
Accelerating data-driven algorithm selection for
combinatorial partitioning problems

Vaggos Chatziafratis
UC Santa Cruz

vaggos@ucsc.edu

Ishani Karmarkar
Stanford University

ishanik@stanford.edu

Yingxi Li
Stanford University

yingxi@stanford.edu

Ellen Vitercik
Stanford University

vitercik@stanford.edu

Abstract

Data-driven algorithm selection is a powerful approach for choosing effective
heuristics for computational problems. It operates by evaluating a set of candidate
algorithms on a collection of representative training instances and selecting the
one with the best empirical performance. However, running each algorithm on
every training instance is computationally expensive, making scalability a cen-
tral challenge. In practice, a common workaround is to evaluate algorithms on
smaller proxy instances derived from the original inputs. However, this practice
has remained largely ad hoc and lacked theoretical grounding. We provide the first
theoretical foundations for this practice by formalizing the notion of size general-
ization: predicting an algorithm’s performance on a large instance by evaluating it
on a smaller, representative instance, subsampled from the original instance. We
provide size generalization guarantees for three widely used clustering algorithms
(single-linkage, k-means++, and Gonzalez’s k-centers heuristic) and two canoni-
cal max-cut algorithms (Goemans-Williamson and Greedy). We characterize the
subsample size sufficient to ensure that performance on the subsample reflects
performance on the full instance, and our experiments support these findings.

1 Introduction

Combinatorial partitioning problems such as clustering and max-cut are fundamental in machine
learning [21, 22, 39, 40], finance [26] , and biology [38, 74]. These problems are typically NP-hard,
which has prompted the development of many practical approximation algorithms and heuristics.
However, selecting the most effective heuristic in practice remains a key challenge, and there is little
theoretical guidance on the best method to use on a given problem instance or application domain. In
clustering, for example, Ben-David [22] notes that algorithm selection is often performed “in a very
ad hoc, if not completely random, manner,” which is unfortunate “given [its] crucial effect” on the
resulting clustering.

To address this challenge, data-driven algorithm selection has emerged as a powerful approach,
offering systematic methods to identify high-performing algorithms for the given domain [28, 36, 63,
73, 84]. Gupta and Roughgarden [52] provided a formal PAC-learning framework for data-driven
algorithm selection, where we are given candidate algorithms A1, ...,AK and training problem
instances X1, ...,XN from the application domain. A value function value evaluates the algorithm’s
output quality—for example, for max-cut, this is the density of the returned cut whereas for clustering,
this is the quality of the resultant clustering. The goal is then to select A⋆ ∈ {A1, ...,Ak} which

maximizes the empirical performance:

max
j∈[K]

∑
i∈[N]

value(Aj(Xi)). (1)

When N is sufficiently large, generalization bounds imply that A⋆ approximately maximizes the
expected value on future unseen problems from the same application domain [e.g., 12, 14, 18, 52].

However, a key computational challenge in solving Equation (1) is that it requires running each
algorithm Aj on every training instance Xi. Since the algorithms Aj themselves often have super-
linear runtime, this process quickly becomes prohibitively expensive, especially when N and the
underlying training instances Xi are large. Indeed, a major open direction is to design computationally
efficient data-driven algorithm selection methods [15, 24, 53].

To help address this bottleneck, we introduce a new notion of size generalization for algorithm
selection:
Question 1.1 (Size generalization). Given an algorithm A and problem instance X of size n, can we
quickly estimate value(A(X)) using a small, representative problem instance of size m ≪ n?

Beyond enabling efficient data-driven algorithm selection, size generalization has broader implica-
tions, even in the absence of training instances. For example, when faced with a single large problem
instance, Question 1.1 provides a natural framework for efficiently selecting a suitable algorithm by
evaluating candidate algorithms’ performance on a smaller, representative subsample.

Motivation from prior empirical work. In discrete optimization, a common heuristic for algorithm
selection on large-scale problems is to evaluate candidate algorithms on smaller, representative
instances [e.g., 31, 35, 46, 51, 56–59, 77–79, 81]. Despite its widespread use, this approach remains
ad hoc, lacking theoretical guarantees. We provide the first theoretical foundations for this practice.

1.1 Our contributions

To move towards a general theory of size generalization, we answer Question 1.1 for two canonical
combinatorial problems: clustering and max-cut. For clustering, we analyze three well-studied
algorithms: single-linkage clustering, Gonzalez’s k-centers heuristic, and k-means++. For max-cut,
we analyze the classical Goemans-Williamson (GW) semi-definite programming (SDP) rounding
scheme and the Greedy algorithm [47, 64]. Finally, in Section 4, we empirically validate our
theoretical findings. An exciting direction for future work is to extend this framework to other
combinatorial algorithm selection problems, such as integer or dynamic programming [13, 14, 52].

A key challenge in answering Question 1.1 lies in the sequential nature of combinatorial algorithms,
which makes them highly sensitive to individual data points in clustering (Figures 2 and 9 in Ap-
pendix B.2) and specific nodes in max-cut (Figures 4 and 5 in Appendix B.2.2). This sensitivity makes
it difficult to identify conditions under which an algorithm’s performance is robust to subsampling.

Clustering algorithm selection. In Section 2, we study clustering algorithm selection in the
widely-studied semi-supervised setting [12, 19, 30, 62, 85], where each clustering instance X has
an underlying ground truth clustering and value(·) measures accuracy with respect to this ground
truth. While the ground truth is unknown, it can be accessed through expensive oracle queries,
which model interactions with a domain expert. A key advantage of data-driven clustering algorithm
selection is that ground-truth information is only required for the training instances in Equation (1).
Prior research bounds the number of training instances sufficient to ensure that in expectation over
new clustering instances from the application domain—where the ground truth is unavailable—the
selected algorithm A∗ provides the best approximation to the unknown ground truth [12, 13].

We formalize the goal of size generalization for clustering algorithm selection as follows.
Goal 1.2 (Size generalization for clustering). Estimate the accuracy of a candidate clustering
algorithm on an instance X by running the algorithm on a subsampled instance X ′ ⊂ X of size
|X ′| ≪ |X |. The selection procedure should have low runtime and require few ground-truth queries.

We present size generalization bounds for center-based clustering algorithms, including a variant
of Gonzalez’s k-centers heuristic and k-means++, as well as single-linkage clustering. For the

2

center-based algorithms, we show that under natural assumptions, the sample size sufficient to
achieve Goal 1.2 is independent of |X |. Meanwhile, the single-linkage algorithm is known to be
unstable in theory [29], yet our experiments reveal that its performance can often be estimated
from a subsample. To explain this robustness, we characterize when size generalization holds for
single-linkage, clarifying the regimes in which it remains stable or becomes sensitive to deletions.

Comparison to coresets. Our clustering results complement research on coresets [e.g., 33, 42, 54],
but differ fundamentally and are not directly comparable. Given a clustering instance X with the goal
of finding k centers that minimize a known objective h (such as the k-means objective), a coreset
is a subset Xc ⊂ X such that for any set C of k centers, h(C;X) ≈ h(C;Xc). Coresets enable
efficient approximation algorithms for minimizing h. However, we aim to minimize misclassification
with respect to an unknown ground truth clustering. Thus, coresets do not provide any guarantees in
our setting. We make no assumptions on the ground truth clustering (e.g., that it minimizes some
objective or is approximation-stable [10])—it is arbitrary and may even be adversarial with respect to
X—and we provide approximation guarantees directly with respect to the ground truth.

Max-cut algorithm selection. In Section 3, we study max-cut—a problem with practical applica-
tions in circuit design [20], physics [16], and data partitioning [72]—with the following goal:

Goal 1.3 (Size generalization for max-cut). Estimate the performance of a candidate max-cut
algorithm on a graph G = (V,E) using a vertex-induced subgraph G[S] for S ⊂ V with |S| ≪ |V |.

Selecting between max-cut algorithms is non-trivial because competing methods differ sharply in
solution quality and runtime. The GW algorithm outperforms the Greedy algorithm in many instances,
but often, the reverse is true. Even when both produce cuts of comparable weights, Greedy has
a significantly faster runtime, since GW solves the max-cut SDP relaxation—a computationally-
expensive task—before performing randomized hyperplane rounding. Data-driven algorithm selection
helps determine when GW’s higher computational cost is justified.

To analyze GW, we prove convergence bounds for the SDP objective values under G and G[S],
independent of graph structure. As such, we strengthen prior work by Barak et al. [17], who provided
GW SDP convergence guarantees only for random geometric graphs. We then show that the cut
density produced by the GW algorithm on G can be estimated using the subgraph G[S]. For Greedy,
we build on prior work [64] to bound the rate at which the cut density of G[S] converges to G.

1.2 Additional related work

Ashtiani and Ben-David [5] study a semi-supervised approach to learning a data representation for
clustering tasks. In contrast, we study algorithm selection. Voevodski et al. [82] study how to recover
a low-error clustering with respect to a ground-truth clustering using few distance queries, assuming
the instance is “approximation stable” [10]—meaning any clustering that approximates the k-medians
objective is close to the ground truth. We make no such assumptions.

Our Max-Cut results complement theoretical work on estimating Max-Cut density using random
vertex-induced subgraphs or coresets, with the aim of developing an accurate polynomial-time
approximation or achieving a fast sublinear-time approximation [1–3, 23, 43, 64, 71, 83]. We build
on this research in our analysis of Greedy, but these results cannot be used to analyze the GW
algorithm. Rather, we obtain our results by proving general guarantees for approximating the GW
SDP using a subsample. Barak et al. [17] provide similar guarantees for a broad class of SDPs,
which includes the GW SDP; however, their results for max-cut rely on strong structural assumptions
on the graph. In contrast, our results for the GW SDP do not require any such graph structure
assumptions. We discuss this further in Appendix B. Beyond these works, there has been related
work on sketch-and-solve approximation algorithms for clustering via SDP relaxations, which is in a
similar spirit to ours but in a different setting [32, 68].

1.3 General notation

We use x ≈ϵ y for the relation y − ϵ ≤ x ≤ y + ϵ. We define Σn to be the permutations of
[n] := {1, ..., n}. Given event E, Ē is the complement, and 1(E) is the indicator of E.

3

Input: Instance X = (x1, ..., xmk) ⊂ Rd, k,m ∈ Z≥0, f : R× P(X) → R≥0

Set C1 = {c1} with c1 ∼ Unif(X) and ℓ = 1 // ℓ is a counter for iterating over X
for i = 2, 3, . . . , k do

Set x = xℓ, dx = dcenter(x;C
i−1), ℓ = ℓ+ 1 // x is a candidate cluster center

for j = 2, 3, . . . ,m do
Set y = xℓ, dy = dcenter(y;C

i−1), ℓ = ℓ+ 1 // y is a fresh sample
if f(dy;X)/f(dx;X) > z ∼ Uniform(0, 1) then

Set x = y and dx = dy // x← y is the new candidate center
Set Ci = Ci−1 ∪ {x}

return Ck

Algorithm 1: ApxSeeding(X , k,m, f)

2 Size generalization for clustering algorithm selection

In this section, we provide size generalization guarantees for semi-supervised clustering algorithm
selection. Section 2.1 covers k-centers and k-means++ and Section 2.2 covers single linkage.

We denote a finite clustering instance as X ⊂ Rd and let P(X) := {S : S ⊂ X} denote the power
set of X . A collection {S1, ..., Sk} is a k-clustering of X if it k-partitions X into k disjoint subsets.
We adopt the following measure of clustering quality, common in semi-supervised settings.

Definition 2.1 ([5, 10, 12]). Let C = (C1, ..., Ck) be a k-clustering of S ⊂ X and G = (G1, ..., Gk)
be the ground-truth k-clustering of X . The cost of clustering C with respect to G is costG (C) :=
1/|S| ·minσ∈Σk

∑
x∈S

∑
j∈[k] 1

(
x ∈ Cσ(j) ∧ x /∈ Gj

)
. The accuracy of C is 1− costG (C).

In Equation (1), an algorithm’s value in this semi-supervised setting is its clustering accuracy. We
evaluate our methods by the number of queries to distance and ground-truth oracles. A distance oracle
outputs the distance d(u, v) between queries u, v ∈ X . A ground-truth oracle, given x ∈ X and a
target number of clusters k, returns an index j ∈ [k] in constant time. The ground truth clustering
G1, . . . , Gk is the partitioning of X such that for all x ∈ Gj , the ground-truth oracle returns j.
This oracle could represent a domain expert, as in prior work [6, 76, 80], and is relevant in many
real-world applications, such as medicine [70], where labeling a full dataset is costly. Further, it can
be implemented using a same-cluster query oracle, which has been extensively studied [6, 65, 76].

2.1 k-Means++ and k-Centers clustering

We now provide size generalization bounds for center-based clustering algorithms. These al-
gorithms return centers C := {c1, ..., ck} ⊂ Rd and partition X into S1, ..., Sk where each
cluster is defined as Si = {x : i = argmin d(x, cj)} (with arbitrary tie-breaking). We de-
fine dcenter(x;C) := minci d(x, ci). Two well-known center-based clustering objectives are k-
means, minimizing

∑
dcenter(x;C)2, and k-centers, minimizing max dcenter(x;C). Classical ap-

proximation algorithms for these problems are k-means++ [4] and Gonzalez’s heuristic [1985],
respectively. Both are special cases of a general algorithm which we call Seeding. In Seeding,
the first center is selected uniformly at random. Given i − 1 centers Ci−1, the next center ci
is sampled with probability ∝ f(dcenter(ci;C

i−1);X), where f dictates the selection criterion.
Under k-means++, f(z;X) = z2 (following the one-step version common in theoretical analy-
ses [4, 7]), and under Gonzalez’s heuristic, which selects the farthest point from the existing centers,
f(z;X) = 1

(
z = argmax dcenter(x;C

i−1)
)
. Seeding terminates after k rounds, requiring O(|X |k)

distance oracle queries. See Algorithm 3 in Appendix E.1 for the pseudo-code of Seeding(X , k, f).

To estimate the accuracy of Seeding with m samples, we use ApxSeeding (Algorithm 1), an MCMC
approach requiring only O(mk2) distance oracle queries. The acceptance probabilities are controlled
by f , ensuring the selected centers approximate Seeding. ApxSeeding generalizes a method by
Bachem et al. [7]—designed for k-means—to accommodate any function f . Also, unlike Bachem
et al., we provide accuracy guarantees with respect to an arbitrary ground truth.

Theorem 2.2 specifies the required sample size m in ApxSeeding to achieve an ϵ-approximation
to the accuracy of Seeding. Our bound depends linearly on ζk,f (X), a parameter that quantifies
the smoothness of the distribution over selected centers when sampling according to f in Seeding.

4

Ideally, if this distribution is nearly uniform, ζk,f (X) is close to 1. However, if the distribution is
highly skewed towards selecting certain points, then ζk,f (X) may be as large as n.

Theorem 2.2. Let X ⊂ Rd, ϵ, ϵ′ > 0, δ ∈ (0, 1), and k ∈ Z>0. Define the sample complexity
m = O(ζk,f (X) log(k/ϵ)) where ζk,f (X) quantifies the sampling distribution’s smoothness:

ζk,f (X) := max
Q⊂X :|Q|≤k

max
x∈X

(
nf(dcenter(x;Q);X) ·

∑
y∈X

f(dcenter(y;Q);X)
−1)

.

Let S and S′ be the partitions of X induced by Seeding(X , k, f) and ApxSeeding(Xmk, k,m, f)
where Xmk is a sample of mk points drawn uniformly with replacement from X . For any ground-truth
clustering G of X , E [costG (S′)] ≈ϵ E [costG (S)]. Moreover, given S′, costG (S′) can be estimated
to additive error ϵ′ with probability 1− δ using O(kϵ′

−2
log(δ−1)) ground-truth queries.

Proof sketch. Let p(ci|Ci−1) and p′(ci|Ci−1) denote the probabilities that Seeding and ApxSeeding,
respectively, select ci as the ith center, given the first i− 1 centers Ci−1. The proof’s key technical
insight leverages MCMC convergence rates to show that p(ci|Ci−1) and p′(ci|Ci−1) are close in
total variation distance and thus the output distributions of ApxSeeding and Seeding are similar.

Application to Gonzalez’s k-centers heuristic. Directly applying our framework to Gonzalez’s
heuristic presents an obstacle: it deterministically selects the farthest point from its nearest center at
each step, resulting in ζk,f (X) = n and high sample complexity. We therefore analyze a smoothed
variant, SoftmaxCenters(X , k, β) = Seeding(X , k, fSoftmaxCenters), where fSoftmaxCenters(z;X) =
exp(βz/R) and R = maxx,y d(x, y). This formulation introduces a tradeoff with β: larger values
align the algorithm closely with Gonzalez’s heuristic, yielding a strong k-centers approximation
(Theorem 2.3). Conversely, smaller β promotes more uniform center selection, improving the mixing
rate of MCMC in ApxSeeding and reducing sample complexity (Theorem 2.4).

To address the first aspect of this tradeoff, we show that with an appropriately chosen β,
SoftmaxCenters provides a constant-factor approximation to the k-centers objective on instances
with well-balanced k-centers solutions [8, 37, 61]. Formally, a clustering instance X is (µℓ, µu)-well-
balanced with respect to a partition S1, . . . , Sk if for all i ∈ [k], µℓ|X | ≤ |Si| ≤ µu|X |.
Theorem 2.3. Let k ∈ Z≥0, γ > 0 and δ ∈ (0, 1). Let SOPT be the partition of X induced by the
optimal k-centers solution COPT, and suppose X is (µℓ, µu)-well-balanced with respect to SOPT. Let
C be the centers obtained by SoftmaxCenters with β = Rγ−1 log

(
k2µuµ

−1
ℓ δ−1

)
. With probability

1− δ, maxx∈X dcenter(x;C) ≤ 4maxx∈X dcenter(x;COPT) + γ.

Furthermore, Theorem 2.4 shows that ζk,f can be bounded solely in terms of β.
Theorem 2.4. For any β > 0, ζk,SoftmaxCenters(X) ≤ exp(2β).

Setting β as per Theorem 2.3 ensures the bound in Theorem 2.4—and thus the sample size sufficient
for size generalization—is independent of n and d. Moreover, our experiments (Section 4) show that
choosing smaller values of β still yields comparable approximations to the k-centers objective.

Application to k-means++. Bachem et al. [7] identify conditions on X to guarantee that
ζk,kmeans++(X) := ζk,x 7→x2(X) is independent of |X | and d: if X is from a distribution that
satisfies mild non-degeneracy assumptions and has support contained in a ball of radius R, then
ζk,kmeans++(X) scales linearly with R2 and k. See Theorem D.1 in Appendix D.1 for details.

2.2 Single-linkage clustering

We next study the far more brittle single-linkage (SL) algorithm. While SL is known to be unstable [11,
29], our experiments (Section 4) reveal that its accuracy can be estimated on a subsample—albeit
larger than that of the center-based algorithms. To better understand this phenomenon, we pinpoint
structural properties of X that facilitate size generalization when present and hinder it when absent.

