
Reactive In-Air Clothing Manipulation with
Confidence-Aware Dense Correspondence and

Visuotactile Affordance

Neha Sunil∗1, Megha Tippur∗1, Arnau Saumell2, Edward Adelson1, Alberto Rodriguez3
1Massachusetts Institute of Technology 2Prosper AI 3Boston Dynamics

<nsunil, albertor>@mit.edu <mhtippur, adelson>@csail.mit.edu ∗†

Abstract: Manipulating clothing is challenging due to complex configurations,
variable material dynamics, and frequent self-occlusion. Prior systems often flat-
ten garments or assume visibility of key features. We present a dual-arm visuotac-
tile framework that combines confidence-aware dense visual correspondence and
tactile-supervised grasp affordance to operate directly on crumpled and suspended
garments. The correspondence model is trained on a custom, high-fidelity simu-
lated dataset using a distributional loss that captures cloth symmetries and gener-
ates correspondence confidence estimates. These estimates guide a reactive state
machine that adapts folding strategies based on perceptual uncertainty. In parallel,
a visuotactile grasp affordance network, self-supervised using high-resolution tac-
tile feedback, determines which regions are physically graspable. The same tactile
classifier is used during execution for real-time grasp validation. By deferring ac-
tion in low-confidence states, the system handles highly occluded table-top and
in-air configurations. We demonstrate our task-agnostic grasp selection module
in folding and hanging tasks. Moreover, our dense descriptors provide a reusable
intermediate representation for other planning modalities, such as extracting grasp
targets from human video demonstrations, paving the way for more generalizable
and scalable garment manipulation. See project website for demos.
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Figure 1: Overview of visuotactile garment manipulation system. Our framework integrates dense visual
correspondence, visuotactile grasp affordance prediction, tactile grasp evaluation, and tactile tensioning for
manipulating garments in highly-occluded configurations, both on a table-top and in-air. By leveraging a
confidence-aware, reactive architecture and a task-agnostic representation, the system supports a variety of
manipulation tasks, including folding and hanging.
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1 Introduction

Deformable object manipulation is challenging because strategies developed for rigid objects rarely
transfer. These objects have infinite-dimensional configuration spaces and uncertain dynamics. Gar-
ment manipulation adds further difficulty from intra-class variation, diverse material properties, and
self-occlusion, especially in crumpled and suspended states where key visual cues may be hidden.

Existing cloth manipulation approaches often rely on flattening as an initial step [1, 2, 3, 4], ex-
pensive full-state estimation [5, 6], or task-specific grasp selection [7, 8]. We propose a pose- and
instance-agnostic, confidence-aware representation using dense visual descriptors to establish pixel-
wise correspondences between deformed garments and canonical flat configurations. Trained on
highly deformed states of detailed simulated shirts, our model operates directly on garments crum-
pled on a table or suspended in the air. Instead of the traditional contrastive loss used in prior garment
dense correspondence work, we use a distributional loss that explicitly models garment symmetries
and produces confidence estimates for each correspondence. We are able to handle configurations
with heavier occlusion than those using contrastive dense descriptors because our system can defer
low-confidence grasps until reliable visual information is available.

We integrate this correspondence representation into a visuotactile manipulation system, using high-
resolution tactile sensing to (1) supervise grasp affordance learning, (2) validate grasp success during
execution, and (3) enable closed-loop tensioning during folding. These components work together
within a reactive framework that adapts folding and hanging strategies to garments of varying ge-
ometries, without requiring full-state estimation or flattening.

We make the following key technical contributions:
• Parametrizable Simulated Dataset: A custom dataset with realistic stitching features and pa-

rameterized variations to enable correspondences across different shirt geometries.
• Dense Representation: Pixel-wise correspondences across challenging garment states using a

distributional loss to capture symmetries and provide confidence estimates.
• Visuotactile Affordance: A grasp affordance network trained in simulation and fine-tuned using

tactile self-supervision to identify graspable regions with a single camera setup.
• Garment Manipulation System: A reactive visuotactile framework combining dense corre-

spondences, affordances, and tactile sensing for confidence-aware in-air folding and hanging.

2 Related Works

Most previous cloth manipulation works focus on task-specific pipelines, including flattening [3, 4],
folding [7, 9], dressing [10, 11], and recently hanging [8, 12, 13, 14]. These systems typically use
incremental pick-and-place motions against a table [1, 15, 16, 17], and many focus on rectangular
cloth, rather than garments.

Learning-based approaches can be quite successful at specific tasks. Labeling a real-world de-
formable object dataset is challenging [12, 18], so most learning works are trained in simulation.
However, the sim2real gap remains a challenge. We address this for our grasp affordance net-
work by extending [19], fine-tuning using tactile classifiers to determine grasp success on the robot.
Behavior cloning approaches [8] have shown impressive results on tasks like tying shoelaces and
hanging shirts, but require thousands of expert teleoperated demonstrations per task. In contrast,
our system enables one- or few-shot generalization abilities and can reuse a shared object-centric
representation across tasks.

