

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 HOW TRANSFORMERS LEARN IN-CONTEXT RECALL TASKS? OPTIMALITY, TRAINING DYNAMICS AND GEN- ERALIZATION

006
007 **Anonymous authors**
008 Paper under double-blind review

011 ABSTRACT

013 We study the approximation capabilities, convergence speeds and on-convergence
014 behaviors of one-layer decoder-only transformers trained on in-context recall tasks –
015 which requires to recognize the *positional* association between a pair of tokens from
016 in-context examples. Existing theoretical results only focus on the in-context recall
017 behavior of transformers after being trained for *one* gradient descent step. It remains
018 unclear what is the on-convergence behavior of transformers being trained by
019 gradient descent and how fast the convergence rate is. In addition, the generalization
020 of transformers in one-step in-context recall has not been formally investigated.
021 This work addresses these gaps. We first show that a class of transformers with
022 either linear, ReLU or softmax attentions, is provably Bayes-optimal for an in-
023 context recall task. When being trained with gradient descent, we show via a finite-
024 sample analysis that the expected loss converges at linear rate to the Bayes risks.
025 Moreover, we show that the trained transformers exhibit out-of-distribution (OOD)
026 generalization, i.e., generalizing to samples outside of the population distribution.
027 Our theoretical findings are further supported by extensive empirical validations,
028 showing that *without* proper parameterization, standard one-layer transformer
029 models surprisingly *fail* to generalize OOD after being trained by gradient descent.

031 1 INTRODUCTION

033 Large language models (LLMs) have shown impressive results in complex tasks that require some
034 form of “reasoning” where classical models such as feed-forward networks seem to struggle. These
035 reasoning tasks include, but are not limited to, generating coherent and plausible texts from a given
036 context, language understanding, and mathematical reasoning (Brown et al., 2020; Achiam et al.,
037 2023). At the heart of LLMs is the transformer architecture that features the attention mechanism
038 (Vaswani et al., 2017). Transformers can process a long sequence of contexts and enable in-context
039 reasoning via attention mechanisms. Despite remarkable empirical performance, the theoretical
040 understanding of attention in reasoning tasks remains elusive, raising critical risk and safety issues
041 when it comes to the widespread adoption of LLM technology (Bommasani et al., 2021; Belkin, 2024).

042 The literature has shown the usefulness of disentangling the behavior of complex models such as
043 LLMs via controlled-setting tasks for which we understand the groundtruth behaviors (Allen-Zhu,
044 2024). For understanding reasoning in LLMs, one of the benchmark tasks that the literature has been
045 recently embarked on is next-token prediction (NTP), wherein the tasks require a model to understand
046 the context from a sentence to be able to predict the next token correctly. As a running example,
047 consider the task of predicting the next token for the sentence “After talking to Bob about Anna,
048 Charles gives her email address to [?]”. A global bigram statistics would predict the next token to
049 be “the” as the bigram “to the” naturally occurs in English with high frequency. However, if another
050 person appears in the context, say Bob, then “Bob” is perhaps a better token prediction, even though
051 the bigram “to Bob” is not a frequent bigram in the global context. In transformers, there have been
052 strong (both empirically and theoretically) evidence suggesting that attention heads are responsible
053 for in-context reasoning such as the in-context bigram “to Bob” (Wang et al., 2022) while feedforward
layers seem to be responsible for storing global statistics or factual knowledge such as the global
bigram “to the” (Geva et al., 2020; Meng et al., 2022; Biotti et al., 2023; Nichani et al., 2024).

054 However, a proper understanding of how such capabilities emerge during training is still lacking. For
 055 example, it is unclear how distributional associations such as “to the” and in-context reasoning such
 056 as “to Bob” are automatically assigned to feed-forward layers and self-attention layers by gradient
 057 descent without being explicitly forced to do so during training. Several initial efforts have shed
 058 insights into the above question (Chen et al., 2025; Bietti et al., 2023; Nichani et al., 2024). While they
 059 made an important first progress, we are still far from depicting the whole picture of how reasoning
 060 emerges in transformers. In particular, the existing theoretical results are limited to the reasoning
 061 behavior for just the first gradient steps or an infinite-sample setting, which do not reflect how we
 062 actually train transformers in practice.

063 In this paper, we narrow the gap above by deriving an effective, interpretable structures of transformers
 064 for in-context recall tasks. We will show how these structures emerge through gradient descent training
 065 on a class of parameterized one-layer transformers with linear, ReLU and softmax attentions. Our
 066 main contributions are as follows.

- 067 • In Section 2, we formally define a new in-context reasoning task (Definition 2.1), in which
 068 multiple query tokens can appear in a sentence and the output tokens can be noisy. This is a
 069 more difficult version of the in-context recall tasks in existing works (Bietti et al., 2023; Chen
 070 et al., 2025). Our new data model also enables a natural way to setup out-of-distribution
 071 (OOD) testing via a set of *neutral* tokens.
- 072 • Section 3 considers the noiseless setting. In Lemma 3.1, we present the first parameterization
 073 of one-layer transformers with linear and ReLU attentions that are provably optimal for this
 074 setting. We show that this parameterization mimics a human-like strategy for solving the
 075 task, and that it can be realized via gradient descent training (Theorem 3.2). Furthermore, we
 076 prove that the trained model directly generalizes to OOD sentences (Theorem 3.3), as well as
 077 gradient descent alone is not implicitly biased towards this parameterization (Theorem 3.4).
- 078 • Section 4 studies the optimality and convergence of models with softmax attentions for
 079 the noiseless setting. Lemma 4.1 exhibits how the structure for softmax attention can be
 080 constructed from observing the structure for linear and ReLU attentions. Via a two-phase
 081 analysis, our Theorem 4.2 shows that the loss converges *at a linear rate* to 0.
- 082 • Section 5 studies the noisy setting. Lemmas 5.1 and 5.2 first demonstrate the Bayes-
 083 optimality of one-layer transformers with linear, ReLU and softmax attentions. Next,
 084 Theorem 5.4 shows that by adapting our parameterizations from the noiseless setting to
 085 the noisy setting, one-layer transformers admit a finite-sample analysis that results in a
 086 PAC-style high-probability generalization bound. Moreover, Theorem 5.6 explains how
 087 attention layer and feed-forward layer may converge to perform different functionalities.
- 088 • Finally, Section 6 presents experimental results demonstrating the advantages of our parame-
 089 terization over non-parameterized models. These results reveal the crucial role of expressive
 090 power and parameterization in achieving Bayes-optimality and OOD generalization.

091 1.1 RELATED WORK

093 Several works have analyzed transformers’ training dynamics for in-context learning of linear
 094 regression and binary classification. Ahn et al. (2024) show a one-layer linear transformer that
 095 performs a preconditioned gradient step, with L layers corresponding to L steps at certain critical
 096 points. Mahankali et al. (2023) find that a one-layer linear transformer trained on noisy data mimics a
 097 single least-squares gradient step. Zhang et al. (2024) prove convergence to a global minimum under
 098 suitable initialization. Huang et al. (2024a) study gradient descent in softmax transformers learning
 099 linear functions. Cui et al. (2024) show that multi-head attention with large embeddings outperforms
 100 single-head variants. Cheng et al. (2023); Li et al. (2025) demonstrate the ability to emulate gradient
 101 descent and generalize with Chain-of-Thought on nonlinear transformers. Siyu et al. (2024); Shen
 102 et al. (2025) studies the training dynamics of (multi-head) softmax transformers for multi-task
 103 linear regression and in-context classification. Tarzanagh et al. (2023) show that self-attention
 104 optimization mirrors hard-margin SVMs, revealing the implicit bias of 1-layer transformers trained
 105 via gradient descent, and that over-parameterization aids global convergence. Ataee Tarzanagh
 106 et al. (2023) demonstrate that gradient descent on softmax attention converges to a max-margin
 107 separator distinguishing between locally optimal tokens. Building on this, Vasudeva et al. (2024)
 provide finite-sample analysis. Deora et al. (2023) offer optimization and generalization guarantees
 for training single-layer multi-head attention models under the NTK regime.