SL (Algorithm 2) can be viewed as a version of Kruskall’s algorithm for computing minimum
spanning trees, treating X as a complete graph with edge weights {d(x, y)}x,y∈X . We define the
inter-cluster distance d(A,B) := minx∈A,y∈B d(x, y) (see Figure 9a in Appendix E.2.1). Initially,
each point x ∈ X forms its own cluster. At each iteration, the algorithm increases a distance threshold

5

Input: Clustering instance X ⊂ Rd and k ∈ Z≥0

Initialize C0 := {C0
1 = {x1}, ..., C0

n = {xn}}, i = 1

while
∣∣Ci−1

∣∣ > 1 do
Set di := minA,B∈Ci−1 d(A,B) and Ci = Ci−1

while there exist A,B ∈ Ci such that d(A,B) = di do
Choose A,B ∈ Ci such that d(A,B) = di and set Ci = Ci \ {A,B} ∪ {A ∪B}

if
∣∣Ci
∣∣ = k then

C = Ci // This is the algorithm’s output
Set i = i+ 1 // Continued until

∣∣Ci∣∣ = 1 to define variables in the analysis
return C

Algorithm 2: SL(X , k)

di and merges points into the same cluster if there is a path between them in the graph with all edge
weights at most di. The algorithm returns k clusters corresponding to the k connected components
that Kruskall’s algorithm obtains. The next definition and lemma formalize this process.

Definition 2.5. The min-max distance between x, y ∈ X is dmm(x, y;X) = minp maxi d(pi, pi+1),
where the min is taken across all simple paths p = (p1 = x, ..., pt = y) from x to y in the complete
graph over X . For a subset S ⊂ X , we also define dmm(S;X) := maxx,y∈S dmm(x, y;X).

Lemma 2.6. In SL(X , k), x, y ∈ X belong to the same cluster after iteration ℓ if and only if
dmm(x, y;X) ≤ dℓ.

Proof sketch. The algorithm begins with each point as an isolated node and iteratively adds the
lowest-weight edges between connected components. Nodes are connected after step ℓ if and only if
there is a path connecting them where all edge weights are at most dℓ.

Suppose we run SL on m points Xm sampled uniformly without replacement from X , so clusters
merge based on dmm(x, y;Xm) (rather than dmm(x, y;X)). Since subsampling reduces the number
of paths, it can only increase min-max distance: dmm(x, y;Xm) ≥ dmm(x, y;X). If dmm(x, y;Xm)
remains similar to dmm(x, y;X) for most x, y ∈ X , then SL(Xm, k) and SL(X , k) should return
similar clusterings. We derive a sample complexity bound ensuring that this condition holds which
depends on ζk,SL ∈ (0, n], defined as follows for clusters {C1, . . . , Ck} = SL(X , k):

ζk,SL(X) := n

⌈
mini,j∈[k] dmm(Ci ∪ Cj ;X)−maxt∈[k] dmm(Ct;X)

maxt∈[k] dmm(Ct;X)

⌉−1

.

This quantity measures cluster separation by min-max distance, reflecting SL’s stability with respect to
random deletions from X . Higher ζk,SL(X) indicates greater sensitivity to subsampling, while a lower
value suggests robustness. Appendix D.2.1 provides a detailed discussion and proves ζk,SL ∈ (0, n].

Theorem 2.7. Let G = {G1, ..., Gk} be a ground-truth clustering of X , C = {C1, ..., Ck} =
SL(X , k) be the clustering obtained from the full dataset, and C′ = {C ′

1, ..., C
′
k} = SL(Xm, k) be

the clustering obtained from a random subsample Xm of size m. For

m = Õ
((k

ϵ2
+

n

mini∈[k] |Ci|
+ ζk,SL(X)

)
log

k

δ

)
,

we have that P {costG (C′) ≈ϵ costG (C)} ≥ 1 − δ. Computing C′ requires O(m2) calls to the
distance oracle, while computing costG (C′) requires only m queries to the ground-truth oracle.

Proof sketch. Let H be the event that C′ is consistent with C on Xm, i.e., there is a permutation
σ ∈ Σk such that for every i ∈ [k], C ′

i ⊂ Cσ(i). The main challenge is to quantify how deviations
from consistency affect the bottleneck distance. If H does not occur, we show that for some S ⊂ Xm,
dmm(S;Xm) ≪ dmm(S;X), indicating many consequential points must have been deleted. To
formalize this, we lower bound the number of deletions required for this discrepancy to occur and
thereby lower bound P [H]. Conditioned on H , Hoeffding’s bound implies the theorem statement.

6

When ζk,SL(X) and 1/mini∈[k] |Ci| are small relative to n, Theorem 2.7 guarantees that a small
subsample suffices to approximate the accuracy of SL on the full dataset. In Appendix D.2, we show
that the dependence on ζk,SL(X) and mini∈[k] |Ci| in Theorem 2.7 is necessary, so our results are
tight. Appendix D.2 also presents empirical studies of ζk,SL on natural data-generating distributions.

3 Max-cut

In this section, we present size generalization bounds for max-cut. Section 3.1 and Section 3.2 discuss
the GW and Greedy algorithms, respectively. We denote a weighted graph as G = (V,E,w), where
wij is the weight of edge (i, j) ∈ E. The vertex set is V = [n]. If G is unweighted, we denote it as
G = (V,E). We use AG to denote the adjacency matrix, DG for the diagonal degree matrix, and
LG := DG −AG for the Laplacian. The subgraph of G induced by S ⊆ V is denoted G[S]. A cut
in G is represented by z ∈ {−1, 1}n, and the max-cut problem is: argmaxz∈{−1,1}n weightG (z),
where weightG (z) := 1

2

∑
(i,j)∈E wij(1− zizj) is the cut weight and weightG (z) /n2 is its density,

a well-established metric in prior max-cut literature [17, 64].

3.1 The Goemans-Williamson (GW) algorithm

The GW algorithm yields a .878-approximation to the max-cut problem by solving the following
semidefinite programming (SDP) relaxation, yielding a solution X = SDPSolve(G) ∈ Rn×n to:

max
X⪰0

1/4 · LG ·X subject to (eie
T
i) ·X = 1 ∀ i = 1, . . . , n. (2)

GW then converts X into a cut using randomized rounding, denoted GWRound(X) ∈ {−1, 1}n. To
do so, it generates a standard normal random vector u ∈ Rn and computes the Cholesky factorization
X = V V T , with V ∈ Rn×n. It then defines the cut z = GWRound(X) by computing the dot
product between the ith column vi of V and u: zi = sign(vT

i u). We denote the complete algorithm
as GW(G) = GWRound(SDPSolve(G)) ∈ {−1, 1}n (see Algorithm 4 in Appendix E.3).

Theorem 3.1 provides a size generalization bound for the SDP relaxation objective (2), proving that
the optimal SDP objective value for a random subgraph G[St] with E[|St|] = t converges to that of G
as t → n, without imposing any assumptions on G. Building on this result, Theorem 3.3 shows that
the cut density produced by the GW algorithm on G can be estimated using just the subgraph G[St].

Size generalization for GW SDP objective value. We begin with a size generalization bound for
the SDP relaxation. Let SDP(G) denote the objective value of the optimal solution to Equation (2).
We show that for a randomly sampled subset of vertices St with E[|St|] = t, the objective value
SDP(G[St]) converges to SDP(G) as t increases. Our result holds for any graph G, unlike prior
work by Barak et al. [17], who proved GW SDP convergence only for random geometric graphs.
Theorem 3.1. Given G = (V,E,w), let St be a set of vertices with each node sampled from V
independently with probability t

n . Let W =
∑

(i,j)∈E wij . Then∣∣∣ 1
t2

E
St

[SDP(G[St])]−
1

n2
SDP(G)

∣∣∣ ≤ n− t

n2t

(
SDP(G)− W

2

)
.

Proof sketch. We prove this result by separately deriving upper and lower bounds on E[SDP(G[St])].
The primary challenge is deriving the upper bound. To do so, we analyze the dual of Equation (2):

min
y

n∑
i=1

yi subject to
n∑

i=1

yi (eie
T
i) ⪰ 1

4 LG. (3)

where ei ∈ Rn denotes the all-zero vector with 1 on index i. By strong duality, the optimal primal and
dual values coincide. To produce an upper bound on E[SDP(G[St])] that depends on the full graph
G, let y∗ be the optimal dual solution for G. Trimming y∗ to t dimensions yields a feasible—but
loose—solution to the dual SDP defined on G[St]. To tighten this solution, we use the key observation
that the portion of y∗ corresponding to nodes in [n] \ St is superfluous for G[St]. Lemma E.12 in
Appendix E.3 shows that removing this component by setting ȳi = y∗i −

∑
k∈[N]\St

wik yields a

feasible dual solution providing a tighter upper bound. Hence,
∑t

i=1 ȳi upper bounds SDP(G[St]).

7

Next, to obtain a lower bound that depends on the full graph G, let X∗ be the optimal primal SDP
solution induced by G. Without loss of generality, assume that St consists of the first t nodes in G.
Trimming X∗ to its t-th principal minor X∗[t] yields a feasible solution to the primal SDP induced
by G[St]. Hence, LG[St] ·X∗[t] is a lower bound for SDP(G[St]).

As t → n, the error term goes to 0. Notably, this result requires no assumptions on graph structure.
The term SDP(G) −W/2 (or SDP(G) − |E|/2 for unweighted graphs) adapts to different graph
structures. In unweighted sparse graphs, SDP(G)− |E|/2 is at most |E|/2, benefiting from sparsity.
However, the bound is still vanishing for unweighted dense graphs: SDP(G) is approximately |E|/2,
so SDP(G) − |E|/2 approaches 0. Meanwhile, in a graph with highly uneven weights, a random
subgraph is unlikely to represent the full graph well, and SDP(G)−W/2 can be as large as W/2.

In Theorem E.18 in Appendix E.3, we include a version of this result that holds with probability over
St. We apply McDiarmid’s Inequality to establish that with high probability, SDP(G[St]) is close to
its expectation and, therefore, close to the normalized SDP value induced by G.

Size generalization bounds for GW. We now present our size generalization bound for the GW
algorithm. Given that the SDP objective values for the subsampled graph G[St] and the full graph G
converge, one might expect the GW cut values to converge at the same rate. However, Lemma 3.2
demonstrates that this is not necessarily the case: even if two distinct optimal SDP solutions have the
same objective value, the resulting distributions of GW cut values after randomized rounding can
differ. This arises due to the non-Lipschitz behavior of the mapping between the SDP solution and
the GW cut value. See Figure 5 for an illustrative example, and Appendix E.3 for a proof.

Lemma 3.2. For any n ≥ 2, there exists a graph Gn on n vertices with distinct optimal solu-
tions Xn ̸= Yn to Equation (2) and a constant C > 0 such that LGn · Xn = LGn · Yn but
|E[weightGn

(GWRound(Xn))]− E[weightGn
(GWRound(Yn))]| ≥ Cn.

Nonetheless, we show that we can still use Theorem 3.1 to upper and lower bound the GW cut value
on the full graph as a function of SDP(G[St]), albeit with a multiplicative and additive error.

Theorem 3.3. Given G = (V,E,w), let St be a set of vertices with each node sampled from V
independently with probability t

n . Then, for ϵSDP = n−t
n2t

(
SDP(G)− W

2

)
, we have

1

n2
weightG (GW(G)) ∈

[0.878
t2

E
St

[SDP(G[St])]− 0.878ϵSDP,
1

t2
E
St

[SDP(G[St])]
]
.

Proof sketch. By definition, weightG (GW(G)) ≤ SDP(G), and moreover, weightG (GW(G)) ≥
0.878 · SDP(G) [47]. Combining this with Theorem 3.1, which bounds the error of estimating the
SDP optimal value, we obtain the theorem statement.

To interpret this result, we know that 1
n2weightG (GW(G)) ∈

[
0.878
n2 SDP(G), 1

n2 SDP(G)
]
. Theo-

rem 3.3 shows that 1
n2 · SDP(G) can be replaced by 1

t2 · ESt
[SDP(G[St])]—which is much faster to

compute—with error ϵSDP that vanishes as t → n. Thus, the GW cut value on G can be estimated
using the subgraph, providing an efficient way to estimate GW’s performance on large graphs.

3.2 The greedy algorithm

We now present size generalization bounds for the Greedy 2-approximation algorithm. Despite its
worse approximation guarantee, Greedy frequently performs comparably to—or sometimes better
than—GW [55, 66], while requiring only linear runtime O(|E|). Greedy iterates over the nodes in
random order, denoted by the permutation σ ∈ Σ|V |, and sequentially assigns each node to the side
of the cut that maximizes the weight of the current partial cut (see Algorithm 5 in Appendix E.3).
The next theorem shows we can approximate Greedy’s performance with only O(1/ϵ2) samples.

Theorem 3.4. Given an unweighted graph G = (V,E), let St be t vertices sampled from V uniformly
without replacement. For any ϵ ∈ [0, 1] and t ≥ 1

ϵ2 ,∣∣∣ 1
n2

E[weightG (Greedy(G))]− 1

t2
E[weightG[St] (Greedy(G[St]))]

∣∣∣ ≤ O
(
ϵ+

log(t)√
n

)
.

8

0.2 0.4 0.6 0.8
0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

GM

0.2 0.4 0.6 0.8

NC

0.2 0.4 0.6 0.8 1.0

MNIST

0.2 0.4 0.6 0.8 1.0

OMNIGLOT

Fraction of points subsampled

SL
subsampled SL
k-means++
subsampled k-means++
softmax k-centers
subsampled softmax
k-centers

0.2 0.4 0.6 0.8 1.0

0.5

0.6

0.7

0.8

0.9

A
cc

ur
ac

y

GM

0.2 0.4 0.6 0.8 1.0

0.5

0.6

0.7

0.8

0.9
NC

0.2 0.4 0.6 0.8 1.0

0.5

0.6

0.7

0.8

0.9
MNIST

0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6
MNIST (k=10)

Fraction of points subsampled

SL
subsampled SL
k-means++
subsampled k-means++
softmax k-centers
subsampled softmax
k-centers

(a) Accuracy of clustering computed by SL, k-means++, and softmax k-centers on full data and on a subsample.
Top row: n = 500 for MNIST, GM, and NC; n = 40 for Omniglot (due to smaller instance size). Bottom row: n =
2000 for MNIST, GM, and NC; the final panel uses n = 4000 and k = 10 for MNIST.

0.2 0.4 0.6 0.8 1.0

0.195

0.200

0.205

0.210

0.215

C
ut

 d
en

si
ty

Erdos-Renyi

0.2 0.4 0.6 0.8 1.0

0.125

0.130

0.135
Barbell

0.2 0.4 0.6 0.8 1.0

0.235

0.240

0.245

0.250
Random Geometric

0.2 0.4 0.6 0.8 1.0

0.065

0.070

0.075

Barabasi-Albert

Fraction of nodes subsampled

Greedy
subsampled Greedy
GW
subsampled GW

(b) Density of cuts computed by GW and Greedy on full graphs and on a subsample.

Figure 1: In 1, the proxy algorithms’ accuracies on the subsample approach those of the original
algorithms on the full instance as the sample size grows. Figure 1a shows this for clustering algorithms,
and Figure 1b for max-cut algorithms. Shadows denote two standard errors about the average.

Proof sketch. At step t, we define the partial cut on the subset of nodes {σ[1], ..., σ[t]} as zt ∈
{−1, 0, 1}|V |, where zti ∈ {−1, 1} indicates node i has been assigned and zti = 0 indicates it has
not. To evaluate the quality of a partial cut, we use the concept of a “fictitious” cut ẑt, introduced by
Mathieu and Schudy [64]. Intuitively, ẑt serves as an extrapolation of zt into a complete (fractional)
cut. It is defined by estimating how each unassigned vertex would have been assigned if it had been
selected at time τ ≤ t, and averaging this estimate over all possible times τ . This construct allows us
to compare partial and full cuts by bringing them to a comparative scale. Since Greedy adds nodes
sequentially, the theorem statement is equivalent to bounding the difference between the densities
of a partial cut and the full cut. Analyzing the fictitious and partial cuts as martingales allows us to
bound the difference between the partial and full cuts using the fictitious cut.

4 Experiments

In this section, we present experiments validating that the best algorithm on a max-cut or clustering
instance can be effectively inferred from a subsample.

Clustering. We present experiments on four datasets. (1) The MNIST generator [13]: handwritten
digits with images labeled corresponding to them. (2) GM: points from a 2-dimensional isotropic
Gaussian mixture model sampled from N ((0, 0)⊤, .5I) or N ((1, 1)⊤, .5I) with probability 1/2 and
labeled by the Gaussian from which it was sampled. (3) The Omniglot generator [13]: handwritten
characters from various languages, labeled by the language. (4) The noisy circles (NC) generator [69]:
points on two concentric circles (with noise level 0.05, distance factor 0.2), labeled by the circle to
which they belong. All instances contain n points evenly divided into k = 2 clusters except the last
panel of the bottom row, where k = 10. On the top row, for MNIST, GM, and NC, n = 500. For
Omniglot, n = 40 (instances from this dataset are inherently smaller). On the bottom row, n = 2000
for all except the last panel, where we use n = 4000.

9

Figure 1a compares the accuracy of the proxy algorithms from Section 2 with the original algorithms
run on the full dataset (averaged across 103 trials), plotted as a function of the number of randomly
sampled points, m. As m increases, the proxy algorithms’ accuracies converge to those of the original
algorithms. Appendix C.2.1 includes additional experiments on softmax k-centers. We show that its
k-centers objective value approximates or improves over Gonzalez’s algorithm, even for small β.

Max-cut. We test four random graph families with with n = 50 vertices: Erdös-Réyni (p = 0.7),
Barbell with 5 random inter-clique edges, random geometric (radius 0.9), and Barabási-Albert
(m = 5). Figure 1b plots the mean cut density over 150 trials for full and subsampled graphs versus
the sampled fraction. As the sample size grows, the Greedy and GW densities on the subsamples
converge to the full-graph values. For the random geometric and barbell graphs, even a small
subsample reveals the better-performing algorithm, enabling low-cost algorithm selection, while
on Barabási-Albert and Erdös-Réyni, the two curves coincide, implying that the faster Greedy will
achieve comparable results. These results not only corroborate our theory but also demonstrate an
even stronger convergence behavior. Appendix C.1 includes additional experiments on the SDP
objective value convergence and demonstrates the percentage speed-up we gain from the subsampling
scheme.

5 Conclusion

We introduced the notion of size generalization and established rigorous bounds for classical al-
gorithms for two canonical partitioning problems: clustering and max-cut. Our analysis identifies
sufficient conditions under which an algorithm’s performance on a large instance can be estimated
using a small, representative instance, addressing a key computational bottleneck in data-driven
algorithm selection.

We hope that our work provides useful techniques for future work on size generalization in data-drive
algorithm selection. In particular, we believe it would be interesting to extend our results to broader
classes of optimization problems, such as integer programming and additional SDP-based algorithms
(e.g., randomized rounding for correlation clustering). Another exciting direction for future work is
to formulate a unified theoretical toolkit for size generalization—one that prescribes, given a new
combinatorial algorithm, which structural properties guarantee that its performance on large instances
can be extrapolated from small ones.

Acknowledgments

We thank the reviewers for their anonymous feedback. The authors would like to thank Moses
Charikar for insightful discussions during the early stages of this work. This work was supported in
part by National Science Foundation (NSF) award CCF-2338226 and a Schmidt Sciences AI2050
fellowship.

10

References
[1] Noga Alon, W Fernandez De La Vega, Ravi Kannan, and Marek Karpinski. Random sampling

and approximation of max-csps. In Journal of computer and system sciences, 2003.

[2] Noga Alon, Eldar Fischer, Ilan Newman, and Asaf Shapira. A combinatorial characterization
of the testable graph properties: it’s all about regularity. In 38th Annual ACM Symposium on
Theory of Computing (STOC), 2006.

