
Proceedings of Machine Learning Research 260:-, 2024 ACML 2024

AMG-AVSR: Adaptive Modality Guidance for Audio-Visual
Speech Recognition via Progressive Feature Enhancement

Zhishuo Zhao∗ zhaozhishuo@stu.scu.edu.cn

Dongyue Guo dongyueguo@scu.edu.cn

Wenjie Ou ouwenjie@stu.scu.edu.cn

Hong Liu
†

liuhong@scu.edu.cn

Yi Lin
‡

yilin@scu.edu.cn

Sichuan University

Editors: Vu Nguyen and Hsuan-Tien Lin

Abstract

Audio-Visual Speech Recognition (AVSR) is a task that identifies spoken words by analyz-
ing both lip movements and auditory signals. Compared to Automatic Speech Recognition
(ASR), AVSR demonstrates greater robustness in noisy environments due to the support
of dual modalities. However, the inherent differences between these modalities present a
challenge: effectively accounting for their disparities and leveraging their complementary
information to extract useful information for AVSR. To address this, we propose the AMG-
AVSR model, which utilizes a two-stage curriculum learning strategy and incorporates a
feature compression and recovery mechanism. By leveraging the characteristics of different
modalities in various scenarios to guide each other, the model extracts refined features
from audio-visual data, thereby enhancing recognition performance in both clean and noisy
environments. Compared to the baseline model AV-HuBERT, AMG-AVSR demonstrates
superior performance on the LRS2 dataset in both noisy and clean environments. AMG-
AVSR achieves a word error rate (WER) of 2.9% under clean speech conditions. In various
noisy conditions, AMG-AVSR shows a significant reduction in WER compared to previous
methods.
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1. Introduction

With the continuous advancement of neural models (Hinton et al., 2012; Amodei et al.,
2016), the performance of automatic speech recognition (ASR) systems has significantly
improved, reaching human parity (Xiong et al., 2016) and even surpassing humans in several
clean speech benchmarks (Amodei et al., 2016; Tüske et al., 2020). However, ASR systems
are highly sensitive to noise, and their performance can degrade drastically when speech
recordings are contaminated with noise (Watanabe et al., 2020). Audio-Visual Speech
Recognition (AVSR) methods combine audio and video modalities, leveraging noise-invariant
lip movement information to make AI systems closer to human speech perception (McGurk
and MacDonald, 1976). Recently, new model architectures (Afouras et al., 2018a; Ren et al.,

∗. First author.
†. Corresponding author 1.
‡. Corresponding author 2.

© 2024 .



2021) and large-scale data collection (Afouras et al., 2018c; Makino et al., 2019) have made
significant progress in AVSR tasks.

However, there are inherent differences between audio and visual modalities. For instance,
the audio modality typically contains more speech information but is susceptible to noise
interference (Watanabe et al., 2020), while the video modality provides visual cues such as lip
movements (Petridis et al., 2018). In clean environments, ASR accuracy is generally higher
than Visual Speech Recognition (VSR), whereas VSR exhibits better noise resistance in noisy
conditions (Kinoshita et al., 2021), which aligns with the biological observation that humans
rely more on auditory cues in clean environments and visual cues in noisy environments
(Li et al., 2023). Based on these differences, can we use the more reliable modality under
different conditions to guide the less reliable modality in learning relevant knowledge, thereby
obtaining enhanced information from both the audio and visual modalities to achieve robust
AVSR?

Based on this concept, we propose AMG-AVSR (Adaptive Modality Guidance for Audio-
Visual Speech Recognition), a model that incorporates a Multi-Scale Compression and
Recovery (CAR) module, along with two types of effective fine-tuning curriculum learning
strategies. AMG-AVSR is based on the pre-trained audio-visual aligned encoder AV-HuBERT
(Shi et al., 2022a), co-trained on a large number of multi-modality high-resource domain
utterances, to align different modalities in the same phoneme space using the same encoder,
making cross-modal guidance possible under different conditions.