Recent works have also examined transformers’ training dynamics for next-token prediction (NTP). [Tian et al. \(2023a\)](#) show that self-attention acts as a discriminative scanner, focusing on predictive tokens and down-weighting common ones. [Tian et al. \(2023b\)](#) analyze multilayer dynamics, while [Li et al. \(2024\)](#) find that gradient descent trains attention to learn an automaton via hard retrieval and soft composition. [Thrampoulidis \(2024\)](#) study the implicit bias of gradient descent in linear transformers. [Huang et al. \(2024b\)](#) provide finite-time analysis for a one-layer transformer on a synthetic NTP task, showing sublinear max-margin and linear cross-entropy convergence. Their setting assumes one-to-one token mapping, whereas we address a more general case allowing one-to-many mappings and prove generalization results for this broader task.

Our work also connects to recent views of transformer weight matrices—especially in embedding and feed-forward layers—as associative memories. [Biotti et al. \(2023\)](#) show that transformers store global bigrams and adapt to new context at different rates. [Chen et al. \(2025\)](#) find that feed-forward layers capture distributional associations, while attention supports in-context reasoning, attributing this to gradient noise (though only analyzing one gradient step). [Nichani et al. \(2024\)](#) theoretically analyze gradient flow in linear attention models on factual recall tasks.

2 PROBLEM SETUP

Notations. We use bold lowercase letters for vectors and bold uppercase letters for matrices. Let N be the size of the vocabulary, and $\mathcal{V} = [N] := \{1, \dots, N\}$ be the vocabulary itself. A token $y \in [N]$ is an element of the vocabulary. A sentence of length H is a sequence of tokens denoted by $z_{1:H}$, where $z_h \in [N]$ is the h -th element of $z_{1:H}$. We use $C_{x,y} = \sum_{h=1}^{H-1} \mathbb{1}\{z_{h-1} = x, z_h = y\}$ to denote the number of times a bigram (x, y) appear in a sentence. Generally, we will use “word” and “token” interchangeably throughout the paper, although we often use “word” to refer to an element of a sentence and “token” to refer to a specific type of elements of the vocabulary.

Definition 2.1 (Data Model - In-context Recall Tasks). We study a modified variant of the noiseless and noisy in-context reasoning tasks proposed in [Biotti et al. \(2023\)](#) and [Chen et al. \(2025\)](#), respectively. More specifically, we define the following two special, non-overlapping sets of tokens: a set of trigger tokens $\mathcal{Q} \subset [N]$ and a set of output tokens $\mathcal{O} \subset [N]$, where $\mathcal{O} \cap \mathcal{Q} = \emptyset$. A special “generic” noise token is defined by $\tau = N + 1$. The noise level is determined by a constant $\alpha \in [0, 1]$, where $\alpha = 0$ corresponds to the noiseless learning setting ([Biotti et al., 2023](#)) and $\alpha > 0$ corresponds to the noisy learning setting ([Chen et al., 2025](#)). In our model, a sentence $z_{1:H+1}$ is generated as follows:

- Sample a trigger word $q \sim \text{Unif}(\mathcal{Q})$ and an output word $y \sim \text{Unif}(\mathcal{O})$.
- Sample randomly (over an arbitrary distribution) $z_{1:H-1}$ from the set of sentences that satisfy the following four conditions: (I) there exists at least one bigram (q, y) in the sentence, (II) τ may appear in a sentence only if $\alpha > 0$, in that case τ is always preceded by q , (III) all bigrams of the form (q, x) take either $x = y$ or $x = \tau$, and (IV) if another token q' is in the sentence, then it is followed by an output word $y' \in \mathcal{O}$.
- Fix $z_H = q$,
- Set $z_{H+1} = \tau$ with probability α and $z_{H+1} = y$ with probability $1 - \alpha$.

Comparisons to existing works. Compared to the existing task modes in [Biotti et al. \(2023\)](#); [Chen et al. \(2025\)](#), our task model offers several notable advantages. First, all sentences in our models must contain at least one (trigger token, output token) bigram, leading to a better signal-to-noise ratio. This allows us to avoid un-informative sentences that contain no useful signals for learning. Second, our task models are *agnostic* with respect to the distribution of the sentences. In other words, we do not impose any assumptions on how words and sentences are distributed, as long as the conditions are satisfied. Thus, our distributionally agnostic models are both more applicable to practical scenarios and more challenging for theoretical analyses. Third, by restricting the output tokens to a subset of $[N]$, we can study the OOD generalization ability of a model on *unseen* output tokens. [Note that existing work by Biotti et al. \(2023\); Chen et al. \(2025\) did not study OOD generalization.](#) Furthermore, because there are more than one possible next-token for every trigger word, our next-token prediction task is more challenging than the task of learning a one-to-one token mapping in [Huang et al. \(2024b\)](#). We provide additional examples of real-life sentences in Appendix A.

One-layer Decoder-only Transformers. To establish the theoretical guarantees of the optimality and on-convergence behaviors of transformers, we adopt the popular approach in existing works ([Biotti et al., 2023](#); [Chen et al., 2025](#); [Huang et al., 2024a](#), e.g.) and consider the following one-layer transformer model, which is a variant of the model proposed in [Chen et al. \(2025\)](#). Let $E : [N] \mapsto \mathbb{R}^d$

be the input word embedding, i.e. $E(z) \in \mathbb{R}^d$ is the input embedding of the word $z \in [N]$, and $\tilde{E} : [N] \mapsto \mathbb{R}^d$ be a (different) embedding representing the previous token head construction as in [Bietti et al. \(2023\)](#). Similar to the majority of existing works in the literature ([Chen et al., 2025](#), e.g.), we employ a common assumption that the embeddings E and \tilde{E} are fixed and orthogonal, i.e. $E(i)^\top E(j) = \tilde{E}(i)^\top \tilde{E}(j) = \mathbb{1}\{i = j\}$ and $E(i)^\top \tilde{E}(j) = 0$ for any $i, j \in [N]$.

Let $\mathbf{U} \in \mathbb{R}^{N \times d}$, $\mathbf{V} \in \mathbb{R}^{d \times d}$, $\mathbf{W} \in \mathbb{R}^{d \times d}$ be the unembedding matrix, the value matrix, and the joint query-key matrix, respectively. Our model consists of one attention layer and one feed-forward layer. The input $\mathbf{x}_{1:H}$ and the output of the model are as below.

$$\begin{aligned} \mathbf{x}_h &:= E(z_h) + \tilde{E}(z_{h-1}) \in \mathbb{R}^d, \\ \phi(\mathbf{x}_H, \mathbf{x}_{1:H}) &:= \mathbf{V} \sum_{h=1}^H \sigma(\mathbf{x}_H^\top \mathbf{W} \mathbf{x}_h) \mathbf{x}_h \in \mathbb{R}^d, \\ \xi_A &:= \mathbf{U} \phi(\mathbf{x}_H, \mathbf{x}_{1:H}) \in \mathbb{R}^N, \\ \xi_F &:= \mathbf{U} \mathbf{F}(\mathbf{x}_H + \phi(\mathbf{x}_H, \mathbf{x}_{1:H})) \in \mathbb{R}^N, \end{aligned} \quad (1)$$

where \mathbf{F} is the matrix of the linear layer and $\sigma : \mathbb{R} \rightarrow \mathbb{R}$ is the activation function which determines the range of the attention scores. For theoretical and empirical analyses, we use linear attention $\sigma(\mathbf{x}_H^\top \mathbf{W} \mathbf{x}_h) = \mathbf{x}_H^\top \mathbf{W} \mathbf{x}_h$, ReLU attention $\sigma(\mathbf{x}_H^\top \mathbf{W} \mathbf{x}_h) = \max(0, \mathbf{x}_H^\top \mathbf{W} \mathbf{x}_h)$ and softmax attention $\sigma(\mathbf{x}_H^\top \mathbf{W} \mathbf{x}_h) = \frac{\exp(\mathbf{x}_H^\top \mathbf{W} \mathbf{x}_h)}{\sum_{j=1}^H \exp(\mathbf{x}_H^\top \mathbf{W} \mathbf{x}_j)}$. The final logit is $\xi = \xi_A + \xi_F$.