Perception and Representation Early cloth manipulation work relies on corner detection or ridge
detection [20] to determine grasp points [21]. However, finding other more specific local features
often requires first flattening the cloth [2, 3, 15, 17] or hanging it from specific grasp points [7, 9, 22]
to avoid self-occlusion. Some works determine the global state of the cloth [5, 6, 23], but full-state
inference is computationally expensive. In contrast, we use dense pixel-wise correspondences to
directly localize task-relevant points in both deformed table-top and in-air configurations.
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Dense Descriptors Dense visual descriptors have been used to learn pixel-level correspondences
across object views [24, 25]. Florence et al. [26] introduce dense object descriptors for task-agnostic
manipulation, with follow-up work applying them to deformable objects [1, 27, 28]. Prior garment-
specific applications use contrastive loss [1, 28], but Ganapathi et al. [29] use multimodal distribu-
tional loss [30] to model symmetry and uncertainty on ropes and square cloths. We extend this to
garments, training on highly crumpled configurations and enabling in-air correspondence prediction,
a capability not previously addressed, because of our ability to defer low-confidence actions. Our
approach further differs from garment manipulation in [28] because of our use of reactive control,
made possible by confidence-aware descriptors and tactile feedback. We also discuss how our dense
descriptors can act as an intermediate representation for different planning modalities, including
learning from human video demonstrations. Additionally, Huang et al. [31] uses DinoV2 [32] and a
vision-language model to determine grasp points and constraints; our descriptors could be combined
with a language model to find keypoint candidates to better support manipulation in more deformed
states.

3 Methods

3.1 Dataset Generation in Simulation

Figure 2: Generating a simulated shirt dataset. Blender 4.2 is used to simulate deformed shirts. Our
animation pipeline allows flexibility in shirt geometries with the addition of realistic, key features like seams
and hems often found on real shirts. A consistent vertex indexing across the shirt dataset is used, allowing
alignment with a canonical template.

We use Blender 4.2 [33] to simulate a wide variety of shirt geometries and deformations, generating
a large RGB-D dataset (1500 scenes) for training. In addition to parameterizing the overall geome-
tries and material properties, we use [34] to incorporate hems, stitches, and sewing seams into our
shirts to mimic realistic garments, enhancing visual realism and providing key features helpful for
correspondence. Our method incorporates these finer details while preserving consistent vertex in-
dexing across shirts, enabling descriptors to align with a canonical template regardless of geometry,
without relying on sparse skeleton keypoints as in [28]. Figure 2 shows some of the parameters and
shirt configurations we randomize to generate our dataset.

Scene generation mimics real-world camera setups, with three cameras arranged radially around
each shirt, with added pose noise and varied lighting conditions to enhance dataset diversity. For
each suspended scene, a shirt is held from a random mesh point and the world coordinates and pixel
locations of the deformed mesh vertices are saved. For each table scene, a randomly positioned
flat shirt is repeatedly grasped from random points and repositioned multiple times. This setup
captures rich, diverse data across garment shapes, configurations (suspended and table), and visual
contexts, enabling robust correspondence learning between different poses and shirt instances. See
Appendix 7.1 for further simulation details.

3.2 Dense Correspondence with Distributive Loss

We aim to learn dense pixel-wise correspondences between images of garments in deformed and
flattened configurations. Given an RGB image I ∈ RW×H×3, we define a mapping f : RW×H×3 →
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RW×H×d that assigns a d-dimensional descriptor to each pixel in I . This descriptor space allows
correspondences to be established by comparing descriptors across images.

Contrastive Loss Contrastive methods, as used by [1, 26, 28], supervise this mapping by sampling
pairs of matching and non-matching pixels across images. For a query pixel ua = (xa, ya) in image
Ia and a candidate pixel ub = (xb, yb) in image Ib, the descriptor distance D(Ia, ua, Ib, ub) =
∥f(Ia)(ua) − f(Ib)(ub)∥2 is minimized for matching pairs and pushed beyond a fixed margin M
for non-matching pairs. This enforces one-to-one correspondences but struggles with ambiguities
caused by symmetries or occlusions, which are common in deformable objects. Symmetric Pixel-
wise Contrastive Loss (SPCL) [29] extends this approach to support symmetric correspondences,
allowing multiple valid matches per query pixel. However, they found the results to be unstable,
and the discrete matches resulted in discontinuity issues. We will compare our network to these
contrastive baselines.