We integrated multi-scale CAR modules into the pre-trained Transformer encoder,
allowing AMG-AVSR to adaptively learn refined information from the redundancy in
the audio-visual feature space, thus enhancing feature refinement. Furthermore, the two
curriculum learning strategies sequentially guide the model through different modalities.
Curriculum learning for Modal (C-Modal) leverages the rich text-related knowledge from the
audio modality to guide the visual modality for joint text information mapping, enabling
AMG-AVSR to learn from unimodal tasks to multimodal recognition, thereby enhancing
training effectiveness. Considering the superior noise resistance of visual information in
noisy environments (Kinoshita et al., 2021), the C-Noise strategy transitions from clean
AVSR to noisy AVSR, using the visual modality to guide the audio modality under noise,
gradually adapting AMG-AVSR to noise and enhancing its robustness.

The main contributions are as follows:

• To the best of our knowledge, AMG-AVSR is the first model to achieve mutual
guidance learning between audio and video modalities under different conditions, fully
considering the different recognition characteristics of each modality.

• The Multi-Scale CAR modules in AMG-AVSR utilize compression and recovery of
features within the feature space, enhancing the features and effectively extracting
refined text-related information, which is key to enhancing information from different
modalities.

• We investigate the performance and robustness of the proposed approach on the LRS2
dataset. AMG-AVSR achieves a word error rate (WER) of 2.9% in clean speech
conditions and significantly reduces WER in noisy conditions compared to previous
methods.
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2. Related Work

2.1. Audio-Visual Speech Recognition

With the advent of deep learning technologies and multimodal data processing frameworks,
AVSR systems have continuously evolved, demonstrating improved performance. The key
research direction remained how to better filter noise and extract critical speech information
in noisy environments. For example, Huang et al. (2023) addressed the challenges of speech
recognition in noisy environments by employing multi-layer cross-attention mechanisms. Ma
et al. (2023) significantly improved recognition performance in noisy environments through
self-supervised learning and automatic label generation. GILA (Hu et al., 2023) captured
deeper associations between audio and visual features by introducing global interaction and
local alignment, thereby enhancing AVSR accuracy and robustness.

Unsupervised learning also made significant strides in the AVSR field. AV-HuBERT(Shi
et al., 2022b) , through pre-training on large amounts of unlabeled audio-visual datasets, gen-
erated fine-grained feature representations, which could be fine-tuned for various downstream
tasks such as VSR and AVSR. AV2vec(Zhang et al., 2023) further enhanced multimodal
data alignment using multi-layer convolutional networks and Transformer architectures.
AV-wav2vec (Zhu et al., 2023) utilized multi-channel audio data for self-supervised training,
further improving the robustness and accuracy of AVSR.

For fine-tuning on downstream tasks such as AVSR, Shi et al. (2022c) removed the
classification linear layer and added a decoder for sequence-to-sequence (Seq2Seq) fine-tuning.
Ren et al. (2023) replaced the Transformer with a Conformer and modified the audio-visual
front-end for fine-tuning. Most existing studies fine-tune the output of pre-trained models
but do not address the handling of redundant information in feature dimensions.

To effectively fine-tune pre-trained models for robust AVSR tasks, we propose a Multi-
Scale CAR framework based on audio-visual pretraining methods. This framework focuses
on extracting refined text-related information and enhancing the original features during
the model fine-tuning stage.

2.2. Curriculum Learning

Curriculum learning, proposed by Bengio et al. (2009), involves progressively increasing
task difficulty to enhance a model’s learning efficiency and generalization. This approach
starts with simple tasks and gradually introduces more complex ones. In recognition
tasks, curriculum learning is crucial. For instance, Wang et al. (2017) employed curriculum
learning to train an end-to-end speech recognition model by starting with short sentences and
increasing their length. Kim et al. (2024) used audio-visual speech units and progressively
reduced reliance on audio, eventually training solely with visual speech units, enhancing
visual speech recognition capabilities.

Inspired by these methods, we propose two curriculum learning strategies: C-Modal and
C-Noise. C-Modal transitions from audio recognition to audio-visual recognition, using the
information-rich audio modality to assist the visual modality mapping, enabling the model
to learn from simple unimodal tasks to complex multimodal tasks. C-Noise transitions from
clean AVSR to noisy AVSR, using the noise-resistant visual modality to guide the audio



Figure 1: AV-HuBERT pretrain for Audio-Visual Speech Recognition. Black waveform:
original audio; Blue waveform: noise; Cn: audio-visual clusters; Dashed box: Masked
information.

modality under noisy conditions, gradually adapting the model to noise and enhancing its
robustness.

