
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Fair Clustering for Data Summarization:
Improved Approximation Algorithms and Complexity Insights

Anonymous Author(s)
∗

Abstract

Data summarization tasks are often modeled as 𝑘-clustering prob-

lems, where the goal is to choose𝑘 data points, called cluster centers,

that best represent the dataset by minimizing a clustering objective.

A popular objective is to minimize the maximum distance between

any data point and its nearest center, which is formalized as the

𝑘-center problem. While in some applications all data points can

be chosen as centers, in the general setting, centers must be chosen

from a predefined subset of points, referred as facilities or suppliers;

this is known as the 𝑘-supplier problem. In this work, we focus on

fair data summarization modeled as the fair 𝑘-supplier problem,

where data consists of several groups, and a minimum number of

centers must be selected from each group while minimizing the

𝑘-supplier objective. The groups can be disjoint or overlapping,

leading to two distinct problem variants each with different com-

putational complexity.

We present 3-approximation algorithms for both variants, im-

proving the previously known factor of 5. For disjoint groups, our

algorithm runs in polynomial time, while for overlapping groups,

we present a fixed-parameter tractable algorithm, where the expo-

nential runtime depends only on the number of groups and centers.

We show that these approximation factors match the theoretical

lower bounds, assuming standard complexity theory conjectures.

Finally, using an (anonymous) open-source implementation, we

demonstrate the scalability of our algorithms on large synthetic

datasets and assess the price of fairness on real-world data, com-

paring solution quality with and without fairness constraints.

CCS Concepts

• Theory of computation→ Approximation algorithms analysis;
Facility location and clustering; Fixed parameter tractability.

Keywords

Algorithmic fairness, Fair clustering, Responsible computing

1 Introduction

Data summarization is a fundamental problem for extracting in-

sights from web data or other sources. Algorithmic fairness in

data summarization is essential to ensure that the insights derived

from the data are unbiased and accurately represent diverse groups.

Consider, for example, a web image search for the term “CEO.” An

algorithmically-fair result should display a small subset of images of

CEOs that accurately represent the population demographics. The

summarization task can be modeled as an instance of the 𝑘-center
problem (𝑘-Center), where images are data points and distances

between images represent their dissimilarity. We need to find a

subset of 𝑘 data points—called cluster centers—that minimize the

maximum distance from the data points to their closest center.

These chosen cluster centers are then displayed as search results.

A case of algorithmic bias is well documented when for the

search query “CEO”, Google Images returned a much higher pro-

portion of male CEOs compared to the real-world ratio [20]. To

address such bias, Kleindessner et al. [21] introduced the fair 𝑘-
center problem, where constraints are imposed to ensure that a

minimum number of cluster centers of each demographic group

are chosen. For example, if 70% of CEOs in the real-world are male,

then for the search query “CEO” that returns ten images, about

three should feature images of female CEOs. Additionally, it is pos-

sible that some images are of poor quality or contain inappropriate

content and must be excluded from the search results. This con-

sideration leads to the fair 𝑘-supplier problem (Fair-𝑘-Sup), where

the cluster centers must be chosen from a specific subset of data

points—called facilities or suppliers—while ensuring fair represen-

tation across groups and minimizing the maximum distance from

the data points to their closest cluster center [6].

Much of the literature on fair clustering considers the demo-

graphic groups to be disjoint. However, this assumption is not

realistic in modeling the real-world, where individuals belong to

multiple groups, such as being non-binary, from minority ethnic

groups, and/or economically disadvantaged, thus, forming intersect-
ing demographic groups. Ignoring group intersections often over-

look crucial nuances introduced by these intricacies and research

has shown that intersecting groups often face greater algorithmic

discrimination; for example, algorithms were less accurate for black

women than for either black people or women individually [19].

To address intersectionality in clustering problems, Thejaswi et al.

[24, 25] introduced fair clustering problems, where demographic

groups may overlap, and a minimum number of cluster centers

must be chosen from each group while minimizing a clustering

objective, either 𝑘-median or 𝑘-means.
1

Thejaswi et al. [24, 25] highlight that group intersectionality in-

creases the computational complexity of fair clustering significantly.

They prove that the problem is inapproximable to any multiplica-

tive factor in polynomial time and show inapproximability even in

special cases, such as when each group has exactly two facilities,

when the underlying metric is a tree, and even when allowed to

select 𝑓 (𝑘) cluster centers (for any computable function 𝑓) when

asked for 𝑘 cluster centers. On a positive note, for intersecting fa-

cility groups, they presented fixed parameter tractable algorithms

(FPT),2 yielding ≈ (1 + 2

𝑒)-approximation for Fair-k-Median and

≈ (1 + 8

𝑒)-approximation for Fair-k-Means. Although [24, 25]

1
Thejaswi et al. refers to clustering problems with intersecting facility groups as

diversity-aware clustering, as they study the problem in the context of improving

diversity in clustering.

2
A problem Π is fixed-parameter tractable (FPT) with respect to a parameter 𝑘 if, for

every instance (𝑋,𝑘) ∈ Π, there exists an algorithmwith runtime 𝑓 (𝑘) ·poly(|𝑋 |, 𝑘) ,
where 𝑓 depends only on 𝑘 and poly(|𝑋 |, 𝑘) is a polynomial function. The function

𝑓 (𝑘) is necessarily super-polynomial for NP-hard problems (assuming 𝑃 ≠ 𝑁𝑃),

but allows efficient runtimes for small 𝑘 , even when the input size is large. An FPT
algorithm or parameterized algorithmwith respect to parameter𝑘 is succinctly denoted

as FPT(𝑘) .
1

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Table 1: A summary of algorithmic results. Here, |𝑈 | = 𝑛 represents the number of data points, 𝑡 is the number of groups, and 𝑘

is the number of cluster centers. In Fair-𝑘-Sup-∅, the groups are disjoint, while Fair-𝑘-Sup allows for intersecting groups.

Known results Our results

Problem Apx ratio Time complexity Apx ratio Time complexity

Fair-𝑘-Sup-∅ 5 O(𝑘𝑛2 + 𝑘2
√
𝑘) [6] 3 O((𝑘𝑛 + 𝑘2

√
𝑘) log𝑛 log𝑘) [Theorem 3.1]

Fair-𝑘-Sup 5 O(2𝑡𝑘𝑡 (𝑘𝑛 + 𝑘2
√
𝑘)) [6, 24] 3 O(2𝑡𝑘𝑘 (𝑘𝑛 + 𝑘2

√
𝑘) log𝑛 log𝑘) [Theorem 3.2]

focus on complexity and algorithmic results for 𝑘-median and 𝑘-

means objectives, these results can be directly extended to the fair

𝑘-supplier problem with intersecting groups.
3

Our contributions. Our work focuses on the fair 𝑘-supplier prob-

lem, which is (informally) defined as follows. We are given a set

of data points in a metric space that are grouped into (possibly

intersecting) sets of clients and facilities. In addition, we are given a

collection of groups (possibly intersecting) over the facilities, such

as demographic groups defined by a set of protected attributes.

Furthermore, we are given a requirement vector specifying mini-

mum number of facilities to be chosen from each group, expressing

the notion of fairness in the fair 𝑘-supplier problem. Finally, as it

is common in clustering problems, we consider that the desired

number of cluster centers, 𝑘 is given. The objective is to select a

𝑘-sized subset of facilities, which satisfies the group requirements

while minimizing the maximum distance between any client to

its nearest cluster center. The problem has two variants based on

whether the facility groups are disjoint or intersecting.

Ourmain contributions are to present improved and tight approx-

imation algorithms for both variants of the fair 𝑘-supplier problem,

significantly advancing the state-of-the-art on the approximability.

Our algorithmic results are summarized in Table 1. More formally,

our contributions are as follows:

• We present a near-linear time 3-approximation algorithm for

the fair 𝑘-supplier problem with disjoint groups.

• For the general variant with intersecting groups, we present

a fixed-parameter tractable 3-approximation algorithm with

runtime FPT(𝑘 + 𝑡), where 𝑘 is the number of cluster centers

and 𝑡 is the number of groups.
4

• Under standard complexity theory assumptions, we show that

the approximation factors match the lower-bound of achiev-

able approximation ratios for both problem variants.

• Using an open source implementation,
5
we validate our scala-

bility claims on large synthetic data and real-world data with

modest sizes. We assess the price of fairness by comparing

the clustering objective values with and without fairness con-

straints.

3
For algorithmic results, the techniques of [24] yield a 𝑐-approximation algorithm for

fair 𝑘-supplier with intersecting groups in time FPT(𝑡, 𝑘) , when given a polynomial

time subroutine for 𝑐-approximation for fair 𝑘-supplier with disjoint groups.

4
Fixed-parameter tractable in terms of 𝑘 and 𝑡 is denoted as FPT(𝑘 +𝑡) and its running
time is of the form 𝑓 (𝑘, 𝑡) · poly(𝑛,𝑘, 𝑡) , where 𝑓 (𝑘, 𝑡) can be super-polynomial.

5https://anonymous.4open.science/r/fair-k-supplier-source-C60A

• For the fair 𝑘-supplier problem with intersecting facilities, our

algorithm is the first with theoretical guarantees on the approx-

imation ratio that scales to instances with modest sizes, while

the earlier algorithms with theoretical guarantees struggled

to scale in practice.

Our techniques. Here, we give a brief overview of our approxima-

tion algorithms.