Distributional Loss To address these limitations, we adopt the distributional formulation from [29],
which explicitly models uncertainty over correspondences. Rather than supervising individual de-
scriptor pairs, the network predicts a full probability distribution over all possible matches for a
query pixel. In contrast, the softmax over contrastive descriptor distances does not produce a true
calibrated probability distribution. Formally, we define an estimator p̂b(xi, yj |Ia, Ib, xa, ya) that
outputs the probability that each pixel (xi, yj) ∈ Ib corresponds to a given query pixel (xa, ya) ∈ Ia.
This estimator is defined as:

p̂b(xi, yj | Ia, Ib, xa, ya) =
exp

(
−∥f(Ia)[xa, ya]− f(Ib)[xi, yj ]∥22

)∑
i′,j′ exp (−∥f(Ia)[xa, ya]− f(Ib)[xi′ , yj′ ]∥22)

∀(xi, yj) ∈ Ib

(1)

The target distribution qb is a multimodal isotropic Gaussian defined over Ib, with standard deviation
σ and modes centered at the ground-truth correspondence pixels, allowing the network to represent
multiple valid matches and capture ambiguities from symmetry.

The descriptor mapping f is implemented using ResNet34. The network is optimized by minimizing
the Kullback-Leibler (KL) divergence between the predicted distribution p̂bi and the target distribu-
tion qbi for each query pixel. Here, p̂bi is the predicted correspondence distribution over Ib for the
i-th query pixel (computed using Equation 1), and qbi is the corresponding target distribution. Fig-
ure 3 shows a training example. At each iteration, we choose an image of a randomized deformed
shirt and compare it to the canonical one. We query 50 randomly sampled points on the deformed
shirt per iteration.

Deformed Shirt Image (𝐼!)

Canonical Shirt Image (𝐼")

Queried Pixel
𝐼![𝑥!, 𝑦!]

Deformed Shirt Descriptor 𝑓(𝐼!)

Canonical Shirt Descriptor 𝑓(𝐼")

Queried Pixel 
Descriptor
𝑓(𝐼![𝑥!, 𝑦!])

Corresponding 
Pixel Match
𝐼"[𝑥" , 𝑦"]

Dense Correspondence 
Network 𝑓(%)

ResNet34

Deformed-to-Canonical Pixelwise Correspondences

Contrastive Loss

Target Distribution (𝑞#) Best Match Heatmap (𝑝̂#)

Distributional Loss

Figure 3: Training dense correspondence in simulation. Given two images Ia and Ib, and a matching rela-
tion ((xa, ya)←→ {(xb, yb), (x

′
b, y

′
b)}), we train a CNN model f to compute dense object descriptors. When

supervising with distributional loss, we define a multimodal Gaussian target distribution qb with symmetrical
modes over pixels corresponding to the queried point. We compute the probability distribution estimation p̂bi
over image Ib using f(Ia)[xa, ya] and f(Ib). Training minimizes the KL divergence between qb and p̂bi . In
the contrastive loss case, the model learns to push discrete pixel matches closer together in pixel space and
non-matches further apart.

Note that Ib is always the canonical shirt image during training, meaning that we compute both the
target and estimated distributions over the canonical shirt. A smooth Gaussian target distribution
works over the canonical shirt because it does not have the occlusions and distortions of a deformed
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shirt. Defining the target distribution over the deformed shirt would be useful for training the net-
work in both directions, but is unfeasible in this framework.

3.3 Visuotactile Grasp Affordance

Training a general garment grasp affordance network is more challenging than for simpler de-
formable objects like towels. In [19], the network was fine-tuned on a single towel with consis-
tent material properties and dynamics. However, in this case, affordance must generalize across
a wide range of geometries and material rigidities. As in [19], we only use side grasps to reduce
computational complexity. While grasp classifiers are trained for both grippers (as required by the
larger system), affordance training is performed only for right-arm grasps, with left-arm affordance
approximated by horizontally flipping inputs and outputs.

Tactile Classifier To assess grasp quality, we train tactile classifiers to distinguish between success-
ful grasps, grasps with too little fabric (which are empty or prone to slip), and grasps with a large
excess of layers (more fabric than intended). We concatenate five evenly-spaced tactile depth im-
ages from the grasp attempt as input to our network. Our tactile datasets include 350 grasps across
approximately 20 shirts, with limited augmentations, as implemented in [19] (two per input).

Training Affordance in Simulation We use the same U-Net [35] architecture as [19] for affordance
prediction. The input to the network is a depth image of the hanging garment, and the output is an
affordance heatmap over the image. Ground-truth affordance labels are computed per pixel via
geometric analysis, leveraging full access to the cloth state in simulation. Specifically, each pixel
is labeled based on gripper reachability, collision avoidance, and the number of fabric layers inside
the gripper (restricted to two or fewer). These criteria are all explicitly checked in simulation, but
the tactile classifier implicitly verifies these qualities on the robot. The simulated dataset consists of
300 unique cloth configurations, each rotated in increments of 30◦, yielding a total of 3,600 images.