3. METHOD

3.1. AV-HuBERT Pretrain

AV-HuBERT (Shi et al., 2022b) is a self-supervised representation learning method for
audio-visual speech, as shown in Figure 1. The model operates in two primary phases:
feature clustering and mask prediction. During the feature clustering phase, a discrete
latent variable model (e.g., k-means) assigns frame-level labels to the audio-visual speech
data. This process involves extracting image sequences V = {Vt}Tt=1 and audio acoustic
frames A = {At}Tt=1, which can be either Mel-frequency cepstral coefficients (MFCC) or
audio-visual features from a previous encoder. These features are then used to generate
sequences z = {zta}Tt=1, representing the clustered assignments.

The resulting paired data (A, V, z) is subsequently used to train the model in the mask
prediction phase. In the mask prediction phase, a mask is applied to portions of the input
sequences, and the model is trained to predict the masked parts. This process is analogous to
BERT(Kenton and Toutanova, 2019)’s masked language modeling, where the goal is to learn
improved audio-visual representations in the speech space fp = {ftp}Tt=1 ∈ RT×D, where T
is the sequence length and D is the embedding dimension. The model alternates between
these two phases, and with each iteration, it improves the quality of the audio-visual speech
clustering and representations. Through this iterative approach, AV-HuBERT not only
enhances its ability to capture nuanced speech features but also allows different modalities
to be projected into the same phoneme space, achieving cross-modal alignment.AMG-AVSR
utilizes this joint mapping mechanism to enable mutual guidance between the two modalities,
refining and enhancing the feature information.
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Figure 2: AMG-AVSR finetune for Audio-Visual Speech Recognition. Black waveform:
original audio; Blue waveform: noise; Dashed box: CAR Encoder part; P-Add: Progressive
noise addition module; P-Mask: Progressive unmasking video information module.

3.2. Finetuning For AVSR

3.2.1. Overall Architecture

Figure 2 illustrates AMG-AVSR, which builds upon the pre-trained AV-HuBERT model (Shi
et al., 2022b). To further refine the features extracted by the encoder during the fine-tuning
phase, we retain the pre-trained AV-Fusion module and encoder, while integrating multi-scale
CAR modules into each layer, forming the CAR Encoder. We remove the cluster prediction
head of the pre-trained model and add randomly initialized Transformer decoder blocks
after the pre-trained encoder. Additionally, we incorporate a Progressive unmasking video
information module (P-Mask) and a progressive noise addition module (P-Add) into the
audio extraction module to achieve our two curriculum learning objectives: a modality-
specific curriculum learning strategy (C-Modal) and a noise-specific curriculum learning
strategy (C-Noise). Together with the multi-scale CAR modules, these enhancements use the
more reliable modality in different scenarios to guide the less reliable modality for mapping
learning, and perform Seq2seq loss in the combined text space through the decoder. The
overall model architecture is shown in Figure 2.

3.2.2. CAR Module

Existing AVSR methods face significant challenges in handling multimodal features, particu-
larly in effectively capturing and processing critical features within the combined audio-visual
information (Ivanko et al., 2023). To address these limitations, we propose the Multi-Scale
CAR module. Unlike traditional feature extraction methods, such as the Squeeze-and-
Excitation (SE) block (Hu et al., 2018), which uses global average pooling, the Multi-Scale
CAR module focuses on the relationships between different feature granularities across
various channels to extract more refined information representations.



As shown in Figure 2, we add the CARj module to each Layerj of the Transformer
encoder. Utilizing this module, the information passed through the encoder undergoes
compression and recovery at different feature granularities, capturing feature relationships
at various scales. First, the input xj = {xjt}Tt=1 ∈ RT×D of each layer of the encoder is
processed by the CARj module, which includes three 1D convolutional layers with kernel
sizes i = 3, 5, and 7. These convolutional layers reduce the original feature dimensions of
the encoder’s input dimension e to a lower feature dimension c at different granularities.