Compared to [Chen et al. \(2025\)](#), our model in (1) differs in the computation of ξ_F . More specifically, while their theoretical model used $\xi_F = \mathbf{U} \mathbf{F} \mathbf{x}_H$, we add $\sum_{h=1}^H \sigma(\mathbf{x}_H^\top \mathbf{W} \mathbf{x}_h) \mathbf{V} \mathbf{x}_h$ to the input of the feed-forward layer, which is closer to the empirical model used for the experiments in [Chen et al. \(2025\)](#). As we will show in Section 5, this modification is sufficient for showing the Bayes-optimality of one-layer transformers. Next, similar to [Chen et al. \(2025\)](#), we fix the three embedding maps E, \tilde{E}, \mathbf{U} , and use cross-entropy loss on ξ , i.e. the population loss is $L = \mathbb{E}_{q,y,z} \left[-\ln \frac{\exp(\xi_y)}{\sum_{j \in [N]} \exp(\xi_j)} \right]$.

3 WARMUP: NOISELESS LEARNING WITH LINEAR AND RELU ATTENTIONS

In this section, we consider the noiseless learning setting in which $\alpha = 0$ and τ never appears in a sentence. In Section 3.1, we prove the approximation capability of the model defined in (1) by showing that with linear and ReLU attentions, there exists a reparameterization of $\mathbf{U}, \mathbf{V}, \mathbf{F}$ and \mathbf{W} that drives the population loss L to 0. In Section 3.2, we show that the reparameterized model can be trained by normalized gradient descent (NGD) and the population loss converges to 0 at linear rate.

3.1 APPROXIMATION CAPABILITIES OF TRANSFORMERS ON NOISELESS SETTING

We show that for any instance of the noiseless data model in Definition 2.1, there is a one-layer transformer that precisely approximates the task instance, i.e., the population loss is zero. To this end, we initialize and freeze the matrix $\mathbf{F} = \mathbf{0}$ so that $\xi_F = \mathbf{0}$. The population loss becomes

$$L(\mathbf{V}, \mathbf{W}) = \mathbb{E}_{q,y,z} \left[-\ln \frac{e^{\xi_{A,y}}}{\sum_{j \in [N]} e^{\xi_{A,j}}} \right] = \mathbb{E}_{q,y,z} \left[-\ln \frac{e^{\mathbf{e}_y^\top \mathbf{U} \mathbf{V} \sum_{h=1}^H \sigma(\mathbf{x}_H^\top \mathbf{W} \mathbf{x}_h) \mathbf{x}_h}}{\sum_{j \in [N]} e^{\mathbf{e}_j^\top \mathbf{U} \mathbf{V} \sum_{h=1}^H \sigma(\mathbf{x}_H^\top \mathbf{W} \mathbf{x}_h) \mathbf{x}_h}} \right], \quad (2)$$

where \mathbf{e}_j is the j -th vector in the canonical basis of \mathbb{R}^N (i.e., $[\mathbf{e}_j]_k = \mathbb{1}\{j = k\}$). Note that the output embedding \mathbf{U} is considered a fixed matrix as in [Chen et al. \(2025\)](#), thus the population loss is a function of \mathbf{V} and \mathbf{W} . We consider a specific parametric class of the weight matrices \mathbf{U}, \mathbf{V} and \mathbf{W} . [Studying a particular parametric class is a common approach for overcoming the highly non-convex landscape of transformers](#) (e.g. [Ahn et al., 2024](#); [Yang et al., 2024](#); [Huang et al., 2025a](#)). In particular, the following lemma shows that there exists a reparameterization of \mathbf{U}, \mathbf{V} , and \mathbf{W} that makes the population loss arbitrarily close to 0. The proof is in Appendix D.1.

Lemma 3.1. *Let $\lambda = \{\lambda_k \in \mathbb{R}_+ : k \in \mathcal{Q}\}$ be a set of $|\mathcal{Q}|$ of non-negative values. By setting $\mathbf{U} = [E(1) \ E(2) \ \dots \ E(N)]^\top$, $\mathbf{V} = \mathbf{I}_d$ and $\mathbf{W} = \sum_{k \in \mathcal{Q}} \lambda_k E(k) \tilde{E}^\top(k)$, for both linear and ReLU attention, we obtain $\lim_{\lambda \rightarrow \infty} L(\lambda) := \lim_{(\lambda_q)_{q \in \mathcal{Q}} \rightarrow \infty} L(\mathbf{V}, \mathbf{W}) = 0$.*

Proof. (Sketch) The crucial observation is that the attention score of the h -th token z_h is $\sigma(\mathbf{x}_H^\top \mathbf{W} \mathbf{x}_h) = \lambda_q \mathbb{1}\{z_{h-1} = q\}$, which is a non-zero (and positive) value for x_h only when z_{h-1} is

216 the trigger word. As a result, the logits of token $j \in [N]$ is $\xi_j = \xi_{A,j} = \lambda_q C_{q,y} \mathbb{1}\{j = y\}$. Hence,
 217 the probability of outputting y is $\lim_{\lambda_q \rightarrow \infty} \frac{\exp(\xi_y)}{\sum_{j \in [N]} \exp(\xi_j)} = \lim_{\lambda_q \rightarrow \infty} \frac{\exp(C_{q,y} \lambda_q)}{\exp(C_{q,y} \lambda_q) + N - 1} = 1$. \square
 218

219 3.2 CONVERGENCE RATE, GENERALIZATION AND IMPLICIT BIAS OF GRADIENT DESCENT

220 We analyze the dynamics of normalized gradient descent (NGD) in training one-layer transformers
 221 parameterized in Section 3.1. We will show that with linear and ReLU attentions, the population loss
 222 converges *linearly* to zero. Moreover, the trained model generalizes to samples that lie completely
 223 outside of the training population.
 224

225 **Convergence rate of NGD.** From the proof sketch of Lemma 3.1, the population loss $L(\lambda)$ is
 226 $L(\lambda) = \mathbb{E}_{q,y,z} \left[-\ln \frac{\exp(C_{q,y} \lambda_q)}{\exp(C_{q,y} \lambda_q) + N - 1} \right]$. We initialize $\lambda_0 = \mathbf{0}$. Running standard gradient descent
 227 $\lambda_{t+1} = \lambda_t - \eta \nabla_{\lambda} L$, where $\eta > 0$ is the learning rate, would require knowing the exact distribution
 228 of z since $C_{q,y}$ is a random variable depending on z . Instead, we adopt an NGD algorithm, where
 229

$$230 \lambda_{t+1} = \lambda_t - \eta \frac{\nabla_{\lambda} L}{\|\nabla_{\lambda} L\|_2}, \quad (3)$$

232 i.e. the gradient vectors are normalized by their Euclidean norm. A similar NGD update was used
 233 in Huang et al. (2024b) for learning an injective map on the vocabulary. The following theorem shows
 234 that the update (3) can be implemented without the knowledge of the distribution of z . Moreover,
 235 the population loss converges to zero at a linear rate. The proof can be found in Appendix D.2.

236 **Theorem 3.2.** *Starting from $\lambda_{q,0} = 0$ for all $q \in \mathcal{Q}$, the update rule (3) is equivalent to $\lambda_{q,t} = \frac{\eta t}{|\mathcal{Q}|}$
 237 for all $t \geq 1$. Moreover, $L(\lambda_t) = O(N \exp(-\eta t / |\mathcal{Q}|))$.*

239 **OOD Generalization to unseen output words.** The human-like strategy for solving the noiseless
 240 data model in Definition 2.1 is to predict the word that comes after a trigger token. That is, the position
 241 of the trigger token is the only important factor in this task. Such a strategy does not depend on what
 242 the actual output word y is, and hence would easily generalize to a out-of-distribution sentence where
 243 the bigram (q, y) is replaced by a new bigram (q, y_{test}) , where y_{test} is a non-trigger non-output word.
 244 The following theorem formalizes this intuition, indicating that our parameterization is precisely
 245 implementing this human-like strategy.