For the fair 𝑘-supplier problem with disjoint groups, our algo-

rithm works in two phases. In the first phase, we select a set of 𝑘

clients, called good client set 𝐶′, ensuring every client is at a dis-

tance 2·OPT from𝐶′, where OPT is the optimal cost. To obtain such

a good client set 𝐶′, we start by initializing 𝐶′ with an arbitrary

client and iteratively pick a farthest client from 𝐶′ and add it to

𝐶′, for 𝑘 − 1 times. Since 𝐶′ are clients, in the second phase, we

recover a feasible set of facilities 𝑆 using𝐶′, that meets the fairness

requirements. This step incurs an additional OPT-factor, leading
to an overall approximation factor of 3. More precisely, we guess

the optimal cost OPT and construct a bipartite graph 𝐻 between

𝐶′ and the groups, adding an edge between a client 𝑐 ∈ 𝐶′ to a

group 𝐺 if there exists a facility in group 𝐺 within distance OPT
from 𝑐 . We show that, using 𝐶′ and any maximum matching in

𝐻 , we can obtain a 3-approximate solution satisfying the fairness

constraints. Finally, we can guess OPT efficiently, as there are at

most 𝑘 · 𝑛 distinct distances between 𝐶′ and facilities.

For the fair𝑘-supplier problemwith intersecting groups, we build

on the ideas of Thejaswi et al. [24]. We reduce an instance of the

fair 𝑘-supplier problem with intersecting groups to many instances

of the fair 𝑘-supplier problem with disjoint groups. The guarantee

of our reduction is that there is at least one instance of fair 𝑘-

supplier with disjoint groups whose optimal cost is the same as the

original instance of fair 𝑘-supplier with intersecting groups. Hence,

we use the above described near-linear time 3-approximation on

every instance of fair 𝑘-supplier with disjoint groups and return

the solution with minimum cost.

Roadmap. The remainder of the paper is organized as follows. We

formally define the fair 𝑘-supplier problem in Section 2 and we

present our approximation algorithms, including overview, proof

sketches, and tight examples in Section 3. In Section 4we present the

experimental evaluation of our algorithms, showing their scalability

compared to baselines. In Section 5 we discuss the related work to

the problem we study. Finally, Section 6 offers a short conclusion,

limitations and directions of future work.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Fair Clustering for Data Summarization

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

2 Problem definition

Before we present our approximation algorithms, let us formally

define the fair 𝑘-supplier problem.

Definition 2.1 (The fair 𝑘-supplier problem). An instance of
a fair 𝑘-supplier is defined on a metric space (𝑈 ,𝑑) with distance
function 𝑑 : 𝑈 ×𝑈 → R≥0, a set of clients 𝐶 ⊆ 𝑈 , a set of suppliers
(or facilities) 𝐹 ⊆ 𝑈 , an integer 𝑡 > 1, a collection G = {𝐺1, . . . ,𝐺𝑡 }
subsets of suppliers 𝐺𝑖 ⊆ 𝐹 satisfying

⋃
𝑖∈[𝑡] 𝐺𝑖 = 𝐹 , an integer

𝑘 > 0, a vectors of requirements ®𝛼 = {𝛼1, . . . , 𝛼𝑡 }, where 𝛼𝑖 ≥ 0

corresponds to group 𝐺𝑖 . A subset of suppliers 𝑆 ⊆ 𝐹 is a feasible
solution for the instance if |𝑆 | ≤ 𝑘 and 𝛼𝑖 ≤ |𝑆 ∩𝐺𝑖 | for all 𝑖 ∈ [𝑡],
i.e., at least 𝛼𝑖 clients from group 𝐺𝑖 should be present in solution 𝑆 .
The clustering cost of solution 𝑆 is max𝑐∈𝐶 𝑑 (𝑐, 𝑆). The goal of the
fair 𝑘-supplier problem is to find a feasible solution that minimizes
the clustering cost.

When the facility groups inG are disjoint, we denote the problem

as Fair-𝑘-Sup-∅. On the other hand, for the general case, when the

groups can intersect, we denote the problem as Fair-𝑘-Sup.

Remark 2.2. For Fair-𝑘-Sup-∅, note that ∑𝑖∈[𝑡] 𝛼𝑖 ≤ 𝑘 , oth-
erwise the instance is infeasible. In fact, without loss of generality,
we assume that

∑
𝑖∈[𝑡] 𝛼𝑖 = 𝑘 . This is because if

∑
𝑖∈[𝑡] 𝛼𝑖 < 𝑘 ,

then we can create a new (super) group 𝐺0 = 𝐹 with requirement
𝛼0 = 𝑘 −∑𝑖∈[𝑡] 𝛼𝑖 . Note that, we now have

∑𝑡
𝑖=0 𝛼𝑖 = 𝑘 , and further-

more, the cost of every solution in the original instance is same as its
cost in the new instance and vice-versa.6

We assume that 𝑈 = 𝐶 ∪ 𝐹 and we use |𝑈 | = 𝑛 in the analysis

of time complexity. Note that |𝐶 | = 𝑛𝑐 ≤ |𝑈 | = 𝑛 and |𝐹 | = 𝑛𝑓 ≤
|𝑈 | = 𝑛, that is, both the number of clients and facilities are upper

bounded by 𝑛.

3 Approximation algorithms

In this section, we present a polynomial-time 3-approximation

algorithm for Fair-𝑘-Sup-∅ and prove that the approximation ratio

is tight unless P = NP. Next, we extend our approach to provide a

3-approximation algorithm for Fair-𝑘-Sup in FPT(𝑘 + 𝑡) time and

show that the approximation factor is tight assuming W[2] ≠ FPT.
Due to space constraints, we provide only proof sketches in this

section, with detailed proofs deferred to Appendix B.

Theorem 3.1. There is a 3-approximation algorithm for the prob-
lem Fair-𝑘-Sup-∅ with runtime O((𝑘𝑛 + 𝑘2

√
𝑘) log𝑛 log𝑘). Fur-

thermore, assuming P ≠ NP, no polynomial-time algorithm achieves
(3 − 𝜖)-approximation for Fair-𝑘-Sup-∅, for any 𝜖 > 0.

Algorithm overview and comparison with previous work. Let

us recall the 5-approximation algorithm of Chen et al. [6], which

is based on the techniques introduced by Jones et al. [18]. They

first solve 𝑘-Supplier without fairness constraints. Towards this

objective, they find a subset 𝐹 ′ of facilities that is 3-good — that is,

every client is at a distance 3 times the optimal cost from a facility

in 𝐹 ′. They show that selecting the farthest clients iteratively for

𝑘 steps and choosing the closest facility for each selected client,

6
This may break the metric property of the space but our algorithms are robust to

such modifications.

gives a 3-good facility set 𝐹 ′. This approach is based on the idea

of Hochbaum and Shmoys [14].

However, the set 𝐹 ′ may be an infeasible solution as it may not

satisfy the fairness constraints. To satisfy fairness constraints, Chen

et al. [6] build “test-swaps” in order to swap a subset of 𝐹 ′, and
use a maximal-matching framework to identify a “fair-swap” (a

swap, which, if performed, will satisfy the fairness constraints). To

accomplish this goal, they identify a subset of suitable facilities from

𝐹 ′ to replace. “Suitable” has a twofold interpretation: first it aims to

minimize the number of facilities to replace, since each substitution

may increase the objective function value; second, the cost of each

substitution should not be excessively high, so every “suitable”

facility should be relatively easy to substitute with a nearby facility

while also satisfying fairness constraints. They construct fair-swaps

using a matching framework that introduces an additional factor 2

in the approximation, leading to a 5-approximation in polynomial

time.

In contrast, our algorithm adopts a simpler approach (see Algo-

rithm 1). Rather than finding a 3-good facility set in the first phase,

we find a 2-good client set𝐶′, that is, every client is within distance

twice the optimal cost from 𝐶′. This has two advantages — first,

instead of losing factor 3 by finding a 3-good facility set, we lose

only factor 2. Second, we can find a feasible solution from 𝐶′ by
losing only an additional factor in the approximation, rather than

losing factor 2, as in [6]. This is obtained in the second phase using

a matching argument.

Now, we present the algorithm and give a sketch of its correct-

ness.

Proof sketch of Theorem 3.1. Our pseudocode, described in

Algorithm 1, takes an instance 𝐼 = (𝐶, 𝐹,G = {𝐺1, . . . ,𝐺𝑡 }, 𝑘, ®𝛼) of
problem Fair-𝑘-Sup-∅. Fix an optimal clustering𝐶∗ = {𝐶∗

1
. . . . ,𝐶∗

𝑘
}

for 𝐼 corresponding to the solution 𝐹 ∗ = {𝑓 ∗
1
, . . . , 𝑓 ∗

𝑘
}, and let OPT

denote the optimal cost of 𝐹 ∗. On a high level, our algorithm works

in two phases. In the first phase, we find a set 𝐶′ ⊆ 𝐶 of 𝑘 clients,

called good client set, such that 𝑑 (𝑐,𝐶′) ≤ 2 · OPT, for every 𝑐 ∈
𝐶 . Note that 𝐶′ is not a feasible solution to our problem as it is

a set of clients and not a set of facilities. Hence, in the second

phase, we recover a feasible solution using 𝐶′, which incurs an

additional factor of OPT in the approximation, yielding an overall

approximation factor of 3.

In more detail, we construct the good client set 𝐶′ by recur-

sively picking a farthest client (breaking ties arbitrary) from 𝐶′

and adding it to 𝐶′ for 𝑘 iterations (see the for loop at line 3). Let

𝐶′ = (𝑐1, . . . , 𝑐𝑘), where 𝑐𝑖 was picked in iteration 𝑖 ∈ [𝑘], and let

𝐶′
𝑖
= (𝑐1, · · · , 𝑐𝑖).We claim that𝑑 (𝑐,𝐶′) ≤ 2·OPT for 𝑐 ∈ 𝐶 . Towards

this, we say that a cluster 𝐶∗
𝑖
∈ 𝐶∗ is hit by 𝐶′ if 𝐶∗

𝑖
∩𝐶′ ≠ ∅. Let

𝐶𝑖 , for 𝑖 ∈ [𝑘], denote the optimal clusters hit by 𝐶′
𝑖
= (𝑐1, . . . , 𝑐𝑖).

