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Abstract
With the advent of large-scale models and their
success in diverse fields, Knowledge Distillation
(KD) techniques are increasingly used to deploy
them to edge devices with limited memory and
computation constraints. However, most distil-
lation works focus on improving the prediction
performance of the student model with little to no
work in studying the effect of distillation on key
fairness properties, ensuring trustworthy distil-
lation. In this work, we propose a fairness-driven
distillation framework, BIRD (BIas-awaRe Distil-
lation), which introduces a FAIRDISTILL operator
to collect feedback from the student through a
meta-learning-based approach and selectively dis-
till teacher knowledge. We demonstrate that BIRD
can be augmented with different KD methods to
increase the performance of foundation models
and convolutional neural networks. Extensive ex-
periments across three fairness datasets show the
efficacy of our framework over existing state-of-
the-art KD methods, opening up new directions
to develop trustworthy distillation techniques.

1. Introduction
Recent years have witnessed an alarming trend toward de-
veloping large-scale vision and language foundation mod-
els (Radford et al., 2021; Singh et al., 2022) trained on
large datasets from unvetted data sources, leading to several
deployment and societal issues (Agarwal; Birhane et al.,
2021; Mehrabi et al., 2021; Naik & Nushi, 2023; Seth et al.,
2023). To address these constraints, model compression
techniques have been recently used to preserve their predic-
tive performance while significantly reducing their param-
eter size (Hsieh et al., 2023; Wang et al., 2022). Amongst
these techniques, Knowledge Distillation (KD) has been
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shown to work for a wide range of models (Wang et al.,
2022; Sanh et al., 2019), where it distills the internal feature
representations and/or the outputs logits of a larger teacher
model into a smaller student model (Bucilua et al., 2006;
Hinton et al., 2015; Romero et al., 2015; Zagoruyko & Ko-
modakis, 2017; Yim et al., 2017; Jandial et al., 2023). As
the distillation of large models becomes increasingly preva-
lent in real-world applications, it becomes crucial to ensure
that the resulting student models and their output represen-
tations are safe and reliable. In particular, they should not
learn discriminatory features, and their bias should not be
exacerbated due to distillation from the teacher model.

Previous fairness works have argued that bias in machine
learning is primarily due to the dataset and/or the training
process (Agarwal et al., 2021; Hooker, 2021; Yucer et al.,
2022). However, they cannot be directly extended to KD
frameworks as there is an inherent trade-off between “what”
and “how much” a student distills knowledge from a teacher.
While a student model can learn useful teacher predictive
properties, it is also prone to inheriting the bias of an unfair
teacher. These contrasting aspects of the distillation frame-
work make the problem of fair KD non-trivial. While several
existing works focus on either KD or fairness in ML, there
is little to no research on addressing them simultaneously.
Despite independent efforts in these two fields, there remain
open questions about whether a student inherits biases from
a teacher and “what” teacher features distill more bias dur-
ing KD. To this end, Jung et al. (2021) proposes a method
to perform fair KD which enforces fairness constraints by
matching the student’s group conditioned features with the
teacher’s group indistinguishable features (Gretton et al.,
2012), where a group is a protected attribute like gender,
race, etc. However, there is no guarantee that the group
averaging will wash away the bias from the teacher features
and scale to large-scale foundation models. In contrast to
existing works, we propose to transform the biased knowl-
edge from the teacher as well as debias the student model
with fairness objectives. More specifically, our framework
learns to exclude the biased features from the teacher by
incorporating student feedback via meta-learning.

Present Work. In this work, we address fairness in KD and
ensure that the student learns fair and accurate representa-
tions. In doing so, we first identify the key connection be-
tween the bias induced by the teacher and the bias inherited
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Figure 1: Overview of our BIRD framework – BIRD learns bias-aware representations from the teacher fT by training
the FAIRDISTILL operator using a meta-learning framework: a) In Stage I, BIRD updates a copy of the student model
with Lin, b) in Stage II, the updated model f ′

c is used to train ϕ with bias-feedback information in the form of meta-gradients
from Lo, and c) in Stage III, the student model fS is distills unbiased representations using FAIRDISTILL (from Stage II).

by the student (refer to Sec. 4.1 Q1). We show that there is a
trade-off between the predictive and biased knowledge a stu-
dent distills from a teacher. While the teacher does improve
the predictive performance of the student, we find that exist-
ing KD techniques lead a student model to mimic the bias
in teacher’s predictions. We leverage this connection to pro-
pose a novel framework, BIRD (BIas-awaRe Distillation),
which can be used with any existing KD methods and archi-
tectures to learn fair student representations. We introduce
a fair-distillation operator that selects and filters a subset
of uncorrelated features from the teacher during distillation.
The learnable operator is updated using meta-gradients from
the student objective functions. To the best of our knowl-
edge, this work is the first to tackle the problem of fairness
in KD using student feedback in a meta-learning pipeline.