[3] Sanjeev Arora, David Karger, and Marek Karpinski. Polynomial time approximation schemes
for dense instances of np-hard problems. In Proceedings of the twenty-seventh annual ACM
symposium on Theory of Computing, pages 284–293, 1995.

[4] David Arthur and Sergei Vassilvitskii. k-means++: the advantages of careful seeding. In 18th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2007.

[5] Hassan Ashtiani and Shai Ben-David. Representation learning for clustering: a statistical
framework. In 31st Annual Conference on Uncertainty in Artificial Intelligence (UAI), 2015.

[6] Hassan Ashtiani, Shrinu Kushagra, and Shai Ben-David. Clustering with same-cluster queries.
In Advances in Neural Information Processing Systems 29 (NeurIPS), volume 29, 2016.

[7] Olivier Bachem, Mario Lucic, S. Hamed Hassani, and Andreas Krause. Approximate k-means++
in sublinear time. In AAAI Conference on Artificial (AAAI), 2016.

[8] Sivaraman Balakrishnan, Min Xu, Akshay Krishnamurthy, and Aarti Singh. Noise thresholds for
spectral clustering. In Proceedings of the Annual Conference on Neural Information Processing
Systems (NeurIPS), 2011.

[9] Maria-Florina Balcan. Data-driven algorithm design. Beyond the worst-case analysis of al-
gorithms. In Beyond the Worst-Case Analysis of Algorithms, edited by Tim Roughgarden,
2020.

[10] Maria-Florina Balcan, Avrim Blum, and Anupam Gupta. Clustering under approximation
stability. Journal of the ACM (JACM), 60(2):1–34, 2013.

[11] Maria-Florina Balcan, Yingyu Liang, and Pramod Gupta. Robust hierarchical clustering. In
The Journal of Machine Learning Research, 2014.

[12] Maria-Florina Balcan, Vaishnavh Nagarajan, Ellen Vitercik, and Colin White. Learning-theoretic
foundations of algorithm configuration for combinatorial partitioning problems. In 30th Annual
Conference on Computational Learning Theory (COLT), 2017.

[13] Maria-Florina Balcan, Travis Dick, and Manuel Lang. Learning to link. In 7th International
Conference on Learning Representations (ICLR), 2019.

[14] Maria-Florina Balcan, Dan Deblasio, Travis Dick, Carl Kingsford, Tuomas Sandholm, and
Ellen Vitercik. How much data is sufficient to learn high-performing algorithms? Journal of
the ACM, 71(5):1–58, 2024.

[15] Maria-Florina Balcan, Christopher Seiler, and Dravyansh Sharma. Accelerating ERM for
data-driven algorithm design using output-sensitive techniques. In Proceedings of the Annual
Conference on Neural Information Processing Systems (NeurIPS), volume 37, pages 72648–
72687, 2024.

[16] Francisco Barahona, Martin Grötschel, Michael Jünger, and Gerhard Reinelt. An application
of combinatorial optimization to statistical physics and circuit layout design. In Operations
Research, 1988.

[17] Boaz Barak, Moritz Hardt, Thomas Holenstein, and David Steurer. Subsampling mathematical
relaxations and average-case complexity. In 22nd Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), 2011.

[18] Peter Bartlett, Piotr Indyk, and Tal Wagner. Generalization bounds for data-driven numerical
linear algebra. In Conference on Learning Theory (COLT), 2022.

11

[19] Sugato Basu, Mikhail Bilenko, and Raymond J Mooney. A probabilistic framework for semi-
supervised clustering. In 10th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD), 2004.

[20] Marvin Bechtold, Johanna Barzen, Frank Leymann, Alexander Mandl, Julian Obst, Felix Truger,
and Benjamin Weder. Investigating the effect of circuit cutting in qaoa for the maxcut problem
on nisq devices. In Quantum Science and Technology, 2023.

[21] Shai Ben-David. Clustering-what both theoreticians and practitioners are doing wrong. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

[22] Shai Ben-David. Clustering — what both theoreticians and practitioners are doing wrong. In
AAAI Conference on Artificial (AAAI), 2018.

[23] Aditya Bhaskara, Samira Daruki, and Suresh Venkatasubramanian. Sublinear algorithms for
maxcut and correlation clustering. In arXiv preprint arXiv:1802.06992, 2018.

[24] Avrim Blum, Chen Dan, and Saeed Seddighin. Learning complexity of simulated annealing. In
International Conference on Machine Learning (ICML), pages 1540–1548. PMLR, 2021.

[25] Niv Buchbinder, Moran Feldman, Joseph SeffiNaor, and Roy Schwartz. A tight linear time (1/2)-
approximation for unconstrained submodular maximization. In SIAM Journal on Computing,
2015.

[26] Fan Cai, Nhien-An Le-Khac, and Tahar Kechadi. Clustering approaches for financial data
analysis: a survey. In arXiv preprint arXiv:1609.08520, 2016.

[27] Haiyan Cai. Exact bound for the convergence of metropolis chains. In Stochastic Analysis and
Applications, 2000.

[28] Yves Caseau, François Laburthe, and Glenn Silverstein. A meta-heuristic factory for vehicle
routing problems. In Proceedings of the 5th International Conference on Principles and Practice
of Constraint Programming, 1999.

[29] Kamalika Chaudhuri, Sanjoy Dasgupta, Samory Kpotufe, and Ulrike Von Luxburg. Consistent
procedures for cluster tree estimation and pruning. In IEEE Transactions on Information Theory,
2014.

[30] Weifu Chen and Guocan Feng. Spectral clustering: a semi-supervised approach. In Neurocom-
puting, 2012.

[31] Cheng Chi, Amine Aboussalah, Elias Khalil, Juyoung Wang, and Zoha Sherkat-Masoumi. A
deep reinforcement learning framework for column generation. In Proceedings of the Annual
Conference on Neural Information Processing Systems (NeurIPS), 2022.

[32] Charles Clum, Dustin G Mixon, Kaiying O’Hare, and Soledad Villar. Sketch-and-solve ap-
proaches to k-means clustering by semidefinite programming. In Information and Inference: A
Journal of the IMA, 2024.

[33] Vincent Cohen-Addad, Kasper Green Larsen, David Saulpic, Chris Schwiegelshohn, and
Omar Ali Sheikh-Omar. Improved coresets for Euclidean k-means. In Advances in Neural
Information Processing Systems 35 (NeurIPS), 2022.

[34] Artur Czumaj and Christian Sohler. Sublinear-time approximation algorithms for clustering
via random sampling. In Random Structures & Algorithms, volume 30, pages 226–256. Wiley
Online Library, 2007.

[35] Hanjun Dai, Elias Boutros Khalil, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combi-
natorial optimization algorithms over graphs. In Advances in Neural Information Processing
Systems 30 (NeurIPS), 2017.

[36] James Demmel, Jack Dongarra, Victor Eijkhout, Erika Fuentes, Antoine Petitet, Richard Vuduc,
R. Whaley, and Katherine Yelick. Self-adapting linear algebra algorithms and software. In
Proceedings of the IEEE, 2005.

12

[37] Brian Eriksson, Gautam Dasarathy, Aarti Singh, and Rob Nowak. Active clustering: Robust
and efficient hierarchical clustering using adaptively selected similarities. In 14th International
Conference on Artificial Intelligence and Statistics (AISTATS), 2011.

[38] Mohammad Mahdi Ershadi and Abbas Seifi. Applications of dynamic feature selection and
clustering methods to medical diagnosis. In Applied Soft Computing, 2022.

[39] Absalom E Ezugwu, Amit K Shukla, Moyinoluwa B Agbaje, Olaide N Oyelade, Adán José-
García, and Jeffery O Agushaka. Automatic clustering algorithms: a systematic review and
bibliometric analysis of relevant literature. In Neural Computing and Applications, volume 33,
pages 6247–6306. Springer, 2021.

[40] Absalom E Ezugwu, Abiodun M Ikotun, Olaide O Oyelade, Laith Abualigah, Jeffery O
Agushaka, Christopher I Eke, and Andronicus A Akinyelu. A comprehensive survey of
clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges,
and future research prospects. In Engineering Applications of Artificial Intelligence, 2022.

[41] Dan Feldman and Michael Langberg. A unified framework for approximating and clustering
data. In Proceedings of the forty-third annual ACM symposium on Theory of computing, pages
569–578, 2011.

[42] Dan Feldman, Melanie Schmidt, and Christian Sohler. Turning big data into tiny data: Constant-
size coresets for k-means, PCA and projective clustering. In 29th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), 2018.

[43] W Fernandez De La Vega. Max-cut has a randomized approximation scheme in dense graphs.
In Random Structures & Algorithms, 1996.

[44] Dimitris Fotakis, Michael Lampis, and Vangelis Th Paschos. Sub-exponential approximation
schemes for csps: From dense to almost sparse. In arXiv preprint arXiv:1507.04391, 2015.

[45] Jesús García-Díaz, Jairo Sánchez, Ricardo Menchaca-Mendez, and Rolando Menchaca-Mendez.
When a worse approximation factor gives better performance: a 3-approximation algorithm for
the vertex k-center problem. In Journal of Heuristics, 2017.

[46] Maxime Gasse, Didier Chetelat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact
combinatorial optimization with graph convolutional neural networks. In Advances in Neural
Information Processing Systems 32 (NeurIPS), 2019.

[47] Michel X Goemans and David P Williamson. Improved approximation algorithms for maximum
cut and satisfiability problems using semidefinite programming. Journal of the ACM (JACM),
42(6):1115–1145, 1995.

[48] Oded Goldreich. Property testing. In Lecture Notes in Comput. Sci, 2010.

[49] Oded Goldreich, Shari Goldwasser, and Dana Ron. Property testing and its connection to
learning and approximation. In Journal of the ACM (JACM), 1998.

[50] Teofilo F. Gonzalez. Clustering to minimize the maximum intercluster distance. In Theoretical
Computer Science, 1985.

[51] Prateek Gupta, Maxime Gasse, Elias Khalil, Pawan Mudigonda, Andrea Lodi, and Yoshua
Bengio. Hybrid models for learning to branch. In Proceedings of the Annual Conference on
Neural Information Processing Systems (NeurIPS), volume 33, pages 18087–18097, 2020.

[52] Rishi Gupta and Tim Roughgarden. A PAC approach to application-specific algorithm selection.
In SIAM Journal on Computing, 2017.

[53] Rishi Gupta and Tim Roughgarden. Data-driven algorithm design. Communications of the
ACM, 63(6):87–94, 2020.

[54] Sariel Har-Peled and Soham Mazumdar. On coresets for k-means and k-median clustering. In
56th Annual ACM Symposium on Theory of Computing (STOC), 2004.

13

[55] Refael Hassin and Nikita Leshenko. Greedy differencing edge-contraction heuristic for the
max-cut problem. In Operations Research Letters, 2021.

[56] Alexandre Hayderi, Amin Saberi, Ellen Vitercik, and Anders Wikum. MAGNOLIA: matching
algorithms via GNNs for online value-to-go approximation. In International Conference on
Machine Learning (ICML), 2024.

[57] Taoan Huang, Aaron M Ferber, Yuandong Tian, Bistra Dilkina, and Benoit Steiner. Searching
large neighborhoods for integer linear programs with contrastive learning. In International
Conference on Machine Learning (ICML), pages 13869–13890. PMLR, 2023.

[58] Borja Ibarz, Vitaly Kurin, George Papamakarios, Kyriacos Nikiforou, Mehdi Bennani, Róbert
Csordás, Andrew Joseph Dudzik, Matko Bošnjak, Alex Vitvitskyi, Yulia Rubanova, et al. A
generalist neural algorithmic learner. In Learning on graphs conference, pages 2–1. PMLR,
2022.

[59] Chaitanya K Joshi, Quentin Cappart, Louis-Martin Rousseau, and Thomas Laurent. Learning
the travelling salesperson problem requires rethinking generalization. In Constraints, 2022.

[60] Sera Kahruman, Elif Kolotoglu, Sergiy Butenko, and Illya V Hicks. On greedy construction
heuristics for the max-cut problem. In International Journal of Computational Science and
Engineering, 2007.

[61] Akshay Krishnamurthy, Sivaraman Balakrishnan, Min Xu, and Aarti Singh. Efficient active
algorithms for hierarchical clustering. In 29th International Conference on Machine Learning
(ICML), 2012.

[62] Brian Kulis, Sugato Basu, Inderjit Dhillon, and Raymond Mooney. Semi-supervised graph
clustering: a kernel approach. In 22nd International Conference on Machine Learning (ICML),
2005.

[63] Kevin Leyton-Brown, Eugene Nudelman, and Yoav Shoham. Empirical hardness models:
Methodology and a case study on combinatorial auctions. In Journal of the ACM, 2009.

[64] Claire Mathieu and Warren Schudy. Yet another algorithm for dense max cut: Go greedy. In
19th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2008.

[65] Arya Mazumdar and Barna Saha. Clustering with noisy queries. In Advances in Neural
Information Processing Systems 30 (NeurIPS), 2017.

[66] Renee Mirka and David P Williamson. An experimental evaluation of semidefinite programming
and spectral algorithms for max cut. In ACM Journal of Experimental Algorithmics, 2023.

[67] Nina Mishra, Robert Schreiber, Isabelle Stanton, and Robert E Tarjan. Clustering social
networks. In International Workshop on Algorithms and Models for the Web-Graph, pages
56–67. Springer, 2007.

[68] Dustin G Mixon and Kaiying Xie. Sketching semidefinite programs for faster clustering. In
IEEE Transactions on Information Theory, 2021.

[69] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. In Journal of Machine
Learning Research, 2011.

[70] Mohammad Peikari, Sherine Salama, Sharon Nofech-Mozes, and Anne L Martel. A cluster-
then-label semi-supervised learning approach for pathology image classification. In Scientific
reports, 2018.

[71] Pan Peng and Yuichi Yoshida. Sublinear-time algorithms for max cut, max e2lin (q), and
unique label cover on expanders. In Proceedings of the 2023 Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 4936–4965. SIAM, 2023.

14

[72] Jan Poland and Thomas Zeugmann. Clustering pairwise distances with missing data: Maximum
cuts versus normalized cuts. In 23rd International Conference on Machine Learning (ICML),
2006.

[73] John R. Rice. The algorithm selection problem. In Advances in Computers, 1976.

[74] Suman Kumar Roy and Bhawana Rudra. Quantum-inspired hybrid algorithm for image classifi-
cation and segmentation: Q-means++ max-cut method. In International Journal of Imaging
Systems and Technology, volume 34, page e23015. Wiley Online Library, 2024.

[75] Hadas Sachnai and Tami Tamir. Polynomial-time approximation schemes. In CRC Press, 2002.

[76] Barna Saha and Sanjay Subramanian. Correlation clustering with same-cluster queries bounded
by optimal cost. In arXiv preprint arXiv:1908.04976, 2019.

[77] Daniel Selsam, Matthew Lamm, Benedikt Bünz, Percy Liang, Leonardo de Moura, and David L
Dill. Learning a SAT solver from single-bit supervision. In Proceedings of the International
Conference on Learning Representations (ICLR), 2019.

[78] Yunhao Tang, Shipra Agrawal, and Yuri Faenza. Reinforcement learning for integer program-
ming: Learning to cut. In International Conference on Machine Learning (ICML), pages
9367–9376. PMLR, 2020.

[79] Petar Veličković, Rex Ying, Matilde Padovano, Raia Hadsell, and Charles Blundell. Neural
execution of graph algorithms. In 8th International Conference on Learning Representations
(ICLR), 2020.

[80] Sharad Vikram and Sanjoy Dasgupta. Interactive bayesian hierarchical clustering. In 33rd
International Conference on Machine Learning (ICML), 2016.

[81] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In Proceedings of the
Annual Conference on Neural Information Processing Systems (NeurIPS), volume 28, 2015.

[82] Konstantin Voevodski, Maria-Florina Balcan, Heiko Roglin, Shang-Hua Teng, and Yu Xia.
Efficient clustering with limited distance information. In 26th Annual Conference on Uncertainty
in Artificial Intelligence (UAI), 2010.

[83] David P Williamson and David B Shmoys. The design of approximation algorithms. In
Cambridge university press, 2011.

[84] L. Xu, F. Hutter, H.H. Hoos, and K. Leyton-Brown. SATzilla: portfolio-based algorithm
selection for SAT. In Journal of Artificial Intelligence Research, 2008.

[85] Xiaojin Jerry Zhu. Semi-supervised learning literature survey. In University of Wisconsin-
Madison Department of Computer Sciences, 2005.

15

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We propose a size generalization framework for more efficient algorithm
selection, and we proved size generalization bounds for clustering algorithms (Selection 2)
and max-cut algorithms (Section 3).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In this paper, we thoroughly discussed our use of assumptions and compared
them with previous works. For the analysis of Goemans-Williamson’s algorithm of max-cut,
we made no structural assumption about the graph. For the analysis of the Greedy algorithm,
we assumed that the graph is unweighted, a standard assumption that is also used in the
work we followed up on [64].
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

16

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We stated our assumptions at the beginning of Section 2 and Section 3 as well
as in each theorem statement. We provided all omitted proofs for results in Appendix E.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We release our code to reproduce our experiment as part of our supplementary
material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.

17

In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Yes, we provide our code to run the experiment as part of our supplement
material and will include documentation for the code to facilitate better reproducibility.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: in Section 4, we specified all data/random graph generators and parameters
used to generate our random instances for our experiment.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report two standard error over the number of repetitions we ran on all of
our plots.

Guidelines:

• The answer NA means that the paper does not include experiments.

18

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We include as part of our supplementary material the type of CPU we used to
run our experiment.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We reviewed and adhered to the NeurIPS Code of Ethics throughout the
execution of this project.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

19

https://neurips.cc/public/EthicsGuidelines

Justification: We discuss the importance of efficient algorithm selection in real-world
applications, especially modern computer science applications, which our work tries to
establish a theoretical framework for.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our work is mostly theoretical, and experiments done are proof-of-concept
that use only open-sourced packages and data.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: There is no use of existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.

20

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No crowd-sourcing or human subjects are involved.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowd-sourcing nor research with human subjects.

Guidelines:

21

paperswithcode.com/datasets

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method in this research, a theoretical framework for faster data-driven
algorithm selection, does not involve LLMs as any important, original, or non-standard
components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

22

https://neurips.cc/Conferences/2025/LLM

Appendix

Table of Contents

A Code Repository 24

B Key Challenges and Additional Related Work 24

B.1 Additional related work . 24

B.2 Illustrations of key challenges . 25

C Additional Experiment 27

C.1 Additional Max-Cut Results . 27

C.2 Additional Discussion of Clustering Results . 28

C.3 An adaptive subsampling scheme for algorithm selection 28

D Additional Theoretical Discussion 30

D.1 Sample complexity bound for MCMC k-means++ 30

D.2 Additional discussion of single linkage results from Section 2.2 30

E Omitted Proofs 33

E.1 Omitted Proofs from Section 2.1 . 33

E.2 Omitted Proofs from Section 2.2 . 36

E.3 Omitted Proofs from Section 3.1 . 42

E.4 Omitted Proofs from Section 3.2 . 49

23

A Code Repository

We release our code for the experiments at https://github.com/Yingxi-Li/
Size-Generalization.

B Key Challenges and Additional Related Work

In this section of the Appendix, we expand on the discussion from the introduction (Section 1).
We first elaborate on additional related work in the context of our paper. Then, we provide figures
illustrating the key challenges we mention in Section 1.

