrates the global incapacity of both deep and symbolic agents to adapt to
task simplifications, as they often completely overfit to their training tasks. RL agents do not “derive
efficient representations allowing to generalize past experience to new situations” (Mnih et al., 2015).

5 Related Work

Generalization Benchmarks and Failures. Traditional generalization evaluations often focus
on performance in fixed environments, leading to overfitting and a poor understanding of agents’
robustness. Extensions to the Arcade Learning Environment (ALE) such as sticky actions (Machado
et al., 2018), unseen modes (Cobbe et al., 2019) and action noise (Koch et al., 2021) introduced limited
variability to probe robustness. Zhang et al. (2018) also focus on perturbations on the observation
space of the ALE by evaluating trained agents against abrupt background changes.
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More ambitious frameworks like CoinRun (Cobbe et al., 2019) and Procgen (Cobbe et al., 2020)
procedurally generate diverse levels, but this does not prevent misalignment di Langosco et al.
(2022). Crafter (Hafner, 2022) and MineRL (Guss et al., 2019; Milani et al., 2020) further emphasize
compositionality and long-term credit assignment. However, these benchmarks increase perceptual or
structural complexity, making it difficult to disentangle poor adaptation from underlying misalignment.
In contrast, our work mainly introduces simplifications that preserve task semantics while reducing
difficulty, revealing performance failures even in settings where humans readily adapt.

Misalignment and Shortcut Learning. We show that RL agents often succeed by exploiting spuri-
ous correlations or shallow heuristics, rather than learning task-aligned policies. This phenomenon,
known as shortcut learning (Geirhos et al., 2020), has been documented in supervised vision (Ilyas
et al., 2019; Stammer et al., 2021) and increasingly in RL (Zhang et al., 2018; Cobbe et al., 2020;
Koch et al., 2021; Delfosse et al., 2024b). Recent interpretability efforts, such as saliency maps and
attention overlays, suggest that agents attend to task-relevant regions (Greydanus et al., 2018), yet
fail to capture the latent reasoning process. In Pong, for instance, agents may appear to track the ball
but instead use opponent behavior as a proxy (Delfosse et al., 2024b). While robustness techniques
such as adversarial regularization (Pinto et al., 2017) and domain randomization (Tobin et al., 2017)
offer partial defenses, they do not prevent agents from failing when irrelevant cues are removed. By
evaluating agents on simplified tasks, where human performance is stable or improves, we isolate
misalignment not as failure to adapt, but as failure to learn to select actions for the right reasons.

6 Towards RL policies aligned with the true task goals

Evaluating agents’ robustness through simplifications to better reflect human-like reasoning.
Robust reinforcement learning is often framed as worst-case optimization (Tamar et al., 2014; Moos
et al., 2022) or adversarial training (Pinto et al., 2017), with recent work addressing observation
perturbations through network sparsity (Grooten et al., 2023) or Lipschitz constraints (Barbara et al.,
2024). However, RL agents often fail on simplified versions of their training tasks – settings where
humans adapt effortlessly. This reveals a reliance on superficial cues rather than robust relational
reasoning. We argue that testing agents on logically simpler variations is essential for evaluating true
generalization. HackAtari allows for testing whether agents truly understand the task, challenging
the common assumption — reflected in metrics like the Human Normalized Score — that achieving
human-level performance implies human-like reasoning. We advocate for benchmarks that explicitly
test relational understanding, as the ones appearing in supervised learning setting (Helff et al., 2025;
Wüst et al., 2025) and for integrating human inductive biases to align RL agents with task structure.

Incorporating human inductive bias is crucial for the rise of aligned RL agents. Our work
demonstrates that relying on extensive compute, large number of parameters and long training does
not guarantee that deep RL agents learn coherent representations of the tasks, aligned with the intended
task goals. While the dopaminergic system in humans partly resembles model-free reinforcement
learning (Schultz et al., 1997), humans make use of use rich model-based representations of their
environment (Tenenbaum et al., 2011; Daw et al., 2011). Several studies provide guidance how
these findings from cognitive science about human intelligence should be incorporated in intelligent
agents (Lake et al., 2017; Zhu et al., 2020). Besides using structured representation and planning in
navigation (Kessler et al., 2024) humans have also been shown to have coherent but noisy models of
their physical environment (Kubricht et al., 2017; Battaglia et al., 2013), aiding with inference over
object properties (Neupärtl et al., 2020), learning tool use (Allen et al., 2020), and choosing actions
(Tatai et al., 2025). Further, humans also decompose complex tasks into a sequence of high-level
actions, and learn skills that correspond to the different sub-goals of such tasks. Hierarchical RL
has been shown to improve adaptation to task variations by learning reusable sub-policies or skill
hierarchies (Bacon et al., 2017; Hausman et al., 2018; Li et al., 2020; Cannon & Şimşek, 2025).
Humans also model causal object interaction (Michotte, 1963) and can employ abstract and qualitative
reasoning about physical situations (Forbus, 1988).
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Latest approaches try to incorporate causal world models within RL agents (Yang et al., 2025;
Dillies et al., 2025) applicable to multi-objective tasks (Bhatija et al., 2025). Additionally, humans
also represent the beliefs and desires of other agents (Dennett, 1989), mathematically formalizable
as inverse reinforcement learning (IRL) (Baker et al., 2009). IRL can infer uncertainties about
others’ behaviors and the consequential reward signals (Dimitrakakis & Rothkopf, 2011; Straub
et al., 2023), relevant in e.g. Kangaroo, where agents prioritize enemy-killing over child-rescue,
showcasing misalignment between RL agents’ and human goals. Incorporating the common reasoning
abilities of language models to extract reward signals from object-centric states could help tackle this
problem (Kaufmann et al., 2024).

7 Limitations and Future Work

While HackAtari offers valuable insights into RL generalization, it is limited by its reliance on ALE,
which restricts evaluation to visually stylized environments that may not transfer to more complex or
realistic domains. As the benchmark gains popularity, there is also a risk that the agents will overfit
to its specific perturbations, undermining its diagnostic value, even if we believe that with enough
variations for a given tasks, agents able to solve all variations while learning on the original tasks are
likely to be aligned with the primary desired task objectives. Finally, the absence of standardized
difficulty scaling across variations can make it difficult to interpret the significance of observed
performance drops. We hope that overall, this analysis and the release of the HackAtari variations
will motivate RL practitioners to develop agents can maintain performance on task simplifications,
thus learning correctly aligned policies.

We believe that systematic evaluations should also be run on held-out test sets also for other, po-
tentially more complex RL benchmarks. To obtain correctly aligned agents, IMPALA stands out
for maintaining superhuman performance under task variations, likely due to its off-policy V-trace
correction, distributed data collection, and smoother policy updates. Understanding how these el-
ements support generalization may guide the development of more task-aligned deep RL agents.
While object-centricity offers a practical inductive bias to narrow the gap between human and artificial
agents, it captures only a subset of human adaptability. Broader inductive mechanisms – such as
causal reasoning, goal-directed behavior, and abstract task decomposition – play a key role in human
generalization. Incorporating these additional biases, for instance via causal modeling or symbolic
planning, may further enhance agents’ ability to learn aligned, human-like policies.

8 Conclusion

While Mnih et al. (2015) emphasized that “reinforcement learning agents must learn efficient rep-
resentations from high-dimensional sensory inputs and generalize from past experience to new
situations”, our results demonstrate that current deep and symbolic RL agents largely fail to meet
this objective. To investigate this issue systematically, we introduce HackAtari, an open-source
benchmark comprising over 200 task variations based on the Arcade Learning Environment, the
most widely used evaluation suite in deep RL. HackAtari is designed to go beyond in-distribution
evaluation by allowing researchers to test agents on slight but targeted modifications of familiar tasks.
These variations, such as changes in color schemes or simplified game dynamics, are typically trivial
for humans to adapt to but often reveal the brittleness of learned policies. We hope that HackAtari
will serve as a diagnostic tool for evaluating whether RL agents have truly internalized the relational
structure of their environments and whether they select actions for the right, generalizable reasons.

Finally, Silver et al. (2021) have hypothesized that reward is enough, but our results suggest that with-
out the right biases and evaluations, reward alone is not enough to build agents that truly understand.
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A HackAtari complete description

Original Modified
RAM 

alteration

RAM

Figure 4: RAM alteration allows for modi-
fied environments, here exemplified on Pong.
Altering specific RAM cells leads to an en-
emy remaining static after it returned the ball.

We here introduce HackAtari, an extension of the
Arcade Learning Environment (ALE), that provides
different tasks modifications (mainly simplifications)
to evaluate RL agents’ true relational reasoning abili-
ties. Since the source code of the Atari games used in
the ALE is proprietary and not publicly available, di-
rect modifications to game logic or mechanics at the
code level are not feasible. As a result, the only prac-
tical method to alter or simplify these environments
for experimental purposes is through direct manipula-
tion of their Random Access Memory (RAM) states.
Thus, modifications are implemented through direct
alterations of the game’s RAM, allowing diverse controlled perturbations. Specifically, we created
visual alterations, such as changing or obscuring object colors, forcing agents to rely less on superfi-
cial visual features. Additionally, we adjusted gameplay dynamics, including modifying the speed
or presence of objects and enemies, or introducing new mechanics such as gravity effects. This is
exemplified in Figure 4 on Pong. In the default game, the brown enemy is programmed to go down if
the ball is bellow its paddle and up if the ball is above. There is thus a high correlation between the
enemy’s and the ball’s vertical position, hence, a misalignment opportunity. To create the LazyEnemy
variation, we first identify the RAM cell that controls the ball’s horizontal speed. When this value is
positive — indicating that the ball is moving toward the green agent — we overwrite the enemy’s
vertical position with its previous value. This makes the enemy remain static whenever the ball
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Figure 5: Examples of HackAtari simple tasks variations. Top: the original Atari games used
to trained RL agents. Bottom: simplifications (i.e. variations for which human performances do
not drop). These include color changes and gameplay shifts. Superposed frames show the game
dynamics. Descriptions of more environments and their variations are provided in Appendix H.

approaches the agent. We can thus evaluate potential RL agents misalignments. Let us now provide
further examples of tasks variations included in HackAtari, most of which are illustrated in Figure 5.