If every cluster in𝐶∗ is hit by𝐶′, then 𝑑 (𝑐,𝐶′) ≤ 2·OPT, as desired.
Now, assume this is not the case, and hence 𝐶′ hits some optimal

cluster at least twice, as |𝐶′ | = 𝑘 . Then, note that as soon as 𝐶′
𝑖
hits

an optimal cluster twice, for some 𝑖 ∈ [𝑘], the present set 𝐶′
𝑖
is a

2-good client set. To see this, let ℓ∗ ∈ [𝑘] be the first index such

that 𝐶ℓ∗+1 = 𝐶ℓ∗ , and let 𝐶∗
𝑖
∈ 𝐶∗ be the cluster hit by 𝐶′

ℓ∗+1 twice
— by 𝑐ℓ∗+1 and by some 𝑐 𝑗 ∈ 𝐶′

ℓ∗ . Then, for any 𝑐 ∈ 𝐶 , we have

𝑑 (𝑐,𝐶′
ℓ∗) ≤ 𝑑 (𝑐ℓ∗+1,𝐶′ℓ∗) ≤ 𝑑 (𝑐ℓ∗+1, 𝑐 𝑗) ≤ 𝑑 (𝑐ℓ∗+1, 𝑓 ∗𝑖) + 𝑑 (𝑓

∗
𝑖
, 𝑐 𝑗) ≤

2·OPT, since 𝑐ℓ∗+1 was the farthest client from 𝐶′
ℓ
.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

However, as mentioned before, 𝐶′ is not a valid solution. The

goal of the algorithm now is to obtain a feasible set 𝑆 (satisfying

the group constraints) using𝐶′. For ease of exposition, assume that

every group𝐺 𝑗 ∈ G has a requirement 𝛼 𝑗 = 1. Suppose we know ℓ∗

(it can be shown that a simple binary search on [𝑘] is sufficient for

recovering ℓ∗), then consider the good client set 𝐶′
ℓ∗ = (𝑐1, . . . , 𝑐ℓ∗).

We obtain a feasible solution using 𝐶′
ℓ∗ as follows. Let 𝜆

∗
be the

maximum distance 𝑑 (𝑐𝑖 , 𝐹 ∗) for 𝑐𝑖 ∈ 𝐶′ℓ∗ . We also assume that 𝜆∗

is known (later, we show this can be obtained using binary search

on a set of size 𝑘𝑛). Using 𝐶′
ℓ∗ and 𝜆∗, we create a bipartite graph

𝐻 = (𝐶′
ℓ∗ ∪ G, 𝐸) (see Lines 12–14 in Algorithm 1) where we add

an edge (𝑐𝑖 ,𝐺 𝑗), for 𝑐𝑖 ∈ 𝐶′ℓ∗ and 𝐺 𝑗 ∈ G, to 𝐸 if there is a facility

𝑓 ∈ 𝐺 𝑗 such that 𝑑 (𝑐𝑖 , 𝑓) ≤ 𝜆∗. Next, we find a maximum matching

𝑀 in 𝐻 on𝐶′
ℓ∗ (Line 15). A key observation is that such a matching

exists in 𝐻 since for every 𝑐𝑖 ∈ 𝐶′ℓ∗ there is a unique facility in 𝐹 ∗

in a unique group in G at a distance at most 𝜆∗ from 𝑐𝑖 . This is

based on the fact that𝐶′
ℓ∗ hits distinct clusters in𝐶

∗
. Once we have

matching 𝑀 on 𝐶′
ℓ∗ , then for every edge (𝑐𝑖 ,𝐺 𝑗) ∈ 𝑀 , we pick an

arbitrary facility from 𝐺 𝑗 at a distance at most 𝜆∗ from 𝑐𝑖 ∈ 𝐶′ℓ∗ .
Again, such a facility exists due to the construction of 𝐻 . Let 𝑆

be the set of picked facilities. Then, note that, for any 𝑐 ∈ 𝐶 , we
have 𝑑 (𝑐, 𝑆) ≤ 𝑑 (𝑐, 𝑐𝑖) + 𝑑 (𝑐𝑖 , 𝑆) ≤ 2 ·OPT + 𝜆∗ ≤ 3 ·OPT, where
𝑐𝑖 ∈ 𝐶′

ℓ∗ is the closest client to 𝑐 in 𝐶′
ℓ∗ , and the last inequality

follows since 𝜆∗ ≤ OPT. Finally, note that 𝑆 may still fail to satisfy

the group constraints since (𝑖)𝑀 may not match every vertex in G
of 𝐻 , and/or (𝑖𝑖) the requirements are larger than 1. But this can

be easily handled by adding arbitrary facilities of each unmatched

group to 𝑆 .

Now, to obtain 𝜆∗, we can do the following. Let Γ denote the set

of distances from each client in 𝐶′
ℓ∗ to 𝐹 . Note that |Γ | ≤ |𝐹 |ℓ ≤ 𝑛𝑘 .

Since, 𝜆∗ is defined to be the largest distance of clients in 𝐶′
ℓ∗ to

𝐹 , we have that 𝜆∗ ∈ Γ. Finally, we can do a binary search on the

sorted Γ to find the smallest distance in Γ that returns a feasible

matching on 𝐻 .

Time complexity. Naively iterating over all values of ℓ ∈ [𝑘]
and 𝜆 ∈ Γℓ results in O(𝑘3𝑛2 + 𝑘3

√
𝑘 𝑛) time, instead we adopt an

efficient approach by employing binary-search over ℓ ∈ [𝑘] and
𝜆 ∈ Γℓ . Although there are at most ℓ · 𝑛 distinct radii in Γℓ , it is not
necessary to check if a feasible matching exists for each radius in Γℓ

to find the optimal solution 𝜆∗. Instead, binary search on sorted Γℓ

is sufficient and can be done in log ℓ𝑛 iterations. If a solution exists

for some radius 𝜆 > 𝜆∗, then we can reduce the radius to check for

smaller feasible radii. Conversely, if no feasible solution exists for a

radius 𝜆, we can discard all radii smaller than 𝜆. Furthermore, by

employing binary search on ℓ ∈ {1, . . . , 𝑘} to find the maximum ℓ∗

for which a feasible matching on {𝑐1, . . . , 𝑐ℓ } exists, reducing the

number of iterations to log𝑘 . If a matching exists for some ℓ and 𝜆,

a matching also exists for the same 𝜆 and any smaller ℓ . Conversely,

if no matching exists for a given ℓ and 𝜆, then no matching exists

for any larger ℓ for the fixed vale of 𝜆. The pseudocode is available

in Algorithm 1, where Line 6 is executed for log𝑘 iterations, and

Line 8 sorts ℓ𝑛 elements in O(ℓ𝑛 log ℓ𝑛), resulting in time complex-

ity of O(𝑘𝑛 log(𝑘𝑛) log𝑘) for sorting. Further, Line 9 is executed
for log(𝑛ℓ) iterations, with the graph 𝐻 ℓ

𝜆
in Line 14 constructed in

O(𝑛ℓ) time, and the maximal matching takes O(𝑘2
√
𝑘). Thus, the

overall time complexity is O((𝑘𝑛 + 𝑘2
√
𝑘) log𝑛 log𝑘).7

Hardness of approximation. It is known that [15] for any 𝜖 > 0

there exists no 3 − 𝜖 approximation algorithm in polynomial time

for 𝑘-Supplier, assuming P ≠ NP. When the number of groups 𝑡

is equal to 1, Fair-𝑘-Sup-∅ is equivalent to 𝑘-Supplier and hence,

the hardness of approximation follows. □

Next, we extend our approach to obtain a 3-approximation algo-

rithm for Fair-𝑘-Sup, when the facility groups intersect. By com-

bining the methods of Thejaswi et al. [24] and Chen et al. [6], a

5-approximation algorithm can be obtained in time O(2𝑡𝑘𝑘2𝑛2).8
We improve the approximation ratio to 3 in time O(2𝑡𝑘𝑡𝑛(𝑘𝑛 +
𝑘2
√
𝑘) log𝑘 log𝑛).

Theorem 3.2. There is a 3-approximation for Fair-𝑘-Sup in time
𝑂 (2𝑡𝑘𝑡𝑛(𝑘𝑛 + 𝑘2

√
𝑘) log𝑛 log𝑘). Furthermore, assuming W[2] ≠

FPT, there is no (3 − 𝜖)-approximation for Fair-𝑘-Sup in FPT(𝑘 + 𝑡)
time, for any 𝜖 > 0.

Proof. The high level idea of our algorithm (see Algorithm 2) is

to reduce the given instance 𝐼 of Fair-𝑘-Sup problem to many

instances of the same problem but with disjoint groups such that

the at least one instance with disjoint groups has same cost as

the optimal cost of 𝐼 . Then, we apply Algorithm 1 on each of the

reduced instances to find a 3-approximate solution and return the

solution𝑇 ∗ corresponding to the instance that has smallest cost. By

correctness of the reduction, 𝑇 ∗ is a 3-approximate solution to 𝐼 .

In more details, we associate each facility 𝑓 ∈ 𝐹 with a charac-

teristic (bit) vector ®𝜒𝑓 ∈ {0, 1}𝑡 , where the 𝑖-th index is 1 if 𝑓 ∈ 𝐺𝑖

and 0 otherwise. For each unique bit vector ®𝛾 ∈ {0, 1}𝑡 , define
Q(®𝛾) = {𝑓 ∈ 𝐹 : ®𝜒𝑓 = ®𝛾} as the subset of facilities with characteris-

tic vector ®𝛾 . The set P = {Q(®𝛾)}®𝛾 ∈{0,1}𝑡 forms a partition of 𝐹 . Let

𝐹 ∗ be an optimal solution to 𝐼 , and let {®𝛾∗
1
, . . . , ®𝛾∗

𝑘
} ⊆ {®𝛾}®𝛾 ∈{0,1}𝑡

be the 𝑘-multiset of bit vectors corresponding to the facilities in 𝐹 ∗.
Since 𝐹 ∗ is feasible, we have

∑
𝑖∈[𝑘] ®𝛾∗𝑖 ≥ ®𝛼 (element-wise). Hence,

if we could find {®𝛾∗
1
, . . . , ®𝛾∗

𝑘
}, then we can create an instance 𝐽 of

Fair-𝑘-Sup with disjoint groups {Q(®𝛾∗
1
), . . . ,Q(®𝛾∗

𝑘
)} and run Algo-

rithm 1 on 𝐽 (see Line 9) to obtain a 3-approximate solution𝑇 for 𝐽 .