Fine-tuning on the Robot We collect 8,500 grasp points for real-world fine-tuning to capture the
greater variety of shirt dynamics and configurations compared to the simulated environment. Fine-
tuning can easily overfit the real grasp dataset because the loss only applies to one pixel at a time.
Furthermore, the tactile classifier cannot reliably determine whether the grasped region corresponds
to the intended visual target. As a result, non-reachable pixels can yield positive tactile signals due
to inadvertently grasping cloth in front of the target. To help address these challenges, our loss
includes neighboring pixels to broaden supervision, along with regularization terms such as spatial
smoothness penalties, simulation consistency constraints, and weight decay (see Appendix 7.5).

3.4 In-Air Garment Manipulation

System Setup Our bimanual system consists of two UR5 robots, both equipped with parallel-jaw
grippers mounted with GelSight Wedge tactile sensors [36]. A Kinect Azure camera is used to
capture RGB-D images.

Folding with Confidence-Based State Machine Prior dense correspondence methods for garment
folding rely on fixed pick points in canonical space [1, 28]. While this simplifies planning, it fails
when key features are occluded, distorted, or located in configurations unsuitable for grasping.

Our system enables reactive in-air folding by dynamically selecting grasp points based on real-time
confidence estimates and recovering from failures using tactile reactivity. The system starts by pick-
ing the shirt up from the table (looking for correspondence regions above a confidence threshold),
and all subsequent grasps are performed in air.

At each grasp attempt, the robot can query from three canonical regions (shoulder, sleeve, bottom)
using our distributional dense correspondence network to generate confidence-weighted heatmaps.
A grasp is executed only if both the correspondence confidence and grasp affordance (for in-air
grasps) exceed predefined thresholds. Otherwise, the robot rotates the garment by 30◦ and re-
evaluates, ensuring robust grasp point selection across four folding strategies (shoulder-to-shoulder,
bottom-to-bottom, sleeve-to-sleeve, sleeve-to-bottom). See Appendix 7.2 for more details.
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Grasp success is validated by tactile sensing (confirming fabric contact). If a grasp fails, the robot
rotates and retries without releasing the garment. We use vision to ensure that the cloth is still in
grip after moving the grippers. If no pixel meets the threshold requirements, the robot grasps the
lowest available high affordance point to change configurations and encourage the cloth to unfurl.
Once two confident grasp points are secured, the robot tensions the shirt (detecting shear via the
average marker displacement on the tactile sensors) and can perform the rest of the folding motions
open-loop, with the exception of using vision to align corners.

Hanging We demonstrate hanging by picking collar or shoulder points from the table and in the air.
After securing both grasps, the robot moves open-loop to a peg. Hanging success is evaluated by
grasp regions and whether the cloth stays on the peg.

4 Results

z
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Figure 4: Comparison of contrastive vs. distributional training, with and without symmetric supervision
in simulation. Plot (a) shows the cumulative fraction of image pixels whose predicted match is within a given
pixel error threshold. Networks are trained on a combined dataset of suspended and table-top shirts, and evalu-
ated on an unseen suspended test set; higher curves indicate better performance. Our symmetric distributional
model performs the best at low error thresholds compared to baselines. For each network, (b) shows the pre-
dicted best pixel match for a queried point on a deformed simulated shirt, along with PCA visualizations of the
dense descriptors in both the canonical and deformed states and the corresponding match heatmaps. Contrastive
heatmaps are normalized between 0 and 1, while distributional heatmaps represent true calibrated probabilities.

Dense Correspondence Most dense descriptor methods use contrastive one-to-one training [1, 26,
28], which fails to capture symmetries or spatial relationships beyond binary matches. Quantita-
tive results (Figure 4) show similar cumulative pixel errors between contrastive and distributional
models, but distributional models consistently outperform contrastive ones across nearly all error
thresholds. Qualitatively, contrastive and non-symmetrical losses struggle with ambiguous struc-
tures, often confusing sleeves with the shirt bottom (as seen in PCA visualizations). In contrast,
distributional loss supervises the model to predict a full probability distribution, enforcing spatial
consistency. Explicit symmetry supervision further improves performance (Figure 4), especially at
low error thresholds, by encouraging multimodal correspondences in symmetric regions.

We found that including random occlusions during training did not significantly affect performance
in simulation, but helped improve performance on real data, likely due to masking artifacts. More
detailed analysis of network parameters can be found in Appendix 7.3.