Our contributions. We present our contributions as
follows: i) we propose BIRD, a fair knowledge distillation
framework that achieves more effective debiasing for KD
compared to existing techniques. ii) BIRD is model-agnostic
and can be integrated with diverse foundational models
and CNNs across knowledge distillation methods. iii) BIRD
introduces a simple, flexible, and computationally inexpen-
sive fair-distillation operator trained using meta-learning for
selectively distilling fair and accurate teacher features. iv)
We conduct experiments on multiple fairness datasets and
demonstrate the effectiveness of BIRD through extensive
empirical analysis. Results show that BIRD improves the
fairness of knowledge distillation approaches by 32.53%
(on average) without sacrificing predictive performance.

2. Preliminaries
Notation. Let D={(x1, y1), . . . , (xN , yN )} be the labelled
dataset, where each input image sample xi ∈ R3×h×w has

height h and width w, and each label yi ∈ {1, 2, . . . , C}
represents one of the C classes in D. In addition to the
ground-truth prediction label, each sample comprises a
protected attribute label yp which may be used unfairly
against the subject in the image. Following previous
meta-learning works (Finn et al., 2017), we split the dataset
D into three mutually exclusive sets Dtrain, Dtest, and Dmeta.

Knowledge Distillation. Let fT and fS denote the teacher
and student model parameterized by θT and θS. We denote
the output representations of the fT and fS as hT and hS
respectively. Methods such as Zagoruyko & Komodakis
(2017) and Romero et al. (2015) perform Feature Knowl-
edge Distillation (FKD) by optimizing D(hS,hT), where D
is any distance metric (e.g., Euclidean). For the remainder
of this work, we define FKD as:

LFKD = αD (hS,hT) + (1− α)LCE(ŷ, y) (1)

where α is the weight coefficient, LCE denotes the cross
entropy loss function, and ŷ represents the softmax outputs
of fS and y are the ground truth labels respectively. For-
mally, the definition of KD (Eqn. 1) suggests that the student
models are solely optimized for their predicted performance.
Since teacher models may be biased, the KD frameworks
may distill spurious correlations in the student, motivating
the need for a bias-aware distillation framework.

3. Our method: BIRD

Our framework demonstrates that we can obtain a fair
student model by i) eliminating the biased features in the
teacher representation and ii) using fairness objectives for
optimizing the student during distillation. BIRD achieves
this by introducing a fairness-aware distillation operator
(Sec. 3.1), as well as the student copy update (Sec. 3.2) and
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meta-update (Sec. 3.3) objectives in the distillation pipeline.

Problem Formulation (Bias-Aware Distillation). Given a
dataset Dtrain and a biased teacher model fT optimized for
predictive performance on Dtrain, we aim to learn a student
model fS whose representations do not reflect any undesir-
able discriminatory biases (i.e., they are fair) and achieve
high predictive performance (i.e., they are accurate).

3.1. Fairness-Aware Distillation Operator

We propose a fairness-aware distillation operator, denoted as
FAIRDISTILL, which aims to identify and distill a subset of
features from the teacher, or in other words selectively distill
fair teacher representations. Next, we present the formal
definition of FAIRDISTILL, which is generic in its formu-
lation and can be augmented with any existing KD method.

FAIRDISTILL operator. We define a computationally in-
expensive operator FAIRDISTILL : Rd −→ Rd, consisting
of a d-dimensional learnable weight vector ϕ. For a given
teacher representation hT, we define FAIRDISTILL(hT) =
sigmoid(ϕ) ⊙ hT, where ϕ ∈ [0, 1]d are the learnable pa-
rameters, ⊙ is the Hadamard product, and sigmoid is the
non-linear activation function. We apply sigmoid to ϕ be-
fore performing element-wise multiplication to re-weight
hT based on their correlation with the protected attributes.

3.2. Student copy update

At the beginning of the inner optimization loop, we cre-
ate a copy of the original student model fc. Next, using
(xt, yt) ∼ Dtrain, we obtain the penultimate layer represen-
tations hT,hc from fT, fc, respectively. We then leverage
the FAIRDISTILL at the current step to transform hT and
update fc with the following objective:

Lin = αD (hc, FAIRDISTILL(hT))+(1−α)LCE(ŷt, yt) (2)

where D can be any distance-based metric and ŷt is the
output predicted by fc(xt). We update FAIRDISTILL in
the meta-step based on the resulting fairness properties of
f ′

c . Intuitively, we update FAIRDISTILL such that f ′
c is fair,

which in turn teaches FAIRDISTILL to distill fairly.