Fi = Conv1Di(Xj) (kernel size = (3, 5, 7) output dimension = c) (1)

The outputs of the three convolutional layers are concatenated along the channel dimen-
sion, forming a feature matrix that contains multi-scale information, and passed through a
Batch Normalization (BN) layer to normalize the feature distribution:

FBN = BatchNorm(F3 ⊕ F5 ⊕ F7) (2)

Next, a linear layer is used to project the compressed information back to the original
dimension and update Xj :

X ′
j = Linear(FBN) +Xj (3)

Subsequently, the updated representation X ′
j is passed into the remaining modules of

the encoder to maintain the learned syntactic knowledge:

Xj+1 = Layerj(X
′
j) (4)

3.3. Curriculum Learning

(a) C-Modal. (b) C-Noise.

Figure 3: The curriculum learning strategies corresponding to the training phases of AMG-
AVSR. (a) C-Modal curriculum learning strategy (b) C-Noise curriculum learning strategy;
DeepNetwork: the backend encoder and decoder structure of AMG-AVSR.

The audio modality contains more speech information but is susceptible to noise, while
the video modality provides visual cues like lip movements. To leverage these differences,
we propose C-Modal and C-Noise curriculum learning strategies. As shown in the figure 3,
these strategies run sequentially. C-Modal transitions from unimodal to multimodal training,
using clean audio to guide visual information, improving AVSR in clean conditions. C-Noise
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starts with clean AVSR tasks and progressively introduces noise, using visual information to
help the model exclude noise and enhance robustness.

3.3.1. Curriculum Learning for Modal (C-Modal)

To leverage audio information to guide visual representations and enable the model to better
learn modality representations and knowledge from simple to complex, we propose the
C-Modal method. As shown in the C-Modal phase in Figure 3, we incorporate a P-Mask
architecture in the video front-end to gradually control the probability pmodal of masking
the video information, transitioning the training from audio input to audio-visual input, and
ultimately using complete audio-visual information.

The embeddings of the visual features fv ∈ RT×D and audio features fa ∈ RT×D are
concatenated as g = fa ⊕M(fv), where T is the sequence length, D is the dimension of
embedding, and ⊕ represents the concatenation operation in the embedding dimension.
Therefore, g ∈ RT×2D is the concatenated feature. M(·) is a masking function that randomly
masks out pmodel of frames from the input sequence.

Initially, we train the decoder with only audio input, which is more efficient due to the
smaller data volume compared to simultaneous audio-visual input. As training progresses,
we unfreeze the encoder and gradually reduce pmodel from 1 to 0. This method allows the
audio stream, which contains more detailed speech information, to guide the visual modality
through the CAR encoder for joint mapping. This process helps the visual modality obtain
more refined representations, thereby enhancing AVSR performance.

3.3.2. Curriculum Learning for Noise (C-Noise)

During the pre-training phase of AV-HuBERT, noise augmentation is achieved by randomly
adding different types of noise to the audio input (Shi et al., 2022c). To further improve the
model’s noise robustness, we adopt the C-Noise strategy following the C-Modal strategy
during the fine-tuning phase. In the C-Modal phase, audio features have already guided
the visual features to obtain refined representations. Therefore, in the subsequent C-Noise
phase, we can use visual features to guide the noisy audio features to extract speech-related
representations, thereby enhancing the model’s robustness in noisy environments.

As shown in the C-Noise phase in Figure 3. We use the P-Add module to progressively
add noise to obtain noisy audio features fanoise

t . Specifically, the noise-augmented audio
features are represented as:

fnoise
a =

{
f clean
a (t) with probability 1− pnoise(t)

f clean
a (t) + noise(t) with probability pnoise(t)

∀0 ≤ t ≤ T (5)

where noise(t) is the noise extracted from the MUSAN dataset, including ”natural”,
”music”, ”babble”, and ”speech”. The probability pnoise(t) represents the probability of
adding noise, and during training, pnoise(t) gradually increases from 0 to 1.