246 **Theorem 3.3.** *Fix any $y_{\text{test}} \in [N] \setminus (\mathcal{O} \cup \mathcal{Q})$. Take any **test** sentence generated by the noiseless data
 247 model, except that every bigram (q, y) is replaced with (q, y_{test}) . Then, our model after being trained
 248 by normalized gradient descent for t steps, predicts y_{test} with probability*

$$249 \Pr[z_{H+1} = y_{\text{test}} \mid \lambda_t] := \frac{\exp(\xi_{y_{\text{test}}})}{\sum_{j \in [N]} \exp(\xi_j)} \geq \frac{\exp(\eta t / |\mathcal{Q}|)}{\exp(\eta t / |\mathcal{Q}|) + N - 1}.$$

251 In particular, this implies that $\lim_{t \rightarrow \infty} \Pr[z_{H+1} = y_{\text{test}} \mid \lambda_t] = 1$.

253 **Reparameterization versus Directional Convergence.** In addition to the convergence of the loss
 254 function, existing works (e.g. Ji and Telgarsky, 2021; Huang et al., 2024b) on the training dynamics of
 255 neural networks learned with cross-entropy loss have shown that the trainable matrices *directionally*
 256 *convergence* to an optimal solution. More formally, a sequence of \mathbf{A}_t directionally converges to some
 257 \mathbf{A}_* if $\lim_{t \rightarrow \infty} \langle \frac{\mathbf{A}_t}{\|\mathbf{A}_t\|}, \frac{\mathbf{A}_*}{\|\mathbf{A}_*\|} \rangle = 1$. In our work, the joint query-key matrix \mathbf{W} is reparameterized
 258 as a form of associative memory of the trigger tokens, rather than emerging from running gradient
 259 descent for minimizing the population loss L , as in (Bietti et al., 2023; Chen et al., 2025). This raises
 260 a natural question: if we use the reparameterization on \mathbf{U} and \mathbf{V} but not \mathbf{W} , what is the implicit
 261 bias of running gradient descent on \mathbf{W} ? In Theorem 3.4 (full proof in Appendix D.4), we show that
 262 gradient descent does *not* directionally converges to $\sum_q E(q) \tilde{E}^{\top}(q)$.

263 **Theorem 3.4.** *For any $N \geq 4$, there exists a problem instance in the noiseless setting such that with
 264 $\mathcal{Q} = \{q\}$, $|\mathcal{O}| = 2$, $\mathbf{W}^* := E(q) \tilde{E}^{\top}(q)$, \mathbf{U} and \mathbf{V} defined in Lemma 3.1, running gradient descent
 265 on \mathbf{W} from $\mathbf{W}_0 = \mathbf{0}$ satisfies $\lim_{t \rightarrow \infty} \left| \langle \frac{\mathbf{W}_t}{\|\mathbf{W}_t\|}, \frac{\mathbf{W}^*}{\|\mathbf{W}^*\|} \rangle \right| = \frac{2}{\sqrt{12}} < 1$.*

267 4 NOISELESS LEARNING WITH SOFTMAX ATTENTION

268 Fix a sentence with trigger word q and output word y . Recall that in order to achieve a zero population
 269 logistic loss, it is necessary that the logits ξ_y of the output word y approaches infinity. The proof

sketch of Lemma 3.1 in the previous section showed that having an *unbounded* attention scores $\sigma(\mathbf{x}_H^\top \mathbf{W} \mathbf{x}_h)$ at $z_{h-1} = q$ naturally allows ξ_y to approach infinity. While this unboundedness hold for linear and ReLU attention, it does not hold for softmax attention, where the attention scores are bounded in the range $[0, 1]$. The following lemma (proof in Appendix E) shows a modified parameterization that can drive the logits ξ_y to infinity under softmax attention.

Lemma 4.1. *Let $s \in \mathbb{R}$ and $\lambda = \{\lambda_k \in \mathbb{R}_+ : k \in \mathcal{Q}\}$. By setting $\mathbf{U} = [E(1) E(2) \dots E(N)]^\top$, $\mathbf{V} = s\mathbf{I}_d$ and $\mathbf{W} = \sum_{k \in \mathcal{Q}} \lambda_k E(k) \left(\tilde{E}(k)^\top - \sum_{x=1, x \neq k}^N \tilde{E}(x)^\top \right)$, for softmax attention, we obtain $\lim_{s \rightarrow \infty} \lim_{(\lambda_k)_{k \in \mathcal{Q}} \rightarrow \infty} L(\mathbf{V}, \mathbf{W}) = 0$.*

This new parameterization has two modifications compared to the one in Lemma 3.1: a subtraction $-\sum_{x=1, x \neq k}^N \tilde{E}(x)^\top$ from \mathbf{W} , and a new scaling factor $s \in \mathbb{R}$ in the value matrix \mathbf{V} . The first modification ensures that $\mathbf{x}_H^\top \mathbf{W} \mathbf{x}_h$ tends to positive and negative infinity for positions h where $z_{h-1} = q$ and $z_{h-1} \neq q$, respectively. Correspondingly, the attention scores $\sigma(\mathbf{x}_H^\top \mathbf{W} \mathbf{x}_h)$ tends to 1 and 0 for these two cases. The second modification effectively shifts the scaling in ξ from \mathbf{W} to \mathbf{V} , and implies that the desired optimality comes from $\lim_{s \rightarrow \infty} s \cdot 1 = \infty$ and $\lim_{s \rightarrow \infty} s \cdot 0 = 0$.

Note that in the statement of Lemma 4.1, the order of the two limit operations are strict and not exchangeable. Therefore, it is an important question that whether this optimality can actually be realized by running normalized gradient descent on $L(\mathbf{V}, \mathbf{W})$. The following result answers this question in the positive, showing that from a certain initialization, both s and $(\lambda_k)_k$ approaches infinity. Moreover, the population loss $L(\mathbf{V}, \mathbf{W})$ converges to 0 at a linear rate.

Theorem 4.2. *Let $\eta > 0$ and $T_0 = \lceil \frac{|\mathcal{Q}| \ln H}{2\eta} \rceil$. By running t rounds normalized gradient descent with learning rate η from initialization $\lambda_{q,0} = 0$ for all $q \in \mathcal{Q}$ and $s_0 = \frac{|\mathcal{Q}| \ln H + 2}{2}$, we obtain $s_t \geq \frac{1}{2} + \eta(t - T_0)$ and $\lambda_{q,t} \geq \frac{\eta t}{|\mathcal{Q}|}$ for any $t > T_0$. Moreover, this implies $L(\mathbf{V}, \mathbf{W}) \leq O(N \exp(-\eta t / |\mathcal{Q}|))$.*

The proof of Theorem 4.2 divides the training process into two distinct phases: $t \leq T_0$ and $t > T_0$. During this first phase, the signs of the derivatives $\frac{\partial L}{\partial s_t}$ may oscillate between $+1$ and -1 while $\lambda_{q,t}$ and the attention scores grow quickly. In the second phase, $\lambda_{q,t}$ has become sufficiently large so that the attention scores become more stable, allowing s_t to increase monotonically. Similar stage-wise convergence analysis of transformers with softmax attention has been observed before in other tasks such as regression (Huang et al., 2024a) and binary classification (Huang et al., 2025b).

5 NOISY LEARNING

Recall that our noisy data model, where $\alpha > 0$, is a variant of the setting in Chen et al. (2025). As an upgrade from Chen et al. (2025), we allow *multiple* trigger words, i.e. $|\mathcal{Q}| > 1$. Moreover, we allow *any* distributions of bigrams (q, y) and (q, τ) in the sentence, and do not assume that the ratio of the frequencies of the bigrams (q, τ) and (q, y) is $\frac{\alpha}{1-\alpha}$. In other words, our results are based on the distribution of the label z_{H+1} instead of the distribution of the bigrams (q, τ) and (q, y) . We emphasize that a Bayes-optimal solution for our noisy data model will also be a Bayes-optimal solution for the model in Chen et al. (2025).