NoDanger (Kangaroo). In Kangaroo, the player controls a mother Kangaroo that needs to reach
her joey (top left). Monkeys will come to punch her and throw coconuts. To collect points, mother
Kangaroo can punch the enemies, collect fruits and reach her baby. In the NoDanger variations,
deadly monkeys and coconuts are deactivated. The player can safely navigate to the joey.

StableBlocks (Frostbite). In Frostbite, the player builds an igloo by jumping on moving floating ice
blocks while avoiding deadly predators. In the modified task, the ice blocks are aligned and static.

StoppedCars (Freeway). In Freeway, the agent’s goal is to have the (left) controlled chicken cross
the highway. If the chicken collides with a car, it is sent down and immobilized for a few seconds. In
this variation, cars are completely stopped, making crossing trivial.

Maze2 (MsPacman). In MsPacman, Pacman needs to navigate within a maze to consuming all the
dots while avoiding the four pursuing ghosts. In this variation, the maze layout is modified.

RestrictedFire (RiverRaid). Players here pilot a fighter jet over a river, aiming to destroy enemy
targets while avoiding collisions with riverbanks and obstacles. In this variation, the agent can only
shoot in case of unavoidable obstacles. It can collects points by dodging and overcoming the enemies.

ShiftedShields (SpaceInvaders). In SpaceInvaders, we shift the protective shields horizontally by 1
or by 3 pixels to the right. This type of change adjusts the environment in a very minimal way, which
is often not even noticeable by humans. It does not significantly alter the core gameplay or difficulty.

A.1 Manipulating the RAM

All environment modifications in HackAtari are implemented by directly altering the Atari emulator’s
internal Random Access Memory (RAM) values—not the agent’s replay buffer or the computer’s
system memory. The RAM of Atari games encodes key game state variables such as object positions,
velocities, scores, and other logic-critical elements. By identifying and modifying specific RAM
addresses, we can precisely control various aspects of gameplay—such as freezing enemy movement,
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shifting object colors, or disabling obstacles—without modifying the underlying source code of the
game, which is not publicly available.

This RAM-based manipulation approach enables fine-grained, controlled, and reproducible task vari-
ations while preserving the original game logic and dynamics. It introduces negligible computational
overhead and scales efficiently across large batches of episodes and variations. To ensure transparency
and reproducibility, we publicly release the full implementation of these RAM modifications, along
with comprehensive documentation and evaluation scripts, at
https://github.com/k4ntz/HackAtari.

At the time of writing, HackAtari incorporates more than 224 variations in total, spanning over
more than 33 games of the original Arcade Learning Environments. We provide illustrations and
descriptions of the variations in Appendix H. Most variations used in this paper simplify (i.e. should
lead humans to at least maintain their performances) the original tasks, which is necessary for showing
that RL agents learn misaligned behaviors (using shortcuts). Finally, ALE already incorporates some
variations that augment some games’ difficulty levels, which are of course integrated in HackAtari.
Overall, these capabilities collectively position HackAtari as a valuable resource for developing
relational reasoning RL agents that are robust, adaptable, and capable of generalizing their policies
beyond their initial training conditions.

https://github.com/k4ntz/HackAtari
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B Metrics

Throughout this article, we have used two complementary metrics to evaluate agents in Atari
environments: the Interquartile Mean (IQM) over Human-Normalized Scores (HNS), which measures
absolute performance of an agent, normalized by the performance of a human. Metrics are aggregated
using the rliable library (Agarwal et al., 2021) to provide statistically reliable evaluations across
diverse environments.

(Expert) Human-Normalized Score (HNS)

To assess agent performance relative to both naive and expert baselines, we report the Human-
Normalized Score (HNS), a standard evaluation metric in Atari benchmarks (Mnih et al., 2015;
Machado et al., 2018). Let A denote the average score achieved by the agent, H the score of a human
expert, and R the score of a random policy. The HNS is defined as:

HNS =
A−R

|H −R|
(1)

An HNS of 1.0 (or 100%) indicates human-level performance, while values above 1.0 suggest
superhuman ability. Values near 0 imply the agent performs comparably to a random policy, and
negative values indicate performance worse than random. This metric normalizes across games
with different score scales and dynamics, enabling fair comparison and aggregation across tasks.
HNS is computed using raw episodic returns averaged over multiple seeds. We are using the human
and random reference scores from Badia et al. (2020a). Since Badia et al. (2020a) were using
“professional human game testers”, we call this Expert HNS. We report HNS alongside other metrics
such as interquartile mean (IQM) and performance change to provide a robust and nuanced picture of
agent behavior across original and modified environments.

IQM over Multiple Games and Modifications

To evaluate the robustness of each model across multiple environments and their corresponding
modifications, we compute the Expert HNS over all available games, cf. Figure 1. For modified
environments, each game’s (multiple) variants are first aggregated by computing the mean of HNS
across modifications, ensuring that games with more variants do not exert disproportionate influence
on the result. To aggregate the games, we follow Agarwal et al. (2021), using rliable. This means
we calculate the IQM over all results of all seeds for all games.

Using the Interquantile Mean (IQM) + 95% Confidence Intervall (CI) over Mean + StdErr.

Following Agarwal et al. (2021), we report the interquartile mean (IQM) along with 95% stratified
bootstrap confidence intervals (CIs) as our primary performance metric. Return distributions in
Atari are frequently highly variable, skewed, and heavy-tailed, often due to a small number of runs
achieving unusually high scores. These outliers can inflate the sample mean, resulting in a metric that
overstates the agent’s typical performance. Additionally, pairing the mean with standard error (SE)
implicitly assumes independent, identically distributed (i.i.d.) samples from a light-tailed, symmetric
distribution, assumptions that are frequently violated in RL settings.

The IQM addresses these issues by computing the mean over the interquartile range (25th to 75th
percentiles), discarding both the lowest and highest quartiles. This yields a robust point estimate that
emphasizes consistent behavior across seeds and reduces the influence of extreme values. To quantify
uncertainty, we use non-parametric bootstrap resampling to construct 95% confidence intervals,
which make no distributional assumptions and better reflect the empirical variability of the data.

This combination—IQM with bootstrap CIs—provides a statistically sound and robust summary
of performance, particularly well-suited for environments like Atari where outcomes can vary
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substantially across random seeds. It enables more reliable comparisons between agents and guards
against misleading conclusions driven by a few atypical trajectories.

Aggregating Human Study Results Using Mean with Per-Participant IQMs

To evaluate human performance in a robust and statistically sound manner, we report the mean over
per-participant IQM as our primary summary statistic. Each participant completed multiple episodes
per evaluation condition (e.g., original vs. modified environment), resulting in a distribution of scores
that may be highly variable due to factors such as learning effects, momentary lapses in attention, or
individual familiarity with similar tasks.

To reduce the impact of intra-participant variance and episodic outliers, we first compute the IQM
across each participant’s episodes. This yields a robust estimate of central performance for each
individual, effectively filtering out unusually high or low scores that may not be representative of
typical behavior.

After obtaining one IQM per participant per condition, we compute the mean across participants
to summarize overall group-level performance. The goal of this is to obtain a more stable and
representative estimate of average human performance, where all humans share the same influence
on the results, independent of their performance or how many episodes they play.

Performance Change

To quantify the impact of environment modifications on agent performance, we compute the perfor-
mance change (PC) as the relative degradation in performance between the original and modified
environments. For a given metric M (e.g., HNS or raw return), let Moriginal denote the score in the
original environment and Mmodif the corresponding score in the modified one. In this work, we used
the raw scores for the computations; as such, we subtract the random scores from each metric to
make sure. The performance drop is defined as:

PC =
(Mmodif −Rmodif)− (Moriginal −Roriginal)

|Moriginal −Roriginal|
(2)

A value of 0 indicates no performance change, while values closer to 100% represent a user reaching
twice the amount of points. A value close to -100% means the agent performs similar or worse than a
random agent. This normalized form facilitates comparison across tasks with different score ranges
and highlights robustness failures that may be masked by absolute performance metrics.
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C Agents

We evaluate a diverse set of reinforcement learning (RL) agents, covering both standard baselines
and object-centric architectures. Most agents are based on publicly available implementations or
pretrained models, while PPO was trained by us specifically for this study. Below, we summarize the
agents used, their foundational works, and where to find their implementations or pretrained models.

• DQN, MDQN – Standard value-based deep RL models. DQN is the canonical deep Q-learning
agent introduced by Mnih et al. (2015), while MDQN is its Munchausen variant (Vieillard et al.,
2020) that incorporates entropy regularization into Q-learning. We use the pretrained models
from Gogianu et al. (2022)2, originally built for analyzing agent robustness.

• C51 – A distributional RL method that models return distributions instead of expected values (Belle-
mare et al., 2017). C51 models were also taken from Gogianu et al. (2022), though pretrained
models are not available for all games included in our benchmark.

• i-DQN – Another strong and relatively new baseline, based on the idea of iterated Q-Networks
(i-QN) (Vincent et al., 2025), enabling multiple consecutive Bellman updates by learning a tailored
sequence of action-value functions where each serves as the target for the next one. We used the
models by Vincent et al. (2025), which can be found on Huggingface3.

• IMPALA – A scalable actor-critic architecture designed for distributed training, introduced by Es-
peholt et al. (2018). We evaluate pretrained models by the cleanRL team, available on Huggingface4

.