Next, the adjusted audio features is concatenated with the original video features:

gnoise = fnoise
a ⊕ f clean

v (6)



4. EXPERIMENT

4.1. Data and Experimental Setup

Our experiments utilize the LRS2 dataset (Afouras et al., 2018a), which includes around
224 hours of audio-visual speech from more than 1,000 speakers, making it one of the most
extensive publicly available labeled datasets for Audio-Visual Speech Recognition. This
dataset features a wide variety of utterances from British English television broadcasts.
We follow the pre-processing steps described in (Shi et al., 2022a) to segment and align
the audio-visual data, ensuring high-quality synchronization between the audio and video
streams. The original dataset divides the training data into two parts: Pretrain (195 hours)
and Train (29 hours), both transcribed from videos to text at the sentence level. The main
difference is that the video clips in the Pretrain partition are not strictly trimmed and are
sometimes longer than the corresponding text. We conduct experiments on LRS2 using
different amounts of training data (Pretrain+Train (224 hours) and Train (29 hours)).

Additionally, we enhance input samples using various noise categories. The noise audio
clips for the ”natural,” ”music,” and ”babble” categories are sourced from the MUSAN
dataset (Snyder et al., 2015), while the overlapping ”speech” noise samples come from the
LRS2 dataset itself. When creating the ”speech” and ”babble” noise sets, we ensure there
are no speaker overlaps between different partitions.

For all our experiments, we use the AV-HuBERT LARGE architecture as the default
model. This model consists of 24 transformer blocks, each with 16 attention heads and
1024/4096 embedding/feedforward dimensions. During finetuning, we add a 9-layer trans-
former decoder with similar embedding/feedforward dimensions, initialized randomly.Further
experimental details can be found in the appendix.

4.2. Evaluation and Implementation Details

In all our experiments on the LRS2 dataset, we use the word error rate (WER) as the
evaluation metric for AVSR. The WER is calculated using the formula:

WER =
S +D + I

M
× 100% (7)

where S represents the number of substitutions, D represents the number of deletions, I
represents the number of insertions, and M is the total number of words in the reference.

To ensure robustness and reliability, we perform multiple runs for each experiment and
report the average WER. Additionally, we adhere to the standard data preprocessing and
augmentation techniques described in Shi et al. (2022a), including video frame sampling,
audio normalization, and the addition of various noise types during training.

During training, we add different types of noise (natural, music, babble, and speech) to
the audio-visual samples and gradually increase the probability and intensity of the noise.
For evaluation, we test the model under various noise conditions, including clean audio and
noise added at SNR levels of -10, -5, 0, 5, 10dB.

4.3. Main Result

Table 1 shows the amount of labeled audio-visual speech data, dataset details, and corre-
sponding Word Error Rates (WER) for models using the LRS2 dataset. The baseline model
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Table 1: WER (%) of AMG-AVSR and previous works on the LRS2 dataset. ”Labeled
Utt(hrs)” denotes the amount of labeled audio-visual speech data used in each system (in
hours).

Labeled Utt(hrs) Dataset Method WER(%)↓

1391 MV-LRS, LRS2 and LRS3 TM-seq2seq(Afouras et al., 2018a) 8.3
381 LRS2 and LRW CTC/Attention(Petridis et al., 2018) 7.0
3448 LRW, LRS2, LRS3, VoxCeleb2 and AVSpeech AUTO-AVSR (Ma et al., 2023) 1.5

224

LRS2 DCM(Lee et al., 2020) 8.6
LRS2 TDNN(Yu et al., 2020) 5.9
LRS2 Hyb-Conformer(Ma et al., 2021b) 3.7
LRS2 AV-HuBERT(Shi et al., 2022c) 3.1
LRS2 GILA (Hu et al., 2023) 3.1
LRS2 AMG-AVSR(ours) 2.9

29
LRS2 (Train) AV-HuBERT(Shi et al., 2022c) 5.1
LRS2 (Train) AMG-AVSR(ours) 4.2

Table 2: WER (%) of AMG-AVSR and AV-HuBERT on the LRS2 dataset. “Mode” denotes
whether a model uses audio-visual input (AV) or only audio as input (A). “Hr” denotes the
amount of labeled audio-visual speech data used in each system.