5.1 APPROXIMATION CAPABILITIES OF ONE-LAYER TRANSFORMERS ON NOISY SETTING

First, we show that by relying on just the distribution of z_{H+1} , the model defined in (1) is capable of making the population loss arbitrarily close to the loss of the Bayes optimal strategy. Fix a trigger word q and an output word y . The label of a sentence that contains both (q, τ) and (q, y) is either τ with probability α or y with probability $1 - \alpha$, independent of other tokens in the sentence. Thus, the Bayes optimal strategy is to predict τ and y with the same probabilities. Let \hat{y} be the prediction of this strategy. Its expected loss is equal to the entropy $L_{\text{Bayes}} = -\alpha \ln \alpha - (1 - \alpha) \ln(1 - \alpha)$. Similar to the previous sections, we set and fix the unembedding layer $\mathbf{U} = [E(1) E(2) \dots E(N) E(N+1)]^\top$. The following two lemmas demonstrate that the Bayes optimality of specific parameterization for linear/ReLU and softmax attentions.

Lemma 5.1. *Let $\lambda, \gamma \in \mathbb{R}$. By setting $\mathbf{V} = \mathbf{I}_d$, $\mathbf{W} = \lambda \sum_{q \in \mathcal{Q}} E(q) (\tilde{E}^\top(q) - E^\top(\tau))$ and $\mathbf{F} = E(\tau) (\sum_{q \in \mathcal{Q}} \gamma E^\top(q) + \tilde{E}^\top(q))$ and using linear or ReLU attention, we obtain*

$$\lim_{\lambda \rightarrow \infty, \gamma \rightarrow \ln \frac{\alpha}{1-\alpha}} L(\lambda, \gamma) := \lim_{\lambda \rightarrow \infty, \gamma \rightarrow \ln \frac{\alpha}{1-\alpha}} \mathbb{E}_{y, z_{1:H+1}} \left[-\ln \frac{\exp(\xi_{z_{H+1}})}{\sum_{j \in [N+1]} \exp(\xi_j)} \right] = L_{\text{Bayes}}.$$

324 **Lemma 5.2.** Let $s, \lambda, \gamma \in \mathbb{R}$. By setting $\mathbf{V} = s\mathbf{I}_d, \mathbf{W} = \lambda \sum_{q \in \mathcal{Q}} E(q)(\tilde{E}^\top(q) - 2E^\top(\tau) -$
 325 $\sum_{x=1, x \neq q}^N \tilde{E}(x)^\top)$ and $\mathbf{F} = E(\tau)(\sum_{q \in \mathcal{Q}} \gamma E^\top(q) + \tilde{E}^\top(q))$ and using softmax attention,

$$327 \lim_{s \rightarrow \infty, \lambda \rightarrow \infty, \gamma \rightarrow \ln \frac{\alpha}{1-\alpha}} L(s, \lambda, \gamma) := \lim_{s \rightarrow \infty} \lim_{\lambda \rightarrow \infty, \gamma \rightarrow \ln \frac{\alpha}{1-\alpha}} \mathbb{E}_{y, z_{1:H+1}} \left[-\ln \frac{\exp(\xi_{z_{H+1}})}{\sum_{j \in [N+1]} \exp(\xi_j)} \right] = L_{\text{Bayes}}.$$

330 **Remark 5.3.** These results are distribution-agnostic in the sense that they hold for any word distribution-
 331 as long as the conditions of the data model are satisfied. Moreover, they hold even for $\alpha > 0.5$.
 332 This is a major advantage over the existing results in [Chen et al. \(2025\)](#), which required $\alpha \leq 0.5$.
 333 Setting $\alpha > 0.5$ also reflects a wider range of practical scenarios where the generic bigrams such as
 334 “to the” often appear more frequently than context-dependent bigrams such as “to Bob”.

335 5.2 TRAINING DYNAMICS AND ON-CONVERGENCE BEHAVIOR: A FINITE-SAMPLE ANALYSIS

336 For ease of exposition, we focus on linear and ReLU attentions. The analysis for softmax attention
 337 follows a nearly identical proof with an additional beginning phase similar to the analysis in Section 4.
 338 Let M denote the size of a dataset of i.i.d. sentences z_{H+1} generated from the data model in
 339 Definition 2.1. Instead of minimizing the full population loss as in existing works ([Bietti et al., 2023](#);
 340 [Huang et al., 2024a](#); [Chen et al., 2025](#)), which would require either knowing α or taking $M \rightarrow \infty$,
 341 we aim to derive a finite-sample analysis that holds for finite M and unknown α .

342 Before presenting our training algorithm and its finite-sample analysis, we first discuss the easier case
 343 where α is known and explain why it is difficult to derive the convergence rate of the population loss
 344 in (67). Observe that the function $f_C(\lambda, \gamma) = -C\lambda - \alpha\gamma + \ln(e^{C\lambda} + e^{C\lambda+\gamma} + N - 1)$ is jointly
 345 convex and 1/2-smooth with respect to λ and γ . Hence, at first glance, it seems that the convergence
 346 rate of $L(\lambda, \gamma) = \mathbb{E}_C[f_C(\lambda, \gamma)]$ follows from existing results in (stochastic) convex and smooth
 347 optimization ([Nemirovski et al., 2009](#)). However, as a convex function on unbounded domain with
 348 negative partial derivatives, no *finite* minimizer exists for $L(\lambda, \gamma)$. This implies that minimizing
 349 $L(\lambda, \gamma)$ is a multi-dimensional convex optimization problem on astral space ([Dudík et al., 2022](#)). To
 350 our knowledge, nothing is known about the convergence rate to the *infimum* for this problem.

351 **Training Algorithm.** Our approach for solving this astral space issue is to estimate γ directly from the
 352 dataset and then run normalized gradient descent on λ . More specifically, recall that M is the number
 353 of i.i.d. sentences in the training set. We use the superscript (m) to denote quantities that belong to
 354 the m -th sentence, where $m \in [M]$. Let $M_\tau = \sum_{m=1}^M \mathbb{1}\{z_{H+1}^{(m)} = \tau\}$ be the number of sentences
 355 where z_{H+1} is τ . Let $\hat{\alpha} = \frac{M_\tau}{M}$ and $\hat{\gamma} = \ln \frac{\hat{\alpha}}{1-\hat{\alpha}}$ be the unbiased estimates for α and $\gamma = \ln \frac{\alpha}{1-\alpha}$,
 356 respectively. We use $\hat{\gamma}$ in the parameterization of \mathbf{F} , i.e. $\mathbf{F} = E(\tau)(\sum_{q \in \mathcal{Q}} \hat{\gamma} E^\top(q) + \tilde{E}^\top(q))$.

357 The empirical loss is $L_{\text{emp}}(\lambda) = \frac{1}{M} \sum_{m=1}^M -\ln \frac{\exp(\xi_{z_{H+1}^{(m)}})}{\sum_{j \in [N+1]} \exp(\xi_j^{(m)})}$. Then, we run normalized
 358 gradient descent on $L_{\text{emp}}(\lambda)$ with a constant learning rate $\eta > 0$. The formal procedure is given in
 359 Algorithm 1 in Appendix F.2. The following theorem shows that the population loss converges at a
 360 linear rate to the Bayes risk, similar to the noiseless setting.

361 **Theorem 5.4.** With probability at least $1 - \delta$ over the training set of size M , after t iterations of
 362 normalized gradient descent on $L_{\text{emp}}(\lambda)$, Algorithm 1 guarantees that

$$363 L(s=1, \lambda_t, \hat{\gamma}) \leq L_{\text{Bayes}} + \frac{1}{\min(\alpha, 1-\alpha) - \sqrt{\ln(2/\delta)/2M}} \frac{\ln(2/\delta)}{2M} + (N-1)e^{-\eta t}.$$

364 **OOD Generalization to unseen output words.** Similar to Theorem 3.3 for noiseless learning, the
 365 following theorem shows that Algorithm 1 produces a trained model that generalizes to an unseen
 366 output word $y_{\text{test}} \notin \mathcal{O} \cup \mathcal{Q}$ in the noisy setting. The proof can be found in Appendix F.3.