3.3. Meta Update Phase

We first sample data from the meta-subset (xm, ym) ∼ Dmeta

and pass it through f ′
c (Sec. 3.2). Also, θc is a function of

ϕ which implies that ▽θ′c is a function of the gradients of
ϕ. Consequently, we use θ′c to perform meta-updates on ϕ
using a bias-aware objective function:

Lo=

C∑
i=1

max
M∑
j=1

abs
(
LCE(ŷi|yp=j, yi|yp=j)−LCE(ŷi, yi)

)
(3)

Algorithm 1 BIRD: BIas-awaRe Distillation.
1: BIRD (θS, θT, ϕ) ▷ Input Parameters
2: Hyperparameters: µ1, µ2, µ3 ▷ Learning Rates
3: Dataset: Dtrain,Dmeta ▷ Data Splits
4: while not done do
5: θc ← θS ▷ Save current student state
6: θ′c ← θc − µ1▽θcLin(fc) ▷ Update with (xt, yt) ∼ Dtrain

using Eqn. 2
7: ϕ← ϕ− µ2▽ϕLo(f

′
c) ▷ Update with (xm, ym) ∼ Dmeta

using Eqn. 3
8: θS ← θS − µ3▽θSLj(fS) ▷ Update with (xt, yt) ∼ Dtrain

using Eqn. 4
9: end while

where M is the number of unique values in the given pro-
tected attribute p, ŷi|yp = j denotes the output of the net-
work f ′

c(xm) such that the unprotected class label is i and the
label of the protected attribute is j. Intuitively, ▽ϕLo implies
that ϕ is updated such that f ′

c exhibits equal predictive per-
formance across all protected demographic groups for every
task category (i.e., it is fair), following the fairness definition
proposed in Hardt et al. (2016). In Fig. 1 (Stage II), we show
the information flow using the meta-gradients obtained from
Lo. In particular, the gradients of Lo with respect to ϕ are
backpropagated via θ′c and ϕ is subsequently updated by
computing the gradients of gradients or meta-gradients.

3.4. Overall Optimization

To learn hS that is invariant to yp, we train BIRD using the
following objectives: i) gather feedback from fS in the form
of meta-gradients to learn an optimal FAIRDISTILL (see
Sec. 3.3) and ii) apply the learned FAIRDISTILL on fT to se-
lectively perform KD. In addition, we use a model-agnostic
regularization on fS that further penalizes student bias. Fi-
nally, the joint objective which updates the original student
model fS using the updated FAIRDISTILL is given as:

Lj=αD(hS, FAIRDISTILL(hT))+(1−α)LCE(ŷt, yt)+λLreg

(4)

where Lreg is the regularization on fS that penalizes student
bias, λ is a regularization coefficient, and ŷt is the softmax
output of fS(xt). Without any loss of generality, we use
Eqn. 3 as the regularization term in our BIRD framework.

4. Experiments
We present the experimental results for BIRD and address
the following questions: Q1) Does KD worsen/improve
student’s unfairness? Q2) Can we selectively distill from
the teacher to ensure bias-free distillation? Q3) How do
meta gradients from student models improve debiasing?
Q4) Can BIRD be augmented with existing KD baselines?
Refer to Appendix for details on experimental setup.
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Table 1: Results of KD on three FMs using CelebA dataset.
Shown is the avg. performance across five independent runs.
Arrows (↑, ↓) indicate the direction of better performance.
BIRD retains the predictive power (AUROC) of the baseline
model while improving their fairness (shaded area).

Model Method AUROC (↑) ∆mean-DEO(↓) ∆max-DEO(↓)