Model Mode Hr
Babble, SNR= Speech, SNR= Music+Natural, SNR=

Clean
-10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10

AV-HuBERT AV 29 35.8 17.5 10.8 8.9 5.9 11.9 7.8 6.8 6.1 5.4 15.6 9.5 8.0 6.2 5.6 5.2

AV-HuBERT AV 224 32.6 15.2 9.2 6.4 3.9 9.1 6.1 4.2 3.6 3.4 13.1 6.9 5.5 3.7 3.5 3.1

AMG-AVSR(ours) A
29 98.1 76.2 29.6 15.9 9.4 81.1 56.4 31.8 19.5 10.1 48.3 29.3 12.9 9.6 7.3 6.5

224 99.6 69.2 20.6 9.94 5.2 74.2 51.2 27.4 16.7 8.5 43.7 25.1 9.9 6.7 4.2 3.2

AMG-AVSR(ours) AV
29 31.2 14.5 8.9 6.5 5.0 10.6 7.1 6.2 5.1 4.7 14.4 9.2 7.2 5.3 4.6 4.2

224 30.6 13.4 7.7 5.2 3.8 8.7 5.6 3.9 3.5 3.4 12.5 6.8 5.5 3.6 3.3 2.9

(Shi et al., 2022c) achieved a WER of 5.1% with 29 hours of labeled data and 3.1% with 224
hours. In contrast, our proposed model achieved a WER of 4.2% with 29 hours of labeled
data, significantly outperforming the baseline model and many other models trained with
more data. For instance, Afouras et al. (2018a) used 1391 hours of data to achieve an 8.3%
WER, Petridis et al. (2018) used 381 hours to achieve a 7.0% WER, and Yu et al. (2020)
used 224 hours to achieve a 5.9% WER.

Furthermore, with 224 hours of labeled data, our model’s WER reduces to 2.9%, only
higher than AUTO-AVSR’s 1.5% WER (Ma et al., 2023). It is important to note that
AUTO-AVSR used 3448 hours of labeled data for training, while AMG-AVSR achieved
remarkable data efficiency with only 224 hours of training data.

4.4. Analysis

4.4.1. Advantage of Audio-Visual Modalities Compared to Audio-Only
Modalities

From the data in the Table 2, the audio-visual (AV) modality significantly outperforms the
single audio (A) modality under both clean and noisy conditions. In clean conditions, the



Table 3: Effect of CAR and Curriculum Learning. Different approaches for CAR and Curricu-
lum Learning methods are selected, including modality-specific and noise-specific curriculum
learning strategies. ”Clean” represents the clean condition, and ”Babble” represents the
condition with babble noise added at SNR=0 at each time step.

Methods
224h WER (%) 29h WER (%)

Clean Babble Clean Babble

Baseline (Shi et al., 2022c) 3.143 9.224 5.226 10.848

CAR
+conv3 3.091 8.201 4.474 9.454
+conv3 +conv5 3.072 8.094 4.369 9.281
+conv3 +conv5 +conv7 3.072 7.951 4.343 9.106

Curriculum Learning
C-Modal 3.043 9.236 4.452 10.837
C-Noise 3.127 7.975 5.110 8.982
C-Modal + C-Noise 3.076 7.887 4.631 8.982

CAR + Curriculum Learning 2.922 7.692 4.214 8.884

WER for the audio modality is 3.2% with 224 hours of training and 6.5% with 29 hours,
compared to 2.9% and 4.2% for the audio-visual modality, respectively. In noisy conditions,
such as Babble noise at SNR=0, the WER for the audio modality is 29.6%, while it is only
8.9% for the audio-visual modality, highlighting its superior robustness to noise. These
results show that the audio-visual modality significantly enhances both recognition accuracy
in clean environments and robustness in noisy conditions.

4.4.2. Effective Improvement Compared to the Original AV-HuBERT

As shown in Table 2 ,AMG-AVSR shows significant performance improvements over AV-
HuBERT in both clean and noisy conditions. In clean conditions, with 29 hours of training
data, AMG-AVSR achieves a WER of 4.2% compared to AV-HuBERT’s 5.2%. With
224 hours of data, the WER drops to 2.9%, while AV-HuBERT’s is 3.1%. These results
demonstrate that AMG-AVSR has better data utilization and higher accuracy in clean
environments.

AMG-AVSR demonstrates exceptional performance in noisy conditions, particularly
under Babble noise. At SNR = -10 dB, AMG-AVSR achieves a WER of 30.6 %, compared
to AV-HuBERT’s 32.6%. At SNR = -5 dB, AMG-AVSR achieves a WER of 13.4%, whereas
AV-HuBERT’s WER is 15.2%. These results highlight our model’s superior robustness to
noise.