367 **Theorem 5.5.** Fix any $y_{\text{test}} \in [N] \setminus (\mathcal{O} \cup \mathcal{Q})$. Take any **test** sentence generated by the noisy data
 368 model, except that every bigram (q, y) is replaced with (q, y_{test}) . Then, with probability at least $1 - \delta$,
 369 after t iterations, Algorithm 1 returns a model that predicts y_{test} and τ with probabilities

$$370 \Pr[z_{H+1} = y_{\text{test}} \mid \lambda_t, \hat{\gamma}] := \frac{\exp(\xi_{y_{\text{test}}})}{\sum_{j \in [N+1]} \exp(\xi_j)} = 1 - \alpha + O\left(\sqrt{\frac{\ln(1/\delta)}{M}} + N^2 e^{-2\eta t}\right),$$

$$371 \Pr[z_{H+1} = \tau \mid \lambda_t, \hat{\gamma}] := \frac{\exp(\xi_\tau)}{\sum_{j \in [N+1]} \exp(\xi_j)} = \alpha + O\left(\sqrt{\frac{\ln(1/\delta)}{M}} + N^2 e^{-2\eta t}\right).$$

Figure 1: Population and OOD test loss of models trained on the population loss in noiseless and noisy settings. First row, left to right: the population loss, OOD test losses of *Origin* (no parameterization) models and OOD test losses of re-parameterized models in noiseless learning. Second row, left to right: the corresponding losses as in the first row in the noisy setting with $\alpha = 0.5$.

Layer-wise Functionality. An important empirical on-convergence behavior observed in [Chen et al. \(2025\)](#) is that after training, given a sentence which contains both bigrams (q, y) and (q, τ) , the feed-forward layer tends to predict the noise token τ while the attention layer tends to predict the output token y . This property can be expressed formally in terms of the final logits as

$$\xi_{A,y} > \max_{j \neq y} \xi_{A,j} \text{ and } \max_{j \neq \tau} \xi_{F,j} < \xi_{F,\tau}. \quad (4)$$

The following theorem shows that (4) always hold after a sufficiently large number of iterations.

Theorem 5.6. *Algorithm 1 guarantees that with probability $1 - \delta$, the condition (4) holds after any $t \geq \max(1, \frac{1}{\eta} \left| \ln \left(1 - \alpha + \sqrt{\frac{\ln(2/\delta)}{2M}} \right) - \ln \left(\alpha - \sqrt{\frac{\ln(2/\delta)}{2M}} \right) \right|)$ training iterations.*

6 EMPIRICAL VALIDATION

Models	Noiseless		Noisy	
	0-Loss?	Unseen y ?	Bayes-Loss?	Unseen y ?
Origin-Linear	—	—	—	—
Origin-ReLU	✓	—	—	—
Origin-Softmax	✓	—	—	—
Reparam-Linear-W	✓	✓	—	—
Reparam-ReLU-W	✓	✓	✓	✓
Reparam-Softmax-W	✓	✓	✓	✓
Reparam-Softmax	✓	✓	✓	✓
Reparam-Linear	✓	✓	✓	✓
Reparam-ReLU	✓	✓	✓	✓

Table 1: Performance comparison of the original (no reparameterization) and parameterized models trained on the population loss. 0-Loss and Bayes-loss indicate whether a model’s Bayes-optimal in noiseless and noisy settings, respectively. Unseen y indicate whether a model generalizes to unseen output words. The best models are highlighted.

To understand the impacts on empirical performances of the reparameterization presented in Sections 3 and 5, we evaluate the one-layer transformers (1) with different choices of parameterization and attention activation functions on the following data model.

432 Data Model’s Parameters. We set the vocabulary size $N = 60$, the embedding dimension $d = 128$
 433 and the context length $H = 256$. We use $Q = 5$ trigger words and $O = 4$ output words. The
 434 orthogonal embeddings are the standard basis vectors in \mathbb{R}^d . For the noisy setting, we choose
 435 $\alpha \in \{0.2, 0.5, 0.8\}$ to cover all three cases of $\alpha < 0.5$, $\alpha = 0.5$ and $\alpha > 0.5$. Our sentences are
 436 generated by picking uniformly at random a position for the bigram (q, y) and a position for the
 437 bigram (q, τ) (in the noisy setting). All other words in a sentence are chosen uniformly at random
 438 from the set $[N] \setminus (Q \cup O)$. For training on the population loss, we run normalized gradient descent
 439 with batch size 512 over $T = 2000$ steps. For the finite-sample analysis, we train the models for 100
 440 epochs on a fixed training set of $M = 2048$ samples. Further details and results are in Appendix H.
 441

442 Baselines. We compare 9 different models which differ in one or more following aspects: model
 443 type (Reparam versus Origin), attention type (linear versus ReLU versus Softmax), and whether
 444 the joint query-key matrix \mathbf{W} is trained in full without reparameterization. More specifically, the
 445 term Origin refers to a model where the three trainable matrices \mathbf{V} , \mathbf{W} and \mathbf{F} are trained without
 446 reparameterization, while Reparam indicates that they are re-parameterized as in Lemmas 3.1, 4.1
 447 and 5.1. Note that Origin-Softmax corresponds to the one-layer transformer in Chen et al. (2025).
 448 Finally, the model whose name contains both Reparam and $-\mathbf{W}$ has \mathbf{V} and \mathbf{F} re-parameterized but
 449 \mathbf{W} is trained in full without any reparameterization.
 450

6.1 LOSS CONVERGENCE IN NOISELESS AND NOISY LEARNING

We train 9 models, shown in Table 1, to minimize the population loss of noiseless and noisy settings. In the noiseless setting, only Origin-Linear fails to achieve a zero loss, indicating the limited approximation power of linear attention. In the noisy setting, 4 out of 9 models fail to achieve the Bayes risk. These four models consists of the three Origin models and Reparam-Linear-W. This shows that despite the high expressive power of one-layer transformers, gradient descent alone may not be able to find the *in-distribution* optimal solution. In contrast, all fully-parameterized one-layer models, including the one with linear attention, converge to Bayes-optimal solutions. This emphasizes the crucial role of structural parameterization in guiding gradient descent training towards better solutions, especially on models with low expressive power (i.e. linear attentions). In addition, Figures 1a and 1d show that for the models that converge to Bayes risk, their convergence rate is indeed linear. This empirically supports our theoretical claims in Theorems 3.2, 4.2 and 5.4.

6.2 OOD GENERALIZATION ON UNSEEN OUTPUT WORDS

For each model, we examine whether their performance on seen output words in O is similar to that on unseen output words not in O . Table 1 shows that the ability to generalize to unseen output words consistently increase with more parameterization and a model’s expressiveness. On the other hand, for models with limited expressive power (i.e. one-layer linear transformers), parameterization plays a more important role. In particular, when all three matrices are trained without reparameterization, they collectively fail to generalize to unseen output words regardless of the type of attention. Figures 1b and 1e indicate that the test loss on unseen output words even *diverges* for original, non-reparameterized models. These results strongly suggest that (I) generalization to unseen output words is an important performance criterion for in-context recall learning, and (II) while one-layer transformers have the *representational capacity* to adapt to unseen output words, the solutions found by gradient descent are not naturally biased towards this adaptivity. On the other hand, Figures 1c and 1f shows that combining partial parameterization (on \mathbf{V} and \mathbf{F}) and non-linear attention functions (e.g. ReLU or softmax) already leads to models that are simultaneously Bayes-optimal and generalize out-of-distribution. Moreover, similar to Bayes-optimality, OOD generalization can also be obtained with linear attention by careful parameterization. These empirical results hold for both $\alpha \leq 0.5$ and $\alpha > 0.5$, which further confirms the generality of our Theorem 5.5.