On real suspended shirt images, we evaluate our network by defining classification zones on the
canonical shirt (see Appendix 7.4). When querying points from a suspended shirt (forward direction,
as in training), the best suspended-only network classified the correct region 73.3% of the time, while
the best combined network (trained on both table and suspended data) achieved 62.2% accuracy,
while exhibiting lower overall confidence. Applying a confidence threshold, the combined network
made correct, confidence-aware decisions (avoiding incorrect labels) 68.9% of the time. In the
inverse direction (querying from the canonical shirt), the combined network correctly identified the
region 41.7% of the time and made safe, confidence-aware decisions 70.8% of the time. Some
canonical points were occluded in the deformed image, making low confidence the correct outcome
for these cases. On table scenes, the correct correspondence region was identified 70% of the time,
and a safe decision (either correct or low-confidence) was made 80% of the time in 20 trials.
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Visuotactile Grasp Affordance Our tactile grasp classifier achieves 99.7% accuracy on the right
arm (used for tactile supervision) and 98.8% on the left. Thin, flat shirts are the most challenging to
classify. To evaluate affordance prediction, we collect 125 human-labeled grasp points where each
point appeared potentially graspable to a human observer. We compare our fine-tuned affordance
network against two baselines: (1) Sim2Real, trained in simulation and directly deployed, and (2)
Real2Real, trained solely on robot data. Networks are evaluated offline using precision@k [37],
a metric suitable for our unbalanced test set that avoids the need for a fixed threshold. We report
precision@80, corresponding to the 80 successful grasps among the 125 test points. The results
are 71.3% for Sim2Real, 75.0% for Real2Real, and 76.3% for our fine-tuned network. Sim2Real
performs worst due to discrepancies between simulated and real-world dynamics. While the fine-
tuned and Real2Real networks achieve similar precision on the test set, qualitative analysis shows
that Real2Real tends to be overconfident in incorrect predictions without the structure provided by
the simulated network, particularly in less ambiguous cases not well-represented in the test set (see
Appendix 7.5).

Category
Successful
Grasp (%)

Corr.
Success (%)

Low
Conf. (%)

Failed
Grasp (%)

Susp. Comb. Susp. Comb. Susp. Comb. Susp. Comb.
Sleeve 60 40 80 60 10 10 30 50
Bottom 40 10 90 90 40 80 20 10

Shoulder 40 60 100 100 60 20 0 20
Collar 80 80 90 90 0 0 20 20

Table 1: (a) Grasping results using dense correspondence and grasp affordance across shirt categories
for suspended and combined (suspended + table) dataset networks. Low-confidence outcomes, where the
shirt completes a full rotation without finding a grasp point, are not counted as successful or failed grasps. They
are still included when calculating correspondence success, since both networks are trained to be confidence-
aware. Failed grasps are categorized as either correspondence or affordance failures. Correspondence success
rates exclude grasps that failed due to bad affordance predictions.

Combined System We evaluate grasping performance across four garment regions (sleeve, bottom,
shoulder, and collar) using two different correspondence networks: one trained solely on suspended
shirts and another on a combined table and suspended dataset. For each category, we perform 10
grasp attempts per network, recording outcomes as success, failure, or below confidence threshold.
Failures are further categorized as correspondence errors or affordance errors. In this experiment, we
place the shirt in configurations where we expect graspable regions to emerge after rotation. Table 1
summarizes rates for overall success, correspondence success (excluding bad affordance grasps),
low-confidence rates, and total failure rates for each network and region.

The collar region consistently achieves higher confidence and success rates, likely due to its distinc-
tive geometry. In contrast, the bottom region has the lowest confidence rates, reflecting its visual
ambiguity and the increased difficulty of finding good affordance grasps from folding in on itself.
The suspended network performs marginally better overall, but the combined network adds critical
flexibility by supporting table grasps. Importantly, during folding, we query three candidate grasp
points for the initial grasp, requiring confidence in only one to proceed. Subsequent grasps occur in
easier, more unfurled configurations. 7 of 80 grasp attempts were affordance failures that the tactile
classifier can recover from during task execution.

We found that our confidence-aware state machine was able to grasp viable folding points in 6
out of 10 trials. Of the 30 total grasps attempted during the course of our 10 folding trials, 6
were empty grasps successfully caught by the tactile classifier, immediately triggering recovery
behaviors. Irrecoverable failure modes included correspondence failures, grabbing too much fabric,
and grabbing diagonally across the shirt for sleeve-end grasps (despite masking out lowest points,
see Appendix 7.2). Cloth slipping out was an occasional issue, but the system is able to recover.
Without affordance fine-tuning, the folding success rate dropped to 3 out of 10 trials, with an increase
in cases of grabbing too much fabric caused by poor affordance, rather than poor correspondence.
Our hanging system was successful in 7 out of 10 trials with all failures due to correspondence.
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Figure 5: Correspondence and affordance heatmaps for real images. We show examples for both suspended
and table configurations, with correspondence probability maps for four query types: sleeve, shoulder, collar,
and bottom. For suspended images, we also show the grasp affordance heatmap. In the robot system, grasp
points are selected where both correspondence and affordance exceed predefined confidence thresholds. Note
that while training queries points on the crumpled shirt, the robot queries points on the canonical image.