4.5. Ablation Studies

In this section, we investigate the impact of each individual building block by testing them on
the LRS2 dataset. Additionally, to more intuitively observe the improvements of AMG-AVSR
in noisy conditions, we actively added Babble noise with an SNR of 0 to reflect our model’s
performance in noisy environments.
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4.5.1. CAR model Contribution in Audio-Visual Speech Recognition

We analyzed the impact of the CAR model on AVSR performance, as shown in Table 3.
The table compares the WER (word error rate) of the baseline model (AV-HuBERT) and
our proposed model using different convolution scales (conv3, conv5, conv7).

By adding compression with a convolution scale of 3, and using its dimension reduction
and recovery operations, the WER for the model trained for 224 hours decreases to 3.091%
in clean conditions and 8.201% in noisy conditions. The model trained for 29 hours shows
similar improvements.

Further applying parallel compression with convolution scales of 5 and 7, then concate-
nating and recovering the compressed results, allows the model to learn richer information.
The WER for the model trained for 224 hours decreases to 3.072% in clean conditions and
7.951% in noisy conditions. Similarly, the model trained for 29 hours shows a reduction in
WER to 9.106% in noisy conditions.

4.5.2. Curriculum Learning Strategy For Clean And Noisy Inputs

We also explored the impact of two curriculum learning strategies on AVSR performance in
clean and noisy conditions, as detailed in Table 3. Introducing the Curriculum Learning
strategy for Modal (C-Modal) reduced the WER to 3.043% in clean conditions. Similarly,
for the model trained for 29 hours, the WER in clean conditions also decreased to 4.452%,
but there was no significant decrease in noisy conditions.

For the curriculum learning strategy that introduces noise (C-Noise), it effectively
improved robustness in noisy conditions, reducing the WER to 7.975%. The model trained
with the 29-hour dataset also reduced its WER to 8.892%.

Combining these two strategies effectively reduced WER in both clean and noisy condi-
tions. For the model trained with 224-hour data, the WER decreased to 3.076% in clean
conditions and to 7.887% in Babble noise conditions. For the model trained with 29-hour
data, the WER decreased to 4.631% in clean conditions and to 8.982% in Babble noise
conditions.

When combining feature compression and curriculum learning methods, the model trained
with 224-hour data shows a further reduction in WER to 2.922% in clean conditions and to
7.692% in noisy conditions. Similarly, the model trained with 29-hour data shows a decrease
in WER to 4.214% in clean conditions and to 8.884% in noisy conditions. This indicates
that combining feature compression with curriculum learning leverages the advantages of
both methods, significantly improving recognition accuracy in various environments.

4.5.3. The Effect of Compressed Feature Dimensions on Recognition Accuracy

As shown in Figure 4, we present the impact of different compression dimensions c on
accuracy. It can be seen that as the compression dimension c increases, the model’s WER
(Word Error Rate) shows significant changes in both clean and noisy speech scenarios. As
illustrated in the ”Results of babble noise audio” and ”Results of clean audio” sections of
Figure 4, at a compression dimension of 0, where no compression is applied (our baseline),
the WER reaches its highest levels, at 9.2% and 3.14% in clean and noisy speech, respectively.
This is because the feature dimensions are not compressed and still contain a lot of redundant
and noisy information.



(a) Results of babble noise audio. (b) Results of clean audio.

Figure 4: Overall results of different compression dimensions on 224 dataset. (a) Results of
babble noise audio. (b) Results of clean audio.

As the compression scale increases, the WER continues to decrease for both clean and
noisy speech, indicating that within this range, reducing the compression dimension helps
the model better capture and represent key information. However, when the compression
dimension continues to increase to 350, the WER rises to 8.15% and 3.095%, respectively.
This indicates that a smaller compression rate (larger compression dimension) leads to the
model’s inability to effectively capture key features during learning, thus affecting its ability
to extract critical information.