• PPO – A widely used policy-gradient baseline introduced by Schulman et al. (2017). We trained our
own PPO models using the CleanRL framework (Huang et al., 2022), following their recommended
hyperparameters and reproducibility practices. Training details and hyperparameters are provided
in Table 1. Models will be made available after acceptance.

• Binary Mask PPO, Planes PPO – Object-centric PPO variants introduced by Blüml et al. (2025),
incorporating structured visual representations (e.g., binary object masks, spatial planes) instead
of raw pixels. These models were trained by us using modified observation wrappers. Code and
trained models can be found on GitHub5 or were provided by the authors. Note, these models were
trained only for 40 million frames instead of 200 million.

• Semantic Vector PPO, ScoBots Vector – Agents that operate on symbolic or vector-based
representations of objects in the environment, pretrained using the OCAtari and ScoBots frame-
works (Delfosse et al., 2024a;b). Both Semantic Vector PPO and ScoBots Vector were provided by
the authors. Final model checkpoints will be made available after acceptance.

2https://github.com/floringogianu/atari-agents
3https://huggingface.co/TheoVincent/Atari_i-QN
4https://huggingface.co/cleanrl
5https://github.com/VanillaWhey/OCAtariWrappers

https://github.com/floringogianu/atari-agents
https://huggingface.co/TheoVincent/Atari_i-QN
https://huggingface.co/cleanrl
https://github.com/VanillaWhey/OCAtariWrappers
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C.1 Training PPO Agents

We train PPO agents for 200 million environment frames using the v5 version of the ALE, following
the evaluation protocol established by Machado et al. (2018). A fixed frameskip of 4 and a repeat
action probability of 0.25 introduce environment stochasticity and align with established Atari
benchmarks. Observations are preprocessed by converting RGB frames to grayscale, resizing to
84 × 84 pixels, and stacking the last four frames to capture short-term temporal dynamics. Each
agent is trained using 3 random seeds to ensure robustness across initialization.

Our PPO policy uses an IMPALA-style convolutional encoder (Espeholt et al., 2018) with separate
heads for the policy and value function. Training is conducted with CleanRL (Huang et al., 2022), with
full training settings provided in Table 1. The agent is trained to maximize the sum of undiscounted
episodic returns.

In addition to pixel-based PPO, we train a Semantic Vector agent using object-centric observations
derived from OCAtari (Delfosse et al., 2024a). Instead of raw images, this agent receives a structured
vector representation extracted from two consecutive frames. Each observation encodes object-level
information, including positions, bounding boxes, and class labels for entities present in the scene.
These vector inputs are passed through a multilayer perceptron encoder before being processed by a
PPO policy. Training follows the same protocol as our pixel-based PPO agents, using CleanRL with
adjusted hyperparameters for vector inputs.

This setup enables direct comparison between pixel-level and object-centric agents under identical
training conditions and stochastic environment settings, allowing us to assess how input structure
affects generalization and robustness.

Table 1: Hyperparameters used in our PPO training to ensure reproducibility and consistency.

Hyperparameter Value Hyperparameter Value

Seeds {0,1,2} Learning Rate (α) 2.5× 10−4

Total Timesteps 2× 108 Number of Environments 10
Batch Size (B) 1280 Minibatch Size (b) 320
Update Epochs 4 GAE Lambda (λ) 0.95
Discount Factor (γ) 0.99 Value Loss Coefficient (cv) 0.5
Entropy Coefficient (ce) 0.01 Clipping Coefficient (ϵ) 0.1
Clip Value Loss True Max Gradient Norm (∥g∥max) 0.5
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D Computational Resources

Although many of the agents used in this study were obtained from publicly available repositories
and did not require retraining (cf. Appendix C), substantial computing resources were required to
conduct large-scale evaluations across our proposed HackAtari benchmark.

Evaluation Scale. Each of our 11− 12 agents was evaluated on 17 games with 1− 4 simplified
or modified variations per game (in total 50 game configurations), across 3 random seeds and 10
episodes per configuration. This resulted in around 1, 500 gameplay rollouts per agent. While these
are not expensive, the amount still leads to non-trivial inference costs. The total evaluation workload
included both deep RL baselines (e.g., DQN, PPO, IMPALA, C51, i-DQN,...) and object-centric
agents (e.g., binary masks, planes, OC-NN, ScoBots,...), for a total of 12 unique agent configurations.
This results in around 18, 000 evaluation runs. The results can be seen in Appendix E. Evaluation
used deterministic seeds and fixed emulator settings (e.g., sticky actions) to ensure reproducibility
(also cf. Appendix E).

Training Resources. A subset of agents, namely, PPO (pixel-based) were trained in-house using the
CleanRL framework (cf. Appendix C.1). Most PPO agents took around 4− 6h per instance In total,
we trained around 120 PPO models. Total training time for these agents amounted to approximately
500− 700 GPU hours.

Hardware. All training was conducted on a cluster of NVIDIA DGX systems, each equipped
with A100 GPUs and sufficient RAM (greater than 40 GB per process) to support parallelized Atari
rollouts, see Table 2. All evaluations, except IMPALA, were conducted using Python 3.11, Gym
0.26.2, and the ALE-py Atari interface (v0.8.1), on macOS 15.3.1. IMPALA, due to their requirement
of the envpool package, was evaluated on a separate device, using Python 3.9 and Arch 2025.02.01.

Hardware/Software Description

GPU 8 × NVIDIA® Tesla A100
NGC Container nvcr.io/nvidia/pytorch:23.05-py3
GPU-Driver CUDA 12.2
CPU Dual Intel Xeon Platinum 8168
Operating System Ubuntu 23.02 LTS

Table 2: Hard- and software configuration for our experimental section.

nvcr.io/nvidia/pytorch:23.05-py3
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E Extended Results

Evaluation Setup

Our evaluation benchmarks RL agents across 17 Atari environments, each tested under 1 to 4
environment modifications, depending on the environment. All agents are trained, not always
by ourselves, exclusively on the original, unmodified versions of the games using 200 million
environment frames and the hyperparameters listed in Table 1, unless otherwise specified in the figure
or table captions. Evaluation is performed using our own evaluation setup, based on HackAtari.

Each experiment is conducted over 3 seeds (0, 1, 2) with 10 episodes per game per seed, totaling 30
episodes per configuration. We follow the evaluation guidelines by Machado et al. (2018), e.g., using
a repeat action probability of 0.25 and a maximum of 30 NOOP actions after each reset, meaning
initial states are sampled by taking a random number of no-ops on reset. No-op is assumed to be
action 0.

The evaluated agent architectures and training settings are described in detail in Appendix C. For
performance metrics, we report raw episodic returns, interquartile mean (IQM), and performance
change, as defined in Section B. The selected environments and the corresponding modifications
applied to each are introduced in Section H.

Table 3: Evaluation Parameters

Hyperparameter Value Hyperparameter Value

#Episodes 30 #Seeds 3
Epsilon 0.001 Frameskip 4
Frames stacked 4 Repeat Action Probability 0.25
Full Actionspace False Max. NOOP Actions after Reset 30
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Mapping Results to Figure

Table 4: Mapping of HackAtari game variations to figures in the main paper. Each entry indicates
which figure(s) include evaluation results for the given game and modification pair. Games in pink
are used in the human study (cf. Appendix G).

Game Variant Appears In

Amidar paint roller player Fig. 3, 4, 5
Amidar pig enemies Fig. 3
Asterix obelix Fig. 3, 4, 5
BankHeist two police cars Fig. 3, 4, 5
Bowling shift player Fig. 3
Bowling top pins Fig. 3, 4, 5
Boxing color player red Fig. 3, 4, 5
Boxing switch positions Fig. 3
Breakout color all blocks red Fig. 3
Breakout color player and ball red Fig. 3, 4, 5
FishingDerby fish on different sides Fig. 3
Freeway all black cars Fig. 3
Freeway stop all cars edge Fig. 3
Freeway stop all cars Fig. 3, 4, 5
Freeway stop random car Fig. 3
Frostbite reposition floes easy Fig. 3, 4, 5
Jamesbond straight shots Fig. 3
Kangaroo no danger Fig. 3, 4, 5
MsPacman set level 1 Fig. 3, 4, 5
MsPacman set level 2 Fig. 3
MsPacman set level 3 Fig. 3
Pong lazy enemy Fig. 3, 4, 5
RiverRaid exploding fuels Fig. 3
RiverRaid game color change01 Fig. 3
RiverRaid restricted firing Fig. 3, 4, 5
Seaquest disable enemies Fig. 3, 4, 5
SpaceInvaders relocate shields off by one Fig. 3
SpaceInvaders relocate shields off by three Fig. 3, 4, 5
StarGunner remove mountains Fig. 3, 4, 5
StarGunner static bomber Fig. 3
StarGunner static flyers Fig. 3
StarGunner static mountains Fig. 3
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E.1 Can Deep Agents solve simplifications?

We present the raw scores obtained by all evaluated deep RL agents across a set of Atari games and
their corresponding HackAtari variations. Each agent was trained solely on the original environment
and evaluated on both the unmodified and modified versions without any fine-tuning or adaptation.
Performance is measured over 30 episodes per configuration, averaged across 3 random seeds, and
reported as interquartile means (IQM) with 95% confidence intervals.

The task variations are primarily designed as simplifications—modifications that preserve core game
mechanics while reducing visual or strategic complexity or modifications that should not influence
the performance of an agent, e.g., color changes. They provide a strong test for determining whether
agents have learned task-aligned policies or are relying on superficial cues. A reliable agent should
maintain or improve performance under these conditions.

The table also indicates which task variations were used in our human study (cf. Appendix E). These
entries are highlighted in pink.
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Table 5: Raw episodic scores for all evaluated deep RL agents across selected Atari games and their
HackAtari task variations (cf. Figure 1). Each entry shows the interquartile mean (IQM) and 95%
confidence interval across 30 episodes and 3 random seeds. Variants marked in pink were used in the
human study (cf. Appendix G) and in Figure 2.