Flava

Baseline
BKD

84.43±0.12
84.42±0.11

27.48±0.64
27.39±0.58

29.37±1.53
29.36±1.41

FitNet
AD

84.47±0.10
84.35±0.05

26.59±0.62
10.54±0.80

28.56±0.68
12.93±0.79

MFD
BIRD

84.45±0.11
85.48±0.02

26.64±0.62
2.53±0.17

28.63±0.68
4.12±0.59

CLIP-
ViT/32

Baseline
BKD

87.01±0.26
87.07±0.26

23.38±1.72
23.26±1.67

24.91±1.15
24.62±1.14

FitNet
AD

87.17±0.13
88.20 ±0.17

22.84 ±1.03
17.02 ±1.03

24.17±1.22
17.82 ±0.97

MFD
BIRD

87.22±0.11
88.55±0.03

21.99±0.70
3.44±0.92

23.70±1.58
5.19±1.06

CLIP-
R50

Baseline
BKD

87.72±0.06
87.72±0.06

21.11±0.30
21.10±0.40

21.97 ±0.41
22.07 ±0.41

FitNet
AD

87.54±0.14
88.51 ±0.02

22.01 ±1.05
5.33 ±0.19

23.30 ±1.15
7.93 ±0.22

MFD
BIRD

87.49±0.12
87.93±0.01

22.56 ±0.56
2.65±0.29

23.52±0.33
4.49±0.48

4.1. Results

Q1) Student inherits the fairness properties of the
teacher. We use BKD (Hinton et al., 2015) with
CLIP-ViT-B/32 and FLAVA models as teachers and the
ResNet-{18,34} as students. Across different teacher-
student combinations, results in Fig. 2 show that the
student, which originally had better fairness performance,
becomes unfair (higher metric values) after inheriting the
teacher’s biased features. On average, we find an increase
of 38.54% in ∆mean-DEO and 37.26% in ∆max-DEO. These
results support our hypothesis that KD introduces bias in
the student model. See the Appendix (Table 6) for similar
insights on additional teacher-student architectures.

Q2) BIRD improves the fairness of knowledge distillation.
Across state-of-the-art foundational models (see Table 1),
we show that BIRD consistently learns fairer student rep-
resentations while preserving the predictive performance of
the original model. On average, BIRD improves the fairness
of the underlying model by 87.60% (in ∆mean-DEO) and
81.67% (in ∆max-DEO), respectively. Further, we consider
a CLIP-ViT-B/32 → ResNet-18 teacher-student distillation
setting, where we find an average improvement of about
64% in the fairness performance of the ResNet-18 student
model compared to its baselines (Fig. 3). Please refer to
Table 2-4 for results on CNNs, CIFAR-10S and UTKFace.

Q3) Meta-updates improve fairness. We conduct an abla-
tion on the importance of the meta-step in our BIRD frame-
work. In doing so, we do not update the parameters of the
FAIRDISTILL operator using the gradients of gradients ob-
tained from the student model. Results show that the meta-

Figure 2: ∆DEO scores for baseline teacher (CLIP-ViT-B/32,
FLAVA), baseline student (ResNet-18), and distilled student
models using base KD. We find that KD results in unfairer
student predictions as compared to baseline students across
both fairness metrics.

learning component is necessary to learn fair representations
(Table 7). In particular, we observe an 18.27% improvement
in the fairness of BIRD, as compared to BIRD w/o Meta, pro-
viding empirical evidence that the meta-gradients improve
the fairness of the student model.

Q4) BIRD-augmented methods are fairer than their
vanilla counterpart. We augment BIRD with two widely
used KD methods (FitNet and AT) and MFD, a baseline to
achieve fairness in KD. Our results in Table 5 demonstrate
that BIRD-augmented KD techniques learn fairer representa-
tions than their vanilla counterparts. On average, BIRD im-
proves the fairness of three existing KD methods by 41.86%
(in ∆mean-DEO) and 41.80% (in ∆max-DEO), respectively. A
key takeaway from our experiments is that BIRD learns a
small distillation operator using meta-learning that can be
easily integrated with any existing KD frameworks.

5. Conclusion
In this work, we address the problem of learning fair distilled
students. To this end, we introduce BIRD, a meta-learning
framework that exploits a critical connection between “what”
and “how much” knowledge to distill from a given teacher.
We demonstrate that BIRD leverages important student feed-
back to identify and transfer teacher features uncorrelated to
a given protective attribute, resulting in fairer and more accu-
rate student representation. Our results on three benchmark
fairness datasets show that BIRD consistently improves the
fairness (in terms of difference of equalized odds metric)
compared to state-of-the-art knowledge distillation and de-
biasing techniques. This work paves the way for an exciting
direction to develop trustworthy knowledge distillation tech-
niques, where student feedback can guide the distillation
process to distill trustworthy features from the teacher.
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A. Additional Experimental Details
In this section, we first discuss the experimental setup and datasets used in detail (Sec A.1). We then present our experimental
results of BIRD on additional architectures (ShuffleNet-v2, ResNet-18, and ResNet-34) and datasets (UTKFace (Zhang
et al., 2017), and CIFAR-10S (Wang et al., 2020)) in Sec A.2. Finally, we present additional experiments and the full set of
numbers described in Sec 4.1.

A.1. Datasets and Experimental Setup

Datasets. We evaluate BIRD on three widely-used fairness datasets. 1) CelebA (Liu et al., 2015) dataset comprises more
than 200,000 images with 40 binary attribute annotations. Following Quadrianto et al. (2019) and Jung et al. (2021), we
only consider the binary protected group and binary task class in our experiment, namely, we set Gender (male/female) as
the protected attribute and Attractive (yes/no) as the target variable. 2) UTKFace (Zhang et al., 2017) dataset consists of
approximately 20,000 face images with annotations of age (from 0 to 116), gender (male/female), and ethnicity (White,
Black, Asian, and Indian). Images in the dataset are diverse and encompass different variations in pose, facial expression,
illumination, occlusion, resolution, etc. We follow the setup described by Jung et al. (2021) and use ethnicity as the protected
attribute with four classes and age as the task attribute bucketed into three classes. 3) CIFAR-10 Skewed (CIFAR-10S) (Wang
et al., 2020) dataset is a modified version of CIFAR-10 to study bias mitigation in image classification and consists of 32×32
images categorized into one of 10 classes.