B.1 Additional related work

Algorithm selection. Our work follows a line of research on algorithm selection. Practitioners
typically utilize the following framework: (1) sample a training set of many problem instances
from their application domain, (2) compute the performance of several candidate algorithms on
each sampled instance, and (3) select the algorithm with the best average performance across the
training set. This approach has led to breakthroughs in many fields, including SAT-solving [84],
combinatorial auctions [63], and others [28, 36, 73]. On the theoretical side, [52] analyzed this
framework from a PAC-learning perspective and applied it to several problems, including knapsack
and max-independent-set. This PAC-learning framework has since been extended to other problems
(for example, see [9] and the references therein). In this paper, we focus on step (2) of this framework
in the context of clustering and study: when can we efficiently estimate the performance of a candidate
clustering algorithm with respect to a ground truth?

Size generalization: gap between theory and practice. There is a large body of research on
using machine learning techniques such as graph neural networks and reinforcement learning for
combinatorial optimization [e.g., 35, 46, 59, 79]. Typically, training the learning algorithm on small
combinatorial problems is significantly more efficient than training on large problems. Many of
these papers assume that the combinatorial instances are coming from a generating distribution [e.g.,
35, 46, 79], such as a specific distribution over graphs. Others employ heuristics to shrink large
instances [e.g., 59]. These approaches are not built on theoretical guarantees that ensure an algorithm’s
performance on the small instances is similar to its performance on the large instances. Our goal is to
bridge this gap.

Subsampling for max-cut and general CSP Subsampling for the max-cut objective has been
studied in [49] in terms of property testing, which is the study of making decisions on data with only
access to part of the input [48]. Property testing encompasses a more general category of study, and
the notion of size generalization we study in this work is a specific variant of it.

A flourishing line of work since the 90s aims to develop PTAS that estimate the optimal objective
value of constraint satisfaction problems (CSPs) [e.g., 1, 3, 43, 44, 64]. In a similar spirit, the
long-standing area of sublinear-time approximation algorithms aim to approximate the objective
value of max-cut and other CSP in sub-linear time. It dates back to 1998, when a constant time
approximation scheme that approximates the max-cut objective for dense graphs within an error of
εn2 was developed [49]. Many later works follow [e.g., 23, 71]. For example, Bhaskara et al. show
that core-sets of size O(n1−δ) can approximate max-cut in graphs with an average degree of nδ.
Despite having weaker approximation guarantees compared to the GW algorithm, these algorithms
can have much faster runtimes.

The goal of size generalization, however, differs fundamentally from the goal of the polynomial
or sublinear time approximation algorithms. Rather than estimating the optimal cut value, we
directly estimate the empirical performance of specific heuristics. This enables principled algorithm
selection among the best-performing methods, instead of defaulting to the fastest algorithm with
looser guarantees. That said, our framework could naturally be used to compare these sampling-based
PTAS algorithms alongside greedy and Goemans-Williamson, efficiently determining when a PTAS’s
high computational cost is justified.

Perhaps most related to our work, Barak et al. [17] study a similar subsampling procedure for general
CSPs, which includes the GW SDP (both with and without the triangle inequality). For ∆-dense

24

https://github.com/Yingxi-Li/Size-Generalization
https://github.com/Yingxi-Li/Size-Generalization

CSPs, i.e. CSPs where every variable appears in at least ∆ constraints, they bound the accuracy of
the subsampled objective within ϵ-error. In contrast to [17], our result focuses only on the GW SDP
rather than general CSPs. Furthermore, we do not make any density assumptions for our GW SDP
result, such as those made in [17] and in many other works related to approximating max-cut values
[e.g., 43, 75].

Sublinear-time algorithms for clustering The large body of sublinear-time clustering research
[e.g., 34, 41, 67] also pursues a different goal from our paper: approximating the optimal clustering
cost under specific cost models (e.g., k-means or k-center), often with structural assumptions (bounded
dimension, cluster separation) and via uniform sampling or coreset constructions. We discuss our
cost model and why head-to-head comparison with coresets is impossible further in lines 79-87.

Coresets for clustering Coresets for clustering have been extremely well studied in the clustering
literature [e.g., 33, 42, 54]. Coresets are designed to allow efficient optimization of a specific, known
objective function, such as the k-means objective. Below, we provide a detailed explanation of why
the objective-preservation guarantee offered by coresets do not yield meaningful results in our setting.

For illustrative purposes, consider the k-means objective and suppose we are given a large original
dataset X ⊂ Rd. In the problem of coresets for k-means, the task is to construct a small (possibly
weighted) subset X ′ ⊂ X (this set is called the coreset) such that the k-means objective is well-
preserved for any choice of k centroids c1, ..., ck. That is:

h(c1, ..., ck;X) ≈ h(c1, ..., ck;X ′), for any c1, ..., ck ⊂ Rd,

where

h(c1, ..., ck;X) =
1

|X |
∑
x∈X

min
i∈[k]

d(ci, x)

h(c1, ..., ck;X ′) =
1

|X ′|
∑
x∈X ′

min
i∈[k]

d(ci, x).

Such a guarantee on X ′ would ensure that solving the k-means problem on X ′ yields an approximate
solution to the k-means problem on X . Indeed, if |X ′| is sufficiently small relative to |X |, then this
approach yields an efficient approximate solution to the k-means problem on X .

However, notice that in the above description of coresets, the coreset X ′ is only guaranteed to
approximate the solution to the k-means objective. On the other hand, the ground truth clustering
may be completely arbitrary and may align poorly with the k-means objective. Consequently, the
coreset guarantee does not yield any approximation guarantee for the ground truth labeling of X .

Thus, the key difference between our work and the prior literature on coresets is that coresets assume
that the target objective is a known, closed-form objective function (such as the k-means objective
function). On the other hand, our task is much harder: we want to design a small set X ′ such that
running a clustering algorithm on X ′ is enough to estimate the algorithm’s accuracy with respect
to an arbitrary ground-truth labeling of X . Since the ground truth labeling is not known a priori,
traditional guarantees from the coresets literature do not apply.

B.2 Illustrations of key challenges

B.2.1 Key challenges of clustering

Figure 2 shows an example of a dataset where the performance of k-means++ is extremely sensitive
to the deletion or inclusion of a single point. This illustrates that on worst-case datasets (e.g., with
outliers or highly influential points) with worst-case ground truth clusterings, we cannot expect that
size generalization holds.

Similarly, Figure 3 shows that on datasets without outliers, it may be possible to construct ground
truth clusterings that are highly tailored to the performance of a particular clustering algorithm
(such as Single Linkage) on the dataset. The figure illustrates that this type of adversarial ground
truth clustering is a key challenge towards obtaining size generalization guarantees for clustering
algorithms.

25

Figure 2: Sensitivity of k-means++ with respect to a single point. The example shows that the
algorithm’s accuracy can be extremely sensitive to the presence or absence of a single point, in this
case, the outlier at (20, 20). Depending on how the ground truth is defined, deleting the outlier can
either boost or drop the accuracy by up to 50%.

Figure 3: Example of a ground truth where size generalization by subsampling fails for single linkage.
The shading indicates the ground truth. The first n− 1 points are unit distance apart, while the last
two points are 1 + x > 1 distance apart. Single linkage has 0 cost on the full dataset. After randomly
deleting a single point, the largest gap between consecutive points is equally likely to occur between
any consecutive points. So, the expected cost on the subsample is ≥ 1

n

∑n−1
i=2

(n−1−i)
n

n→∞→ 1/2.

B.2.2 Key challenges of max-cut

Figure 4 shows an example where the performance of Goemans-Williamson is sensitive to the deletion
of even one node. The figure displays samples of GW values on the full Petersen graph and the
Petersen graph with only one node deletion. As shown in the plot, a single node deletion completely
changes the distribution of GW outputs. This can also go the other way for different examples, where
a node deletion might cause worse performance with greater variance.

Figure 4: Sensitivity of Goemans-Williamson (GW) with respect to the deletion of one node. GW gap
is calculated by GW(G)

SDP(G) . This figure illustrates the GW gap distribution on the full Peterson network
and a Peterson network with one node deleted. Notice that the GW gap differs drastically when we
delete 1 node from a graph.

26

(a) (b)

Figure 5: An example graph with different optimal SDP solutions leading to different GW output
distribution. Figure 5a is an example graph with many distinct SDP optimal solutions. By definition,
they all have the same GW SDP objective value. Figure 5b is the distribution of cut values returned
by GW over two distinct optimal GW SDP solutions for graph in 5a, with 200 random hyperplanes
sampled for each solution. Two optimal solutions result in very distinct GW output distribution.

As pointed out in Lemma 3.2, different SDP optimal solutions may have the same objective function
values. However, their robustness to Goeman-Williamson rounding could be very different. For
example, consider the graph in Figure 5a. The optimal cut in the graph is {0, 2, 4} and {1, 3, 5}, and
the optimal cut value (assuming unweighted) is 9. However, if we solve the SDP relaxation on the
same graph, both SDP solutions follows are optimal:

X∗ =


1.000 −0.784 1.000 −0.216 −0.216 −0.784
−0.784 1.000 −0.784 −0.216 −0.216 1.000
1.000 −0.784 1.000 −0.216 −0.216 −0.784
−0.216 −0.216 −0.216 1.000 −0.137 −0.216
−0.216 −0.216 −0.216 −0.137 1.000 −0.216
−0.784 1.000 −0.784 −0.216 −0.216 1.000


and

X̂ =


1 −1 1 −1 1 −1
−1 1 −1 1 −1 1
1 −1 1 −1 1 −1
−1 1 −1 1 −1 1
1 −1 1 −1 1 −1
−1 1 −1 1 −1 1


Both have an optimal value of 9. In fact, any solution in the convex combination of the two solutions
{X|αX̂ + (1−α)X∗, α ∈ [0, 1]} would be an optimal SDP solution. However, those solutions have
distinct performance on GW. For example, GW on X̂ will return optimal rounding with probability 1
over the draw of the random hyperplane, whereas GW on X∗ will not be as consistent, see Figure 5b.

C Additional Experiment

C.1 Additional Max-Cut Results

We showcase additional max-cut experimental results in Figure 6, where instead of plotting the
subsampled GW cut density, we plot the subsampled SDP objective and 0.878 times the subsampled
SDP objective. In all cases, the cut density from the Greedy algorithm on subsampled graphs
converges to that of the full graph, aligning with our theoretical results. Moreover, the cut density
returned by GW on the full graph lies between 0.878

t2 ·SDP(G[St]) and 1
t2 SDP(G[St]), even for small

subgraphs G[St]. Thus, by computing SDP(G[St]) and running Greedy on a subgraph, we can infer
that Greedy and GW yield similar cut densities on these graphs.

27

GWGW

Figure 6: The Greedy algorithm’s accuracy on the subsample approaches that of the algorithm on the
full instance. The subsampled SDP objective value and 0.878 of the subsampled SDP objective value
provide a more and more accurate prediction of the GW cut density as the sample size grows.

In Table 1, we demonstrate that even modest levels of subsampling substantially accelerate algorithm
selection for the combinatorial problems under study. For example, on max-cut instances with n =
500 nodes, we report average solve times (in seconds) across subsample fractions 0.2, 0.4, 0.6, 0.8,
and 1.0. We find that (1) an 80% subsample reduces GW’s runtime by over 60% (from 961 s to 370
s), (2) a 60% subsample achieves roughly a 90% reduction (to 72 s), and (3) even the relatively fast
Greedy algorithm exhibits noticeable speedups.

Table 1: Runtime (s) vs. Fraction of nodes sampled
Method 0.2 0.4 0.6 0.8 1.0
GW 0.5938 12.3565 72.2823 370.3707 961.4030
Greedy 0.0187 0.0834 0.1575 0.3231 0.5781

C.2 Additional Discussion of Clustering Results

In this section, we provide additional discussion of our main results.

C.2.1 Empirical performance of SoftmaxCenters

Surprisingly, our empirical results (Section 4) show that for several datasets, SoftmaxCenters achieves
a lower objective value than Gonzalez’s heuristic, even for β = O(1). Intuitively, this is because
Gonzalez’s heuristic is pessimistic: it assumes that at each step, the best way to reduce the objective
value is to put a center at the farthest point. In practice, a smoother heuristic may yield a lower
objective value (a phenomenon also observed by García-Díaz et al. [45]).

As discussed in Section 4, Figure 7 compares the k-centers objective value of Gonzalez’s algorithm
and our softmax k-centers algorithm (averaged over 104 repetitions) as a function of β for a randomly
sampled instance. The objective value attained by softmax algorithm closely approximates or
improves over Gonzalez’s algorithm even for small values of β. Figure 8 compares the k-centers
objective value of Gonzalez’s algorithm softmax (averaged over 105 repetitions) as a function of n
for fixed β = 1 on randomly sampled GM, MNIST, and NC instances of n points. Even with fixed β,
the objective value of softmax continues to closely track that of Gonzalez’s algorithm as n increases.

C.3 An adaptive subsampling scheme for algorithm selection

We demonstrate that random uniform subsampling provides an empirically stable approach to
algorithm selection, even without access to the data-dependent quantities required by theoretical
bounds. Instead of relying on these quantities, we propose an adaptive subsample algorithm selection
substitute: run the target algorithms on randomly selected subsets of increasing sizes, compare their
objective values or rankings across consecutive subset sizes, and terminate once the performance
curve stabilizes.

To validate this approach, we conducted experiments on the Max-Cut problem across four graph
families: random geometric, Erdős–Rényi, barbell, and Barabási–Albert graphs. For each instance,

28

Figure 7: Objective value of softmax algorithm and of Gonzalez’s algorithm vs. β. The plot shows
95% confidence intervals for the algorithms’ k-centers objective values on randomly sampled in-
stances. The softmax algorithm matches or improves over the objective value achieved by Gonzalez’s
algorithm, even for small β.

Figure 8: Objective of softmax algorithm and of Gonzalez’s algorithm vs. n for β = 1. The plot
shows 95% confidence intervals for the algorithms’ k-centers objective values on randomly sampled
instances of size n. The relative performance of softmax tracks the performance of Gonzalez’s
algorithm extremely well as n grows despite keeping the temperature β fixed. (Omniglot was omitted
in this figure because the instances are small.)

29

(a) SL clustering of full dataset

(b) SL clustering with one missing point
Figure 9: Figure 9a shows the SL clustering of X , with three clusters C1, C2, and C3 (left to right).
In this example, ζ3,SL(X) = n, as dmm(C1 ∪ C2;X) = 6 and dmm(C3;X) = 5. There is a single
point whose deletion dramatically changes the structure of the clustering in Figure 9b.

we sampled subsets of 2, 4, 8, . . . , 64 nodes from a total of 100, solved each using both the Greedy
and Goemans–Williamson (GW) algorithms, and averaged the objective values over 10 trials. As
shown in Table 2, in all cases, the relative ranking between Greedy and GW stabilized with subsets
of size between 8 and 16.

Table 2: Empirical results of an adaptive subsample algorithm selection method, showcasing the
stability of uniform subsampling.

Graph type Algorithm 0.02 0.04 0.08 0.16 0.32 0.64 Full

Random
geometric

Greedy 1.0 3.6 15.5 61.8 244.2 972.7 2381.8
GW 1.0 3.6 15.2 60.0 239.6 997.3 2376.9
Best both both Greedy Greedy Greedy GW Greedy

Erdős–Rényi
Greedy 0.0 1.0 4.0 8.4 40.9 104.6 323.1
GW 0.0 1.0 5.0 9.0 43.7 140.6 339.8
Best both both GW GW GW GW GW

Barbell
Greedy 0.4 2.1 7.1 29.6 126.3 511.5 1254.7
GW 0.4 2.1 6.5 28.2 122.9 506.5 1249.5
Best both both Greedy Greedy Greedy Greedy Greedy

Barabási–Albert
Greedy 0.2 0.3 3.2 11.5 34.3 130.1 307.6
GW 0.2 0.3 3.3 12.9 36.8 141.2 328.2
Best both both GW GW GW GW GW

D Additional Theoretical Discussion

D.1 Sample complexity bound for MCMC k-means++

Here, for completeness, we state the value of ζk,k-means++ derived in [7].

Theorem D.1 (Theorems 4 and 5 by Bachem et al. [7]). Let F be a distribution over Rd with
expectation µ̃ ∈ Rd and variance σ2 :=

∫
x
d(x, µ̃)2F (x)dx and support almost-surely bounded by

an R-radius sphere. Suppose there is a d′-dimensional, r-radius sphere B such that d′ > 2, F (B) >
0, and ∀x, y ∈ B, F (x) < cF (y) for some c ≥ 1 (i.e., F is non-degenerate). For n sufficiently large,
with high probability over X ∼ Fn, ζk,k-means++(X) = O

(
R2kmin{1,4/d′}/(cσ2F (B)r2)

)
.

D.2 Additional discussion of single linkage results from Section 2.2

In this section, we include additional discussion of our single linkage results.

30

D.2.1 Interpretation of ζk,SL

In this section, we describe why we interpret ζk,SL(X) as a natural measure of the stability of SL on
the dataset X with respect to random deletions. First, we emphasize that ζk,SL is a property of how
robust single linkage is on the dataset. It is not a measure of how accurately SL performs with respect
to the ground truth and is defined completely independently of the ground truth.

First, we bound the range of ζk,SL.
Lemma D.2. ζk,SL ∈ (0, n].

Proof. Note that Ci, Cj , Ct ∈ C are clusters in the k-clustering of X while Ci ∪ Cj inter-
sects two clusters (Ci and Cj) contained in the k-clustering of X . So, Lemma 2.6 ensures that
mini,j∈[k] dmm(Ci ∪ Cj ;X)−maxt∈[k] dmm(Ct;X) > 0.

Suppose ζk,SL(X) > α · n for some α ∈ (0, 1]. By rearranging the expression for ζk,SL(X), we see
that mini,j∈[k] dmm(Ci∪Cj ;X) > 1

α ·maxt∈[k] dmm(Ct;X). That is, the distance threshold required
for merging Ci ∪ Cj into a single cluster is not too large relative to the distance threshold required to
merge Ct into a single cluster. This is illustrated in Figure 9a with i = 1, j = 2, and t = 3. When
we subsample from X to build Xm, there is some probability that we distort the min-max distance
so that dmm(Ct;Xm) > dmm(Ci ∪ Cj ;Xm), causing SL(Xm, k) to output a clustering that contains
Ci ∪Cj but does not contain Ct, as in Figure 9b1. If this occurs, we cannot expect size generalization
to hold. When α is larger, the difference between dmm(Ct;X) and dmm(Ci ∪ Cj ;Xm) is smaller,
and thus there is a higher probability dmm(Ct;Xm) > dmm(Ci ∪ Cj ;Xm). To control the probability
of this bad event, we must take a larger value of m in order to obtain size generalization with high
probability.

We emphasize that ζk,SL measures the stability of SL on X with respect to point deletion, but it is
fundamentally unrelated to the cost of SL on X with respect to a ground truth (which is what we
ultimately aim to approximate). Any assumption that ζk,SL is small relative to n does not constitute
any assumptions that SL achieves good accuracy on X . Theorem 2.7 states our main result for size
generalization of single linkage clustering.

D.2.2 Tightness of single-linkage analysis

In this section, we show that our dependence on the cluster size mini∈[k] |Ci| and ζk,SL in Theorem 2.7
is necessary. We also discuss further empirical analysis of ζk,SL.