Note that𝑇 is also feasible for 𝐼 and hence a 3-approximate solution

for 𝐼 . However, since we do not know {®𝛾∗
1
, . . . , ®𝛾∗

𝑘
}, we enumerate

all feasible 𝑘-multisets of P (see Line 6), and run Algorithm 1 on

the instances corresponding to the enumerated 𝑘-multisets. Finally,

by returning the minimum cost solution (see Line 10) over the all

the instances, we make sure that the cost of the returned solution

is at most the cost of 𝑇 . □

Time complexity. The set P can be constructed in time O(2𝑡𝑛)
since |P | ≤ 2

𝑡
. There are

(
2
𝑡+𝑘−1
𝑘

)
possible 𝑘-multisets of P, and

enumerating them and verifying that they satisfy the range con-

straints in ®𝛼 takes O(2𝑡𝑘𝑡𝑛). For each valid instance, we apply

Theorem 3.1 to obtain a 3-approximation, which takes O((𝑘𝑛 +
7
Precisely, the calculations are as follows O(𝑘𝑛 log(𝑘𝑛) log𝑘) + O((𝑘𝑛 +
𝑘2

√
𝑘) log(𝑘𝑛) log𝑘) = O((𝑘𝑛 + 𝑘2

√
𝑘) log𝑛 log𝑘) .

8
In Algorithm 2, Line 9 invokes a subroutine for Fair-𝑘-Sup-∅, which can be sub-

stituted with the 5-approximation algorithm from Chen et al. [6], yielding a 5-

approximation algorithm with time O(2𝑡𝑘𝑘2𝑛2) . Moreover, any improvement in the

approximation ratio or runtime for Fair-𝑘-Sup-∅ would translate to improvements

for Fair-𝑘-Sup.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Fair Clustering for Data Summarization

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

𝑘2
√
𝑘) log𝑛 log𝑘). Thus, the overall time complexity isO(2𝑡𝑘𝑡𝑛(𝑘𝑛+

𝑘2
√
𝑘) log𝑘 log𝑛).9

Hardness of approximation.
10

It is known that [11] there exists

no algorithm that approximates 𝑘-Supplier to 3−𝜖 factor in FPT(𝑘)
time, for any 𝜖 > 0, assumingW[2] ≠ FPT. When number of groups

𝑡 = 1, Fair-𝑘-Sup is equivalent to 𝑘-Supplier and the hardness of

approximation follows by observing that FPT(𝑘 + 𝑡) = FPT(𝑘),
for 𝑡 = 1. □

Solving fair range clustering. In the literature, the problem vari-

ant with restriction on minimum and maximum number of facilities

that can be chosen from each group is referred as fair range clus-
tering. Our approach can be extended to obtain a 3-approximation

for Fair-𝑘-Sup with both lower and upper bound requirements,

where the number of chosen cluster centers from each group must

be within the range specified by lower and upper bound thresholds.

Suppose
®𝛽 = {𝛽1, . . . , 𝛽𝑡 } represents the upper bound threshold,

then, in Line 6 of Algorithm 2, we take into account both ®𝛼 and
®𝛽

for computing the feasibility of the multiset considered in Line 5.

Specifically, we change the If condition in Line 6 to the following.

Line 6: If ®𝛼 ≤ ∑
𝑖∈[𝑘] ®𝛾𝑖 ≤ ®𝛽 then

It is routine to check that the instances corresponding to these

feasible multisets are, indeed, instances of Fair-𝑘-Sup-∅. Therefore,
we obtain a 3-approximation for this problem with same runtime.

4 Experiments

In this section, we present our experimental setup and datasets

used for evaluation, and discuss our findings. The experiments are

designed to evaluate the scalability of the proposed algorithms

against the baselines, and study the “price of fairness” by compar-

ing the solutions obtained with and without fairness constraints.

Additional experimental results are available in Appendix A.

Experimental setup. Our implementation is written in python us-
ing numpy and scipy packages for data processing. The experiments

are executed on a compute server with 2× Intel Xeon E5-2667 v2

processor (2 × 8 cores), 256GBRAM, and DebianGNU/Linux 12

using a single core without parallelization.

Baselines. We evaluate our algorithms against the following base-

lines. First, we consider the 3-approximation algorithm for the

𝑘-Supplier problem without fairness constraints by Hochbaum

and Shmoys [14]. Second, we use the 5-approximation algorithm

for Fair-𝑘-Sup-∅ by Chen et al. [6] for disjoint groups. Lastly, we

consider a 5-approximation algorithm for Fair-𝑘-Sup with inter-

secting groups by modifying Algorithm 2. Precisely, instead of

invoking Algorithm 1 Line 9, we employ the 5-approximation from

[6] as a subroutine.
11

Synthetic data. To evaluate the scalability of the proposedmethods

and the baselines, we generate synthetic data for various configu-

rations of parameters 𝑛, 𝑑 , 𝑡 , and 𝑘 , using the random subroutine

9
More precisely, the time complexity is O(2𝑡𝑘𝑡 (𝑛 + (𝑘𝑛 + 𝑘2

√
𝑘) log𝑛 log𝑘) =

O(2𝑡𝑘𝑡 (𝑘𝑛 + 𝑘2

√
𝑘) log𝑛 log𝑘) .

10
Following a similar argument, our result implies that, for any 𝜖 > 0, there ex-

ists no (2 − 𝜖)-approximation algorithm in FPT(𝑘, 𝑡)-time for Fair-𝑘-Center with

intersecting groups.

11
Also, we implemented a brute-force algorithm to find the optimal solution, as ex-

pected, it did not scale to large instances.

Algorithm1: 3-approximation algorithm for Fair-𝑘-Sup-∅
Input: 𝐼 = (𝐶, 𝐹,G = {𝐺1, . . . ,𝐺𝑡 }, 𝑘, ®𝛼), an instance of

Fair-𝑘-Sup with disjoint groups

Output: 𝑆 , a subset of facilities

1 𝑆 ← ∅
2 𝐶′ ← choose an arbitrary client 𝑐1 ∈ 𝐶
3 for 𝑖 ∈ {2, . . . , 𝑘} do // farthest client recursively
4 𝑐𝑖 ← argmax𝑐∈𝐶\𝐶′ 𝑑 (𝑐,𝐶′)
5 𝐶′ ← 𝐶′ ∪ {𝑐𝑖 }
6 Binary-Search on ℓ ∈ {1, . . . , 𝑘} do
7 𝑆ℓ ← ∅
8 Γℓ ← Get-Sorted-Radii({𝑐1, . . . , 𝑐ℓ }, 𝐹) // Sorted

distances between {𝑐1, . . . , 𝑐ℓ } and 𝐹

9 Binary-Search on 𝜆 ∈ Γℓ do
10 𝑇 ℓ

𝜆
← ∅

11 G′ ← ⋃
𝑖∈[𝑡] {𝐺1

𝑖
, . . . ,𝐺

𝛼𝑖
𝑖
} // 𝛼𝑖 vertices for

𝐺𝑖

12 𝑉 ℓ
𝜆
← {𝑐1, . . . , 𝑐ℓ } ∪ G′

13 For 𝑐𝑖 ∈ {𝑐1, . . . , 𝑐ℓ }, add edges (𝑐𝑖 ,𝐺1

𝑗
), . . . , (𝑐𝑖 ,𝐺

𝛼 𝑗

𝑗
)

to 𝐸ℓ
𝜆
if there exist 𝑓 ∈ 𝐺 𝑗 s.t. 𝑑 (𝑐𝑖 , 𝑓) ≤ 𝜆}

14 𝐻 ℓ
𝜆
← (𝑉 ℓ

𝜆
, 𝐸ℓ

𝜆
) // Create a Bipartite graph

15 𝑀ℓ
𝜆
← Max-Matching(𝐻 ℓ

𝜆
, {𝑐1, . . . , 𝑐ℓ })

// Maximum matching in 𝐻 ℓ
𝜆

on {𝑐1, . . . , 𝑐ℓ }
16 if 𝑀ℓ

𝜆
is not a matching on {𝑐1, . . . , 𝑐ℓ } then

17 Continue to Line 9

18 for (𝑐𝑖 ,𝐺 𝑗 ′

𝑗
) ∈ 𝑀ℓ

𝜆
do

19 𝑇 ℓ
𝜆
← 𝑇 ℓ

𝜆
∪ {arbitrary 𝑓 ∈ 𝐺 𝑗 s.t. 𝑑 (𝑐𝑖 , 𝑓) ≤ 𝜆}

20 for 𝐺 𝑗 ∈ G such that |𝑇 ℓ
𝜆
∩𝐺 𝑗 | < 𝛼 𝑗 do

21 Add 𝛼 𝑗 − |𝑇 ℓ
𝜆
∩𝐺 𝑗 | many arbitrary facilities

from 𝐺 𝑗 to 𝑇
ℓ
𝜆

// Make 𝑇 ℓ
𝜆

feasible

22 if cost(𝐶,𝑇 ℓ
𝜆
) < cost(𝐶, 𝑆ℓ) then

23 𝑆ℓ ← 𝑇 ℓ
𝜆

24 if cost(𝐶, 𝑆ℓ) < cost(𝐶, 𝑆) then
25 𝑆 ← 𝑆ℓ

26 return 𝑆

from numpy. First, we randomly partition the data points 𝑈 into

clients and facilities. For Fair-𝑘-Sup-∅ instances, the facilities are

randomly partitioned into 𝑡 disjoint groups. For Fair-𝑘-Sup with

intersecting groups, first we partition the facilities into disjoint

groups, then sample facilities at random and add them to groups to

enable intersections.