7 CONCLUSION

We studied the approximation capabilities of transformer for a one-step in-context recall task. Via a novel reparameterization regime, we rigorously proved that one-layer transformers are capable of achieving Bayes-optimal performance when being trained either directly on the population loss or on a finite dataset. Moreover, the same reparameterization allows one-layer transformers to generalize to sentences that are never seen during training. At the same time, our empirical results also show that without appropriate reparameterization, running gradient descent alone is unlikely to achieve non-trivial out-of-distribution generalization ability. Future works include an in-depth study on the theoretical guarantees and empirical performance of non-parameterized transformers that can simultaneously achieve Bayes-optimality and out-of-distribution generalization.

486 REFERENCES
487

488 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
489 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
490 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020. 1

491 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
492 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
493 *arXiv preprint arXiv:2303.08774*, 2023. 1

494 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
495 Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing
496 systems*, 30, 2017. 1

497 Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
498 Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportuni-
500 ties and risks of foundation models. *arXiv preprint arXiv:2108.07258*, 2021. 1

501 Mikhail Belkin. The necessity of machine learning theory in mitigating ai risk. *ACM/IMS Journal of
502 Data Science*, 1(3):1–6, 2024. 1

503 Zeyuan Allen-Zhu. ICML 2024 Tutorial: Physics of Language Models, July 2024. Project page:
504 <https://physics.allen-zhu.com/>. 1

505 Kevin Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt. Inter-
506 pretability in the wild: a circuit for indirect object identification in gpt-2 small. *arXiv preprint
507 arXiv:2211.00593*, 2022. 1

508 Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are
509 key-value memories. *arXiv preprint arXiv:2012.14913*, 2020. 1

510 Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
511 associations in gpt. *Advances in neural information processing systems*, 35:17359–17372, 2022. 1

512 Alberto Bietti, Vivien Cabannes, Diane Bouchacourt, Herve Jegou, and Leon Bottou. Birth of a
513 transformer: A memory viewpoint. In *Thirty-seventh Conference on Neural Information Processing
514 Systems*, 2023. URL <https://openreview.net/forum?id=3X2EbBLNsk>. 1, 2, 3, 4, 5,
515 7, 14

516 Eshaan Nichani, Jason D Lee, and Alberto Bietti. Understanding factual recall in transformers via
517 associative memories. *arXiv preprint arXiv:2412.06538*, 2024. 1, 2, 3

518 Lei Chen, Joan Bruna, and Alberto Bietti. Distributional associations vs in-context reasoning: A study
519 of feed-forward and attention layers. In *The Thirteenth International Conference on Learning
520 Representations*, 2025. URL <https://openreview.net/forum?id=WCVMqRHWW5>. 2,
521 3, 4, 5, 6, 7, 8, 9

522 Kwangjun Ahn, Xiang Cheng, Minhak Song, Chulhee Yun, Ali Jadbabaie, and Suvrit Sra. Linear
523 attention is (maybe) all you need (to understand transformer optimization). In *The Twelfth
524 International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=0uI5415ry7>. 2, 4

525 Arvind Mahankali, Tatsunori B Hashimoto, and Tengyu Ma. One step of gradient descent is
526 provably the optimal in-context learner with one layer of linear self-attention. *arXiv preprint
527 arXiv:2307.03576*, 2023. 2

528 Ruiqi Zhang, Spencer Frei, and Peter L Bartlett. Trained transformers learn linear models in-context.
529 *Journal of Machine Learning Research*, 25(49):1–55, 2024. 2

530 Yu Huang, Yuan Cheng, and Yingbin Liang. In-context convergence of transformers. In *Proceedings
531 of the 41st International Conference on Machine Learning*, ICML’24. JMLR.org, 2024a. 2, 3, 6, 7

532 Yingqian Cui, Jie Ren, Pengfei He, Jiliang Tang, and Yue Xing. Superiority of multi-head attention
533 in in-context linear regression. *arXiv preprint arXiv:2401.17426*, 2024. 2

540 Xiang Cheng, Yuxin Chen, and Suvrit Sra. Transformers implement functional gradient descent to
 541 learn non-linear functions in context. *arXiv preprint arXiv:2312.06528*, 2023. 2

542

543 Hongkang Li, Songtao Lu, Pin-Yu Chen, Xiaodong Cui, and Meng Wang. Training nonlin-
 544 ear transformers for chain-of-thought inference: A theoretical generalization analysis. In
 545 *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=n7n8McETXw>. 2

546

547 Chen Siyu, Sheen Heejune, Wang Tianhao, and Yang Zhuoran. Training dynamics of multi-head
 548 softmax attention for in-context learning: Emergence, convergence, and optimality (extended
 549 abstract). In Shipra Agrawal and Aaron Roth, editors, *Proceedings of Thirty Seventh Conference*
 550 *on Learning Theory*, volume 247 of *Proceedings of Machine Learning Research*, pages 4573–4573.
 551 PMLR, 30 Jun–03 Jul 2024. URL <https://proceedings.mlr.press/v247/siyu24a.html>. 2

552

553

554 Wei Shen, Ruida Zhou, Jing Yang, and Cong Shen. On the training convergence of transformers
 555 for in-context classification of gaussian mixtures. In *Forty-second International Conference on*
 556 *Machine Learning*, 2025. URL <https://openreview.net/forum?id=iSyB2yYaMx>. 2

557

558 Davoud Ataee Tarzanagh, Yingcong Li, Christos Thrampoulidis, and Samet Oymak. Transformers as
 559 support vector machines. *arXiv preprint arXiv:2308.16898*, 2023. 2

560

561 Davoud Ataee Tarzanagh, Yingcong Li, Xuechen Zhang, and Samet Oymak. Max-margin token
 562 selection in attention mechanism. *Advances in neural information processing systems*, 36:48314–
 563 48362, 2023. 2

564

565 Bhavya Vasudeva, Puneesh Deora, and Christos Thrampoulidis. Implicit bias and fast convergence
 566 rates for self-attention. *arXiv preprint arXiv:2402.05738*, 2024. 2

567

568 Puneesh Deora, Rouzbeh Ghaderi, Hossein Taheri, and Christos Thrampoulidis. On the optimization
 569 and generalization of multi-head attention. *arXiv preprint arXiv:2310.12680*, 2023. 2

570

571 Yuandong Tian, Yiping Wang, Beidi Chen, and Simon S Du. Scan and snap: Understanding training
 572 dynamics and token composition in 1-layer transformer. *Advances in neural information processing*
 573 systems, 36:71911–71947, 2023a. 3

574

575 Yuandong Tian, Yiping Wang, Zhenyu Zhang, Beidi Chen, and Simon Du. Joma: Demystifying
 576 multilayer transformers via joint dynamics of mlp and attention. *arXiv preprint arXiv:2310.00535*,
 577 2023b. 3

578

579 Yingcong Li, Yixiao Huang, Muhammed E Ildiz, Ankit Singh Rawat, and Samet Oymak. Mechanics
 580 of next token prediction with self-attention. In *International Conference on Artificial Intelligence*
 581 and *Statistics*, pages 685–693. PMLR, 2024. 3

582

583 Christos Thrampoulidis. Implicit optimization bias of next-token prediction in linear models. *arXiv*
 584 *preprint arXiv:2402.18551*, 2024. 3

585

586 Ruiquan Huang, Yingbin Liang, and Jing Yang. Non-asymptotic convergence of training transform-
 587 ers for next-token prediction. In *The Thirty-eighth Annual Conference on Neural Information*
 588 *Processing Systems*, 2024b. URL <https://openreview.net/forum?id=NfOFbPpYII>.
 589 3, 5, 13

590

591 Tong Yang, Yu Huang, Yingbin Liang, and Yuejie Chi. In-context learning with representations:
 592 Contextual generalization of trained transformers. In *The Thirty-eighth Annual Conference on*
 593 *Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=ik37kKxKBm>. 4