Dependence on cluster size mini∈[k] |Ci|. Suppose our subsample entirely misses one of the
clusters in C = SL(X , k), (i.e., Xm ∩ Ci = ∅). Then SL(Xm, k) will cluster Xm into k clusters,
while SL(X , k) partitions Xm into at most k − 1 clusters. Consequently, we can design ground truth
on which clustering costs of C and C′ vary dramatically.
Lemma D.3. For any odd n ≥ 110 and γ > 0, there exists a 2-clustering instance on n nodes with
a ground truth clustering G such that mini∈[k] |Ci| = 1, ζk,SL(X) ≤ γ and with probability .27 for
m = n− 1, |costG (SL(Xm, 2))− costG (SL(X , 2))| ≥ 1/4.

Dependence on ζk,SL. The dependence on ζk,SL(X) is also necessary and naturally captures the
instability of SL on a given dataset X , as depicted in Figure 9. Lemma D.4 formalizes a sense in
which the dependence on the relative merge distance ratio ζk,SL is unavoidable.
Lemma D.4. For any n ≥ 51 with n = 1 mod 3, there exists a 2-clustering instance X on n points
such that ζk,SL = n; C = SL(X , 2) satisfies minC∈C |C| ≥ n

6 ; and for m = n− 1, with probability
.23, |costG (SL(Xm, 2))− costG (SL(X , 2))| ≥ 1/12.

Empirical study of ζk,SL. We observe that for some natural distributions, such as when clusters are
drawn from isotropic Gaussian mixture models, we can expect ζk,SL to scale with the variance of the
Gaussians. Intuitively, when the variance is smaller, the clusters will be more separated, so ζk,SL will
be smaller.

1The worst-case scenario in Figure 9b where a small number of “bridge” points connect two sub-clusters has
been noted as a failure case for single-linkage style algorithms in previous work [e.g., 29, Section 3.1].

31

Figure 10: ζk,SL vs σ for isotropic Gaussian mixture model. The y-axis shows the average value of
ζk,SL(X) averaged over 30 draws of X for a given choice of σ.

Figure 11: ζk,SL vs σ for noisy circle datasets. The y-axis shows the average value of ζk,SL(X)
averaged over 30 draws of X for a given choice of σ.

We ran experiments to visualize ζk,SL(X) versus appropriate notions of noise in the dataset for two
natural toy data generators. First, we considered isotropic Gaussian mixture models in R2 consisting
of two clusters centered at (−2,−2) and (2, 2) respectively with variance σ2I (Figure 10). Second,
we considered 2-clustering instances drawn from scikitlearn’s noisy circles dataset with a distance
factor of .5 and [69] with various noise levels (Figure 11). In both cases, n = 300 points were drawn.
Moreover, in both cases, we see that, as expected, ζk,SL grows with the noise in the datasets.

32

E Omitted Proofs

In Section E.1, we include proofs pertaining to our analysis of center-based clustering methods
(k-means++ and k-centers). In Section E.2, we include omitted proofs pertaining to our analysis of
single linkage clustering. In Section E.3 and Section E.4, we include omitted proofs of our analysis
of the max-cut GW and greedy algorithms from Section 3.1 and Section 3.2.

E.1 Omitted Proofs from Section 2.1

In this section, we provide omitted proofs relating to our results on k-centers and k-means++
clustering. Throughout this section, we denote the total variation (TV) distance between two
(discrete) distributions p, q : Ω → [0, 1] is ∥p− q∥TV := 1

2

∑
ω∈Ω |p(ω)− q(ω)|. If p(x, y) is the

joint distribution of random variables X and Y , pX(x) and pY (y) denote the marginal distributions,
and pX|Y (x|y) or pY |X(y|x) denote the conditional distributions of X|Y or Y |X , respectively.

First, we specify the pseudocode of Seeding algorithm, Algorithm 3.

Input: Instance X ⊂ Rd, k ∈ Z≥0, f : R× P(X) → R≥0

Set C1 = {c1} with c1 ∼ Unif(X)
for i = 2, 3, . . . , k do

Select ci = y ∈ X with probability proportional to f(dcenter(y;C
i−1);X)

Set Ci = Ci−1 ∪ {x}
Return: Ck

Algorithm 3: Seeding(X , k, f)

Let p, q be arbitrary, discrete joint distributions over random variables X and Y with conditionals and
marginals denoted as follows: pX,Y (x, y) = pX(x)·pY |X(y|x) and qX,Y (x, y) = qX(x)·qY |X(y|x).
If ∥pX − qX∥TV ≤ ϵ1 and

∥∥pY |X − qY |X
∥∥
TV

≤ ϵ2, then ∥pX,Y − qX,Y ∥TV ≤ ϵ1 + ϵ2.

Proof. For any x, y we have

|pX,Y (x, y)− qX,Y (x, y)| =
∣∣pX(x) · pY |X(y|x)− qX(x) · qY |X(y|x)

∣∣
=
∣∣pX(x) · pY |X(y|x)− (qX(x)− pX(x)) · qY |X(y|x)− pX(x) · qY |X(y|x)

∣∣
=
∣∣pX(x) · (pY |X(y|x)− qY |X(y|x)) + qY |X(y|x) · (qX(x)− pX(x))

∣∣
≤ pX(x) ·

∣∣pY |X(y|x)− qY |X(y|x)
∣∣+ qY |X(y|x) · |qX(x)− pX(x)|

Hence,

∥pX,Y − qX,Y ∥TV =
1

2

∑
x,y

|pX,Y (x, y)− qX,Y (x, y)|

≤
∑
x

pX(x)
1

2

∑
y

∣∣pY |X(y|x)− qY |X(y|x)
∣∣

+
1

2

∑
x

|qX(x)− pX(x)|
∑
y

qY |X(y|x)

≤ ϵ2 + ϵ1.

Theorem 2.2. Let X ⊂ Rd, ϵ, ϵ′ > 0, δ ∈ (0, 1), and k ∈ Z>0. Define the sample complexity
m = O(ζk,f (X) log(k/ϵ)) where ζk,f (X) quantifies the sampling distribution’s smoothness:

ζk,f (X) := max
Q⊂X :|Q|≤k

max
x∈X

(
nf(dcenter(x;Q);X) ·

∑
y∈X

f(dcenter(y;Q);X)
−1)

.

Let S and S′ be the partitions of X induced by Seeding(X , k, f) and ApxSeeding(Xmk, k,m, f)
where Xmk is a sample of mk points drawn uniformly with replacement from X . For any ground-truth
clustering G of X , E [costG (S′)] ≈ϵ E [costG (S)]. Moreover, given S′, costG (S′) can be estimated
to additive error ϵ′ with probability 1− δ using O(kϵ′

−2
log(δ−1)) ground-truth queries.

33

Proof. Let p(C) be the probability of sampling a set of k centers C in ApxSeeding(Xmk, k,m, f)
and p′(C) be the probability of sampling a set of k centers C in Seeding(X , k, f). Likewise, let
p(ci|Ci−1) and p′(ci|Ci−1) be the probability of sampling ci as the i-th center given Ci−1 was
selected up to the (i − 1)-th step in ApxSeeding(Xmk, k,m, f) and Seeding(X , k, f) respectively.
We have that

p(C) =
1

n

k∏
i=2

p(ci|Ci−1), and p′(C) =
1

n

k∏
i=2

p′(ci|Ci−1).

By Corollary 1 of [27], ApxSeeding (Algorithm 1) with m = O(ζk,f (X) log(k/ϵ)) is such that for
all Ci−1 ⊂ X with

∣∣Ci−1
∣∣ ≤ k − 1,∥∥p(·|Ci−1)− p′(·|Ci−1)

∥∥
TV

≤ ϵ

k − 1
.

By chaining Fact E.1 over i = 2, ..., k, it follows that ∥p− p′∥TV ≤ ϵ. Now, let p(Z|c1) and p′(Z|c1)
denote the probability of selecting centers Z = {z2, ..., zk} in iterations i = 2, ..., k, conditioned on
having selected c1 in the first iteration of Seeding and ApxSeeding respectively. Then,

p′(Z|c1)− |(p(Z|c1)− p′(Z|c1))| ≤ p(Z|c1) ≤ p′(Z|c1) + |(p(Z|c1)− p′(Z|c1))| .

Let X k−1 denote the set of all subsets of size k − 1 in X . In the following, for any set of centers
Z = z1, ..., zt we will use costG (Z) to denote the cost of the clustering (Voronoi partition) induced
by the centers Z. Using the fact that the proportion of mislabeled points is always between 0 and 1,
we then have that

E [costG (S)] =
∑
c1∈X

1

n

∑
Z∈Xk−1

costG (c1 ∪ Z) p(Z|c1)

≤
∑
c1∈X

1

n

∑
Z∈Xk−1

costG (c1 ∪ Z) p′(Z|c1) +
1

n

∑
c1∈X

∑
Z∈Xk−1

costG (c1 ∪ Z) |(p(Z|c1)− p′(Z|c1))|

≤ E [costG (S′)] +
1

n

∑
c1∈X

∑
Z∈Xk−1

|(p(Z|c1)− p′(Z|c1))| ≤ E [costG (S′)] + ∥p− p′∥TV

≤ E [costG (S′)] + ϵ.

By a symmetric argument, we obtain a lower bound

E [costG (S)]

=
∑
c1∈X

1

n

∑
Z∈Xk−1

costG (c1 ∪ Z) p(Z|c1)

≥
∑
c1∈X

1

n

∑
Z∈Xk−1

costG (c1 ∪ Z) p′(Z|c1)−
1

n

∑
c1∈X

∑
Z∈Xk−1

costG (c1 ∪ Z) |(p(Z|c1)− p′(Z|c1))|

≥ E [costG (S′)]− 1

n

∑
c1∈X

∑
Z∈Xk−1

|(p(Z|c1)− p′(Z|c1))| ≥ E [costG (S′)]− ∥p− p′∥TV

≥ E [costG (S′)]− ϵ.

Next, we can compute ĉG(S
′) as follows. Let τ : X 7→ [k] be the mapping corresponding to the

ground truth clustering (i.e., τ(x) = i if and only if x ∈ Gi.) Let X ′ = {x1, ..., xℓ} be a fresh
random sample of ℓ elements selected without replacement from X , and let

ĉG(S
′) := min

σ∈Σk

1

ℓ

∑
x∈X ′

∑
i∈[k]

1
(
x ∈ S′

σ(i) ∧ x /∈ Gi

)
.

Consider any σ ∈ Σk. Then,

E

1
ℓ

∑
x∈X ′

∑
i∈[k]

1
(
x ∈ S′

σ(i) ∧ x /∈ Gi

) =
1

n

∑
x∈X

∑
i∈[k]

1
(
x ∈ S′

σ(i) ∧ x /∈ Gi

)
.

34

Hoeffding’s inequality guarantees that with probability δ/k!,
1

ℓ

∑
x∈X ′

∑
i∈[k]

1
(
x ∈ S′

σ(i) ∧ x /∈ Gi

)
≈ϵ

1

n

∑
x∈X

∑
i∈[k]

1
(
x ∈ S′

σ(i) ∧ x /∈ Gi

)
for l = O(kϵ−2 log(kδ−1)). The theorem follows by union bound over all k! permutations σ ∈
Σk.

Theorem 2.3. Let k ∈ Z≥0, γ > 0 and δ ∈ (0, 1). Let SOPT be the partition of X induced by the
optimal k-centers solution COPT, and suppose X is (µℓ, µu)-well-balanced with respect to SOPT. Let
C be the centers obtained by SoftmaxCenters with β = Rγ−1 log

(
k2µuµ

−1
ℓ δ−1

)
. With probability

1− δ, maxx∈X dcenter(x;C) ≤ 4maxx∈X dcenter(x;COPT) + γ.

Proof. Let SOPT = {S1, ..., Sk} be the optimal partition according to the k-centers objective and let
OPT denote the optimal k-centers objective value. Let Sσ(i) ∈ SOPT be such that ci ∈ Sσ(i) where
ci ∈ C, and let Ci−1 ⊂ C denote the centers chosen in the first i− 1 iterations of SoftmaxCenters.
We use Sι(i) ∈ SOPT to denote the partition such that ci ∈ Sι(i) where ci ∈ C. We use si ∈ Si

to denote the optimal k centers, and use C(i−1) ⊂ C to denote the centers chosen in the first
i − 1 iterations of SoftmaxCenters. We will show that for any i ∈ {2, ..., k − 1}, either mi :=
maxx∈X d(x;C(i−1)) ≤ 4OPT+ γ, or else with good probability, ci belongs to a different partition
Sι(i) than any of c1, ..., ci−1 (i.e., ι(i) ̸= ι(j) for any j < i).

To this end, suppose mi > 4OPT+ γ, then let B := {x : x ∈ Sι(j) for some j < i}. For notational
convenience, let β′ = γ−1 log(k2µuµ

−1
ℓ δ−1). We have

P {ci ∈ B} =

∑
x∈B exp(β′d(x;C(i−1)))∑
x∈X exp(β′d(x;C(i−1)))

.

For every j ∈ [k], we know that cj , sι(j) ∈ Sι(j) (each point goes to the same partition as its closest
center.) By the triangle inequality, it follows that for any x ∈ Sι(j),

d(x;C(i−1)) ≤ d(x, cj) + d(cj , sι(j)) ≤ 2OPT.

Consequently, using the fact that g(z) = z/(z + c) is an increasing function of z for c > 0, we have

P {ci ∈ B} ≤ |B| exp(2β′OPT)

|B| exp(2β′OPT) +
∑

x∈X\B exp(β′d(x;C(i−1)))

Now, let ℓ ∈ [k] be the index of the cluster in which ∃y ∈ Sℓ with

d(y;C(i−1)) = mi > 4OPT+ γ. (4)
Such an ℓ is guaranteed to exist, due to the assumption that mi > 4OPT+ γ. Now, for x ∈ Sℓ and
j < i,

d(x; cj) + d(x, y) ≥ d(y; cj) ≥ 4OPT+ γ,

d(x, y) ≤ 2OPT,

and hence d(x, cj) ≥ 2OPT+γ. Now, note that Sℓ∩B = ∅, because by the definition of B, whenever
Sℓ ∩B ̸= ∅ we must have Sℓ ∩B = Sℓ and consequently d(y;C(i−1)) ≤ d(y, cj) + d(cj , sι(j)) ≤
2OPT (contradicting (4)). So, it follows that

P {ci ∈ B} ≤ |B| exp(2β′OPT)

|B| exp(2β′OPT) + |Sℓ| exp(β′(4OPT+ γ))
=

1

1 + |Sℓ|
|B| exp(β

′(4OPT+ γ)− 2OPT)

≤ |B|
|Sℓ|

exp(−β′γ) ≤ kµu/µℓ exp(−β′γ) =
δ

k
.

Now, by union bounding over i = 2, ..., k we see that with probability at least 1 − δ, either mi ≤
4OPT+ γ for some i < [k]; or, ι(i) ̸= ι(j) for any j < i.

In the former case, the approximation guarantee is satisfied. In the latter case, note that if every ci
belongs to a distinct optimal cluster Sι(i), then every x ∈ Sι(i) for some i ∈ [k]. Consequently, by
the triangle inequality, we have that for any x ∈ Sι(i)

d(x;C) ≤ d(x; ci) ≤ d(x, sι(i)) + d(ci; sι(i)) ≤ 2OPT < 4OPT+ γ.

35

Figure 12: Examples of subsamples which induce a consistent and inconsistent clustering. The figure
shows an example dataset X in one dimension along with the clustering C obtained by SL(X , 2) and
SL(Xm, 2) on two different subsamples. Observe that second subsample produces an inconsistent
clustering because the set Y (1) has a nonempty intersection with both of the clusters from the full
data and (2) gets merged into a single cluster at Step 4, before all points from Ct have been merged
together.

Theorem 2.4. For any β > 0, ζk,SoftmaxCenters(X) ≤ exp(2β).

Proof. For any Q, let x⋆
Q = argmaxx∈X exp(βdcenter(x;Q)). Then, we can see that∑

y ̸=x⋆
Q

exp(βdcenter(y;Q)/R) + exp(βdcenter(x
⋆
Q;Q)/R) ≥ (n− 1) + exp(βdcenter(x

∗
Q, Q)/R).

Meanwhile, exp(βdcenter(x∗
Q, Q)/R) ≤ exp(2β). Since h(x) = x

(n−1)+x and g(x) = xa
(x−1)+a are

increasing in x for a > 1, we find

ζk,SoftmaxCenters(X) := n · max
Q⊂X :|Q|≤k

max
x∈X

exp(βdcenter(x;Q))∑
y∈Q exp(βdcenter(y;Q))

≤ n · exp(2β)

(n− 1) + exp(2β)
≤ exp(2β).

Lemma E.1. For any n > exp(βR)− 1, there is a clustering instance X ⊂ [−R,R] of size n such
that ζk,SoftmaxCenters(X) ≥ exp(β)/2.

Proof. Consider X ⊂ [−R,R] such that x1 = R and x2, ..., xn = 0. By taking Q = {q1 =

0, ..., qk = 0}, we see that ζk,SoftmaxCenters(X) ≥ n exp(β)
n−1+exp(β) ≥

n exp(β)
2(n−1) ≥ exp(β)/2.

E.2 Omitted Proofs from Section 2.2

In Section E.2.1, we present omitted proofs pertaining to size generalization of single linkage. In
Section E.2.2, we present omitted proofs of our lower bounds.

E.2.1 Size generalization of single linkage clustering

In this section, we provide omitted proofs relating to our results on single linkage clustering. We
show that under natural assumptions on X , running SL on X yields similar accuracy as SL on a
uniform random subsample Xm of X of size m (drawn with replacement) for m sufficiently large.

36

We approach this analysis by showing that when m is sufficiently large, the order in which clusters
are merged in SL(X , k) and SL(Xm, k) is similar with high probability. Concretely, we show that for
any subsets S, T ⊂ Xm, the order in which S and T are merged is similar when we run SL(X , k) and
SL(Xm, k). We use di (respectively dmi) to denote the merge distance at iteration i when running
SL(X , k) (respectively SL(Xm, k)). Similarly, Ci (respectively Ci

m) denotes the clustering at iteration
i. We use gm(S) to denote the first iteration at which all points in S are merged into a common
cluster (we refer to this as the merge index of S). That is, gm : P(Xm) → [n− 1] is a mapping such
that for any S ⊂ Xm, gm(S) = t, where t is the first iteration in SL(Xm, k) such that S ⊂ C for
some C ∈ Ct

m. Correspondingly, we use dg(S) and dmgm(S) denote the merge distance of S ⊂ X
when running SL on X and Xm respectively. Table 3 summarizes the notation used in our analysis.

Notation Informal Description Formal Definition
g(S) The first iteration of the outer loop in SL(X , k)

at which all points in S are merged into a single
cluster.

For S ⊂ X , g(S) = min{ℓ ∈ Z≥0 : ∃C ⊂
Cℓ such that S ⊂ C} when running SL(X , k).

gm(S) The first iteration of the outer loop in
SL(Xm, k) at which all points in S are merged
into a single cluster.

For S ⊂ Xm, gm(S) = min{ℓ ∈ Z≥0 :
∃C ⊂ Cℓ such that S ⊂ C} when running
SL(Xm, k).

dℓ The merge distance at iteration ℓ of the outer
loop in SL(X , k)

maxi,j min
x∈C

(ℓ−1)
i ,y∈C

(ℓ−1)
j

d(x, y). when

running SL(X , k).

dmℓ
The merge distance at iteration ℓ of the outer
loop in SL(Xm, k)

mini,j max
x∈C

(ℓ−1)
i ,y∈C

(ℓ−1)
j

d(x, y). when

running SL(Xm, k).