Real-world data. We use the following subset of datasets from

the UCI Machine Learning Repository [4]: Heart, Student-mat,
Student-perf, National-poll, Bank, Census, Credit-card, and
Bank-full. The data is preprocessed by creating one-hop encoding
for columns with categorical data and applying min-max normal-

ization to avoid skewing the cluster centers towards features with

larger values. For experiments with two disjoint groups (𝑡 = 2), all

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Algorithm 2: 3-approximation algorithm for Fair-𝑘-Sup

Input: 𝐼 = (𝐶, 𝐹,G = {𝐺1, . . . ,𝐺𝑡 }, 𝑘, ®𝛼), an instance of

Fair-𝑘-Sup

Output: 𝑇 ∗, a subset of facilities
1 foreach ®𝛾 ∈ {0, 1}𝑡 do
2 Q(®𝛾) ← {𝑓 ∈ 𝐹 : ®𝛾 = ®𝜒𝑓 }
3 P ← {Q(®𝛾) : ®𝛾 ∈ {0, 1}𝑡 }
4 𝑇 ∗ ← ∅
5 foreach multiset {Q(®𝛾1), · · · ,Q(®𝛾𝑘)} ⊆ P of size 𝑘 do

6 if

∑
𝑖∈[𝑘] ®𝛾𝑖 ≥ ®𝛼 , element-wise then

7 Let {Q′ (®𝛾1), · · · ,Q′ (®𝛾𝑘 ′)} be the set obtained from

multiset {Q(®𝛾1), · · · ,Q(®𝛾𝑘)} ⊆ P after removing

duplicates

8 Let 𝛼 ′
𝑖
be the number of times Q(®𝛾𝑖) appear in the

multiset {Q(®𝛾1), · · · ,Q(®𝛾𝑘)}
9 Let 𝑇 be the set returned by Algorithm 1 on

(𝐶, 𝐹, {Q′ (®𝛾1), · · · ,Q′ (®𝛾𝑘 ′)}, 𝑘, ®𝛼 ′ = (𝛼 ′1, . . . , 𝛼
′
𝑘 ′
))

10 if cost(𝐶′,𝑇) < cost(𝐶′,𝑇 ∗) then
11 𝑇 ∗ ← 𝑇

12 return 𝑇 ∗

data points are treated as clients, and a subset of suppliers (facili-

ties) is selected based on a protected attribute: age ≤ 50 in Heart,
guardian = ‘mother’ in Student-mat and Student-perf, race =

‘Black’ in National-poll and Census, education = ‘secondary’
in Bank and Bank-full, and married = ‘True’ in Credit-card.
The facilities are partitioned into two groups based on the attribute

sex. For experiments with multiple disjoint groups (𝑡 = 5), all data

points are considered as clients and suppliers are selected based on

attribute sex, except in Bank and Bank-full, where education =

‘secondary’ is used. The minority partition is considered as facilities

and groups are partitioned based on age, except in National-poll,
where race is used to create groups.

Scalability of Algorithm 1 in synthetic data. We first evalu-

ate the scalability of algorithms for the Fair-𝑘-Sup-∅ problem on

synthetic data. We compare our 3-approximation algorithm (Al-

gorithm 1) with the 5-approximation algorithm of Chen et al. [6].

The results are illustrated in Figure 1. On the left, we report the

mean runtime (solid line) and standard deviation (shaded area) for

varying dataset sizes, 𝑛 = {104, 2 · 104, . . . , 107}, where clients and
facilities are equally split (𝑛𝑐 = 𝑛𝑓 = 𝑛

2
). The number of groups

is 𝑡 = 5 and the facilities are randomly partitioned equally among

groups, with the number of cluster centers fixed at 𝑘 = 10. All data

points have same dimension 𝑑 = 5 and all requirements in ®𝛼 are

same, which is set to
𝑘
𝑡 .

On the right, we report the mean runtime and standard devia-

tion for different number of cluster centers 𝑘 = {5, 10, . . . , 50}, with
fixed dataset size 𝑛 = 10 000 and an equal split between clients

and facilities. The number of groups remains 𝑡 = 5 and the groups

consist of equal number of facilities chosen at random. All data

points have the same dimension 𝑑 = 5 and all requirements in ®𝛼
are same, which is set

𝑘
𝑡 . For each configuration of 𝑛, 𝑑 , 𝑡 , and 𝑘 , we

generate 5 independent instances, and we execute both algorithms

5 times per instance, each time with a different initialization chosen

at random. This results in 25 independent executions per config-

uration, for which we report the mean and standard deviation of

running times.

Our implementation of Algorithm 1 achieves significant speedup

in running time compared to the algorithm of Chen et al. [6], as

expected theoretically, and exhibits small variance across indepen-

dent executions. Notably, our implementation solves Fair-𝑘-Sup-∅
instances with ten million data points and ten cluster centers in less

than 5 minutes. We terminated some executions due to excessively

long running times.

Scalability and solution quality in real-world data. In Table 2,

we report the running times for the 3-approximation of 𝑘-Supplier

without fairness constraints (Hochbaum and Shmoys [14]), our

3-approximation from Algorithm 1, and the 5-approximation of

Chen et al. [6], for Fair-𝑘-Sup-∅ with disjoint facility groups. The

experiments are conducted for 𝑘 = 10 and 𝑘 = 20 with ®𝛼 = {5, 5}
and {10, 10}, respectively. For each dataset we repeat experiments

with 10 random initializations, and report the mean and standard

deviation of the running times. Similar experiments are performed

by varying ®𝛼 to enforce selection from minority groups, but this

does not affect significantly the running times. Our implementation

of Algorithm 1 solves each real-world instance within one minute

for 𝑘 = 20.

Table 3 shows the minimum clustering objective values from 10

independent executions. In our experiments, there is no significant

difference in objective values between the fair and unfair versions,

or between the 3-approximation and 5-approximation solutions.
12

For experiments with multiple groups we refer the reader to Ap-

pendix A Table 4 and Table 5.

Scalability of Algorithm 2 for intersecting groups. Last, we

evaluate the methods for the Fair-𝑘-Sup problem with intersecting

facility groups. We compare our method in Algorithm 2 with the

5-approximation algorithm (Thejaswi et al. [24] + Chen et al. [6]).

On the left, we display the mean runtime (solid line) and standard

deviation (shaded area) for different dataset sizes, 𝑛 = {104, 2 ·
10

4, . . . , 105}, where clients and facilities are split equally (𝑛𝑐 =

𝑛𝑓 = 𝑛
2
). The number of groups is 𝑡 = 4, with facilities sampled

equally to each group with size 2 · 𝑛𝑓

𝑡 , and 𝑘 = 5 cluster centers,

with fairness requirements ®𝛼 = {2, 2, 2, 2}.
On the right, we report the mean runtime and standard deviation

for cluster center sizes 𝑘 = {5, 6, 7, 8}, with a fixed number of data

points 𝑛 = 1 000, and clients and facilities are split equally. The

number of groups remains 𝑡 = 4, with facilities chosen randomly

for each group with size 2 · 𝑛𝑓

𝑡 . All data points have the same

dimension 𝑑 = 5, and fairness requirements are uniform with ®𝛼 =
𝑘
𝑡 . For each configuration, we generate 5 random instances and

execute 5 iterations of each algorithm per instance, with a different

initialization, resulting in 25 total executions per configuration. We

report the mean and standard deviation of the 25 executions.

Our algorithm demonstrates modest scalability in both dataset

size 𝑛 and the number of cluster centers 𝑘 , with low variance across

12
The reported minimum objective values depends on the random initialization. While

the theoretical approximation bound holds for each iteration, evaluating the qual-

ity of solution and drawing informed insights with limited number of iterations is

challenging.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Fair Clustering for Data Summarization

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

104 105 106 107

Number of data points (n)

0

500

1000

1500

2000

2500

3000

3500

4000
Ru

nn
in

g
tim

e
(s

)
5APX
3APX

10 20 30 40 50
Number of cluster centers (k)

0

200

400

600

800

Ru
nn

in
g

tim
e

(s
)

5APX
3APX

Figure 1: Scalability of the 3-approximation algorithm (Algorithm 1) and the 5-approximation by Chen et al. [6] for Fair-𝑘-Sup-∅
with 𝑡 = 5 disjoint groups and fairness requirements ®𝛼 = [𝑘𝑡]

𝑡
.

Table 2: Running time in real-world datasets for Fair-𝑘-Sup-∅ with disjoint groups.

𝑡 = 2 𝑘 = 10, ®𝛼 = {5, 5} 𝑘 = 20, ®𝛼 = {10, 10}
Dataset 𝑛 𝑑 𝑛𝑐 𝑛𝑓 group sizes 3-apx (unfair) 3-apx (fair) 5-apx (fair) 3-apx (unfair) 3-apx (fair) 5-apx (fair)

Heart 299 13 299 74 (31, 43) 0.00 ± 0.00 0.02 ± 0.00 0.06 ± 0.07 0.01 ± 0.00 0.04 ± 0.00 0.10 ± 0.08

Student-mat 395 59 395 273 (128, 145) 0.02 ± 0.00 0.08 ± 0.00 0.25 ± 0.17 0.07 ± 0.00 0.18 ± 0.01 1.29 ± 1.27

Student-perf 649 59 649 455 (182, 273) 0.03 ± 0.00 0.13 ± 0.00 0.30 ± 0.22 0.08 ± 0.01 0.22 ± 0.01 1.33 ± 1.74

National-poll 714 50 714 52 (23, 29) 0.01 ± 0.00 0.03 ± 0.00 0.03 ± 0.01 0.04 ± 0.00 0.06 ± 0.00 0.08 ± 0.02

Bank 4521 53 4521 2036 (609, 1427) 0.15 ± 0.01 0.65 ± 0.04 11.86 ± 10.00 0.66 ± 0.01 1.59 ± 0.11 18.59 ± 8.32

Credit-card 30000 24 30000 13659 (5190, 8469) 0.51 ± 0.06 2.74 ± 0.26 38.30 ± 37.37 2.20 ± 0.01 6.36 ± 0.58 223.17 ± 183.65

Bank-full 45211 53 45211 20387 (6617, 13770) 1.70 ± 0.00 7.73 ± 0.60 245.14 ± 246.94 6.63 ± 0.03 18.59 ± 1.11 1253.49 ± 1279.57

Census 48842 112 48842 4685 (2377, 2308) 3.64 ± 0.01 14.02 ± 0.84 18.33 ± 27.19 14.57 ± 0.06 36.09 ± 1.49 46.36 ± 42.00

Table 3: Comparison of quality of solutions in real-world datasets for Fair-𝑘-Sup-∅ with 𝑡 = 2 disjoint groups.