5 Conclusion

We present a reactive visuotactile system for garment manipulation that integrates dense visual cor-
respondence, visuotactile grasp affordance, confidence-aware planning, and tactile feedback. Unlike
prior work constrained to table-top picking or reliant on flattening, our system supports in-air gar-
ment manipulation directly from crumpled states, guided by dense correspondences—a capability
not previously demonstrated in the field. This enables more flexible, human-like manipulation.

A core insight of our work is the importance of confidence-driven reactivity: by deferring low-
confidence actions and using tactile sensing for validation and correction, the system maintains
robustness under severe occlusion and uncertainty. This closed-loop approach bridges the gap be-
tween global visual context and local contact feedback, enabling reliable control even when full
object geometry is not observable.

Beyond task execution, our dense, confidence-aware representation serves as a generalizable inter-
mediate layer for higher-level planning frameworks. It provides a foundation for extracting grasp
targets from human video demonstrations (See Figure 6 and Appendix 7.6), and has the potential to
interface with vision-language models [31] or symbolic planners. These directions open the door to
scalable, semantically-informed manipulation systems capable of adapting across garments, tasks,
and contexts.

Query Point Probability Heatmap Best Match

Grasp 2

Query Point Probability Heatmap Best Match

Grasp 1

Figure 6: Extracting grasp points from human video demonstrations. We track hand gestures throughout
the video to identify key moments. For each key frame, we use the tracked hand position to define a query
point and retrieve the corresponding location on the canonical shirt using our dense correspondence model.
This approach enables folding demonstrations to be interpreted as robot-executable instructions via our dense
visual representation.
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6 Limitations

While our system demonstrates strong potential for in-air garment manipulation, several areas
present opportunities for further development. First, the generalizability of the dense correspon-
dence network is limited by the features available in simulation. Although we incorporated realistic
details such as seams, hems, and varied necklines, other common garment features—like hoods,
buttons, zippers, and mixed patterns—are not yet modeled. Some of these could be added in future
dataset expansions, while others may require advances in simulation tools. On out-of-distribution
shirts (see Appendix 7.4), the network still captures general structure, but with lower confidence.
New garment classes (e.g., trousers) would require new simulations, which would not require a
complete overhaul of the simulation methodology, but would need to be updated to account for
the different geometries, hems, and zippers. However, even in these cases, the overall grasp selec-
tion pipeline remains relatively unchanged, but would likely require a new confidence threshold or
additional fine-tuning.

Second, we are able to achieve this performance with a single camera and exclusively side approach
grasps, but expanding to additional viewpoints and enabling more grasp approach angles could im-
prove coverage to access more high correspondence regions. Incorporating temporal information
could further enable the system to track keypoints as they become accessible, supporting more flex-
ible planning.

Finally, although the system is confidence-aware, the network occasionally overestimates its cer-
tainty in challenging configurations. We experimented with auxiliary confidence prediction and
KL-divergence metrics, but these did not significantly improve failure detection. Improving uncer-
tainty estimation remains an important direction for future work.

9



Acknowledgments

We would like to thank Sangbae Kim for helping provide the computing resources used in this work.

This material is based upon work supported by the National Science Foundation Graduate Research
Fellowship Program (NSF GRFP), the Toyota Research Institute (TRI), and the Amazon Science
Hub.

References

[1] A. Ganapathi, P. Sundaresan, B. Thananjeyan, A. Balakrishna, D. Seita, J. Grannen, M. Hwang,
R. Hoque, J. E. Gonzalez, N. Jamali, K. Yamane, S. Iba, and K. Goldberg. Learning to smooth
and fold real fabric using dense object descriptors trained on synthetic color images. arXiv,
2020.

[2] R. Hoque, K. Shivakumar, S. Aeron, G. Deza, A. Ganapathi, A. Wong, J. Lee, A. Zeng, V. Van-
houcke, and K. Goldberg. Learning to fold real garments with one arm: A case study in
cloud-based robotics research. arXiv preprint arXiv:2204.10297, 2022.

[3] H. Ha and S. Song. Flingbot: The unreasonable effectiveness of dynamic manipulation for
cloth unfolding. In Conference on Robot Learning, pages 24–33. PMLR, 2022.

[4] A. Canberk, C. Chi, H. Ha, B. Burchfiel, E. Cousineau, S. Feng, and S. Song. Cloth fun-
nels: Canonicalized-alignment for multi-purpose garment manipulation, 2022. URL https:

//arxiv.org/abs/2210.09347.

[5] C. Chi and S. Song. Garmentnets: Category-level pose estimation for garments via canonical
space shape completion. CoRR, abs/2104.05177, 2021. URL https://arxiv.org/abs/

2104.05177.