Table 3: Single linkage clustering analysis notation. The table summarizes key notation used in our
analysis of single linkage clustering

We first prove Lemma 2.6, which characterizes when two points will be merged into a common
cluster in single linkage clustering.

Lemma E.2. In SL(X , k), x, y ∈ X belong to the same cluster after iteration ℓ if and only if
dmm(x, y;X) ≤ dℓ.

Proof. For the forward direction, we will induct on the size of the cluster C. In the base case,
if |C| = 2, C must be the result of merging some two clusters A = {xi}, B = {xj} such that
d(A,B) = d(xi, xj) ≤ dt ≤ dℓ at some iteration t ≤ ℓ. Therefore, dmm(xi, xj ;X) ≤ d(xi, xj) ≤
dℓ.

Now, assume that the statement holds whenever |C| < m. Then |C| must be the result of merging
some two clusters A,B such that |A| < m − 1, |B| < m − 1, and d(A,B) ≤ dt ≤ dk for some
iteration t ≤ ℓ. Let xi ∈ A and xj ∈ B be two arbitrary points. Since d(A,B) ≤ dℓ, there
exist u ∈ A, v ∈ B such that d(u, v) ≤ dℓ. By inductive hypothesis, dmm(xi, u;X) ≤ dt ≤ dℓ
and dmm(xj , v;X) ≤ dt ≤ dℓ. Consequently, there exist paths p1 ∈ Pxi,u, p2 ∈ Pxj ,v such that
p1 ∪ (u, v) ∪ p2 is a path between xi and xj with maximum distance between successive nodes at
most dℓ. Therefore, dmm(xi, xj ;X) ≤ dℓ.

For the reverse direction, it is easy to see that after the merging step in iteration k, all nodes u, v
such that d(u, v) ≤ dk must be in the same cluster. Consequently, if dmm(xi, xj ;X) ≤ dk, there
exists a path p ∈ Pi,j where p = (v1 = x, v2, ..., vk, vk+1 = xj) with d(vi+1, vi) ≤ dk for all
i ∈ [k]. Consequently, all vertices on p must be in the same cluster, and hence xi, xj ∈ C for some
C ∈ Ck.

The analogous statement clearly holds for Xm as well, as formalized by the following corollary.

Corollary E.3. Under SL(Xm, k), x, y ∈ Xm are in the same cluster after the ℓ-th round of the outer
while loop if and only if dmm(x, y;Xm) ≤ dmℓ

.

Proof. We repeat the identical argument used in Lemma 2.6 on Xm.

37

Lemma 2.6 and Corollary E.3 characterize the criteria under which points in X or Xm will be merged
together in single linkage clustering. We can use these characterizations to obtain the following
corollary, which relates dg(S) and dmg(S) (see Table 3) to dmm(S;X) and dmm(S;Xm) respectively
(recall Definition 2.5).

Corollary E.4. For any clustering instance X and set S ⊆ X , dg(S) = maxx,y∈S dmm(S;X).
Likewise, for any S ⊆ Xm, dmgm(S) = dmm(S;Xm).

Proof. By definition, we know that on round g(S), two sets A and B were merged where S ⊆ A∪B
but S ̸⊆ A and S ̸⊆ B. Moreover, dg(S) = minx∈A,y∈B d(x, y). We claim that for any x ∈ S ∩A
and y ∈ S ∩ B, dmm(x, y;X) ≥ dg(S). For a contradiction, suppose there exists x ∈ S ∩ A and
y ∈ S ∩ B such that dmm(x, y;X) < dg(S). Then there exists a path p between x and y such that
for all elements vi, vi+1 on that path, d(vi, vi+1) < dg(S). However, this path must include elements
vi, vi+1 such that vi ∈ A and vi+1 ∈ B, which contradicts the fact that dg(S) = minx∈A,y∈B d(x, y).
Conversely, by Lemma 2.6, we know that for all x, y ∈ S, dmm(x, y;X) ≤ dg(S). Therefore,
dg(S) = maxx,y∈S dmm(x, y;X). The second statement follows by identical argument on Xm.

Our next step is to use Corollary E.4 to understand when the clustering C = SL(X , k) and C′ =
SL(Xm, k) are “significantly” different. Concretely, our goal is to provide sufficient guarantees to
ensure that C and C′ are consistent with each other on Xm, i.e., that ∃σ ∈ Σk such that for each
cluster C ′

i ∈ C′, C ′
i ⊂ Cσ(i). To aid in visualization, Figure 12 provides an example of a subsample

Xm which induces a consistent clustering and an example of a subsample Xm which induces an
inconsistent clustering.

Now, suppose, for example, that C′ is not consistent with C and let Ct ∈ C be the last cluster from
C to be merged into a single cluster when running single linkage on the subsample Xm. Since
C′ and C are not consistent, there must be some cluster Y ∈ C′ which contains points from both
of two other clusters. This means that when running SL(X , k), dg(Y) > dg(C) for all C ∈ C.
However, recall that since Y ∈ C′, when running SL(Xm, k), there must exist some Ct ∈ C such
that dmgm(Y)

< dmgm(Ct)
. Since dg(Y) > dg(Ct) but dmgm(Y)

< dmgm(Ct)
, this means that when

subsampling from X points, the subsample Xm must have distorted the min-max distances restricted
to Ct and Y . The following Lemma E.5 formalizes this observation.

Lemma E.5. Suppose T is merged into a single cluster under SL(Xm, k) before S is merged into
a single cluster (i.e., gm(S) > gm(T)). Then there exists a pair of points u, v ∈ S such that
dmm(u, v;Xm)− dmm(u, v;X) ≥ dg(T) − dg(S).

Proof. First, we argue that if g(S) ≥ g(T), then the statement is trivial. Indeed, if g(S) ≥ g(T),
then for any u, v ∈ X , dmm(u, v;Xm)− dmm(u, v;X) ≥ 0 ≥ dg(T) − dg(S). The first inequality is
because any path in Xm clearly exists in X , and the second inequality is because dℓ is non-decreasing
in ℓ.

On the other hand, if g(S) < g(T), then Corollary E.4 indicates that

max
x,y∈S

dmm(x, y;X) = dg(S) < dg(T) = max
x,y∈T

dmm(x, y;X).

Meanwhile, since gm(S) > gm(T), there exists a pair of nodes u, v ∈ S such that

dmm(u, v;Xm) = max
x,y∈S

dmm(x, y;Xm) > max
x,y∈T

dmm(x, y;Xm) ≥ max
x,y∈T

dmm(x, y;X) = dg(T).

Finally, because u, v ∈ S, Corollary E.4 guarantees that dmm(u, v;X) ≤ dg(S), we can conclude that
dmm(u, v;Xm)− dmm(u, v;X) > dg(T) − dg(S).

Lemma E.5 illustrates that the order in which sets in Xm are merged in SL(X) and SL(Xm) can differ
only if some min-max distance is sufficiently distorted when points in X were deleted to construct
Xm. In the remainder of the analysis, we essentially seek to show that large distortions in min-max
distance are unlikely because they require deleting many consecutive points along a path. To this end,
we first prove an auxiliary lemma, which bounds the probability of deleting ℓ points when drawing a
uniform subsample of size m with replacement from n points.

38

Lemma E.6. Let S be a set of n points and S′ be a random subsample of m points from S, drawn
without replacement. Let T = {t1, ..., tℓ} ⊂ S. Then,

exp

(
− mℓ

(n− ℓ)

)
≤ P {T ∩ S′ = ∅} ≤ exp

(
−mℓ

n

)
.

Proof. Each sample, independently, does not contain ti for i ∈ [ℓ] with probability 1− ℓ/n. Thus,

P {T ∩ S′ = ∅} =

(
1− ℓ

n

)m

.

For the upper bound, we use the property that (1− x/m)m ≤ exp(−x):(
1− ℓ

n

)m

=

(
1− mℓ/n

m

)m

≤ exp

(
−mℓ

n

)
.

Meanwhile, for the lower bound, we use the property that exp(−x/(1− x)) ≤ 1− x for x ∈ [0, 1]:(
1− ℓ

n

)m

≥ exp

(
−m

ℓ/n

1− ℓ/n

)
= exp

(
−mℓ

n− ℓ

)
.

We can utilize the bound in Lemma E.6 to bound the probability of distorting the min-max distance
between a pair of points by more than an additive factor η.
Lemma E.7. For η > 0 and S ⊂ X ,

P {∃u, v ∈ Xm ∩ S : dmm(u, v;Xm)− dmm(u, v;X) > η} ≤ n3 exp
(
−m⌈η/dg(S)⌉/n

)
.

Proof. Suppose ∃u, v ∈ Xm ∩ S such that dmm(u, v;Xm)− dmm(u, v;X) > η. Then, ∃p = (u =
p1, p2, ..., pt = v) ∈ Pu,v,X \Pu,v,Xm with cost maxi d(pi, pi−1) = dmm(u, v;X). Since t ≤ n and
u, v ∈ S, deleting any node pi ∈ p can increase the cost of this path by at most dg(S). Consequently,
Xm must have deleted at least s = ⌈η/dg(S)⌉ consecutive points along p. There are at most n distinct
sets of s consecutive points in p. Let Ei be the event that x1, ..., xs /∈ Xm. Then, by Lemma E.6,

P {x1, ..., xs /∈ Xm} ≤ exp
(
−ms

n

)
.

The statement now follows by union bound over the n distinct sets of s consecutive points in p and
over the at most n2 pairs of points u, v ∈ S.

Finally, we can apply Lemma E.5 and Lemma E.7 to bound the probability that C′ and C are
inconsistent.
Lemma E.8. Let C = {C1, ..., Ck} = SL(X , k) and C′ = {C ′

1, ..., C
′
k} = SL(Xm, k). Let αij =

d(g(Ci∪Cj)) and αi = dg(Ci). Let E be the event that there exists a C ′
i such that C ′

i ̸⊂ Cj for all
j ∈ [k] (i.e., that C′ is inconsistent with C; see Figure 12). Then,

P {E} ≤ (kn)3 exp

(
− m

nζk,SL

)
Proof. Let Sℓ = Cℓ ∩ Xm for ℓ ∈ [k]. Without loss of generality, we can assume that i = 1. So, let
Ea,b,j be the event that C ′

1 ∩ Ca ̸= ∅ ≠ C ′
1 ∩ Cb and

gm(C ′
1) < gm(Sj), and g(Sj) < g(C ′

1).

By Lemma E.5, this implies that there exists a u, v ∈ Sj such that

dmm(u, v;Xm)− dmm(u, v;X) ≥ dg(C′
1)
− dg(Sj).

Since Ca, Cb ∈ C, we know that g(C ′
1) = g(C1 ∪ C2). Meanwhile, g(Sj) = αj , so we have

dmm(u, v;Xm)− dmm(u, v;X) ≥ αab − αj .

39

By Lemma E.7, it follows that

P {Ea,b,j} ≤ n3 max
a,b,j∈[k]

exp

(
−m

n

⌈
(αab − αj)

αj

⌉)
= (kn)3 exp

(
− m

nζk,SL

)
.

Now, E =
∨

a,b,j Ea,b,j . By union bound over the at most k3 configurations of a, b, j, the lemma
follows.

Finally, we can condition on the event that C and C′ are consistent to obtain our main result.
Theorem 2.7. Let G = {G1, ..., Gk} be a ground-truth clustering of X , C = {C1, ..., Ck} =
SL(X , k) be the clustering obtained from the full dataset, and C′ = {C ′

1, ..., C
′
k} = SL(Xm, k) be

the clustering obtained from a random subsample Xm of size m. For

m = Õ
((k

ϵ2
+

n

mini∈[k] |Ci|
+ ζk,SL(X)

)
log

k

δ

)
,

we have that P {costG (C′) ≈ϵ costG (C)} ≥ 1 − δ. Computing C′ requires O(m2) calls to the
distance oracle, while computing costG (C′) requires only m queries to the ground-truth oracle.

Proof. Let E be as defined in Lemma E.8 and let F be the event that X ∩ Ci = ∅ for some i ∈ X .
Let H = E ∨ F . P {H} ≤ P {E}+ P {F}, where, by Lemma E.6,

P {F} ≤ kmax
i

P {X ∩ Ci = ∅} ≤ k exp

(
−
m ·mini∈[k] |Ci|

n

)
.

And by Lemma E.8, we have that

P {E} ≤ (nk)3 exp

(
− m

ζk,SL

)
.

We also have that

P {costG (C′) ≈ϵ costG (C)} ≥ P
{
costG (C′) ≈ϵ costG (C)|H̄

}
P
{
H̄
}
.

Now, let τ : X 7→ [k] be the mapping such that τ(x) = i if and only if x ∈ Gi. Consider any
permutation σ : [k] → [k]. If H̄ occurs, then we know that every C ′

i ⊂ Cji for some ji ∈ [k],
and we know that each Cj ∩ Xm ̸= ∅ for each j ∈ [k]. Consequently, there exists a permutation
ρ : [k] 7→ [k] such that C ′

i ⊂ Cρ(i). Without loss of generality, we can assume that ρ is the identity,
i.e., that x ∈ Ci ⇐⇒ x ∈ C ′

i for any x ∈ Xm (or else reorder the sets in C such that this holds). So,
conditioning on H̄ , we have

1

m

∑
x∈Xm

∑
i∈[k]

1
(
x ∈ C ′

σ(i) ∧ x /∈ Gi

)
=

1

m

∑
x∈X

∑
i∈[k]

1
(
x ∈ C ′

σ(i) ∧ x /∈ Gi ∧ x ∈ Xm

)
=

1

m

∑
x∈X

∑
i∈[k]

1
(
x ∈ Cσ(i) ∧ x /∈ Gi ∧ x ∈ Xm

)
,

E

 1

m

∑
x∈Xm

∑
i∈[k]

1
(
x ∈ C ′

σ(i) ∧ x /∈ Gi

) = E

 1

m

∑
x∈X

∑
i∈[k]

1
(
x ∈ Cσ(i) ∧ x /∈ Gi ∧ x ∈ Xm

)
=

1

m

m

n
· E

∑
x∈X

∑
i∈[k]

1
(
x ∈ Cσ(i) ∧ x /∈ Gi

) .

So, by Hoeffding’s inequality and union bound over the permutations τ ,

P
{
|costG (C′)− costG (C)| ≤ ϵ|H̄

}
≥ 1− (k!) exp

(
−2ϵ2m

)
≥ 1− kk exp

(
−2ϵ2m

)
.

Consequently, by taking m ≥ O
(
kϵ−2 log

(
kδ−1

))
, we can ensure that

P
{
costG (C′) ≈ϵ costG (C)|H̄

}
≥ 1− δ/2.

By taking m ≥ O
(
max

(
ζk,SL(X) log

(
nkδ−1

)
, n
mini∈[k]|Ci|2

log
(
δ−1
)))

we can also ensure

P
{
H̄
}
≥ 1− δ/2. Hence, P {costG (C′) ≈ϵ costG (C)} ≥ 1− δ.

40

E.2.2 Lower bounds for size generalization of single linkage clustering

We now turn our attention to proving the lower bound results in Section 2.2. In the following, we
use the notation Bϵ(z) := {z ∈ R : ∥x− z∥2 ≤ ϵ} to denote an ϵ-ball centered at z and consider
clustering with respect to the standard Euclidean metric d(x, y) := ∥x− y∥2 .
Lemma E.9. For any odd n ≥ 110 and γ > 0, there exists a 2-clustering instance on n nodes with
a ground truth clustering G such that mini∈[k] |Ci| = 1, ζk,SL(X) ≤ γ and with probability .27 for
m = n− 1, |costG (SL(Xm, 2))− costG (SL(X , 2))| ≥ 1/4.

Proof. Consider 0 < α < 1/2 and the 2-clustering instance X = {x1, ..., xn−1, xn} ⊂ R2 where
x1, ..., x(n−1)/2 ∈ Bα(0), x(n−1)/2+1, ..., xn−1 ∈ Bα(3), and xn = 6. Suppose G = {G1, G2}
where G1 = {x1, ..., xn−1} and G2 = {xn}.

It is easy to see that costG (SL(X)) = 0, since xn is sufficiently far from 0 and 3 to ensure that
xn will be the last point to be merged with any other point. Consider m = n − 1. Whenever
xn /∈ Xm, |Xm ∩Bα(0)| ≥ n/4, and |Xm ∩Bα(3)| ≥ n/4 we have that costG (SL(Xm)) ≥ 1/4,
as the algorithm will separate the points in Bα(0) from those in Bα(3). We can lower bound the
probability of this event as follows.

By Lemma E.6,
P {xn ∈ Xm} ≤ 1− exp(−1) ≤ 0.63.

By a Chernoff bound,

P
{
|Bα(3) ∩ Xm| ≤ n

4

}
= P

{
|Bα(0) ∩ Xm| ≤ n

4

}
= P

{
|Bα(0) ∩ Xm| ≤ (n− 1)2

2n
· 2n2

4(n− 1)2

}
≤ P

{
|Bα(0) ∩ Xm| ≤ (n− 1)2

2n
· 2/3

}
≤ exp

(
− (n− 1)2

36n

)
≤ .05.

Thus, P {costG (SL(Xm)) ≥ 1/4} ≥ 1 − 0.73 = .27. Moreover, note that because the failure
probabilities analyzed above are independent of α, we can ensure that ζk,SL ≤ γ without affecting
any of the failure probabilities, which are independent.

Lemma E.10. For any n ≥ 51 with n = 1 mod 3, there exists a 2-clustering instance X on n points
such that ζk,SL = n; C = SL(X , 2) satisfies minC∈C |C| ≥ n

6 ; and for m = n− 1, with probability
.23, |costG (SL(Xm, 2))− costG (SL(X , 2))| ≥ 1/12.

Proof. Take α > 0 and 2α > β > α. Suppose X is composed of four sets X = L ∪ {b} ∪M ∪R,
where the left points x ∈ L satisfy x = 0. The middle points x ∈ M satisfy x = 2α, and the right
points x ∈ R satisfy x = 2·α+ β. |L| = |M | = |R| = n−1

3 . The “bridge” point b = α. Here,

ζk,SL(X) = n⌈(β − α)/α⌉−1 = n.

Suppose the ground truth clustering G is defined as G1 = L ∪ {b} ∪M and G2 = R. Since β > α,
single linkage achieves a cost of 0 on X . Meanwhile, suppose that b /∈ Xm. Then, because the
minmax distance between any point in L and M is now 2α > β, single linkage run on Xm will create
one cluster for L and one cluster for M ∪R. Provided that Xm contains at least n−1

6 points in M ,
this implies that single linkage will have a cost greater than or equal to 1/12 on Xm. It now remains
to bound the probability of these simultaneous events. Let E1 be the event that b /∈ Xm, and let E2

be the event that |M ∩ Xm| ≥ n−1
6 . We have

P {E1 ∧ E2} = P {E1}P {E2|E1} ≥ P {E1}P {E2} .
This is because E1 is the event of not including certain elements in Xm and E2 is the probability
of including certain elements in Xm, so, P {E2|E1} ≥ P {E2}. Now, consider m = n − 1. By
Lemma E.6,

P {E1} ≥ exp

(
−m

1

(n− 1)

)
= exp(−1) ≥ .36.