𝑡 = 2 𝑘 = 10, ®𝛼 = {5, 5} 𝑘 = 20, ®𝛼 = {10, 10}
Dataset 𝑛 𝑑 𝑛𝑐 𝑛𝑓 group sizes 3-apx (unfair) 3-apx (fair) 5-apx (fair) 3-apx (unfair) 3-apx (fair) 5-apx (fair)

Heart 299 13 299 74 (31, 43) 3.63 3.58 3.72 3.00 3.00 3.46

Student-mat 395 59 395 273 (128, 145) 19.00 18.97 19.00 16.76 16.39 17.35

Student-perf 649 59 649 455 (182, 273) 18.48 19.19 19.54 17.23 17.31 18.68

National-poll 714 50 714 52 (23, 29) 14.50 14.50 16.00 14.00 14.00 14.50

Bank 4521 53 4521 2036 (609, 1427) 12.69 12.38 12.85 11.05 10.96 12.35

Credit-card 30000 24 30000 13659 (5190, 8469) 6.44 6.28 6.46 5.92 5.97 5.92

Bank-full 45211 53 45211 20387 (6617, 13770) 12.98 12.99 13.06 11.74 11.49 12.74

Census 48842 112 48842 4685 (2377, 2308) 15.53 15.09 15.13 13.71 14.17 14.62

103 104 105

Number of data points (n)

0

2000

4000

6000

8000

10000

Ru
nn

in
g

tim
e

(s
)

5APX
3APX

5 6 7 8
Number of cluster centers (k)

0

1000

2000

3000

4000

5000

6000

7000

Ru
nn

in
g

tim
e

(s
)

5APX
3APX

Figure 2: Scalability of the 3-approximation algorithm (Algorithm 2) and the 5-approximation for Fair-𝑘-Sup with 𝑡 = 4

intersecting groups, where the requirements are uniform across groups with ®𝛼 = [2 · 𝑘𝑡]
𝑡
.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

independent runs. Given the computational complexity of the prob-

lem (NP-hard andW[2]-hard with respect to 𝑘), the modest scala-

bility is expected. Furthermore, our algorithm is significantly more

efficient than the baseline, which terminates only for dataset sizes

of up to 𝑛 = 2 · 104 (left), and only for up to 𝑘 = 5 centers (right).

5 Related work

Our work builds upon the existing work on data clustering and

algorithmic fairness.

The literature on (fair) clustering is extensive, so we focus on

the most relevant research for our work. For a review of clustering,

see Jain et al. [17], and for fair clustering, see Chhabra et al. [7].

𝑘-Center and 𝑘-Supplier have been widely studied and numerous

algorithmic results are known [10, 11, 13, 15, 23]. Both problems

are known to be NP-hard [26], and polynomial-time approxima-

tion algorithms have been developed [10, 13, 23]. For 𝑘-Center

and 𝑘-Supplier, polynomial-time approximation algorithms with

factors 2 and 3 are known [14, Theorem 5] [10, Theorem 2.2]. As-

suming P ≠ NP,𝑘-Center and𝑘-Supplier cannot be approximated

within factors of 2 − 𝜖 and 3 − 𝜖 , respectively, for any 𝜖 > 0 [14,

Theorem 6] [10, Thoerem 4.3]. In the context of fixed-parameter

tractability (FPT), 𝑘-Center and 𝑘-Supplier are at leastW[2]-hard
with respect to 𝑘 , meaning that no algorithm with running time

𝑓 (𝑘) · poly(𝑛, 𝑘) can solve them optimally; this is implicit in a

reduction presented by Hochbaum and Shmoys [14]. Assuming

FPT ≠ W[2], 𝑘-Center and 𝑘-Supplier cannot be approximated

within factors of 2 − 𝜖 and 3 − 𝜖 , for any 𝜖 > 0, in 𝑓 (𝑘) ·poly(𝑛, 𝑘)
time, even when 𝑓 (𝑘) is an exponential function [11, Theorem 2,

Theorem 3].

Fairness in clustering has recently attracted significant atten-

tion as a means to reduce algorithmic bias in automated decision-

making for unsupervised machine-learning tasks. Various fair-

ness notions have been explored, leading to many algorithmic

results [1, 2, 5, 8, 9, 12, 22]. Our focus is on cluster center fair-

ness, where data points are associated with demographic attributes

forming groups, and fairness is applied to the selection of clus-

ter centers while optimizing different clustering objectives such

as 𝑘-median, 𝑘-means, 𝑘-center, and 𝑘-supplier. Several problem

formulations study different types of constraints on the number of

cluster centers chosen from each group: exact requirement [18, 21],

lower bound [24, 25], upper bound [5, 12, 22], and combined upper

and lower bound [3, 16].

In the context of fair data summarization, much of the existing

literature focuses on the case where demographic groups are dis-

joint. Kleindessner et al. [21] introduced the fair 𝑘-center problem

with disjoint groups,
13

where a specified (exact) number of cluster

centers must be chosen from each group and the groups were ex-

plicitly disjoint. They presented a 3 · 2𝑡−1 approximation algorithm

in O(𝑛𝑘𝑡2 +𝑘𝑡4) time, which was later improved to factor 3 in time

O(𝑛𝑘 + 𝑛
√
𝑘 log𝑘) by Jones et al. [18]. Angelidakis et al. [3] con-

sidered a variant of Fair-𝑘-Center-∅ with both lower and upper

bounds on number of cluster centers from each group and presented

a 15-approximation in time O(𝑛𝑘2 + 𝑘5). Chen et al. [5] studied

13
In the literature, the problem is referred to as fair 𝑘-center (Fair-𝑘-Center), even

when only disjoint facility groups are considered. In this work, we distinguish between

the two cases, referring to the case with disjoint groups as Fair-𝑘-Center-∅ and

intersecting groups as Fair-𝑘-Center.

the matroid 𝑘-center-∅ problem that generalizes Fair-𝑘-Center-∅,
where the chosen cluster centers must form an independent set in

a given matroid and presented a 3-approximation algorithm that

runs in poly(𝑛) time.
14

Chen et al. [6] studied the Fair-𝑘-Sup-∅ problem when the clus-

ter centers must be chosen from a subset of data points called facil-

ities or suppliers and present a 5-approximation in time O(𝑘𝑛2 +
𝑘2
√
𝑘). Thejaswi et al. [24] studied Fair-k-Median and Fair-𝑘-

Means with intersecting facility groups and showed that the prob-

lem is inapproximable to any multiplicative factor in polynomial

time.
15

On the other hand, it is worth noting that their techniques

can be extended to obtain a fixed parameter tractable 5-approx-

imation algorithm with a runtime of O(2𝑡𝑘𝑘2𝑛2) by leveraging the

polynomial-time 5-approximation algorithm of Chen et al. [6] for

Fair-𝑘-Sup-∅ as a subroutine.

6 Conclusions, limitations and open problems

Conclusions. In this paper, we provide a comprehensive analy-

sis of the computational complexity for Fair-𝑘-Sup in terms of

its approximability. Specifically, for the case with disjoint groups,

we present a near-linear time 3-approximation algorithm. For the

more general case where the groups may intersect, we present a

fixed-parameter tractable 3-approximation algorithm with runtime

FPT(𝑘 + 𝑡). We also show that the approximation factors can not be

improved for both the problems, assuming standard complexity con-

jectures. Additionally, we rigorously evaluate the performance of

our algorithms through extensive experiments on both real-world

and synthetic datasets. Notably, for the intersecting case, our algo-

rithm is the first with theoretical guarantees (on the approximation

factor) while scaling efficiently to instances of modest size, where

the earlier works with theoretical guarantees struggled to scale in

practice.

Limitations.Although our algorithm for intersecting groups scales

to modest-sized instances, designing algorithms that can handle

web-scale datasets with millions to billions of points remains an

open challenge. Limited experiments on real-world data are insuffi-

cient to assess the cost of enforcing fairness constraints on solution

quality (i.e., clustering objective), as it depends on the specific in-

stance as well as the use case. Drawing a more informed conclusion

would require a detailed case study with domain-specific insights,

which is beyond the scope of this work. Our focus is to present ap-

proximation algorithms with theoretical guarantees for Fair-𝑘-Sup

that also scale effectively to real-world data.

Open problems. For Fair-𝑘-Center, while the lower-bound of

FPT(𝑘, 𝑡)-time approximation is 2, but our results imply a 3-approxi-

mation algorithm in FPT(𝑘, 𝑡) time. An interesting open problem

is to either improve the approximation factor for Fair-𝑘-Center

or to prove that no such improvement is possible. Similarly, for

Fair-𝑘-Sup (and Fair-𝑘-Sup-∅), improving the approximation fac-

tor for special metric spaces, such as Euclidean spaces, is also a

promising direction. Finally, it remains an open question whether

or not a linear time algorithm can be designed for Fair-𝑘-Sup-∅.

14
Though the exact running time is not detailed in Chen et al. [5], it is estimated to be

Ω (𝑛2
log𝑛) by Kleindessner et al. [21].

15
In fact, their complexity results hold for any clustering objective.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Fair Clustering for Data Summarization

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

References

[1] Fateme Abbasi, Sandip Banerjee, Jarosław Byrka, Parinya Chalermsook, Ameet

Gadekar, Kamyar Khodamoradi, Dániel Marx, Roohani Sharma, and Joachim

Spoerhase. 2023. Parameterized approximation schemes for clustering with

general norm objectives. In Proceedings of the Annual Symposium on Foundations
of Computer Science. IEEE, USA, 1377–1399.