Game (Variant) DQN C51 PPO IMPALA i-DQN MDQN

Amidar 867 [771, 956] – 1052 [1017, 1111] 1215 [1131,1298] 666 [452,901] 1481 [1225, 1928]

paint roller player 71 [54, 94] – 271 [189, 377] 205 [166,255] 529 [439,630] 160 [94, 300]

pig enemies 480 [316, 664] – 1313 [1177, 1454] 1122 [890,1369] 70 [53,86] 708 [555, 1248]

Asterix 10212 [6734, 17884] 7766 [5262, 17937] 8588 [6915, 11412] 3543 [2084,7491] 4017 [3194,4888] 5116 [3046, 9275]

obelix 3812 [3062, 4593] 81812 [52250, 121593] 5594 [4687, 6750] 240218 [136250,346501] 6269 [5288,7365] 4594 [3437, 5906]

BankHeist 1064 [1011, 1113] – 1062 [1028, 1092] 388 [222,636] 1291 [1226,1366] 1319 [1245, 1413]

two police cars 0 [0, 0] – 0 [0, 0] 0 [0,0] 0 [0,0] 0 [0, 0]

Bowling 34 [30, 39] 46 [40, 53] 67 [65, 69] 45 [42,49] 42 [40,45] 33 [33, 35]

shift player 36 [31, 41] 45 [39, 50] 63 [54, 65] 39 [35,44] 43 [39,48] 37 [34, 40]

top pins 40.88 [9,94] 37.38 [23,56] 80.00 [60,96] 62 [38,87] 26 [21,41] 181.38 [139,213]

Boxing 92 [88, 94] 77 [68, 85] 99 [97, 99] 94 [92,97] 96 [95,98] 95 [93, 97]

color player red −2 [−5, 0] −7 [−12, −2] −1 [−2, 0] −3 [−8,0] −2 [−6,−0] −2 [−3, 0]

switch positions 47 [21, 68] −16 [−29, −1] 57 [34, 68] 94 [92,97] 67 [60,72] 46 [23, 68]

Breakout 123 [85, 178] 41 [27, 64] 391 [366, 409] 303 [245,350] 259 [219,295] 284 [202, 349]

color all blocks red 144 [91, 215] 23 [12, 37] 413 [396, 424] 247 [175,322] 103 [63,173] 261 [176, 331]

color player and ball red 4 [2, 6] 2 [1, 3] 4 [3, 6] 76 [59,121] 8 [7,10] 15 [11, 19]

FishingDerby 32 [24, 40] 5 [0, 13] 41 [37, 44] 34 [31,38] 32 [28,38] 42 [32, 50]

fish on different sides −90 [−92, −88] −84 [−87, −82] −98 [−98, −97] 27 [25,30] 20 [16,24] −94 [−96, −90]

Freeway 27 [16, 33] 32 [31, 32] 31 [30, 31] 33 [33,33] 33 [33,33] 34 [33, 34]

all black cars 10 [7, 13] 18 [16, 20] 25 [23, 26] 28 [27,29] 26 [24,29] 25 [24, 26]

stop all cars edge 6 [1, 13] 34 [22, 40] 39 [37, 39] 11 [6,19] 0 [0,6] 40 [39, 40]

stop all cars 0 [0, 0] 0 [0, 0] 7.56 [0,20] 35 [29,38] 0 [0,1] 0.38 [0,1]

stop random car 16 [9, 20] 22 [20, 22] 21 [20, 21] 22 [21,22] 16 [16,18] 24 [22, 24]

Frostbite 5431 [4411, 6624] 5165 [4466, 6055] 301 [288, 311] 281 [262,299] 6198 [5196,7193] 8349 [6961, 8951]

reposition floes easy 198 [43, 461] 22 [0, 63] 9 [0, 28] 0 [0,2] 0 [0,0] 28 [12, 58]

Jamesbond 972 [887, 1046] 3056 [1099, 5134] 2216 [1850, 2596] 11778 [9775,13891] 600 [571,637] 722 [662, 778]

straight shots 22 [6, 46] 94 [53, 762] 481 [215, 987] 1772 [734,3319] 63 [46,77] 91 [65, 118]

Kangaroo 9669 [7962, 11487] 7456 [5231, 10012] 13525 [12275, 14243] 6244 [4200,8181] 14269 [13581,14550] 13588 [12581, 14012]

no danger 19 [0, 50] 6 [0, 37] 0 [0, 0] 0 [0,0] 15 [0,54] 81 [50, 100]

MsPacman 4232 [3632, 4636] – 7225 [6684, 7600] 3652 [3089,4212] 3667 [3142,4180] 3961 [3208, 4579]

set level 1 602 [500, 718] – 357 [291, 438] 631 [527,744] 328 [283,414] 1412 [1216, 1555]

set level 2 333 [240, 426] – 326 [229, 428] 786 [641,979] 408 [368,465] 432 [307, 513]

set level 3 356 [306, 412] – 347 [295, 419] 738 [477,986] 176 [139,214] 231 [158, 302]

Pong 19 [17, 19] 5 [4, 6] 18 [14, 19] 9 [7,11] 19 [19,20] 20 [18, 20]

lazy enemy −15 [−17, −12] −13 [−15, −8] −15 [−17, −13] 6 [1,10] −18 [−19,−17] −16 [−18, −12]

Riverraid 14030 [12366, 14900] – 16186 [15134, 16920] 17421 [14467,20599] 11251 [10166,12375] 15340 [14739, 15953]

exploding fuels 5530 [5129, 5847] – 7972 [7710, 8233] 6756 [5249,8446] 4763 [4229,5383] 6094 [5454, 6671]

game color change01 439 [405, 475] – 368 [256, 480] 721 [592,888] 379 [302,461] 234 [138, 427]

restricted firing 757 [576, 984] – 933 [520, 1820] 1656 [1313,2114] 1573 [1227,1928] 1155 [883, 1553]

Seaquest 5916 [5281, 6750] 123622.50 [38904, 222808] 1836 [1826,1840] 951 [945,958] 6336 [4995,7672] 18170 [15821, 21457]

disable enemies 268 [0, 717] 0 [0, 0] 0 [0, 0] 0 [0,0] 1134 [409,2030] 1392 [676, 5015]

SpaceInvaders 4173 [2305, 7020] – 1406 [1179, 1668] 11514 [5439,19878] 3225 [2222,4798] 6183 [3195, 10738]

relocate shields off by one 1314 [949, 2302] – 1533 [1320, 1725] 10415 [6222,15419] 3853 [2041,6291] 2863 [1983, 6178]

relocate shields off by three 475 [322, 684] – 1158 [919, 1385] 8252 [4306,13849] 1037 [864,1454] 820 [578, 1344]

StarGunner 59269 [55750, 61300] 31894 [22831, 42906] 29288 [15737, 42162] 166881 [159112,177275] 55411 [51977,58388] 63181 [61068, 64781]

remove mountains 50838 [43012, 56243] 24688 [15562, 35025] 15781 [8693, 23206] 171169 [162438,180062] 9726 [7177,12427] 58931 [56487, 60975]

static bomber 64506 [62362, 66925] 25250 [17175, 36750] 41475 [24381, 55043] 172731 [163138,181425] 55146 [51323,57812] 66475 [65006, 68143]

static flyers 235031 [209081, 260543] 24856 [14675, 36993] 4244 [950, 13562] 878106 [869850,884031] 68684 [40065,112265] 190569 [133318, 246019]

static mountains 46950 [37356, 54575] 32769 [23600, 42875] 19562 [10293, 29275] 159169 [152875,165269] 53965 [49888,56515] 61769 [59487, 63681]
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E.2 Can Object-centricity solve misalignment?

This section presents the raw performance scores of object-centric agents evaluated on the same
HackAtari task variations described in Appendix C.1. These agents incorporate structured inductive
biases through symbolic, object-based, or mask-based representations. While such representations
are often credited with improved interpretability and generalization in structured environments, our
results assess whether they also support better alignment with simplified task variants.

All object-centric agents were trained using Proximal Policy Optimization (PPO) and receive object-
based inputs—either through learned visual decompositions (e.g., binary masks or spatial planes) or
symbolic representations (e.g., object class vectors from OCAtari and ScoBots). For comparison, we
include the standard PPO baseline trained on raw pixel inputs.