Evaluation metrics. We report AUROC and F1-score on the test set to evaluate the predictive performance of the student.
While for fairness, we use two types of difference of equalized odds (DEO) metrics as proposed by Jung et al. (2021), defined
upon taking the maximum and the average over the given prediction label ŷ. Further, ∆max-DEO denotes the worst-case
unfairness performance and ∆mean-DEO represents the overall fairness across all classes.

Baseline methods. We consider the standard knowledge distillation baselines: Base KD (BKD) (Hinton et al., 2015),
Attention Transfer (Zagoruyko & Komodakis, 2017), and FitNet (Romero et al., 2015) – they entirely focus on improving
student’s prediction accuracy. In addition, we include recent methods proposed to tackle fairness in knowledge distillation:
Adversarial debiasing (Zhang et al., 2018) and MFD (Jung et al., 2021). All hyperparameters of the chosen baselines were
set following the author’s guidelines.

Model architectures. We investigate the flexibility of BIRD using three established foundation models (FMs): CLIP-
ResNet-50, CLIP-ViT-B/32 (Radford et al., 2021), and FLAVA (Singh et al., 2022). In addition, we consider three widely
used Convolutional Neural Network (CNN) architectures in knowledge distillation to show the generalizability of BIRD in
performing bias-aware distillation: ShufflenetV2 (Ma et al., 2018), ResNet-18, and ResNet-34 (He et al., 2016). We use
the public implementations and pre-trained weights for FMs and CNNs models from HuggingFace (Wolf et al., 2020) and
PyTorch model-zoo (PyTorch), respectively. Note that while we initialize the FMs using their pre-trained weights, the CNN
models were trained from scratch.

Baseline Implementation. We use Adam optimizer (Kingma & Ba, 2015) with its default parameters and a learning rate of
1e−3 to train all our baseline models. For the CelebA dataset, all models are trained for 10 epochs with a constant learning
rate. However, for the UTK dataset, we train the CNNs for 50 epochs with a decay factor of 1e−1 every 10 epochs and
FMs for 10 epochs with a constant learning rate. We follow previous works and use α = 0.90 and τ = 4 for the knowledge
distillation parameters for all experiments. We implement FitNet (Romero et al., 2015) following Jung et al. (2021), AT loss
using the official repository 1 with β = 1e6, and Adversarial Debiasing from the repository2 provided by Wang et al. (2020).
Refer to the Appendix for details on baseline hyperparameters.

Compute details. For all our experiments we use a single A100 GPU with 80GB GPU memory and CUDA version 11.2.

A.2. Additional Results

CNNs, UTKFace, and CIFAR-10S Results. We observe that BIRD consistently improves the fairness performance for
all architectures in the CNN experiments for two real-world, widely used visual fairness datasets while maintaining their
predictive performance (See Table 2). Interestingly, while AD does improve fairness in some cases (Table 2 CelebA) it fails
to do so consistently while maintaining the F1 and AUROC scores. In Table 4, we present the results for foundation models

1https://github.com/szagoruyko/attention-transfer
2https://github.com/princetonvisualai/DomainBiasMitigation

https://github.com/szagoruyko/attention-transfer
https://github.com/princetonvisualai/DomainBiasMitigation
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Table 5: Results of BIRD for three different KD methods. Shown is the
average performance across five independent runs on the Celeb-A dataset with
ResNet18→ResNet18. BIRD consistently improves the fairness performance
(shaded area) of all existing KD methods.

Method AUROC (↑) F1-score (↑) ∆mean-DEO(↓) ∆max-DEO(↓)

FitNet 85.22±0.25 75.19±0.76 20.62±0.94 24.23±1.94

BIRD + FitNet 84.49±0.18 77.04±0.35 11.32±1.29 16.15±1.38

AT 86.03±0.20 75.07±1.50 18.00±1.19 22.16±1.54

BIRD + AT 86.92±0.16 78.56±0.33 3.55±0.37 5.24±0.56

MFD 86.24±0.09 77.32±0.26 19.34±0.47 21.46±0.64

BIRD + MFD 82.61±0.34 75.20±0.63 15.25±0.45 18.09±0.45

Baseline
Student

BKD FitNet AD MFD Bird

20

40

60

80

AUROC
max DEO( )
mean DEO( )