[2] Fateme Abbasi, Sandip Banerjee, Jarosław Byrka, Parinya Chalermsook, Ameet

Gadekar, Kamyar Khodamoradi, Dániel Marx, Roohani Sharma, and Joachim

Spoerhase. 2024. Parameterized Approximation For Robust Clustering in Discrete

Geometric Spaces. In Proceedings as the International Colloquium on Automata,
Languages, and Programming (LIPIcs, Vol. 297). Dagstuhl, Germany, 6:1–6:19.

[3] Haris Angelidakis, Adam Kurpisz, Leon Sering, and Rico Zenklusen. 2022. Fair

and Fast 𝑘-Center Clustering for Data Summarization. In Proceedings of the
International Conference on Machine Learning (Proceedings of Machine Learning
Research, Vol. 162). PMLR, 669–702.

[4] Arthur Asuncion, David Newman, et al. 2007. UCI machine learning repository.

[5] Danny Z Chen, Jian Li, Hongyu Liang, and Haitao Wang. 2016. Matroid and

knapsack center problems. Algorithmica 75 (2016), 27–52.
[6] Xianrun Chen, Sai Ji, Chenchen Wu, Yicheng Xu, and Yang Yang. 2024. An

approximation algorithm for diversity-aware fair k-supplier problem. Theoretical
Computer Science 983 (2024), 114305.

[7] Anshuman Chhabra, Karina Masalkovaitė, and Prasant Mohapatra. 2021. An

overview of fairness in clustering. IEEE Access 9 (2021), 130698–130720.
[8] Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, and Sergei Vassilvitskii. 2017.

Fair clustering through fairlets. In Proceedings of International Conference on
Neural Information Processing Systems (Long Beach, California, USA) (NIPS’17).
Curran Associates Inc., Red Hook, NY, USA, 5036–5044.

[9] Mehrdad Ghadiri, Samira Samadi, and Santosh Vempala. 2021. Socially fair

𝑘-means clustering. In Proceedings of the Internation Conference on fairness,
accountability, and transparency. ACM, NY, USA, 438–448.

[10] Teofilo F Gonzalez. 1985. Clustering to minimize the maximum intercluster

distance. Theoretical computer science 38 (1985), 293–306.
[11] Dishant Goyal and Ragesh Jaiswal. 2023. Tight FPT approximation for con-

strained k-center and k-supplier. Theoretical Computer Science 940 (2023), 190–
208.

[12] M Hajiaghayi, Rohit Khandekar, and Guy Kortsarz. 2012. Local search algorithms

for the red-blue median problem. Algorithmica 63 (2012), 795–814.
[13] Dorit S Hochbaum and David B Shmoys. 1985. A best possible heuristic for the

k-center problem. Mathematics of operations research 10, 2 (1985), 180–184.

[14] Dorit S. Hochbaum and David B. Shmoys. 1986. A unified approach to approxi-

mation algorithms for bottleneck problems. J. ACM 33, 3 (may 1986), 533–550.

[15] Dorit S Hochbaum and David B Shmoys. 1986. A unified approach to approxi-

mation algorithms for bottleneck problems. J. ACM 33, 3 (1986), 533–550.

[16] Sedjro Salomon Hotegni, Sepideh Mahabadi, and Ali Vakilian. 2023. Approxi-

mation algorithms for fair range clustering. In Proceedings of the International
Conference on Machine Learning. PMLR, 13270–13284.

[17] Anil K Jain, M Narasimha Murty, and Patrick J Flynn. 1999. Data clustering: a

review. ACM computing surveys 31, 3 (1999), 264–323.
[18] Matthew Jones, HuyNguyen, and ThyNguyen. 2020. Fair k-centers via maximum

matching. In International conference on machine learning. PMLR, 4940–4949.

[19] Maximilian Kasy and Rediet Abebe. 2021. Fairness, Equality, and Power in

Algorithmic Decision-Making. In Proceedings of the 2021 ACM Conference on
Fairness, Accountability, and Transparency (Virtual Event, Canada). ACM, NY,

USA, 576–586.

[20] Matthew Kay, Cynthia Matuszek, and Sean A. Munson. 2015. Unequal Repre-

sentation and Gender Stereotypes in Image Search Results for Occupations. In

Proceedings of ACM Conference on Human Factors in Computing Systems (Seoul,
Republic of Korea). ACM, NY, USA, 3819–3828.

[21] Matthäus Kleindessner, Pranjal Awasthi, and Jamie Morgenstern. 2019. Fair

k-center clustering for data summarization. In Proceedings of the International
Conference on Machine Learning. PMLR, 3448–3457.

[22] Ravishankar Krishnaswamy, Amit Kumar, Viswanath Nagarajan, Yogish Sabhar-

wal, and Barna Saha. 2011. The matroid median problem. In Proceedings of the
Symposium on Discrete Algorithms. SIAM, 1117–1130.

[23] D Shmoys. 1994. Computing near-optimal solutions to combinatorial optimiza-
tion problems. Technical Report. Cornell University Operations Research and

Industrial Engineering.

[24] Suhas Thejaswi, Ameet Gadekar, Bruno Ordozgoiti, and Michal Osadnik. 2022.

Clustering with fair-center representation: Parameterized approximation algo-

rithms and heuristics. In Proceedings of the ACMSIGKDDConference on Knowledge
Discovery and Data Mining. ACM, 1749–1759.

[25] Suhas Thejaswi, Bruno Ordozgoiti, and Aristides Gionis. 2021. Diversity-aware𝑘-

median: Clustering with fair center representation. In Proceedings of the European
Conference on Machine Learning and Knowledge Discovery in Databases. Springer,
765–780.

[26] Vijay V Vazirani. 2001. Approximation Algorithms. Springer.

A Additional experimental results

Scalability of Algorithm 1 on synthetic data. In Figure 3, we

report the running time of Algorithm 1 as the number of clients

and facilities increases, while all other parameters remain constant.

On the left, we report the mean and standard deviation of 25 in-

dependent executions (5 instances and 5 executions per instance)

for each 𝑛𝑐 = {102, . . . , 106} with 𝑛 = 10
6
, 𝑑 = 5, 𝑘 = 10, 𝑡 = 5, and

®𝛼 = {2, 2, 2, 2, 2}. On the right, we vary 𝑛𝑓 = {102, . . . , 106} while
keeping 𝑛, 𝑑 , 𝑡 , 𝑘 , and ®𝛼 fixed. In both cases, we observe increase in

running times as 𝑛𝑐 and 𝑛𝑓 grow.

Experiments on real-world data. In Table 4, we report the mean

and standard deviation of running times for 10 independent execu-

tions for each dataset by considering 𝑡 = 5 disjoint groups for𝑘 = 10

with requirement vector ®𝛼 = {4, 3, 1, 1, 1} and ®𝛼 = {6, 1, 1, 1, 1}. We

observed difference in running times when we constrained the

requirement vector to choose more facilities from minority group.

In Table 5, we report the minimum value of the clustering ob-

jective from 10 independent executions for each dataset by con-

sidering 𝑡 = 5 disjoint groups for 𝑘 = 10 with requirement vector

®𝛼 = {4, 3, 1, 1, 1} and ®𝛼 = {6, 1, 1, 1, 1}. Again, we do not observe

significant difference in objective values between the fair and unfair

versions, nor between the 3 and 5 approximations with fairness

constraints.

B Proof of Theorem 3.1

Let OPT be the optimal cost of the input instance 𝐼 to Algorithm 1.

Fix an optimal clustering 𝐶∗ = {𝐶∗
1
. . . . ,𝐶∗

𝑘
} to 𝐼 corresponding

to the solution 𝐹 ∗ = {𝑓 ∗
1
, . . . , 𝑓 ∗

𝑘
}. Consider 𝐶′ = (𝑐′

1
, . . . , 𝑐′

𝑘
) con-

structed at the end of the for loop in line line 3. We claim that

𝑑 (𝑐,𝐶′) ≤ 2 · OPT, for every 𝑐 ∈ 𝐶 . Suppose 𝑐′
𝑖
∈ 𝐶∗

𝑖
for all

𝑐′
𝑖
∈ 𝐶′. In this case, consider 𝑐 ∈ 𝐶 such that 𝑐 ∈ 𝐶∗

𝑖
, and

hence 𝑑 (𝑐, 𝐹 ∗) ≤ 𝑑 (𝑐, 𝑓 ∗
𝑖
) ≤ OPT. Therefore, 𝑑 (𝑐,𝐶′) ≤ 𝑑 (𝑐, 𝑐′

𝑖
) ≤

𝑑 (𝑐, 𝑓 ∗
𝑖
)+𝑑 (𝑓 ∗

𝑖
, 𝑐′
𝑖
) ≤ 2 ·OPT, by triangle inequality, and the fact that

𝑐′
𝑖
, 𝑐 ∈ 𝐶∗

𝑖
. Now, suppose that there is𝐶∗

𝑖
∈ 𝐶∗ such that𝐶∗

𝑖
∩𝐶′ = ∅,

this means there exist 𝐶∗
𝑗
∈ 𝐶∗ such that |𝐶∗

𝑗
∩𝐶′ | ≥ 2 since both

𝐶′ and𝐶∗ are of size 𝑘 . Let 𝑐′𝑎, 𝑐
′
𝑏
∈ 𝐶′ ∩𝐶∗

𝑗
such that 𝑐′𝑎 was added

to 𝐶′ before 𝑐′
𝑏
. Furthermore, let 𝐶′′ = (𝑐′

1
, . . . , 𝑐′

𝑏−1) be the set

maintained by the algorithm just before adding 𝑐′
𝑏
to𝐶′. Then, note

that 𝑑 (𝑐′
𝑏
,𝐶′′) ≤ 𝑑 (𝑐′

𝑏
, 𝑐′𝑎) ≤ 2 · OPT. Since the algorithm selected

𝑐′
𝑏
to be the furthest point from 𝐶′′, it holds that, for any 𝑐 ∈ 𝐶 , we

have 𝑑 (𝑐,𝐶′) ≤ 𝑑 (𝑐,𝐶′′) ≤ 𝑑 (𝑐′
𝑏
,𝐶′′) ≤ 2 · OPT, as required.