4.5.4. The impact of parameters and training steps on experimental results

To compare the impact of parameters and training steps on experimental results, we replicated
AV-HuBERT under the same dataset and initialization conditions. Both AV-HuBERT and
AMG-AVSR were trained on the 224-hour and 29-hour datasets for 120k and 60k steps,
respectively, and both converged. We evaluated their parameters and WER under clean
and noisy (SNR=0, babble noise) conditions. The results show that adding the CAR
module slightly increased the model size by 2.07% (from 477.3M to 487.2M) but led to
significant WER reductions, nearly 20% under noisy conditions, in both dataset scenarios,
demonstrating the effectiveness of the CAR module. Detailed results are shown in Table 4
and Table 5.

Table 4: Model Parameter Comparison Based on the 224-Hour Dataset.

Methods Steps Param WER (Clean) WER (Babble)
(MB) 224h 224h

AV-HuBERT 120k 477.3 (×1.00) 3.14 9.22
AMG-AVSR 120k 487.2 (×1.02) 2.92 7.69

5. Conclusion

In this study, we proposed the AMG-AVSR model, which integrates Compression and
Recovery (CAR) structures with curriculum learning strategies, and we explored its effects
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Table 5: Model Parameter Comparison Based on the 29-Hour Dataset.

Methods Steps Param WER (Clean) WER (Babble)
(MB) 29h 29h

AV-HuBERT 60k 477.3 (×1.00) 5.22 10.85
AMG-AVSR 60k 487.2 (×1.02) 4.21 8.88

on Audio-Visual Speech Recognition (AVSR) tasks. Our experiments on the LRS2 dataset
demonstrated that these methods significantly improved the model’s performance in both
clean and noisy environments. Leveraging guidance from different modalities and compressing
and recovering feature dimensions not only enhanced data utilization efficiency but also
increased the model’s robustness under various noise conditions. AMG-AVSR exhibited
excellent performance with a significant reduction in word error rate (WER), highlighting the
importance of these techniques in advancing AVSR technology. These findings emphasize the
potential of utilizing differences between modalities to improve the accuracy and reliability
of AVSR systems, making them more effective in diverse environments.
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Appendix A. Audio and Visual Utterance Pre-processing

For visual utterances, we only extract the lip region for AVSR. Following previous methods
(Shi et al., 2022b; Afouras et al., 2018b,c), we use dlib (King, 2009) to detect 68 facial
keypoints and align each face with its neighbors. We crop a 96×96 region of interest (ROI)
centered on the mouth from each visual utterance. For audio utterances, we maintain the
same pre-processing steps as in previous works (Ma et al., 2021a; Shi et al., 2022a). We
extract 26-dimensional log filterbank energy features from the raw waveform and stack
4 neighboring acoustic frames for synchronization. During training, to enhance the data,
we randomly crop an 88×88 region from the whole ROI and horizontally flip it with a
probability of 0.5.

Pre-training Setup. AMG-AVSR is based on the pre-training process of AV-HuBERT (Shi
et al., 2022b), directly utilizing its checkpoints for subsequent stages. During pre-training,
we use a modified ResNet-18 (Ma et al., 2021a; Martinez, 2021) and a linear projection
layer as visual and audio encoders, respectively. It considers two model configurations:
Transformer-BASE and Transformer-LARGE, with 12/24 Transformer layers, embedding
dimensions/feed-forward dimensions/attention heads of 768/3072/12 and 1024/4096/16,
respectively. We simply adopted the pre-trained models obtained by training on LRS3
(Afouras et al., 2018c) and VoxCeleb2 (Chung et al., 2018).

Appendix B. Finetuning With Curriculum Learning Setup

To integrate two different curriculum learning strategies, we utilize multi-stage fine-tuning
and observe their combined effects. Our experiments are conducted on 4 NVIDIA 4090
GPUs. First, we perform C-Modal curriculum learning. In this process, we freeze the
encoder and train the decoder, with the masked information replaced by zero vectors. We
fine-tune the audio modality alone for 20K/40K steps in the 29h/224h settings, respectively.
Afterward, we unfreeze the encoder and continue C-Modal curriculum learning, training
for an additional 20K/40K steps. Next, we gradually introduce noise to achieve C-Noise,
training for 20K/40K steps until training is fully completed. For comparison, we adopt the
same decoder configuration as (Shi et al., 2022b), utilizing a Transformer with 9 Transformer-
decoder layers. Each stage is trained using Adam, with the learning rate being gradually
warmed up to 0.0005 for the half of updates.
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