Figure 3: The effects of distillation on the
fairness performance of a ResNet-18 student
when distilled using CLIP-ViT-B/32 teacher
for Celeb-A dataset. BIRD outperforms all
methods on both fairness metrics without
sacrificing ResNet-18’s predictive ability.

on UTKFace dataset, showing that BIRD achieves the best fairness amongst all the predominant baselines

We reproduce the experimental setup by Wang et al. (2020) for CIFAR-10S, and show the results for the same in Table 3.
We show that BIRD is able to improve both ∆max-DEO by 20.19% (47.94→38.26) and ∆mean-DEO by 24.71% (26.26→19.77).
It is noteworthy that even AD significantly improves the fairness metrics, however, this results in a substantial drop in
F1-Scores. On the other hand, BIRD obtains the best predictive performance metrics amongst all baselines.

Ablation Studies (Cont. from Sec 4). Here, we discuss our experimental results that address the questions presented in
Sec 4 (Q1-Q4).

Q1). In Table 6, we present the exact metrics for several teacher-student pairs. Specifically, we observe that while the KD
process improves predictive performance, it comes with a tradeoff of fairness. On average, we observe an increase of 38.54%
in ∆mean-DEO and an increase of 37.26% in ∆max-DEO for the selected models in Table 6.

Q2). Described in Additional Results (see Sec A.2).

Q3). In Table 7, we show the efficacy of meta-gradients in our pipeline for the CelebA dataset with ResNet18→ResNet18.
While a simple regularization term does produce improvements in fairness performance, it is alone not sufficient, and
incorporating student feedback through meta-gradients further improves fairness.

Q4) Detailed in Sec 4.1..

A.3. Additional Hyperparameter Details

Here, we discuss the hyperparameter choices for BIRD and predominant baselines. For the CIFAR-10S dataset, we find
that the widely accepted temperature τ=4 and α=0.90 do not give optimal BKD performance. Thereby, we use τ=10 and
α=0.50 instead. We observe that setting the training ratio parameter (base model updates compared to domain classifier) to
3 if the total number of epochs is greater than 20, and 1 otherwise helps retain the predictive performance the best when
using AD. We observe that this largely retains the predictive performance of AD. The feature distillation strength for FitNet
loss is kept constant to 0.1 as in repository 3. For the experiments conducted on foundation models in our paper, we operate
under the assumption that only the penultimate representation layer is accessible, following a black-box setting. As a result,
employing AT is not feasible, and that is why the corresponding results are excluded from Table 1. Lastly, since Jung et al.
(2021) does not provide a public codebase, we try to implement MFD as faithfully as possible keeping testing conditions
consistent across all our experiments. Please refer to Table 8 for the list of hyperparameters for different BIRD experiments.

3https://github.com/AberHu/Knowledge-Distillation-Zoo/

https://github.com/AberHu/Knowledge-Distillation-Zoo/
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Table 2: Results of knowledge distillation on three CNN models using two fairness datasets. Shown is the average
performance across five independent runs. Arrows (↑, ↓) indicate the direction of better performance. BIRD retains the
predictive power (AUROC and F1-score) of the baseline model while improving their fairness (shaded area).

Model Dataset Method AUROC (↑) F1-score (↑) ∆mean-DEO(↓) ∆max-DEO(↓)