The next phase of the algorithm obtains a feasible solution from

𝐶′. Towards this, the algorithm identifies (by binary search) the

smallest index ℓ∗ such that each point in 𝐶′
ℓ∗−1 := (𝑐′

1
, . . . , 𝑐′

ℓ∗−1)
belongs to a unique cluster in 𝐶∗, but 𝐶′

ℓ∗ := (𝑐′
1
, . . . , 𝑐′

ℓ∗) does
not have this property.

16
Next, the algorithm (again using binary

search) finds 𝜆∗, which is defined as the maximum distance between

any point in 𝐶′
ℓ∗−1 and 𝐹 ∗. With ℓ∗ and 𝜆∗ in hand, the algorithm

constructs a bipartite graph 𝐻 ℓ∗

𝜆∗
= (𝑉 ℓ∗

𝜆∗
, 𝐸ℓ

∗

𝜆∗
) a follows. The left

partition of𝑉 ℓ∗

𝜆∗
contains a vertex for every point in𝐶′

ℓ∗−1, while the

right partition contains 𝛼 𝑗 vertices {𝐺1

𝑗
, . . . ,𝐺

𝛼 𝑗

𝑗
} for every𝐺 𝑗 ∈ G.

For each 𝑐′
𝑖
∈ 𝐶′

ℓ∗−1 and 𝐺 𝑗 ∈ G, add edges between the vertex

𝑐′
𝑖
and all vertices {𝐺1

𝑗
, . . . ,𝐺

𝛼 𝑗

𝑗
} if there exists a facility in 𝐺 𝑗 at

16
We let ℓ∗ = 𝑘 + 1, for the corner case.

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Table 4: Comparison of running times for real-world datasets for Fair-𝑘-Sup-∅ with 𝑡 = 5 disjoint groups and different

requirement vectors.

𝑡 = 5 𝑘 = 10, ®𝛼 = {4, 3, 1, 1, 1} 𝑘 = 10, ®𝛼 = {6, 1, 1, 1, 1}
Dataset 𝑛 𝑑 𝑛𝑐 𝑛𝑓 group sizes 3-apx 3-apx 5-apx 3-apx 3-apx 5-apx

unfair fair fair unfair fair fair

Heart 299 13 299 194 (27, 56, 58, 34, 19) 0.00 ± 0.00 0.03 ± 0.01 2.22 ± 1.53 0.00 ± 0.00 0.03 ± 0.00 2.61 ± 1.25

Student-mat 395 59 395 208 (15, 38, 43, 54, 58) 0.02 ± 0.00 0.10 ± 0.00 3.51 ± 1.57 0.02 ± 0.00 0.10 ± 0.00 3.80 ± 1.35

Student-perf 649 59 649 383 (24, 57, 84, 105, 113) 0.04 ± 0.00 0.16 ± 0.01 7.02 ± 3.13 0.04 ± 0.00 0.17 ± 0.01 7.75 ± 3.13

National-poll 714 50 714 393 (8, 12, 29, 29, 315) 0.01 ± 0.00 0.04 ± 0.00 0.15 ± 0.02 0.02 ± 0.00 0.04 ± 0.01 0.17 ± 0.02

Bank 4521 53 4521 2306 (64, 302, 383, 609, 948) 0.17 ± 0.01 0.69 ± 0.05 76.03 ± 31.78 0.17 ± 0.00 0.70 ± 0.05 75.82 ± 31.05

Census 48842 112 48842 16192 (1276, 1873, 3188, 3853, 6002) 3.37 ± 0.19 15.11 ± 1.08 3303.58 ± 2173.41 3.29 ± 0.21 14.75 ± 1.09 4981.32 ± 2747.76

Credit-card 30000 24 30000 11888 (179, 1092, 2771, 3281, 4565) 0.39 ± 0.03 1.71 ± 0.13 486.48 ± 273.89 0.31 ± 0.06 1.35 ± 0.17 676.08 ± 304.78

Bank-full 45211 53 45211 23202 (672, 3207, 3851, 6011, 9461) 1.41 ± 0.01 6.73 ± 0.40 4542.11 ± 1604.71 1.44 ± 0.05 6.75 ± 0.81 4132.72 ± 2011.38

Table 5: Comparison of quality of solutions in real-world datasets for Fair-𝑘-Sup-∅ with 𝑡 = 5 disjoint groups.

𝑡 = 5 𝑘 = 10, ®𝛼 = {4, 3, 1, 1, 1} 𝑘 = 10, ®𝛼 = {6, 1, 1, 1, 1}
Dataset 𝑛 𝑑 𝑛𝑐 𝑛𝑓 group sizes 3-apx (unfair) 3-apx (fair) 5-apx (fair) 3-apx (unfair) 3-apx (fair) 5-apx (fair)

Heart 299 13 299 194 (27, 56, 58, 34, 19) 3.79 3.90 4.10 3.79 4.12 3.96

Student-mat 395 59 395 208 (15, 38, 43, 54, 58) 19.73 20.14 20.07 19.73 20.34 20.07

Student-perf 649 59 649 383 (24, 57, 84, 105, 113) 19.69 19.50 19.55 19.69 19.49 19.71

National-poll 714 50 714 393 (8, 12, 29, 29, 315) 14.50 14.50 16.00 14.50 15.00 16.00

Bank 4521 53 4521 2306 (64, 302, 383, 609, 948) 12.27 12.59 12.85 12.27 12.65 12.75

Census 48842 112 48842 16192 (1276, 1873, 3188, 3853, 6002) 16.41 15.60 17.02 16.41 16.05 17.02

Credit-card 30000 24 30000 11888 (179, 1092, 2771, 3281, 4565) 6.94 6.94 6.87 6.94 6.84 7.03

Bank-full 45211 53 45211 23202 (672, 3207, 3851, 6011, 9461) 12.87 12.97 13.05 12.87 12.67 13.05

102 103 104 105 106

Number of clients (nc)
0

10

20

30

40

50

Ru
nn

in
g

tim
e

(s
)

3APX

102 103 104 105 106

Number of facilities (nf)
0

10

20

30

40

50

Ru
nn

in
g

tim
e

(s
)

3APX

Figure 3: Scalability of the 3-approximation algorithm (Algorithm 1) with respect to number of clients 𝑛𝑐 and number of

facilities 𝑛𝑓 for Fair-𝑘-Sup-∅ with 𝑡 = 5 disjoint groups and fairness requirements ®𝛼 = [𝑘𝑡]
𝑡
.

a distance 𝜆∗ from 𝑐′
𝑖
(see lines 12-14). The following is the key

lemma that is crucial for the correctness of our algorithm.

Lemma B.1. There is a matching in 𝐻 ℓ∗

𝜆∗
on its left partition.

Proof. For ease of presentation, suppose the left partition of

𝐻 ℓ∗

𝜆∗
is denoted as𝐶′

ℓ∗−1 = (𝑐
′
1
, . . . , 𝑐′

ℓ∗−1). Then note that |𝐶′
ℓ∗−1 | ≤

𝑘 = |G′ |, where G′ (line 12) is the right partition of 𝐻 ℓ∗

𝜆∗
. Let 𝐹 ∗

𝑗
=

{𝑓 1
𝑗
, . . . , 𝑓

𝛼 𝑗

𝑗
} be the facilities in 𝐹 ∗ ∩𝐺 𝑗 , for𝐺 𝑗 ∈ G. Now, consider

point 𝑐′
𝑖
∈ 𝐶′

ℓ∗−1 and let 𝑓
𝑗 ′

𝑗
∈ 𝐹 ∗

𝑗
be the optimal facility in 𝐹 ∗ that

is closest to 𝑐′
𝑖
. Then, note that 𝑑 (𝑐′

𝑖
, 𝑓

𝑗 ′

𝑗
) ≤ 𝜆∗, by definition of 𝜆∗.

Hence, there is an edge between vertex 𝑐′
𝑖
and𝐺

𝑗 ′

𝑗
in𝐻 ℓ∗

𝜆∗
. Since each

𝑐′
𝑖
∈ 𝐶′

ℓ∗−1 belongs to different cluster in𝐶∗ and |𝐶′
ℓ∗−1 | ≤ |G

′ |, we
have that there is a matching in 𝐻 ℓ∗

𝜆∗
on 𝐶′

ℓ∗−1, as desired. □

Let 𝑀 be a matching in 𝐻 ℓ∗

𝜆∗
on its left partition. Let 𝑇 ℓ∗

𝜆∗
⊆ 𝐹

obtained (at the end of the for loop at line 18) by taking an ar-

bitrary facility from 𝐺 𝑗 , for every (𝑐′𝑖 ,𝐺
𝑗 ′

𝑗
) ∈ 𝑀 . Then, note that

𝑑 (𝑐′
𝑖
,𝑇 ℓ∗

𝜆∗
) ≤ 𝜆∗ ≤ OPT, for every 𝑐′

𝑖
∈ 𝐶′

ℓ∗−1. Therefore, 𝑑 (𝑐,𝑇
ℓ∗

𝜆∗
) ≤

3 ·OPT, as required. Finally, we add as many arbitrary facilities from

each𝐺 𝑗 ∈ G to𝑇 ℓ∗

𝜆∗
(line 21) so that |𝑇 ℓ∗

𝜆∗
∩𝐺 𝑗 | = 𝛼 𝑗 . This completes

the proof.

10

	Abstract
	1 Introduction
	2 Problem definition
	3 Approximation algorithms
	4 Experiments
	5 Related work
	6 Conclusions, limitations and open problems
	References
	A Additional experimental results
	B Proof of Theorem 3.1