Each entry reports the interquartile mean (IQM) and 95% confidence interval across 30 episodes
and 3 random seeds. A reliable object-centric agent should demonstrate resilience to both visual
and gameplay simplifications, avoiding performance drops that indicate overreliance on spurious
correlations. However, as our findings show, object-centricity improves robustness primarily to
visual perturbations, but fails to fully eliminate shortcut behavior in more complex dynamics-altering
variations.
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Table 6: Episodic scores for object-centric RL agents on HackAtari task variations. All agents use
PPO and differ only in their input representation (e.g., binary masks, planes, or symbolic vectors).
Models were taken by Blüml et al. (2025) and Delfosse et al. (2024a;b) or self-trained. Scores are
reported as interquartile means (IQM) with 95% confidence intervals, evaluated over 30 episodes and
3 seeds. PPO with raw pixels, as done by Mnih et al. (2015), is included as a baseline. Games and
Modifications in pink were used in Figure 3 and are identical to the human study.
Game (Variant) PPO Object Masks Binary Masks Class Masks Planes Semantic Vector ScoBots

Amidar 1052 [1017, 1111] 554 [493, 615] 525 [430, 605] 479 [442, 513] 527 [509, 552] 357 [325, 407] 116 [94, 128]

paint roller player 271 [189, 377] 315 [251, 369] 535 [435, 610] 492 [458, 526] 510 [491, 528] 301 [252, 350] 116 [91, 129]

pig enemies 1313 [1177, 1454] 384 [332, 426] 513 [415, 597] 516 [465, 554] 108 [91, 118] 25 [16, 34] 18 [17, 20]

Asterix 8588 [6915, 11412] 4065 [3522,4497] 171 [116,241] 4181 [3528,4900] 91753 [83844,98809] 733 [358, 1066] 883 [624, 1133]

obelix 5594 [4687, 6750] 4562 [3812,5406] 2062 [1719,2594] 3375 [2750,4469] 30343 [21312,46312] 4583 [3039, 7543] 4000 [3333, 5500]

BankHeist 1062 [1028, 1092] 781 [769, 794] 1192 [1158, 1211] 1181 [1151, 1205] 1154 [1013, 1302] 1163 [1155, 1173] 720 [670, 741]

two police cars 0 [0, 0] 0 [0, 0] 0 [0, 0] 0 [0, 0] 0 [0, 0] 61 [42, 91] 108 [80, 133]

Bowling 67 [65, 69] 65 [62, 67] 70 [67, 71] 64 [61, 67] 99 [99, 99] 99 [97, 99] 51 [41, 60]

shift player 63 [54, 65] 63 [61, 66] 67 [64, 70] 62 [60, 66] 84 [53, 85] 0 [0, 0] 51 [41, 61]

top pins 80 [60, 96] 58 [37,78] 98 [49,159] 184 [171,195] 98 [73,124] 8 [8, 8] 0 [0, 0]

Boxing 99 [97, 99] 94 [92, 96] 96 [95, 97] 94 [93, 96] 97 [96, 98] 87 [78, 96] 51 [41, 60]

color player red −1 [−2, 0] 80 [76, 83] 96 [95, 97] 95 [93, 96] 96 [95, 98] 87 [78, 95] 51 [41, 61]

switch positions 57 [34, 68] −53 [−77, −11] −65 [−97, −18] 29 [−12, 65] 37 [−14, 77] −35 [−42, −31] 63 [45, 78]

Breakout 391 [366, 409] 216 [156, 279] 259 [212, 295] 222 [171, 267] 371 [348, 390] 38 [25, 51] 21 [14, 28]

color all blocks red 413 [396, 424] 299 [247, 328] 278 [229, 312] 259 [207, 290] 372 [330, 403] 38 [25, 51] 21 [14, 28]

color player and ball red 4 [3, 6] 99 [72, 155] 256 [201, 287] 216 [165, 266] 390 [352, 407] 38 [25, 51] 21 [14, 29]

FishingDerby 41 [37, 44] 20 [13,28] −81 [−84,−79] −62 [−70,−56] 47 [42,52] 18 [11, 26] 23 [18, 27]

fish on different sides −98 [−98, −97] 23 [9,30] −86 [−89,−83] −60 [−67,−53] 30 [27,32] 3 [−4, 21] −4 [−12, 4]

Freeway 31 [30, 31] 33 [32, 33] 33 [33, 33] 32 [32, 32] 33 [33, 34] 31 [31, 32] 30 [28, 31]

all black cars 25 [23, 26] 23 [21, 25] 33 [32, 33] 32 [32, 33] 33 [33, 34] 31 [31, 32] 30 [28, 31]

stop all cars edge 39 [37, 39] 0 [0, 0] 0 [0, 0] 7 [0, 19] 22 [6, 37] 0 [0, 0] 41 [41, 41]

stop all cars 7 [0, 20] 0 [0,0] 0 [0,0] 32 [20,40] 19 [4,36] 0 [0, 0] 41 [41, 41]

stop random car 21 [20, 21] 18 [17, 20] 19 [18, 20] 19 [18, 20] 20 [20, 21] 15 [13, 16] 21 [20, 22]

Frostbite 301 [288, 311] 278 [270, 290] 290 [278, 304] 265 [258, 270] 278 [271, 286] 2821 [2488, 3134] 1931 [1806, 2125]

reposition floes easy 9 [0, 28] 11 [0, 32] 4 [0, 11] 1 [0, 24] 28 [0, 79] 60 [43, 75] 70 [60, 80]

Jamesbond 2216 [1850, 2596] – – – – 591 [525, 1583] 175 [125, 241]

straight shots 481 [215, 987] – – – – 108 [58, 200] 0 [0, 21]

Kangaroo 13525 [12275, 14243] 112 [0,300] 8425 [5550,10625] 112 [0,300] 1800 [1800,1800] 0 [0, 0] 0 [0, 0]

no danger 0 [0, 0] 0 [0, 0] 0 [0, 0] 0 [0, 0] 0 [0, 0] 0 [0, 0] 0 [0, 0]

MsPacman 7225 [6684, 7600] 5195 [4476, 5724] 4227 [3646, 4896] 4313 [3790, 4899] 6211 [5471, 6794] 4583 [3650, 5298] 3620 [3086, 3620]

set level 1 357 [291, 438] 281 [236, 319] 548 [400, 778] 378 [256, 553] 294 [234, 366] 210 [210, 210] 90 [90, 90]

set level 2 326 [229, 428] 285 [258,317] 376 [323,439] 695 [446,969] 126 [104,161] 170 [170, 170] 90 [90, 90]

set level 3 347 [295, 419] 259 [222,301] 628 [512,775] 228 [110,497] 124 [98,172] 1610 [1610, 1610] 90 [90, 90]

Pong 18 [14, 19] 18 [18, 19] 19 [18, 20] 19 [19, 20] 19 [19, 20] 19 [19, 20] 16 [15, 19]

lazy enemy −15 [−17, −13] 12 [10, 15] 12 [5, 16] 3 [−4, 9] 17 [16, 18] −20 [−20, −19] 17 [15, −19]

Riverraid 16186 [15134, 16920] 7948 [7814, 8092] 7958 [7739, 8204] 7803 [7552, 7993] 7990 [7824, 8198] 2175 [2086, 2350] 2230 [2074, 2368]

exploding fuels 7972 [7710, 8233] 4111 [3886, 4201] 3651 [3071, 4038] 4039 [3801, 4279] 4136 [3999, 4272] 1068 [1010, 1241] 1186 [952, 1221]

game color change01 368 [256, 480] 7638 [7474, 7811] 7850 [7745, 8011] 7867 [7567, 8105] 8042 [7841, 8242] 2175 [2091, 2353] 2230 [2075, 2353]

restricted firing 933 [520, 1820] 523 [511, 539] 1677 [1460, 1964] 2261 [1850, 2594] 1864 [1524, 2359] 200 [200, 200] 2741 [2216, 3058]

Seaquest 1836 [1826,1840] 1656 [1388,1820] 732 [465,1141] 1832 [1815,1840] 2013 [1840,2308] 293 [254, 353] 293 [256, 360]

disable enemies 0 [0, 0] 0 [0, 0] 0 [0, 0] 0 [0, 0] 0 [0, 0] 0 [0, 0] 0 [0, 0]

SpaceInvaders 1406 [1179, 1668] 688 [600, 806] 826 [763, 909] 554 [475, 634] 1557 [1247, 1851] 278 [205, 321] 335 [215, 451]

relocate shields off by one 1533 [1320, 1725] 621 [560, 693] 803 [730, 884] 483 [362, 588] 1787 [1416, 2217] 290 [256, 358] 241 [208, 318]

relocate shields off by three 1158 [919, 1385] 469 [389, 571] 589 [474, 683] 288 [245, 325] 1555 [1189, 1899] 239 [186, 347] 266 [252, 330]

StarGunner 29288 [15737, 42162] 8406 [3938,14106] 962 [900,1000] 20812 [10075,32231] 88787 [80131,94862] 10166 [5991, 18597] 11550 [7357, 15600]

remove mountains 15781 [8693, 23206] 9943 [5144,15150] 1000 [1000,1000] 23656 [13000,33488] 87287 [78219,95475] 13950 [9640, 18069] 11250 [7700, 14447]

static bomber 41475 [24381, 55043] 13375 [6512,20819] 1000 [1000,1000] 43031 [26325,54312] 83268 [68862,102025] 24766 [21231, 28208] 11550 [6815, 15821]

static flyers 4244 [950, 13562] 11625 [4881,27369] 343 [275,438] 83881 [27206,178088] 577606 [505392,646894] 23950 [7666, 59957] 11550 [7524, 15760]

static mountains 19562 [10293, 29275] 7325 [3888,11600] 1000 [1000,1000] 13718 [6506,25269] 84487 [77275,92850] 13516 [8041, 17467] 11550 [7323, 15592]
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E.3 Can Humans Solve these Simplifications?

To validate that our selected HackAtari variations constitute genuine simplifications rather than
increased difficulty, we conducted a user study evaluating human adaptation to a subset of modified
environment (cf. Appendix G).

Table 7 presents the raw scores for each game and its corresponding variation. We report the mean
over IQM (cf. Appendix B) and 95% confidence intervals across participants, alongside the random
agent baseline and expert human scores (from Badia et al. (2020a)) when available. This enables
robust comparison between deep RL agents and non-expert human players.
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Table 7: Raw scores for humans, random agents, and expert human baselines on original and modified
tasks. Variants used in the human study are marked and match those highlighted in Table 5. Scores
are reported with 95% confidence intervals and were used in Figure 2.

Game (Variant) Random Random (Badia et al.) Human Human (Badia et al.)