41

Input: X is a feasible matrix for (2)
Initialize u ∈ Rn, sampled from the n-dimensional standard Gaussian distribution
Compute V V T = X // Compute the Cholesky factorization of X
for i = {1, 2, ..., n} do

zi = sign(vT
i u), where vi is the i-th column of matrix V

return zu
Algorithm 4: Rounding Procedure GWRound(X)

Meanwhile, to analyze P {E2} we can use a Chernoff bound to see that whenever n > 3, we have
n > m > 2/3n, and consequently,

P {E2} = 1− P
{
|Xm ∩M | < n− 1

6

}
= 1− P

{
|Xm ∩M | < n

2m
· m(n− 1)

3n

}
= 1− P

{
|Xm ∩M | <

(
1− 2m− n

2m

)
· m(n− 1)

3n

}
≥ 1− exp

(
− (2m− n)2

2(2m)2
m

6

)
= 1− exp

(
− (n− 2)2

8(n− 1)2
(n− 1)

6

)
= 1− exp

(
− (n− 2)2

48(n− 1)

)
.

where, in the fourth line, we substituted m
n · n−1

3 ≥ m
n

n
6 = m

6 . Then, whenever n ≥ 51, we have
that the argument in the exponential is at least 1. Hence,

P {E1 ∧ E2} ≥ exp(−1) (1− exp(−1)) > .23.

So, the lemma follows by a union bound.

E.3 Omitted Proofs from Section 3.1

This section provides omitted proofs relating to our results and discussions on the GW algorithm.

The following lemma shows that GW SDP attains strong duality, included here for completeness.

Lemma E.11. The GW SDP relaxation of the max-cut problem (Equation (2)) and its dual problem
(Equation (3)) attain strong duality.

Proof. Notice that any PSD matrix X ∈ Rn×n with 1 on the diagonal is feasible to Equation (2).
Thus, we can find at least two distinct feasible solutions to Equation (2). Any convex combination of
the two is a solution in the non-empty interior of the primal.

To find a feasible solution of the dual, notice that we can always choose yi = 2
∑

j wi,j + λ where
λ > 0 to make the matrix S =

∑n
i=1

(
eie

T
i

)
yi − L a diagonally dominant matrix as shown below:

Si,i = 2
∑
j

wi,j + λ−
∑
j

wi,j =
∑
j

wi,j + λ ≤
∑
j

|wi,j | .

Any diagonally dominant matrix is PSD. We choose distinct λ1 and λ2 to construct feasible y1 and y2.
Any convex combination of y1 and y2 is a solution in the non-empty interior set of the dual problem.
Because both primal and dual problems are feasible and have interiors, by Slater’s condition, strong
duality holds.

42

Lemma E.12. Suppose we have a graph G = (V,E,w). Let St ⊂ V . Let y∗ be the optimal solution
to the dual problem (3) induced by G. Let ȳi = y∗i −

∑
k∈V \St

wik. Then ȳ is a feasible solution to
the dual problem induced by G[St].

Proof. Let the set of node V in G be indexed with St as its first t elements. The optimal objective
value of SDP does not depend on the node indexing, nor does the dual objective value (by strong
duality).

Let y∗ be the optimal dual solution. It satisfies the following dual constraint:

n∑
i=1

(
eiei

T
)
y∗i − 1

4
LG ⪰ 0,

where ei ∈ Rn denotes the all-zero vector with 1 on index i. Therefore, eieiT is the all-zero matrix
with 1 on the (i, i) index. In other words,

∑n
i=1

(
eiei

T
)
y∗i is the diagonalization of the vector y∗.

Let Lt
G denote the t-th principle minor of LG, i.e. the upper left t-by-t sub-matrix of LG. To

distinguish between ei ∈ Rt and ei ∈ Rn, for the rest of the proof, we use en,i to denote the
the former n-dimensional vector and et,i to denote the latter t-dimensional vector. By Sylvester’s
criterion, because

∑n
i=1

(
en,ien,i

T
)
y∗i − 1

4LG ⪰ 0, we have that
∑t

i=1

(
et,iet,i

T
)
y∗i − 1

4L
t
G ⪰ 0.

Let LG[St] denote the Laplacian of G[St]. We thus have:

t∑
i=1

(
et,iet,i

T
)
y∗i − 1

4
LG[St] −

1

4

(
Lt
G − LG[St]

)
⪰ 0.

By the definition of Laplacian matrices, Lt
G and LG[St] are both t-by-t matrices with the same

off-diagonal values, as shown below:

Lt
G =


. . .

...
. . .

∑
k∈V wik wij . . .

wij
. . .

...
. . .

 , and LG[St] =


. . .

...
. . .

∑
k∈St

wik wij . . .

wij
. . .

...
. . .

 .

Moreover,
(
Lt
G − LG[St]

)
is a diagonal matrix with (i, i)-th element

∑
k∈V wik −

∑
k∈St

wik =∑
k∈V \St

wik. Thus, we have

t∑
i=1

(
et,iet,i

T
)
y∗i − 1

4
LG[St] −

1

4
(Lt

G − LG[St]) ⪰ 0

⇔
t∑

i=1

(
et,iet,i

T
)
y∗i − 1

4
LG[St] −

t∑
i=1

(
et,iet,i

T
) 1
4

∑
k∈V \St

wik ⪰ 0

⇔
t∑

i=1

(
et,iet,i

T
)y∗i − 1

4

∑
k∈V \St

wik

− 1

4
LG[St] ⪰ 0.

Let ȳi = y∗i − 1
4

∑
k∈V \St

wik. We have just shown that ȳ satisfies the constraint of the GW SDP
dual problem induced by G[St]. It is therefore a feasible solution to the GW SDP dual problem
induced by G[St].

Lemma E.13. Given G = (V,E,w), let St be a set of vertices with each node sampled from V
independently with probability t

n . The expected value of SDP(G[St]) can be upper-bounded by:

E
St

[SDP(G[St])] ≤
t

n
SDP(G)− t(n− t)

n2
· W
2
,

with W =
∑

e∈E we, i.e. the sum of all edge weights in G.

43

Proof. From Lemma E.12, we know that ȳ is a feasible SDP dual solution induced by G[St]. Let ŷ
be the optimal solution to Equation (3). Then, we have that for any St:

SDP(G[St]) =
∑
i∈St

ŷi ≤
∑
i∈St

ȳi.

Taking the expectation over the random sample St on both sides, we have:

E
St

[SDP(G[St])] = E
St

[∑
i∈St

ŷi

]
≤ E

St

∑
i∈St

y∗i − 1

4

∑
k∈V \St

wik


= E

St

∑
i∈V

1{i ∈ St}

y∗i − 1

4

∑
k∈V \St

wik


= E

St

[∑
i∈V

1{i ∈ St}y∗i

]
− E

St

∑
i∈V

1{i ∈ St}
1

4

∑
k∈V \St

wik

 .

Because each node in St is sampled independently with probability t/n, the probability that i ∈
St, k /∈ St is the product of probability that i ∈ St and k /∈ St, i.e. t(n−t)

n2 . We use this fact to finish
upper bounding ESt

[SDP(G[St])]:

E
St

[SDP(G[St])] ≤
∑
i∈V

P[i ∈ St]y
∗
i − E

St

[∑
i∈V

(
1{i ∈ St}

1

4

∑
k∈V

1{k /∈ St}wik)

)]

=
t

n

∑
i∈V

y∗i − 1

4

∑
i∈V

∑
k∈V

P[i ∈ St, k /∈ St]wik

=
t

n
SDP(G)− t(n− t)

n2
· W
2
,

with W =
∑

e∈E we, i.e. the sum of all edge weights in G.

Lemma E.14. Given G = (V,E,w), let St be a set of vertices with each node sampled from V
independently with probability t

n . The expected value of SDP(G[St]) can be lower-bounded by:

E
St

[SDP(G[St])] ≥
t2

n2
SDP(G).

Proof. Let the set of node V in G be indexed with St as its first t elements. The optimal objective
value of SDP does not depend on the node indexing. Let X∗ ∈ Rn×n denote the optimal solution for
SDP induced by G and X̂ ∈ R|St|×|St| denote the optimal solution for SDP induced by G[St]. Let
X∗

St
denote the |St|-th principle minor of X∗. By the Slater’s condition, X∗

St
is PSD. It is therefore a

feasible solution to the GW SDP induced by G[St]:
E
St

[SDP(G[St])] = E
St

[LG[St] ·XSt
] ≥ E

St

[LG[St] ·X
∗
St
].

We re-write the objective value in terms of the Cholesky decomposition of X∗, which we denote by
v∗
i for all i ∈ V . Note that X∗

ij = v∗T
i v∗

j :

E
St

[SDP(G[St])] ≥ E
St

[LG[St] ·X
∗
St
]

= E
St

1
2

∑
i,j∈St

wij(1− v∗T
i v∗

j)


= E

St

1
2

∑
(i,j)∈E

1{i ∈ St, j ∈ St}wij(1− v∗T
i v∗

j)

 .

44

By independence of the sampling of nodes i and j, we have:

E
St

[SDP(G[St])] ≥
1

2

∑
(i,j)∈E

P[i ∈ St, j ∈ St]wij(1− v∗T
i v∗

j)]

= P[i ∈ St, j ∈ St]SDP(G) =
t2

n2
SDP(G).

Theorem 3.1. Given G = (V,E,w), let St be a set of vertices with each node sampled from V
independently with probability t

n . Let W =
∑

(i,j)∈E wij . Then∣∣∣ 1
t2

E
St

[SDP(G[St])]−
1

n2
SDP(G)

∣∣∣ ≤ n− t

n2t

(
SDP(G)− W

2

)
.

Proof. Combining Lemma E.13 and Lemma E.14 and basic algebraic manipulation gives us this
result.

Theorem 3.1 gives us a size generalization bound in expectation over the draw of St. We are also
interested in whether it is possible to attain a bound with probability over one draw of St. To do so,
we first introduce the McDiarmid’s Inequality.

Theorem E.15 (McDiarmid’s Inequality). Let f : χ1 × χ2 × ...× χn → R satisfy:

sup
x′
i∈χi

|f(x1, ..., xi, ...xn)− f(x1, ..., x
′
i, ...xn)| ≤ ci.

Then consider independent r.v. X1, X2, ..., Xn where Xi ∈ χi for all i. For ϵ > 0,

P[|f(X1, ..., Xn)− E[f(X1, ..., Xn)]| ≥ ϵ] ≤ 2 exp

(
− 2ϵ2∑n

i=1 c
2
i

)
.

We wish to apply McDiarmid’s inequality to provide a high probability bound for how different
SDP(G[St]) can be from E[SDP(G[St])]. In order to do so, we consider SDP(·) as a function of a
list of indicator variables, say y1, ..., yn ∈ {0, 1}n, indicating whether node i is in subsample St. We
need a result that bound the maximum change in objective value if we add a node i /∈ St to St or
delete a node j ∈ St from St. The following lemma states that this maximum change in objective
can at most be the degree of the node added or deleted.

Lemma E.16. Suppose we have a graph G = (V,E) with n = |V |. Let S ⊆ V be a subset of nodes
and k ∈ S. Let S′ = S \ {k}. Then,

|SDP(G[S])− SDP(G[S′])| ≤ deg(k).

By a symmetric argument, let k ∈ V and k /∈ S. Let S′ = S + {k}. Then we also have

|SDP(G[S])− SDP(G[S′])| ≤ deg(k).

Proof. Note that by a symmetric argument, the change in the SDP objective value after adding a
node is the same as the change in the SDP objective value after deleting a node (those are the same
argument with the definition of S and S′ flipped). Thus, it is sufficient to prove the first part of the
statement assuming S has node k and S′ does not.

We first show that SDP(G[S]) ≥ SDP(G[S′]). GW SDP is permutation invariant, so suppose k
is indexed last in the set of nodes S. Let t = |S|. Let X ∈ Rt×t be the optimal SDP solution
induced by G[S] and X ′ ∈ R(t−1)×(t−1) the optimal solution induced by G[S′]. Padding X ′ with 1
on Xtt and 0 off-diagonal on the t-th dimension results in a feasible solution for GW SDP induced
by G[S], because a block-diagonal matrix in which each block is PSD is also PSD (by Cramer’s

45

rule). Therefore, we know that adding a node will only increase the objective value of SDP, i.e.
SDP(G[S]) ≥ SDP(G[S′]). Thus,

|SDP(G[S])− SDP(G[S′])| =SDP(G[S])− SDP(G[S′]).

We notice that the (t − 1)-th principal minor of X is a feasible solution to the GW SDP problem
induced by G[S′] (because it is PSD and has 1 on the diagonal). Because X ′ is the optimal solution
to the GW SDP objective induced by G[S′],

SDP(G[S′]) =
∑

(i,j)∈ES′

1

2
wij(1− x′

ij) ≥
∑

(i,j)∈ES′

1

2
wij(1− xij).

Applying those facts, we can show that

|SDP(G[S])− SDP(G[S′])| =SDP(G[S])− SDP(G[S′])

=
∑

(i,j)∈ES

1

2
wij(1− xij)−

∑
(i,j)∈ES′

1

2
wij(1− x′

ij)

≤
∑

(i,j)∈ES

1

2
wij(1− xij)−

∑
(i,j)∈ES′

1

2
wij(1− xij).

Let ES be the set of edges in G[S] and ES′ be the set of edges in G[S′]. Because the set S′ contains
all nodes in S except for the node k, we know that the edge set ES′ contains all edges in ES

except {(i, k) ∈ ES : i ∈ V }, thus we can split the sum over ES to two parts, ES′ and the set
{(i, k) ∈ ES : i ∈ V }:

SDP(G[S])− SDP(G[S′]) =

 ∑
(i,j)∈ES′

1

2
wij(1− xij) +

∑
(i,k)∈ES

1

2
wik(1− xik)


−

∑
(i,j)∈ES′

1

2
wij(1− xij)

=
∑

(i,k)∈ES

1

2
wik(1− xik)

≤
∑

(i,k)∈ES

wik = deg(k).

With Lemma E.16 and Lemma 3.1, we can put together a size generalization result for SDP with
probability over the draw of St.
Theorem E.17. Given G = (V,E), let St be a set of vertices with each node sampled from V
independently with probability t

n . With probability 1− δ over the draw of St,∣∣∣∣ 1n2
SDP(G)− 1

t2
SDP(G[St])

∣∣∣∣ ≤ n− t

n2t

(
SDP(G)− |E|

2

)
+

√
n3

t4
log

(
2

δ

)
.

Proof. By McDiarmid’s Inequality, we have that

P[|SDP(G[St])− E[SDP(G[St])]| ≥ ϵ] ≤ 2 exp

(
− 2ϵ2∑n

i=1 deg(i)
2

)
.

We can upper bound the sum of weighted degrees over all nodes by

46

n∑
i=1

deg(i)2 ≤
n∑

i=1

(n− 1) deg(i) = (n− 1)|E|.

Thus, we can also rewrite the upper bound as

P [|SDP(G[St])− E[SDP(G[St])]| ≥ ϵ] ≤ 2 exp

(
− ϵ2

(n− 1)|E|

)
.

We now combine this and the expectation bound for SDP size generalization: with probability
1− 2 exp

(
− ϵ2

|E|(n−1)

)
,∣∣∣∣ 1n2

SDP(G)− 1

t2
SDP(G[St])

∣∣∣∣ ≤ ∣∣∣∣ 1n2
SDP(G)− 1

t2
E[SDP(G[St])]

∣∣∣∣
+

∣∣∣∣ 1t2 E[SDP(G[St])]−
1

t2
SDP(G[St])

∣∣∣∣
≤ n− t

n2t
(SDP(G)−W) +

ϵ

t2
.

We set

δ = 2 exp

(
− ϵ2

(n− 1)|E|

)
⇔ log

(
δ

2

)
= − ϵ2

(n− 1)|E|

⇔ ϵ2 = (n− 1)|E| log
(
2

δ

)
≤ (n− 1)2n log

2

δ
.

Thus, with probability 1− δ,∣∣∣∣ 1n2
SDP(G)− 1

t2
SDP(G[St])

∣∣∣∣ ≤ n− t

n2t
(SDP(G)−W) +

ϵ

t2

≤ n− t

n2t
(SDP(G)−W) + n3/2 log

2

δ
· t−2

=
n− t

n2t
(SDP(G)−W) +

n3/2

t2

√
log

(
2

δ

)
.

Below, we generalize Theorem E.17 to apply to weighted graphs.
Theorem E.18. Given G = (V,E,w), let St be a set of vertices with each node sampled from V
independently with probability t

n . Let W =
∑

e∈E we. With probability 1− δ over the draw of St,∣∣∣∣ 1n2
SDP(G)− 1

t2
SDP(G[St])

∣∣∣∣ ≤ n− t

n2t

(
SDP(G)− |E|

2

)
+

W

t2

√
log

(
2

δ

)
.

Proof. We modify the previous proof slightly to get this result. In the weighted version, we upper
bound the sum of the weighted degrees squared by

n∑
i=1

deg(i)2 ≤ max
i

deg(i)

n∑
i=1

deg(i) = W

n∑
i=1

deg(i) ≤ W 2.

This is tight because we can imagine allocating all edge weights to the neighboring edges of just one
node.

The rest of the calculation follows that in the proof of Theorem E.17.

47

Lemma E.19. For any n ≥ 2, there exists a graph Gn on n vertices with distinct optimal so-
lutions Xn ̸= Yn to Equation (2) and a constant C > 0 such that LGn · Xn = LGn · Yn but
|E[weightGn

(GWRound(Xn))]− E[weightGn
(GWRound(Yn))]| ≥ Cn.

Proof. Let Gn with n = {2, 4, 6, 8, ...} be unweighted complete graphs with n vertices. Let Xn ∈
Rn×n be a n× n matrix with 1 on the diagonal and − 1

n−1 off the diagonal. Let

Yn =


1
−1
1
−1
...

 · [1 −1 1 −1 ...] ∈ Rn×n.

We start by verifying that both Xn and Yn are optimal solutions through finding their dual optimal
certificates that satisfy the KKT condition. Let zx = [n/4, ..., n/4]T ∈ Rn. We check that this is a
valid dual certificate for KKT condition:

• Dual feasibility: diagzx − 1
4LGn

is the all 1
4 matrix in Rn×n, therefore also PSD, satisfying

dual feasibility.

• Same objective value:
∑

i∈[n] zxi =
n2

4 = 1
4LGn

·Xn.

• Complementary slackness: Tr ([diagzx − LGn
]Xn) = 0.

• Primal feasibility: Xn is PSD and has 1 on the diagonal.

Therefore, we have a valid dual certificate for the optimality of Xn–Xn is the optimal solution for
GW SDP induced by Gn.

We check the same thing for Yn, Let zy = [n/4, ..., n/4]T ∈ Rn. Notice that since we are
using the same dual certificate, we do not need to check for dual feasibility anymore. Because
LGn

·Xn = LGn
· Yn, we also won’t need to check that the objective values match. We only check

that:

• Complementary slackness: Tr ([diagzy − LGn
]Yn) =

∑
i∈V zyi − n(n − 1) + 1 ·

2(n/2)(n/2− 1) + (−1) · (n/2)2 = 0.

• Primal feasibility: Yn is PSD and has all 1 on the diagonal.

Hence, Yn is also optimal.