ShuffleNetV2

UTKFace

Baseline
BKD

89.15±0.37

90.43±0.13

74.05±0.56

74.60±0.23

20.33±1.17

20.00±0.68

42.29±2.42

38.31±2.13

FitNet
AT
AD

90.02±0.29

90.70 ±0.29

90.16 ±0.15

74.55±0.42

76.12 ±0.44

75.60 ±0.29

19.67±1.02

19.34 ±1.74

19.60 ±0.63

40.40±1.68

40.10 ±2.58

40.30 ±2.19

MFD
BIRD

90.11±0.27

90.53±0.37

74.75±0.85

74.88±0.61

19.77±0.67

16.92±1.15

37.91 ±0.81

36.12±1.39

CelebA

Baseline
BKD

86.01±0.04

86.20±0.11

76.44 ±1.21

76.81 ±0.86

23.11±0.20

23.26±0.59

28.38±0.60

26.72±1.78

FitNet
AT
AD

85.84±0.20

86.27 ±0.11

86.51 ±0.18

76.93±0.40

75.51 ±1.50

77.64 ±0.79

22.98±0.89

25.17 ±1.76

8.04 ±1.96

25.17±1.76

27.54 ±1.97

11.18 ±2.33

MFD
BIRD

85.88±0.08

88.01±0.27

76.72±0.52

79.82±0.29

21.59±0.39

5.01±1.04

23.81±1.06

8.16±2.17

ResNet18

UTKFace

Baseline
BKD

92.25±0.14

93.06±0.17

78.73±0.27

80.22 ±0.49

17.21±0.40

18.54±0.81

36.92±1.13

39.00±2.13

FitNet
AT
AD

92.75±0.11

92.92 ±0.12

90.93 ±0.46

79.35±0.20

80.30 ±0.24

78.61 ±0.47

17.41±0.97

17.88 ±0.71

17.18 ±0.73

38.31±1.58

36.22 ±1.52

36.32 ±2.32

MFD
BIRD

93.03±0.11

91.67±0.29

80.10±0.19

77.71±0.42

16.62±0.70

15.49±0.77

36.22±0917

30.65±3.42

CelebA

Baseline
BKD

85.44±0.29

86.17±0.18

74.26±1.59

74.52±1.53

18.60±1.46

17.98±1.81

21.46±1.61

21.12±1.99

FitNet
AT
AD

85.22±0.25

86.03 ±0.20

60.19 ±2.88

75.19±0.76

75.07 ±1.50

55.63 ±1.69

20.62±0.94

18.00 ±1.19

13.78 ±4.54

24.23±1.94

22.16 ±1.54

16.89 ±4.42

MFD
BIRD

86.24±0.09

84.49±0.18

77.32 ±0.26

77.04±0.35

19.34±0.47

11.32±1.29

21.46±0.64

5.31±1.38

ResNet34

UTKFace

Baseline
BKD

92.18±0.35

92.36±0.43

78.96±0.33

79.95 ±0.30

17.61 ±0.90

17.41±0.63

36.52 ±1.16

37.91 ±1.45

FitNet
AT
AD

92.67±0.32

92.06 ±0.27

92.08 ±0.40

80.00±0.30

79.50 ±0.27

79.05 ±0.70

17.18±0.43

16.72 ±1.05

18.04 ±1.45

38.11±1.67

34.03 ±2.26

36.52 ±3.33

MFD
BIRD

92.48±0.16

90.90±0.16

78.76±0.31

77.74±0.43

16.98 ±0.78

15.92±0.55

35.42 ±1.08

33.13±1.31

CelebA

Baseline
BKD

85.93±0.31

86.32±0.36

75.73±0.53

77.04±0.26

20.43±1.11

20.88±1.43

24.71 ±1.71

23.29 ±1.83

FitNet
AT
AD

85.93±0.19

85.95 ±0.38

69.32 ±4.14

75.30±0.56

74.89 ±0.80

61.83 ±3.10

19.27±1.74

21.05 ±0.79

28.52 ±7.25

23.30±2.10

25.35 ±1.59

34.12 ±8.88

MFD
BIRD

87.10±0.10

84.31±0.37

78.04 ±0.06

73.90±0.55

17.48 ±0.80

10.31±2.88

17.91 ±0.90

13.59±3.92
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Table 3: Results on CIFAR-10S dataset across 5 independent runs for ResNet18→ResNet18. Arrows (↑, ↓) indicate the
direction of better performance. BIRD retains the predictive power (AUROC and F1-Score) of the baseline model while
improving the fairness criterion (∆mean-DEO and ∆max-DEO)

Method AUROC (↑) F1-score (↑) ∆mean-DEO(↓) ∆max-DEO(↓)

Baseline 98.91±0.02 88.34±0.17 26.26±0.70 47.94±1.94

BKD 98.95±0.02 88.90±0.13 25.30±0.63 46.92±2.16

FitNet 98.89±0.01 88.15±0.08 26.55±0.66 48.86±1.85

AT 98.99±0.02 88.95±0.12 25.16±0.33 46.08±2.27

AD 98.44±0.11 85.98±0.43 16.20±1.18 31.94±3.89

MFD 98.93±0.03 88.32±0.10 27.27±0.34 49.16±1.62

BIRD 99.12±0.02 89.45±0.14 19.77±0.37 38.26±1.73

Table 4: Results of knowledge distillation on three foundation models using UTK dataset. Shown is the average performance
across five independent runs. Arrows (↑, ↓) indicate the direction of better performance. BIRD retains the predictive power
(AUROC and F1-score) of the baseline model while improving their fairness (shaded area). Here, R50 is ResNet-50, and
ViT-32 is ViT-B/32.