Amidar 1.62 [0, 3] 5.8 114.58 [46, 220] 7127.7
paint roller player 1.31 [0, 2] – 360.43 [52, 930] –
pig enemies 1.06 [0, 3] – – –

Asterix 218.75 [162, 275] 210.0 1357.54 [458, 2462] 1719.5
obelix 2062.50 [1688, 2500] – 20384.03 [4624, 39712] –

BankHeist 13.12 [10, 17] 14.2 268.67 [98, 506] 753.1
two police cars 0.00 [0, 29] – 242.08 [72, 470] –

Bowling 63.12 [54, 65] 23.1 109.74 [88, 129] 160.7
shift player 24.25 [22, 27] – – –
top pins 90.44 [80, 104] – 192.17 [157, 220] –

Boxing 1.50 [0, 3] 0.1 −2.75ci−5, 0 12.1
color player red 1.06 [−0, 3] – −0.93 [−7, 6] –
switch positions 1.06 [−0, 3] – – –

Breakout 1.31 [1, 2] 1.7 8.35 [3, 14] 30.5
color all blocks red 0.94 [0, 1] – – –
color player and ball red 1.00 [0, 2] – 10.31 [4, 19] –

Freeway 0.00 [0, 0] 0.0 17.74 [12, 22] 29.6
all black cars 0.00 [0, 0] – – –
stop all cars edge 0.31 [0, 1] – – –
stop all cars 0.53 [0, 1] – 35.83 [32, 39] –
stop random car 0.00 [0, 0] – – –

Frostbite 71.25 [58, 84] 65.2 1372.81 [167, 2834] 4334.7
reposition floes easy 7.50 [1, 28] – 7540.21 [1369, 15306] –

Kangaroo 0.00 [0, 50] 52.0 459.97 [200, 791] 3035.0
no danger 0.00 [0, 0] – 2431.48 [1616, 3414] –

MsPacman 243.75 [219, 270] 307.3 996.9 [518, 1492] 6951.6
set level 1 201.88 [174, 229] – 673.6 [305, 1206] –
set level 2 231.88 [203, 262] – – –
set level 3 187.50 [165, 219] – – –

Pong −20.62 [−21, −20] -20.7 −15.19 [−18, −10] 14.6
lazy enemy −20.62 [−21, −20] – −12.2 [−17, −6] –

Riverraid 1533.75 [1348, 1688] 1338.5 2406.56 [1428, 3584] 17118.0
exploding fuels 860.62 [659, 946] – – –
game color change01 1475.62 [1341, 1637] – – –
restricted firing 520.00 [520, 579] – 13222.81 [8391, 18407] –

Seaquest 70.00 [54, 88] 68.4 2626.39 [331, 5397] 42054.7
disable enemies 0.00 [0, 0] – 12191.67 [6836, 17288] –

SpaceInvaders 137.81 [115, 169] 148.0 237.8 [148, 338] 1668.7
relocate shields off by one 117.50 [92, 148] – – –
relocate shields off by three 125.62 [96, 160] – 286.96 [175, 436] –

StarGunner 675.00 [550, 800] 664.0 2435.83 [846, 5056] 10250.0
remove mountains 656.25 [550, 781] – 2936.67 [1200, 5197] –
static bomber 468.75 [356, 594] – – –
static flyers 512.50 [419, 650] – – –
static mountains 706.25 [588, 831] – – –
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F Code and Data

To support reproducibility and further research, we will release all code, task variations, evaluation
scripts, and selected model checkpoints as part of the supplementary materials and the code base
through an anonymized repository upon acceptance.

HackAtari Environment. The HackAtari benchmark is implemented as a lightweight extension of
the Gymnasium Atari framework. All modifications are applied via deterministic RAM-based wrap-
pers, allowing reproducible control over game dynamics, visuals, and semantics. The environment
includes:

• Using any of task variants by name (cf. Appendix H).

• Supporting scripts to help visualize and change the RAM of the current state on the fly, as well as
other tools helping to create new variants.

• Compatibility with Gym-style RL pipelines, wrappers and vectorized rollouts.

• Compatibility with StableBaselines3 and CleanRL training frameworks

Agent Models and Evaluation. We include pretrained checkpoints for selected deep and object-
centric agents in the supplementary materials, covering a subset of games and variants.

Human Study Infrastructure. To facilitate future user studies and make it easy to reproduce and
test it, we will release the full source code for the web-based evaluation interface used in our human
experiments (see Appendix G).

Anonymized Access and Deanonymization. For the review phase, we include all evaluation
results and selected models in the supplementary materials. Deanonymized versions of HackAtari,
HackTari-Web, Models, and the Dataset will be provided upon paper acceptance.
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G Human Study: Evaluating Human Performance of Modified Atari
Environments

G.1 Motivation and Research Question

The primary motivation of this study is to understand how visual and semantic modifications to Atari
game environments affect human gameplay performance. Our central research question is:

How do different types of modifications influence human players’ performance in Atari games?

By comparing performance across original and modified versions of the same game, we aim to
identify which transformations preserve or degrade task-relevant understanding for humans. This
helps evaluate the alignment between human representation of the games and machine abstractions.
It also informs us if the proposed environmental changes are doable for a human, compared to the
performance of our machine learning agents.

G.2 Study Design

Participants

We recruited participants through Prolific6. A total of 160 participants completed the study. All
participants were at least 18 years old and reported fluent English skills. Participation was voluntary,
and individuals were monetarily compensated. Communication with the participants, if required, was
done over Prolific.

Procedure

Each participant completed the study in three phases:

1. Free Training (10-15 minutes): Participants played an unmodified version of a randomly
assigned Atari game. This phase allowed them to familiarize themselves with the core mechanics.
Participants could proceed early by clicking an “I’m ready” button after 10 min.

2. Evaluation Phase 1 (15 minutes): Participants played the original version of the same game.

3. Evaluation Phase 2 (15 minutes): Participants then played a modified version of the game.
The modification applied was determined by a token-to-variant mapping and involved visual or
semantic changes.

After completing the evaluation rounds, participants answered short questions about the task (e.g.,
reward identification) and reported their confidence.

Each participant was assigned to a specific game and one of several predefined modification conditions.
Each participant could only participate once. We used 15 games (cf. Appendix E.3) with one
modification each. Assignment of participants to conditions followed a round-robin strategy over
available game-modification pairs.

Tasks

Participants were asked to:

• Play the game and maximize their score across both original and modified versions, further
incentivized with a bonus payment based on performance.

• Identify what they believed was the modification.

• Rate their confidence in their understanding of the task.

• Provide free-text feedback when prompted.

6https://www.prolific.com/

https://www.prolific.com/
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G.3 Implementation Details

The study was conducted using a custom web-based platform called HackTari, which was built as a
demonstration tool for HackAtari modification, enabling real-time human interaction with modified
Atari game environments.

The system consisted of the following components:

• A Flask backend that served the web interface and managed participant sessions.

• Socket.IO was used to support low-latency, bidirectional communication between the browser and
game server, allowing responsive gameplay.

• Games were instantiated using OpenAI Gym environments, modified with custom wrappers to
support HackAtari modifications.

• Each participant was assigned a unique token that mapped to a specific game-modification variant.
This ensured that gameplay sessions and logging were isolated per user.

• All gameplay logs, including actions, rewards, observations, and survey responses, were stored as
session-specific .csv files for later analysis.

The full study workflow was hosted using AWS, requiring no software installation by participants.
This setup allowed scalable, remote data collection while maintaining consistency across game
conditions. Screenshots of the study can be found in Figures 6 to 11.

G.4 Compensation

Participants were compensated with a fixed payment of £7 (equal to ~£8.50 per hour) for completing
the study. Further, they were paid a bonus of up to £3 based on their performance. Importantly, this
bonus was not about the performance drop but their actual performance in both phases, Eval1 and
Eval2. This was done in accordance with institutional guidelines and ethical research standards.

G.5 Ethical Considerations

This study was conducted in accordance with ethical research standards. Participants provided
informed consent prior to beginning the experiment. They were informed about the study design, the
compensation, and general information about the game they would play. All data was anonymized,
and no personally identifiable information was collected. Compensation was provided according to
Prolific recommendations. The study was approved by the local ethics board.

G.6 Results

Participants were excluded from our data analysis if they did not complete all phases of the experiment,
if it was clearly apparent that they stopped actively playing the game, or if they reported technical
difficulties. Therefore, our final dataset includes 128 participants. We analyzed the quantitative
performance metrics across the original and modified game conditions. Findings can be seen in
Figure 12 to 14.
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Figure 6: Consent form shown to participants at the beginning of the study. It includes a brief
description of the study, use of data, confidentiality statement, and explicit agreement requirement
before participation.
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Figure 7: Payment information screen shown before the start of the task. It outlines base compen-
sation and performance-based bonus structure, ensuring transparency around incentives and ethical
compensation. Again an explicit agreement was required before paricipation.
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Figure 8: Example game description page shown to participants before gameplay. It provides an
overview of the given Atari game, including the objective, scoring mechanics, and available controls.
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Figure 9: Pre-task questionnaire to get basic information about experience. This could support the
quantitative evaluation in the next step. As well as a short reminder of how the study will be run
before starting it.
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Figure 10: Screenshot of the interactive HackTari gameplay interface. Participants use this interface
during Free Training, Evaluation Phase 1 (original game), and Evaluation Phase 2 (modified game).
The interface includes the game window, control guide, and timer. In free play the average human
score, taken from Badia et al. (2020a), is shown as reference.

Figure 11: Post-task questionnaire to get feedback.
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Figure 12: Raw human scores across three phases: Free Training, Evaluation on the original task
(Eval1), and Evaluation on the modified task (Eval2). Each subplot shows mean scores across all
participants for a specific game. Most participants improved or maintained performance on Eval2,
supporting the claim that the selected HackAtari variants are true task simplifications.
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Figure 13: Visualization of all results of all users.
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Figure 14: This presentation emphasizes the robustness of human generalization to simplified
modifications.
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H Game Descriptions and Modifications

H.1 Alien

Description:
You are stuck in a maze-like space ship with three aliens. You goal is to destroy
their eggs that are scattered all over the ship while simultaneously avoiding the
aliens (they are trying to kill you). You have a flamethrower that can help you
turn them away in tricky situations. Moreover, you can occasionally collect a
power-up (pulsar) that gives you the temporary ability to kill aliens.