[6] C. Chi and D. Berenson. Occlusion-robust deformable object tracking without physics simula-
tion. In Intelligent Robots and Systems (IROS), 2019 IEEE International Conference on. IEEE,
2019.

[7] A. Doumanoglou, A. Kargakos, T.-K. Kim, and S. Malassiotis. Autonomous active recognition
and unfolding of clothes using random decision forests and probabilistic planning. In 2014
IEEE international conference on robotics and automation (ICRA), pages 987–993. IEEE,
2014.

[8] T. Z. Zhao, J. Tompson, D. Driess, P. Florence, K. Ghasemipour, C. Finn, and A. Wahid. Aloha
unleashed: A simple recipe for robot dexterity. arXiv preprint arXiv:2410.13126, 2024.

[9] J. Maitin-Shepard, M. Cusumano-Towner, J. Lei, and P. Abbeel. Cloth grasp point detection
based on multiple-view geometric cues with application to robotic towel folding. In 2010 IEEE
International Conference on Robotics and Automation, pages 2308–2315. IEEE, 2010.

[10] F. Zhang and Y. Demiris. Learning garment manipulation policies toward robot-assisted dress-
ing. Science robotics, 7(65):eabm6010, 2022.

[11] Z. Sun, Y. Wang, D. Held, and Z. Erickson. Force-constrained visual policy: Safe robot-
assisted dressing via multi-modal sensing. IEEE Robotics and Automation Letters, 2024.

[12] W. Chen, D. Lee, D. Chappell, and N. Rojas. Learning to grasp clothing structural regions for
garment manipulation tasks. In 2023 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 4889–4895. IEEE, 2023.

[13] Y. Chen, S. Wei, B. Xiao, J. Lyu, J. Chen, F. Zhu, and H. Wang. Robohanger: Learning
generalizable robotic hanger insertion for diverse garments. arXiv preprint arXiv:2412.01083,
2024.

10

https://arxiv.org/abs/2210.09347
https://arxiv.org/abs/2210.09347
https://arxiv.org/abs/2104.05177
https://arxiv.org/abs/2104.05177


[14] W. Chen, K. Li, D. Lee, X. Chen, R. Zong, and P. Kormushev. Graphgarment: Learning
garment dynamics for bimanual cloth manipulation tasks. arXiv preprint arXiv:2503.05817,
2025.

[15] Y. Wu, W. Yan, T. Kurutach, L. Pinto, and P. Abbeel. Learning to manipulate deformable
objects without demonstrations, 2019.

[16] R. Hoque, D. Seita, A. Balakrishna, A. Ganapathi, A. K. Tanwani, N. Jamali, K. Yamane,
S. Iba, and K. Goldberg. VisuoSpatial foresight for multi-step, multi-task fabric manipulation,
2020.

[17] X. Lin, Y. Wang, Z. Huang, and D. Held. Learning visible connectivity dynamics for cloth
smoothing. In Conference on Robot Learning, pages 256–266. PMLR, 2022.

[18] J. Qian, T. Weng, L. Zhang, B. Okorn, and D. Held. Cloth region segmentation for robust grasp
selection. In IEEE International Conference on Intelligent Robots and Systems, 2020. ISBN
9781728162126. doi:10.1109/IROS45743.2020.9341121.

[19] N. Sunil, S. Wang, Y. She, E. Adelson, and A. R. Garcia. Visuotactile affordances for cloth
manipulation with local control. In 6th Annual Conference on Robot Learning, 2022. URL
https://openreview.net/forum?id=s6NEzqZKaP-.

[20] K. Yamazaki, K. Nagahama, and M. Inaba. Daily clothes observation from visible surfaces
based on wrinkle and cloth-overlap detection. In MVA, pages 275–278, 2011.

[21] B. Willimon, S. Birchfield, and I. Walker. Model for unfolding laundry using interactive per-
ception. In IEEE International Conference on Intelligent Robots and Systems, 2011. ISBN
9781612844541. doi:10.1109/IROS.2011.6048796.

[22] M. Cusumano-Towner, A. Singh, S. Miller, J. F. O’Brien, and P. Abbeel. Bringing clothing
into desired configurations with limited perception. In 2011 IEEE international conference on
robotics and automation, pages 3893–3900. IEEE, 2011.

[23] T. Tang, Y. Fan, H.-C. Lin, and M. Tomizuka. State estimation for deformable objects by point
registration and dynamic simulation. In Intelligent Robots and Systems (IROS), 2017 IEEE
International Conference on. IEEE, 2017.

[24] C. B. Choy, J. Gwak, S. Savarese, and M. Chandraker. Universal correspondence network.
CoRR, abs/1606.03558, 2016. URL http://arxiv.org/abs/1606.03558.