However, we see that the expected value of GW using those two solutions differ by a gap that does
not close as n → ∞:

E[GW(Y)]− E[GW(X)] =
1

π
·
∑
e∈E

arccos(Ye)− arccos(Xe)

=
1

π
· 1
2
· n

2

2
arccos(−1)− 1

π
· n(n− 1)

2
· arccos

(
− 1

n− 1

)
=

n2

4
− n(n− 1)

2π
arccos

(
− 1

n− 1

)
→ π − 2

4π
n as n → ∞

Hence, choose C = π−2
4π , we have proven the statement.

Theorem 3.3. Given G = (V,E,w), let St be a set of vertices with each node sampled from V
independently with probability t

n . Then, for ϵSDP = n−t
n2t

(
SDP(G)− W

2

)
, we have

1

n2
weightG (GW(G)) ∈

[0.878
t2

E
St

[SDP(G[St])]− 0.878ϵSDP,
1

t2
E
St

[SDP(G[St])]
]
.

48

Proof. We start by lower bounding 1
n2weightG (GW(G)) using the fact that for any graph G,

0.878SDP(G) ≤ weightG (GW(G)):
1

n2
weightG (GW(G)) ≥ 0.878

n2
SDP(G)

=

(
0.878

n2
SDP(G) +

0.878

t2
E
St

[SDP(G[St])]

)
− 0.878

t2
E
St

[SDP(G[St])]

=
0.878

t2
E
St

[SDP(G[St])]− 0.878ϵSDP.

We then upper bound 1
n2weightG (GW(G)) using the fact that for any graph G, weightG (GW(G)) ≤

SDP(G):
1

n2
weightG (GW(G)) ≤ 1

n2
SDP(G)

=
1

n2
SDP(G) +

1

t2
E
St

[SDP(G[St])]−
1

t2
E
St

[SDP(G[St])]

=
1

t2
E
St

[SDP(G[St])] +

(
1

n2
SDP(G)− 1

t2
E
St

[SDP(G[St])]

)
≤ 1

t2
E
St

[SDP(G[St])]).

E.4 Omitted Proofs from Section 3.2

Input: Max-cut instance G = (V,E); |V | = n, σ sampled uniformly from Σn

for t = {1, 2, ..., n} do
Place each node σ[t] on the side that maximizes the number of crossing edge
Set zσ[t] be 1 or −1 according to node placement

Return: z
Algorithm 5: Greedy(G)

E.4.1 Notations and preliminaries

Although there are many variants of the Greedy algorithm for max-cut ([25], [60], [64]), we focus on
the implementation in Algorithm 5 as it is perhaps the most canonical and illustrative. For the greedy
algorithm, we use a 2n2-dimensional vector x to describe a cut: let i ∈ {1, 2} denote the 2 sides of
the cut, t denote the node placement time step, then

xt
iv =


1 if node v is placed on the side i at time step t.

0 if node v is not placed on the side i at time step t

0 if node v has not been placed at time step t.

Intuitively, we can view our max-cut problem as a problem of trying to maximize the number of
crossing edges (or minimize the number of non-crossing edges) where a crossing edge is an edge e =
{u, v} such that u is on side i and v is on side j. Let au1,i1,u2,i2 = 1/2 if (u1, u2) ∈ E and i1 = i2
and 0 otherwise. Then the objective function z can be formulated as:

z(x) =
∑

1≤u1,u2≤n
i1,i2∈{1,2}

au1,i1,u2,i2xu1,i1xu2,i2 .

Let a′u1,i1,u2,i2
= 1/2 if (u1, u2) ∈ E and i1 ̸= i2 and 0 otherwise. Another way to formulate the

objective function is as follows:

w(x) =
∑

1≤u1,u2≤n
i1,i2∈{1,2}

a′u1,i1,u2,i2xu1,i1xu2,i2 .

49

It will be useful for later calculations to define w(x) = A′(x,x), with A′(x,x) defined as:

A′(x(1),x(2)) =
∑

1≤u1,u2≤n
i1,i2∈{1,2}

a′u1,i1,u2,i2x
(1)
u1,i1

x
(2)
u2,i2

.

Notice that z(x) is the sum of weights of the non-crossing edges in cut x, and if both sides of an
edge are not placed, this edge will also be counted as non-crossing.

Let b(x) of dimension 2n denote the partial derivative of z(x) and b′(x) denote the partial derivative
of w(x). Since bu1,i1 =

∑
u2,i2

au1,i1,u2,i2xu2,i2 , we can see that bu,i denote the increase in z(xu,i)
if we were to increase xu,i from 0 to 1. Thus, we define the greedy step gu,i as follows:

gtu,i =


1 if i = argmini bu,i(x

t−1) or argmaxi b
′
u,i((x

t−1)

0 if i = argmaxi bu,i((x
t−1) or argmini b

′
u,i((x

t−1)

0 if i is not yet considered or has been considered
.

And finally, we define the fictitious cut:

Definition E.20. (Mathieu and Schudy [64]) The fictitious cut x̂t
u of a partial cut xt

u is defined as

x̂t
u =

{
xt
u if u is placed before time step t

1
t

∑t−1
τ=0 g

τ
v otherwise.

Notice that w(·) is the same function as weightG (·). We will be proving the size generalization result
using w(·) as our objective, but [64] uses z(·) as the max-cut objective throughout their paper. Some
of their results written in terms of z(·) are not directly transferrable to be a result written in terms of
w(·). Thus, if we use those results from [64], we will explicitly provide proofs for them.

E.4.2 Proof of Theorem 3.4

Proof of Theorem 3.4 can be divided into two parts. In the first part, we prove that the difference
between fictitious cut at time step t > t0 and t0 is bounded. Then, we show that the normalized
difference between a fictitious cut and the actual cut at time step t is bounded.

The following lemma says that taking one time step, the change in fictitious cut shall be bounded by
the difference in b-values, i.e., the partial derivative of the cut value.

Lemma E.21 (Lemma 2.2 in [64]).

E[z(x̂t)− z(x̂t−1)] =
4n2

t2
+ 2

n

t(n− t+ 1)
E
[∣∣∣b(x̂t−1)− b

(n
t
xt−1

)∣∣∣
1

]
∀t

Lemma E.22 (Lemma 2.6 in [64]). Bt
vi =

∣∣∣ t
n−t

(
bvi(x̂

t)− bvi(
n
t x

t)
)∣∣∣ is a martingale with step

size bounded by 4n
n−t .

Lemma E.22 does not exactly agree with the statement of Lemma 2.6 in [64], we have it under
absolute value here because though [64] doesn’t have it in their statement, they proved everything
under an absolute value sign. Using it, we show the following lemma:

Lemma E.23. For every t, we have E
[∣∣b(x̂t−1)− b

(
n
t (x

t−1
)∣∣

1

]
= O(σ), where σ = O

(
n2
√
t

)

Proof. Because Bt
vi =

∣∣∣ t
n−t

(
bvi(x̂

t)− bvi(
n
t x

t)
)∣∣∣ is a martingale step size bounded by 4n

n−t , we

know that t
n−t

∣∣b(x̂t−1)− b
(
n
t x

t−1
)∣∣

1
is a martingale with step size bounded by 4n2

n−t .

We apply Azuma-Hoeffding’s inequality:

50

P
[∣∣∣b(x̂t−1)− b

(n
t
xt−1

)∣∣∣
1
≥ λ

]
= P

[
t

n− t

∣∣∣b(x̂t−1)− b
(n
t
xt−1

)∣∣∣
1
≥ t

n− t
λ

]
≤ 2exp

(
− λ2t2/(n− t)2

32n4t/(n− t)2

)
≤ 2exp

(
− λ2t

32n4

)

Let σ = O
(

n2
√
t

)
, then we shall have:

P
[∣∣∣b(x̂t−1)− b

(n
t
xt−1

)∣∣∣
1
≥ λ

]
≤ 2exp

(
−λ2

σ2

)

With Lemma E.21 and Lemma E.23, we are now ready to bound the difference between the fictitious
cuts given two distinct time steps.

Lemma E.24. For every t ≥ t0, we have E[z(x̂t)]− E[z(x̂t0)] = O
(

n2
√
t0

+ n1.5(1− log(t))
)

Proof.

E[z(x̂t)]− E[z(x̂t0)] =

t∑
τ=t0+1

E[z(x̂τ)− z(x̂τ−1)]

=

t∑
τ=t0+1

4n2

τ2
+ 2

n

τ(n− τ + 1)
E
[∣∣∣b(x̂τ−1)− b

(n
τ
(xτ−1

)∣∣∣
1

]
=

t∑
τ=t0+1

4n2

τ2
+ 2

n

τ(n− τ + 1)
O

(
n2

√
τ

)
(5)

The second equality uses Lemma E.21 and the third equality uses Lemma E.23. Now we look at the
first term and the second term of (5) separately. The first term of (5) can be bounded by:

t∑
τ=t0+1

4n2

τ2
≈ 4n2

(∫ t

τ=1

1

τ2
dτ −

∫ t0

τ=1

1

τ2
dτ

)
= 4n2

(
1

t0
− 1

t

)

The second term of (5) can be bounded by:

51

t∑
τ=t0+1

2
n

τ(n− τ + 1)
O

(
n2

√
τ

)
= 2n2O

(
t∑

τ=t0+1

n

τ1.5(n− τ + 1)

)

= 2n2 ·O

 n/2∑
τ=t0+1

n

τ1.5(n− τ + 1)
+

t∑
τ=n/2

n

τ1.5(n− τ + 1)


≤ 2n2 ·O

 n/2∑
τ=t0+1

1

τ1.5
+

t∑
τ=n/2

1

τ0.5(n− τ + 1)


≤ 2n2 ·O

 n/2∑
τ=t0+1

1

τ1.5
+

1√
n/2

t∑
τ=n/2

1

n− τ + 1


≈ 2n2 ·O

(∫ n/2

τ=t0+1

1

τ1.5
dτ +

1√
n/2

∫ t

τ=n/2

1

n− τ + 1
dτ

)

= 2n2 ·O

(
1√

t0 + 1
− 1√

n/2
+

1√
n/2

(log(t)− log(n/2))

)

= O

(
n2

√
t0

+ n1.5(log(t)− 1)

)
Therefore,

E[z(x̂t)]− E[z(x̂t0)] ≤ O

(
n2

t0
+

n2

√
t0

− n1.5(log(t)− 1)

)
= O

(
n2

√
t0

+ n1.5(log(t)− 1)

)

We show that the same result holds for the other objective w(·):

Lemma E.25. For every t ≥ t0, we have E[w(x̂t)]− E[w(x̂t0)] = O
(

n2
√
t0

+ n1.5(log(t)− 1)
)

Proof. Notice that for any fictitious cut x̂t, w(x̂t) + z(x̂t) = |E|. Therefore,

E[z(x̂t)]− E[z(x̂t0)] = E[z(x̂t)− z(x̂t0)]

= E[|E| − w(x̂t)− (|E| − w(x̂t0))]

= E[w(x̂t0)− w(x̂t)]

= O

(
n2

√
t0

+ n1.5(log(t)− 1)

)

Now we have a bound on the change of fictitious cut weight from one time step to another. We will
now bound the normalized difference between a fictitious cut weight and the actual cut weight at a
fixed time step.

We start by stating the following facts:
Lemma E.26 (Lemma 3.4 and 3.5 in [64]). For any σ ≥ 0, let C(σ) = {X|λ > 0,P[X ≥ σ+ λ] ≤
e−λ2/σ2}. Let σ and α by positive constant and X and Y be random variables. Then:

52

• If X ∈ C(σ), then αX ∈ C(ασ)

• If X ∈ C(σ) and Y ≤ X , then Y ∈ C(σ)

• The random variable with constant value σ is in C(σ)

• If X ∈ C(σx) and Y ∈ C(σy), then X + Y ∈ C(σx + σy)

Then, we show that B′t
vi is also a martingale.

Lemma E.27 (Lemma 2.5 in [64]). Zt
v = t

n−t (x̂)t
t − (n/t)xt

v) is a martingale.

Lemma E.28. B′t
vi =

∣∣∣ t
n−t

(
b′vi(x̂

t − b′vi(
n
t x

t)
)∣∣∣ is a martingale with step size bounded by 4n

n−t .

Proof. Let i1, i2 ∈ {1, 2}. Because b′u1,i1
=
∑

u2,i2
a′u1,i1,u2,i2

xu2,i2 , B′t
vi is a martingale following

Lemma E.27 by linearity. We also bound the step size by linearity with Zt
u, which would be at most

4n
n−t .

Lemma E.29 (Lemma 3.6 in [64] in terms of w(x)). For a fixed cut y

P
[∣∣∣w (n

t
xt
(y)

)
− w

(
x̂t
(y)

)∣∣∣ ≥ σ + λ
]
≤ e

−λ2

σ2

where

σ =
n2

√
t

Proof. Let F ′
t = w

(
n
t x

t
(y)

)
− w

(
x̂t
(y)

)
. Define x̄ = t

n x̂
t
(y). We can show that (drop t in the next

chunk of calculation for simplicity)

F ′ = w
(n
t
x(y)

)
− w

(
x̂(y)

)
=
(n
t

)2 ∑
u1,i1,u2,i2

a′u1,i1,u2,i2(xu1,i1xu2,i2 − x̄u1,i1 x̄u2,i2)


=
(n
t

)2
(n− t)A′(

x− x̄

n− t
, (x+ x̄)

Let D′t = A′(x
t−x̄t

n−t ,xt + x̄t)−A′(x
t−1−x̄t−1

n−t ,xt−1 + x̄t−1), then

A′(
xt − x̄t

n− t
,xt + x̄t) =

t∑
τ=1

(Dτ − E[Dτ |St−1]) +

t∑
τ=1

E[Dτ |St−1]

By Lemma E.26, it is sufficient to show each of these two terms in C
(
O
(

n2
√
t

))
.

The first term is a martingale with step O(t
n−t) because, at each time step, there could be at most a

change of t in objective value (in that case node σ[t] has t outgoing edges connecting to nodes that
have been placed and all of them are placed so that all edges are added to the cut). We can apply
Azuma-Hoeffding’s inequality knowing the step size and in that case σ = 2t3

(n−t)2 . When both t > n
2

and t < n
2 , we can show that 2t3

(n−t)2 is dominated by O
(
n2
√

n−t
tn

)
and thus by O

(
n2
√
t

)
simply

because
√

n−t
n ≤ 1.

The second term can be re-written as:

53

A′
(xt − x̄t

n− t
− xt−1 − x̄t−1

n− t+ 1
,xt−1 + x̄t−1

)
+A′

(
xt−1 − x̄t−1

n− t+ 1
,xt + x̄t + xt−1 + x̄t−1

)
+A′

(xt − x̄t

n− t
− xt−1 − x̄t−1

n− t+ 1
,xt + x̄t + xt−1 + x̄t−1

)
(6)

Notice that if we expand the first term of (6), each element indexed by u, i is a martingale difference
xt−x̄t

n−t −xt−1−x̄t−1

n−t+1 times a constant (because we are conditioning on St−1), and martingale difference
has an expected value of zero. The third term is bounded by O(t

n−t).

The second term of (6) we can rewrite as:

A′
(
xt−1 − x̄t−1

n− t+ 1
,xt + x̄t + xt−1 + x̄t−1

)
=

t

n(n− t)

(
xt + x̄t + xt−1 + x̄t−1

)(
b′(x̂t)− b′(

n

t
xt)
)

By Lemma E.28, we know that
∣∣b(x̂t−1)− b

(
n
t (x

t−1
)∣∣

1
∈ C(O(n2/

√
t)).

Now that every thing is in C(O(n2/
√
t)), by Lemma E.26, we have that

∣∣∣w (n
t x

t
(y)

)
− w

(
x̂t
(y)

)∣∣∣ ∈
C(O(n2/

√
t)).

Lemma E.30. For a fixed y,

E
[
max
y∈Y

∣∣∣w (n
t
xt
(y)

)
− w

(
x̂t
(y)

)∣∣∣] = O(σ)

where σ = O(n2/
√
t)

Proof. Using Lemma E.29, we integrate P
[∣∣∣w (n

t x
t
(y)

)
− w

(
x̂t
(y)

)∣∣∣ ≥ σ
]

over λ = 0 to ∞, which
gets us O(σ).

Theorem 3.4. Given an unweighted graph G = (V,E), let St be t vertices sampled from V uniformly
without replacement. For any ϵ ∈ [0, 1] and t ≥ 1

ϵ2 ,∣∣∣ 1
n2

E[weightG (Greedy(G))]− 1

t2
E[weightG[St] (Greedy(G[St]))]

∣∣∣ ≤ O
(
ϵ+

log(t)√
n

)
.

Proof.∣∣∣∣ 1n2
E[w(xn)]− 1

t2
E[w(xt)]

∣∣∣∣ = ∣∣∣∣E [1

n2
w(xn)− 1

t2
w(xt)

]∣∣∣∣
=

∣∣∣∣E [1

n2
w(x̂n)− 1

t2
w(xt)

]∣∣∣∣
≤
∣∣∣∣E [1

n2
w(x̂n)− 1

n2
w(x̂t)

]∣∣∣∣+ ∣∣∣∣E [1

n2
w(x̂t)− 1

t2
w(xt)

]∣∣∣∣
=

1

n2

(∣∣E [w(x̂n)− w(x̂t)
]∣∣+ ∣∣∣E [w(x̂t)− w(

n

t
xt)
]∣∣∣)

By lemma E.25, we can bound the first term by∣∣E [w(x̂n)− w(x̂t)
]∣∣ ≤ Eσ

[
|w(x̂n)− w(x̂t)|

]
≤ O

(
n2

√
t
+ n1.5(log(t)− 1)

)

54

Let y∗ be the cut found on the first t element of σ by algorithm 5. By lemma E.30, we can bound the
second term by

∣∣∣E [w(x̂t)− w(
n

t
xt)
]∣∣∣ = E

[∣∣∣w(x̂t
(y∗))− w(

n

t
xt
(y∗))

∣∣∣] = O

(
n2

√
t

)
Combining the results above gives us:

∣∣∣∣ 1n2
E[w(xn)]− 1

t2
E[w(xt)]

∣∣∣∣ ≤ 1

n2
O

(
n2

√
t
+ n1.5(log(t)− 1)

)
= O

(
1√
t
+

1√
n
(log(t)− 1)

)
= O

(
1√
t
+

log(t)√
n

)
Lastly, we solve for the sample complexity bound. Set ϵ ≥ 1√

t
, then when t ≥ 1

ϵ2 , we get

∣∣∣∣ 1n2
E[w(xn)]− 1

t2
E[w(xt)]

∣∣∣∣ ≤ O

(
ϵ+

log(t)√
n

)

55

	Introduction
	Our contributions
	Additional related work
	General notation

	Size generalization for clustering algorithm selection
	k-Means++ and k-Centers clustering
	Single-linkage clustering

	Max-cut
	The Goemans-Williamson (GW) algorithm
	The greedy algorithm

	Experiments
	Conclusion
	Appendix
	Code Repository
	Key Challenges and Additional Related Work
	Additional related work
	Illustrations of key challenges

	Additional Experiment
	Additional Max-Cut Results
	Additional Discussion of Clustering Results
	An adaptive subsampling scheme for algorithm selection

	Additional Theoretical Discussion
	Sample complexity bound for MCMC k-means++
	Additional discussion of single linkage results from Section 2.2

	Omitted Proofs
	Omitted Proofs from Section 2.1
	Omitted Proofs from Section 2.2
	Omitted Proofs from Section 3.1
	Omitted Proofs from Section 3.2