Modification Effect

last_egg Removes all eggs but one.

H.2 Amidar

Description:
This game is similar to Pac-Man: You are trying to visit all places on a 2-
dimensional grid while simultaneously avoiding your enemies. You can turn the
tables at one point in the game: Your enemies turn into chickens and you can
catch them.

Modification Effect

pig_enemies Replaces all enemies with the pig enemies.
paint_roller_player Changes the player to the paint roller character.
unlimited_lives Player has an unlimited amounts of lives.

H.3 Asterix

Description:
You are Asterix and can move horizontally (continuously) and vertically (dis-
cretely). Objects move horizontally across the screen: lyres and other (more
useful) objects. Your goal is to guide Asterix in such a way as to avoid lyres and
collect as many other objects as possible. You score points by collecting objects
and lose a life whenever you collect a lyre. You have three lives available at the
beginning. If you score sufficiently many points, you will be awarded additional
points.

Modification Effect

obelix Changes the playable character to obelix.
set_consumable_1 Changes all consumables to pink consumables (100points).
set_consumable_2 Changes all consumables to shields (200points).
unlimited_lives Player has an unlimited amounts of lives.
even_lines_free Clears the even numbered lines (1 being the top most line).
odd_lines_free Clears the odd numbered lines (1 being the top most line).
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H.4 Atlantis

Description:
Your job is to defend the submerged city of Atlantis. Your enemies slowly
descend towards the city and you must destroy them before they reach striking
distance. To this end, you control turrets stationed on three defense posts. You
lose if your enemies manage to destroy all seven of Atlantis’ installations. You
may rebuild installations after you have fought of a wave of enemies and scored
a sufficient number of points.

Modification Effect

no_last_line Removes enemies from the lowest line.
jets_only All enemy ships are jets.
random_enemies Randomly assigns enemy types, instead of following the standardized

pattern.
speed_mode_slow Sets enemy speed to low.
speed_mode_medium Sets the enemy speed to medium.
speed_mode_fast Sets the enemy speed to fast.
speed_mode_ultrafast Sets the enemy speed to ultrafast.

H.5 BankHeist

Description:
You are a bank robber and (naturally) want to rob as many banks as possible. You
control your getaway car and must navigate maze-like cities. The police chases
you and will appear whenever you rob a bank. You may destroy police cars by
dropping sticks of dynamite. You can fill up your gas tank by entering a new city.
At the beginning of the game you have four lives. Lives are lost if you run out
of gas, are caught by the police, or run over some dynamite you have previously
dropped.

Modification Effect

unlimited_gas Unlimited gas for the player.
no_police Removes police from the game.
only_police No banks only police.
two_police_cars Replaces 2 banks with police cars and robbed banks give 50 points.
random_city Randomizes which city is entered next.
revisit_city Allows player to go back one city.

H.6 Bowling

Description:
Your goal is to score as many points as possible in the game of Bowling. A game
consists of 10 frames and you have two tries per frame. Knocking down all pins
on the first try is called a “strike”. Knocking down all pins on the second roll is
called a “spar”. Otherwise, the frame is called “open”.
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Modification Effect

shift_player Shifts the player to the right.
horizontal_pins Draws the pins horizontally instead of vertically.
small_pins Decreases the pin size from 2 pixels to 1 pixel.
moving_pins Moves the pins up and down.
top_pins The top two pins are in-game.
middle_pins Two middle pins are in-game.
bottom_pins The bottom two pins are in-game.

H.7 Boxing

Description:
You fight an opponent in a boxing ring. You score points for hitting the opponent.
If you score 100 points, your opponent is knocked out.

Modification Effect

gravity Adds a permanent downwards movement.
antigravity Adds a permanent upwards movement.
offensive Moves the player character forward in the game environment.
defensive Moves the player character backward in the game environment.
down Moves the player character down in the game environment.
one_armed Disables the "hitting motion" with the right arm permanently
drunken_boxing Applies random movements to the players input.
color_player_X Changes the color of the player to color X ∈ [Black, White, Red, Blue,

Green]
color_enemy_X Changes the color of the enemy to color X ∈ [Black, White, Red, Blue,

Green] by choosing a value 0-4
switch_positions Switches the position of player and enemy
classic_colors Using a red player and a blue enemy

H.8 Breakout

Description:
Another famous Atari game. The dynamics are similar to pong: You move a
paddle and hit the ball at a brick wall at the top of the screen. Your goal is to
destroy the brick wall. You can try to break through the wall and let the ball
wreak havoc on the other side, all on its own! If the ball falls below your padle
you lose one of your five lives.

H.9 Carnival

Description:
This is a “shoot ‘em up” game. Targets move horizontally across the screen and
you must shoot them. You control the gun at the bottom of the screen that can be
moved horizontally. The supply of ammunition is limited and chickens may steal
some bullets from you if you don’t hit them in time.
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Modification Effect

right_drift Applies a right drift to the ball.
left_drift Applies a left drift to the ball.
gravity Applies a downward force to the ball
inverse_gravity Applies an upward force to the ball
color_player_and_ball_X Changes the color of the player to color X ∈ [Black, White, Red,

Blue, Green].
color_all_blocks_X Changes the color of all blocks to color X ∈ [Black, White, Red,

Blue, Green].

Modification Effect

no_flying_ducks Ducks in the last row disappear instead of turning into
flying ducks.

unlimited_ammo Ammunition doesn’t decrease.
missile_speed_small_increase The projectiles fired from the players are slightly faster.
missile_speed_medium_increase The projectiles fired from the players are notably faster.
missile_speed_faster_increase The projectiles fired from the players are a lot faster.

H.10 ChopperCommand

Description:
You control a helicopter and must protect truck convoys. To that end, you need
to shoot down all enemy aircraft. A mini-map is displayed at the bottom of the
screen that shows all truck and aircraft positions.

Modification Effect

delay_shots Puts time delay between shots
no_enemies Removes all Enemies from the game
no_radar Removes the radar content
invisible_player Makes the player invisible
color_X Changes the color of background to color X ∈ [black, white, red, blue,

green]. This also affects the enemies colors

H.11 DemonAttack

Description:
You are facing waves of demons in the ice planet of Krybor. Points are accumu-
lated by destroying demons. You begin with 3 reserve bunkers, and can increase
its number (up to 6) by avoiding enemy attacks. Each attack wave you survive
without any hits, grants you a new bunker. Every time an enemy hits you, a
bunker is destroyed. When the last bunker falls, the next enemy hit will destroy
you and the game ends.
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Modification Effect

static_enemies Makes the enemies horizontally static (static x).
one_missile Enemies only shoot one missile, instead of three

H.12 DonkeyKong

Description:
You play as Mario trying to save Pauline from the hands of Donkey Kong.
Remove rivets and jump over the barrels, with a score that starts high and counts
down throughout the game.

Modification Effect

no_barrel Remove barrels from the game.
unlimited_time Provides unlimited time for the player.
random_start Set the players start position to a random pre-defined start position.

H.13 FishingDerby

Description:
Your objective is to catch more sunfish than your opponent. Watch out for the
shark, as it tries to snatch the fish caught on your hook.

Modification Effect

fish_on_player_side Spawns all fish on the players side.
fish_in_middle Spawns all fish in the middle.
fished_on_each_sides1 Swap fish sides, the fish that were on the player side are now

on the enemy’s one and vice versa.
fished_on_each_sides2 Swap fish sides, the fish that were on the player side are now

on the enemy’s one and vice versa.
shark_no_movement_easy The shark will not move and stay on the opponents side.
shark_no_movement_middle The shark will not move and is placed in the middle.
shark_teleport The shark will teleport between the player and the enemy side

at a set interval.
shark_speed_mode Increases the sharks movement speed.

H.14 Freeway

Description:
Your objective is to guide your chicken across lane after lane of busy rush hour
traffic. You receive a point for every chicken that makes it to the other side at the
top of the screen.
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Modification Effect

stop_random_car Stops a random car with a biased probability.
stop_all_cars Stops all cars and repositions some to predefined positions.
align_all_cars Aligns the x position of all cars.
reverse_car_speed_bottom Reverses the speed order of the cars on the bottom road (the

fastest becomes the slowest and vice versa).
reverse_car_speed_top Reverses the speed order of the cars on the top road (the fastest

becomes the slowest and vice versa).
speed_mode Increases the speed of all cars.
invisible_mode Makes the cars invisible.
phantom_mode Each car changes color from black to invisible approximately

every second.
blinking_mode Each car changes color randomly approximately every second.
strobo_mode Each car changes color randomly every timestep.
all_X_cars Set color of all cars to X ∈ [black, white, red, blue, green].

H.15 Frostbite

Description:
In Frostbite, the player controls “Frostbite Bailey” who hops back and forth
across an Arctic river, changing the color of the ice shards from white to blue.
Each time he does so, a block is added to his igloo. Hurry before the polar bear
gets you, but watch out for birds that throw you of the shards or crabs that snap
you. Look for fish jumping out of the water to receive some bonus points.

Modification Effect

ui_color_X Adjust color of the UI to color X ∈ [black, red]
reposition_floes_easy Adjusts the position of the ice floes to an easy layout.
reposition_floes_medium Adjusts the position of the ice floes to a medium layout.
reposition_floes_hard Adjusts the position of the ice floes to a hard layout.
no_birds Removes the birds.
few_enemies Reduces the amount of enemies spawning in.
many_enemies Increases the amount of enemies spawning in.

H.16 Jamesbond

Description:
Your mission is to control Mr. Bond’s specially designed multipurpose craft to
complete a variety of missions. The craft moves forward with a right input and
slightly back with a left input. An up or down input causes the craft to jump or
dive. You can also fire by either lobbing a bomb to the bottom of the screen or
firing a fixed angle shot to the top of the screen.