[25] T. Schmidt, R. A. Newcombe, and D. Fox. Self-supervised visual descriptor learning for dense
correspondence. IEEE Robotics and Automation Letters, 2017.

[26] P. R. Florence, L. Manuelli, and R. Tedrake. Dense object nets: Learning dense visual object
descriptors by and for robotic manipulation. CoRR, abs/1806.08756, 2018. URL http://

arxiv.org/abs/1806.08756.

[27] P. Sundaresan, J. Grannen, B. Thananjeyan, A. Balakrishna, M. Laskey, K. Stone, J. E.
Gonzalez, and K. Goldberg. Learning rope manipulation policies using dense object de-
scriptors trained on synthetic depth data. CoRR, abs/2003.01835, 2020. URL https:

//arxiv.org/abs/2003.01835.

[28] R. Wu, H. Lu, Y. Wang, Y. Wang, and H. Dong. Unigarmentmanip: A unified framework for
category-level garment manipulation via dense visual correspondence. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2024.

[29] A. Ganapathi, P. Sundaresan, B. Thananjeyan, A. Balakrishna, D. Seita, R. Hoque, J. E. Gonza-
lez, and K. Goldberg. MMGSD: Multi-Modal Gaussian Shape Descriptors for Correspondence
Matching in 1D and 2D Deformable Objects. In Intelligent Robots and Systems (IROS), 2020
IEEE International Conference on, 2020.

11

http://dx.doi.org/10.1109/IROS45743.2020.9341121
https://openreview.net/forum?id=s6NEzqZKaP-
http://dx.doi.org/10.1109/IROS.2011.6048796
https://ieeexplore.ieee.org/document/8206058
https://ieeexplore.ieee.org/document/8206058
http://arxiv.org/abs/1606.03558
http://arxiv.org/abs/1806.08756
http://arxiv.org/abs/1806.08756
https://arxiv.org/abs/2003.01835
https://arxiv.org/abs/2003.01835


[30] P. Florence. Dense visual learning for robot manipulation. PhD thesis, Massachusetts Institute
of Technology, 01 2020.

[31] W. Huang, C. Wang, Y. Li, R. Zhang, and L. Fei-Fei. Rekep: Spatio-temporal reasoning of
relational keypoint constraints for robotic manipulation. arXiv preprint arXiv:2409.01652,
2024.

[32] M. Oquab, T. Darcet, T. Moutakanni, H. Vo, M. Szafraniec, V. Khalidov, P. Fernandez, D. Haz-
iza, F. Massa, A. El-Nouby, et al. Dinov2: Learning robust visual features without supervision.
arXiv preprint arXiv:2304.07193, 2023.

[33] Blender Online Community. Blender. https://www.blender.org/, 2025. Version 4.2.

[34] A. Albisser. Procedural cloth sewing toolbox for blender 4.2+. https://

alexandrealbisser.gumroad.com/l/ProceduralSewingToolbox, 2024. Software tool.

[35] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical im-
age segmentation. In International Conference on Medical image computing and computer-
assisted intervention, pages 234–241. Springer, 2015.

[36] S. Wang, Y. She, B. Romero, and E. Adelson. Gelsight wedge: Measuring high-resolution
3d contact geometry with a compact robot finger. In 2021 IEEE International Conference on
Robotics and Automation (ICRA), pages 6468–6475. IEEE, 2021.

[37] M. Sanderson. Test collection based evaluation of information retrieval systems. Now Pub-
lishers Inc, 2010.

[38] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead,
A. C. Berg, W.-Y. Lo, et al. Segment anything. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 4015–4026, 2023.

12

https://www.blender.org/
https://alexandrealbisser.gumroad.com/l/ProceduralSewingToolbox
https://alexandrealbisser.gumroad.com/l/ProceduralSewingToolbox

	CoRL_Fabric_2025___FINAL_PAPER
	Introduction
	Related Works
	Methods
	Dataset Generation in Simulation
	Dense Correspondence with Distributive Loss
	Visuotactile Grasp Affordance
	In-Air Garment Manipulation

	Results
	Conclusion
	Limitations
	Appendix
	Blender Simulation Parameters
	Folding with Confidence-Based State Machine
	Dense Correspondence Network Parameters
	Dense Correspondence Evaluation
	Visuotactile Grasp Affordance
	Human Video Demonstrations


	CoRL_Fabric_2025___FINAL_SUPPLEMENTARY
	Introduction
	Related Works
	Methods
	Dataset Generation in Simulation
	Dense Correspondence with Distributive Loss
	Visuotactile Grasp Affordance
	In-Air Garment Manipulation

	Results
	Conclusion
	Limitations
	Appendix
	Blender Simulation Parameters
	Folding with Confidence-Based State Machine
	Dense Correspondence Network Parameters
	Dense Correspondence Evaluation
	Visuotactile Grasp Affordance
	Human Video Demonstrations