Model Method AUROC (↑) F1-score (↑) ∆mean-DEO(↓) ∆max-DEO(↓)

Flava

Baseline
BKD

94.43±0.04
94.43±0.04

81.12±0.28
81.02±0.23

14.49±0.49
15.02±0.51

32.54±1.62
32.84±1.51

FitNet
AD

94.42±0.10
92.81 ±0.09

81.54±0.48
77.21 ±0.44

15.32±1.32
17.08 ±0.12

32.74±3.55
37.11 ±0.21

MFD
BIRD

94.42±0.10
94.00±0.02

81.54±0.48
80.74±0.54

15.42±1.38
14.23±0.55

33.03 ±3.73
28.16±2.89

CLIP-ViT/32

Baseline
BKD

95.96±0.03
95.95±0.05

86.22±0.16
86.02 ±0.15

13.47±0.20
13.73±0.15

25.07±0.96
25.27±0.99

FitNet
AD

96.00±0.03
96.05 ±0.06

86.27 ±0.31
86.34 ±0.32

14.16±0.37
11.84 ±0.73

25.27±1.74
22.49±0.31

MFD
BIRD

96.05±0.04
95.50±0.04

86.64±0.15
85.67±0.08

12.11±0.16
12.07±0.27

22.79±0.37
16.92±0.82

CLIP-R50

Baseline
BKD

95.67±0.04
95.67±0.03

84.90±0.20
84.85 ±0.20

13.70 ±0.58
13.57±0.50

23.08 ±1.06
23.28 ±0.99

FitNet
AD

95.73±0.04
95.67 ±0.05

85.02 ±0.44
83.86 ±0.16

13.53 ±0.63
14.83 ±1.58

22.89 ±1.40
26.27 ±0.70

MFD
BIRD

95.69±0.03
95.43±0.02

84.90±0.52
84.05±0.13

14.16 ±0.60
12.43±0.14

22.99 ±1.60
23.28±0.43
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Table 6: Results of Base Knowledge Distillation on different teacher-student pairs. Shown is the average performance across
five independent runs. We establish that across different architectures, knowledge distillation results in unfair student models
by following the fairness properties (∆mean-DEO, ∆max-DEO) of the teacher.

Baselines AUROC (↑) F1-score (↑) ∆mean-DEO(↓) ∆max-DEO(↓)

FLAVA 84.43±0.12 74.87±0.63 27.48±0.64 29.37±1.53

CLIP-ViT-32 87.01±0.26 78.15±0.52 23.38±1.72 24.91±1.15

CLIP-R50 87.72±0.06 78.71±0.21 21.11±0.30 21.97±0.40

ResNet18 85.44±0.29 74.26±1.59 18.60±1.46 21.46±1.61

ResNet34 85.93±0.31 75.73±1.25 20.43±1.11 24.71±1.71

Teacher Student AUROC (↑) F1-score (↑) ∆mean-DEO(↓) ∆max-DEO(↓)

FLAVA ResNet18 85.24±0.09 76.30±0.81 28.15±0.75 32.74±1.65

FLAVA ResNet34 84.81±0.32 75.46±0.89 29.50±1.29 33.34±2.29

CLIP-ViT-32 ResNet18 86.94±0.37 77.14±1.55 24.75±1.46 30.01±1.65

CLIP-ViT-32 ResNet34 86.71±0.15 78.11±0.39 23.68±0.24 25.38±1.00

CLIP-R50 ResNet18 86.71±0.37 77.96±0.63 25.61±1.86 30.08±1.49

CLIP-R50 ResNet34 87.31±0.15 78.11±0.39 23.68±0.24 25.38±1.0

ResNet34 ResNet18 86.25±0.76 73.45±1.30 19.80±1.62 23.86±1.67

Table 7: Ablation study to understand the impact of meta-gradients in BIRD. Shown is the average performance across
five independent runs on the Celeb-A dataset with ResNet18→ResNet18, evidencing that the student feedback through the
meta-step update improves fairness.

Method AUROC (↑) F1-score (↑) ∆mean-DEO(↓) ∆max-DEO(↓)

Baseline 85.44±0.29 74.26±1.59 18.60±1.46 21.46±1.61

BIRD w/o Meta 88.33±0.22 77.25±1.56 13.85±3.20 17.90±4.04

BIRD 84.49±0.18 77.04±0.35 11.32±1.29 16.15±1.38

Table 8: Hyperparameters for BIRD for different datasets and architectures. We perform minimal linear probing to find the
optimal λ (See 3.4) for each setting.

Architecture Dataset λ Warmup Total Epochs

FLAVA CelebA 0.1 5 10
CLIP-ViT-32 CelebA 0.2 5 10
CLIP-R50 CelebA 0.1 5 10
ShuffleNetV2 CelebA 0.05 5 10
ResNet18 CelebA 0.2 5 10
ResNet34 CelebA 0.1 5 10
FLAVA UTK 0.1 20 50
CLIP-ViT-32 UTK 0.2 20 50
CLIP-R50 UTK 0.1 20 50
ShuffleNetV2 UTK 0.05 20 50
ResNet18 UTK 0.2 20 50
ResNet34 UTK 0.1 20 50
ResNet18 CIFAR-10S 0.2 70 100