Modification Effect

constant_jump Makes the player character jump constantly.
fast_backward Increases the reversing speed.
mobile_player Makes the player character jump constantly and increases the reversing

speed.
straight_shots The player shots go straight up, instead of diagonal.
unlimited_lives Player has an unlimited amounts of lives.
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H.17 Kangaroo

Description:
The object of the game is to score as many points as you can while controlling
Mother Kangaroo to rescue her precious baby. You start the game with three lives.
During this rescue mission, Mother Kangaroo encounters many obstacles. You
need to help her climb ladders, pick bonus fruit, and throw punches at monkeys,
while avoiding the falling coconuts.

Modification Effect

disable_monkeys Disables the monkeys in the game.
disable_coconut Disables the coconuts in the game.
disable_thrown_coconut Disables the thrown coconut in the game.
no_danger Combines the three modifications above, disabling all hazards

in the game.
set_kangaroo_position_floor1 Sets the kangaroo’s position for floor 1.
set_kangaroo_position_floor2 Sets the kangaroo’s position for floor 2.
randomize_kangaroo_position Randomize the floor on which the kangaroo starts.
change_level1 Changes the level to 1.
change_level2 Changes the level to 2.
change_level3 Changes the level to 3.
unlimited_time Provides unlimited time to clear the level.

H.18 KungFuMaster

Description:
You are a Kung-Fu master on the mission to rescue your girlfriend from the evil
Mr. X. find your way through the castle fighting his lackeys and dodging traps.

Modification Effect

no_damage Player does not take damage.
unlimited_time Provides unlimited time to clear the level.
unlimited_lives Player has an unlimited amounts of lives.

H.19 MontezumaRevenge

Description:
Your goal is to acquire Montezuma’s treasure by making your way through a
maze of chambers within the emperor’s fortress. You must avoid deadly creatures
while collecting valuables and tools which can help you escape with the treasure.
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Modification textbfEffect

random_position_start Randomize the start position within the room
set_level_0 Sets the level to 0.
set_level_1 Sets the level to 1.
set_level_2 Sets the level to 2.
randomize_items Randomize which item is found in which room.
full_inventory Adds all items to inventory.

H.20 MsPacman

Description:
Your goal is to collect all of the pellets on the screen while avoiding the ghosts.

Modification Effect

caged_ghosts Fix the position of the ghost inside the square in the middle of the screen.
disable_orange Fix the position of the orange ghost only.
disable_red Fix the position of the red ghost only.
disable_cyan Fix the position of the cyan ghost only.
disable_pink Fix the position of the pink ghost only.
caged_ghosts Fix the position of all the ghosts.
edible_ghosts All ghost will be made edible the entire game
set_level_X Changes the level to X ∈ [0, 1, 2].
end_game Simulates an almost done game, with 15 pills remaining in the level.
maze_man Changes the game to a maze solving task. Only one pill will spawn at

a time. After the player collects it, a new pill will spawn. The game is
won when the player has collected 20 pills.

H.21 NameThisGame

Description:
You, the diver need to defend your treasure from the giant octopus at the top of
the screen. Defend yourself by shooting his tentacles and the shark that is looking
to bite you. Remember to refill your oxygen via the the boats tube, before you
run out.

Modification Effect

unlimited_oxygen Provides the player with an unlimited supply of oxygen.
unlimited_lives Player has an unlimited amounts of lives.
double_wave_length Doubles the amount of time it takes to get into the next phase.
quick_start Skips the intro.
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H.22 Pong

Description:
You control the right paddle and compete against the left paddle controlled by
the computer. You each try to keep deflecting the ball away from your goal and
into your opponent’s goal.

Modification Effect

lazy_enemy Enemy does not move after returning the shot until player hits ball.
hidden_enemy Removes the enemy from the OCAtari object list (Makes it invisible to

object based agents).
up_drift Makes the ball drift upwards.
down_drift Makes the ball drift down.
left_drift Makes the ball drift to the left.
right_drift Makes the ball drift to the right.

H.23 RiverRaid

Description:
You control a jet that flies over a river: you can move it sideways and fire missiles
to destroy enemy objects. Each time an enemy object is destroyed you score
points (i.e. rewards). Fly over a fuel depot when you begin to run low, before
you lose your jet. You also lose a jet when it collides with the river bank or one
of the enemy objects (except fuel depots). The game begins with a squadron of
three jets in reserve and you’re given an additional jet (up to 9) for each 10,000
points you score.

Modification Effect

no_fuel Removes the fuel deposits from the game.
red_river Turns the river red.
linear_river Makes the river straight, however objects still spwan at their normal

position making them unreachable in the worst case.
exploding_fuels Shooting the fuel deposits will now provides -80 points (instead of 20).
unlimited_lives Player has an unlimited amounts of lives.
restricted_firing The player is only able to shoot in critical situation, facing a bridge or in

a corridor.
unlimited_lives Player has an unlimited amounts of lives.
restricted_firing The player is only able to shoot in critical situation, facing a bridge or in

a corridor.
game_color_change_X Changes the color of the player to color X ∈ [01, 02, 03]
object_color_change_X Changes the color of the player to color X ∈ [01, 02, 03]

H.24 RoboTank

Description:
You are playing a tank looking to defeat the enemy squadrons of tanks. Each
squadron consists of 12 tanks. Use the radar to find enemy tanks even in the night
or during foggy weather. Being hit by the enemy requires you to switch to one of
your reserve tanks. Enemy stray shots may destroy vital sensors.
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Modification Effect

fog Weather condition is always set to fog.
snow Weather condition is always set to snow.
rain Weather condition is always set to rain.
tread_damage Tread sensor is damaged.
canon_damage Canon is damaged.
vision_damage Vision sensor is damaged.
no_radar Disables the radar.

H.25 Seaquest

Description:
You control a submarine able to move in all directions and fire torpedoes. The
goal is to rescue as many divers as you can, while dodging and blasting enemy
subs and killer sharks; points will be awarded accordingly. The game begins with
one sub and three waiting on the horizon. Each time you score 10,000 points,
an extra sub will be delivered to your base. You can only have six reserve subs
at one time. Your sub will explode if it collides with anything except your own
divers. The sub has a limited amount of oxygen that decreases at a constant rate
during the game. When the oxygen tank is almost empty, you need to surface
and if you don’t do it in time, your sub will blow up and you’ll lose one diver.
Each time you’re forced to surface, with less than six divers, you lose one diver
as well.

Modification Effect

unlimited_oxygen Changes the behavior of the oxygen bar to remain filled
gravity Enables gravity for the player.
disable_enemies Disables all the enemies.
random_color_enemies The enemies have new random colors each time they go across

the screen.

H.26 Skiing

Description:
You control a skier who can move sideways. The goal is to pass through all the
gates (between the poles) in the fastest time. You are penalized five seconds for
each gate you miss. If you hit a gate or a tree, your skier will jump back up and
keep going.

Modification Effect

invert_flags Switches the flag color from blue to red.
moguls_to_trees Replaces all moguls with trees.
moving_flags Flags move to the left and right.
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H.27 SpaceInvaders

Description:
Your objective is to destroy the space invaders by shooting your laser cannon at
them before they reach the Earth. The game ends when all your lives are lost
after taking enemy fire, or when they reach the earth.

Modification Effect

disable_shield_left Disables the left shield.
disable_shield_middle Disables the middle shield.
disable_shield_right Disables the right shield.
disable_shields Disables all shields.
relocate_shields_right Relocates the shields to a more right position.
relocate_shields_slight_left Relocates the shields to a slightly more left position.
relocate_shields_off_by_one Relocates the shields to to the right by 1 pixel.
relocate_shields_off_by_three Relocates the shields to to the right by 3 pixels.
controlable_missile The player can control the missile by moving left and

right.
no_danger Removes disables the enemies shots and removes the

shields.

H.28 StarGunner

Description:
You are playing as a stargunner from the Yarthae Empire. The Empire is being
invaded by the Sphyzygi. You, the stargunner, must destroy their invading ships
while dodging the bombs dropped by the Sphyzygi droid. The droid cannot be
destroyed.

Modification Effect

static_bomber Stops the bomber at the top from moving.
static_flyers Stops the flying enemies in place.
remove_mountains Removes the mountains from the game.
static_mountains The mountains stay the same, even if the player moves.

H.29 Tennis

Description:
You control the orange player playing against a computer-controlled blue player.
The game follows the rules of tennis. The first player to win at least 6 games with
a margin of at least two games wins the match. If the score is tied at 6-6, the first
player to go 2 games up wins the match.
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Modification Effect

wind_effect Sets the ball in the up and right direction by 3 pixles every single ram
step to simulate the effect of wind

upper_pitches Changes the ram so that it is always the upper persons turn to pitch.
lower_pitches Changes the ram so that it is always the lower persons turn to pitch.
upper_player Changes the ram so that the player is always in the upper field
lower_player Changes the ram so that the player is always in the lower field

H.30 TimePilot

Description:
You control an aircraft. Destroy your enemies by shooting them down. As
you progress through the game, you will encounter enemies with increasingly
advanced technology.

Modification Effect

level_X Changes the level to X ∈ [1, 2, 3, 4, 5].
random_orientation Randomizes orientation of enemies. They are no longer aligned.

H.31 Venture

Description:
Your goal is to capture the treasure in every chamber of the dungeon while
avoiding the monsters.

Modification Effect

enemy_color_X Changes the color of all enemies to the color X ∈ [black, white, red,
blue, green].

random_enemy_colors Changes the color of all enemies to a random color.

H.32 YarsRevenge

Description:
The objective is to break a path through the shield and destroy the Qotile with a
blast from the Zorlon Cannon.
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Modification Effect

disable_enemy_movement Disables enemy movement.
disable_block_movement Stops blocks in place.
static Disables enemy movement and stops blocks in place.