594

595 Yu Huang, Zixin Wen, Yuejie Chi, and Yingbin Liang. A theoretical analysis of self-supervised
 596 learning for vision transformers. In *The Thirteenth International Conference on Learning Repre-
 597 sentations*, 2025a. URL <https://openreview.net/forum?id=Antib6Uovh>. 4

594 Ziwei Ji and Matus Telgarsky. Characterizing the implicit bias via a primal-dual analysis. In
595 Vitaly Feldman, Katrina Ligett, and Sivan Sabato, editors, *Proceedings of the 32nd International*
596 *Conference on Algorithmic Learning Theory*, volume 132 of *Proceedings of Machine Learning*
597 *Research*, pages 772–804. PMLR, 16–19 Mar 2021. URL <https://proceedings.mlr.press/v132/ji21a.html>. 5

598

599 Ruiquan Huang, Yingbin Liang, and Jing Yang. How transformers learn regular language recogni-
600 tion: A theoretical study on training dynamics and implicit bias. In *Forty-second International*
601 *Conference on Machine Learning*, 2025b. URL <https://openreview.net/forum?id=yTAR011mOF>. 6

602

603

604 A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation approach to
605 stochastic programming. *SIAM Journal on Optimization*, 19(4):1574–1609, 2009. doi: 10.1137/
606 070704277. URL <https://doi.org/10.1137/070704277>. 7

607

608 Miroslav Dudík, Ziwei Ji, Robert Schapire, and Matus Telgarsky. Convex analysis at infinity: An
609 introduction to astral space. 05 2022. doi: 10.48550/arXiv.2205.03260. 7

610

611 Igal Sason. On reverse Pinsker inequalities. *arXiv preprint arXiv:1503.07118*, 2015. 30

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 A ADDITIONAL EXAMPLE SENTENCES FOR THE IN-CONTEXT RECALL TASK
649650 The in-context recall task considered in our paper encompasses a large range of practical linguistic
651 scenarios. In this section, we provide additional example sentences in two domains: object identifica-
652 tion and transitive inference. In all of these examples, each sentence contains at least one bigram
653 (q, y) before the last query word.654
655 A.1 OBJECT IDENTIFICATION
656

657 The task is to identify the right in-context object. Examples include:

658 **Input:** “To Harry” were the first two words in a letter that Ron and Hermione wrote to [?]659 **Output:** Harry.660 **Input:** People living the province of Quebec are proud of the natural beauty of the [?]661 **Output:** province.662 **Input:** You should travel on Sunday instead of on Monday, since there is a lot of traffic on [?]663 **Output:** Monday.664
665 A.2 TRANSITIVE INFERENCE
666667 The task is to identify the right object that has a specific relationship with other objects in the sentence.
668 Examples include:669 **Input:** If London is on the same continent as Paris, and Paris is on the same continent as Milan, then
670 London is on the same continent as [?]671 **Output:** Milan.672 **Input:** If the table has the same color as the book, and the book has a different color than the chair,
673 then the table has a different color than the [?]674 **Output:** chair.675 **Input:** If the GDP of Germany is larger than the combined GDP of Singapore and Spain, then it is
676 certain that the GDP of Spain is smaller than the GDP of [?]677 **Output:** Germany.678
679 B COMPARISON TO THE LINEAR CONVERGENCE RATE RESULTS IN HUANG
680 ET AL. (2024B)
681682 In this section, we highlight the fundamental differences between our convergence rate results and
683 those of [Huang et al. \(2024b\)](#), who also frame their convergence analysis in a next-token prediction
684 problem and prove a linear convergence rate of the loss function (e.g. their Proposition 1).685
686
687

- One-stage (ours) versus two-stage (theirs) training procedure : in our work, we train the
688 (parameterized) key-query and value matrices simultaneously, which can also be seen as a
689 one-stage training. In contrast, Huang et al. (their Algorithm 1) follow a two-stage training
690 first train the value matrix for T rounds, only then they train the key-query matrix.
- The absence (ours) or presence (theirs) of a hard-margin sub-problem: a key mechanism
691 leading to the linear convergence rate in Huang et al. is the presence of a hard-margin sub-
692 problem (see their Equation 2). This sub-problem arises out of their assumption that there
693 exists a collocation (i.e., a one-to-one mapping) in their training sample. This assumption,
694 and hence the hard-margin sub-problem, does not exist in our work.

695696 Note that the two differences above are with respect to the *technical mechanism* in proving linear
697 convergence rates. There are also *fundamental differences* in the problem setups between our work
698 and [Huang et al. \(2024b\)](#), even though both belong to the category of next-token prediction tasks.
699 In particular, our setup is an in-context noisy task where there could be multiple outputs for each
700 sentence, while [Huang et al. \(2024b\)](#) studies a collocation-learning task where each token is always
701 followed by an exact other token. In other words, [Huang et al. \(2024b\)](#) assumes the existence of an
injective map between tokens, which is not the case in our setup.

702 **C COMPARISON TO THE ANALYSIS IN BIETTI ET AL. (2023)**
 703

704 The nature of the theoretical results in [Bietti et al. \(2023\)](#) is fundamentally different from ours. In
 705 particular,

- 707 • The central theoretical results in [Bietti et al. \(2023\)](#) are their Lemma 1, Lemma 2 and
 708 Theorem 3. Their Lemmas 1 and 2 consider a very simple linear model with convex
 709 objective that does not involve any attention mechanism. Their Theorem 3 holds for
 710 sequential one-step gradient update on the population loss for the output, key and value
 711 matrices in that order. This sequential GD training on the matrices seem unnatural, and
 712 different from the simultaneous training procedure, albeit on re-parameterized matrices, in
 713 our work.
- 714 • Our task considers noisy output problems, where the output may be a noise token instead of
 715 a proper output. [Bietti et al. \(2023\)](#) consider noiseless problems only.
- 716 • Our task tests the model on unseen, out-of-distribution samples. [Bietti et al. \(2023\)](#) does not
 717 study out-of-distribution samples.
- 718 • Our analysis is both distribution-agnostic (for training on population samples) and finite-
 719 sample robust (for training on a finite dataset). [Bietti et al. \(2023\)](#)’s analysis uses specific,
 720 explicitly defined distributions (see their page 16, the first paragraph in appendix B.3), and
 721 does not consider finite-sample analysis.

722 **D MISSING PROOFS IN SECTION 3**
 723

724 **D.1 PROOF OF LEMMA 3.1**

725 First, we prove the following lemma on the attention scores. We write $\{a = b = c\}$ for the event that
 726 a, b , and c are equal, i.e. $\{a = b \cap b = c\}$.

727 **Lemma D.1.** *Under the reparameterization in Lemma 3.1, for all $h \in [H]$ a sentence with trigger
 728 word q , we obtain $\mathbf{x}_H^\top \mathbf{W} \mathbf{x}_h = \lambda_q \mathbf{1}\{z_{h-1} = z_H = q\}$.*

729 *Proof.* Let $\mathbf{W}_{|k} = \lambda_k E(k) \tilde{E}^\top(k)$. We have

$$730 \mathbf{W}_{|k} \mathbf{x}_h = \lambda_k E(k) \tilde{E}^\top(k) (E(z_h) + \tilde{E}(z_{h-1})) = \lambda_k E(k) \tilde{E}^\top(k) \tilde{E}(z_{h-1}) = \lambda_k E(k) \mathbf{1}\{z_{h-1} = k\}.$$

731 Hence, $\mathbf{x}_H^\top \mathbf{W}_{|k} \mathbf{x}_h = \lambda_k \mathbf{1}\{z_{h-1} = k\} (E(z_H) + \tilde{E}(z_{H-1}))^\top E(k) = \lambda_k \mathbf{1}\{z_{h-1} = z_H = k\}$. By
 732 construction, the sentence has only one trigger word q . We conclude that

$$733 \mathbf{x}_H^\top \mathbf{W} \mathbf{x}_h = \sum_{k \in \mathcal{Q}} \mathbf{x}_H^\top \mathbf{W}_{|k} \mathbf{x}_h = \lambda_q \mathbf{1}\{z_{h-1} = z_H = q\}.$$

734 \square

735 Lemma D.1 indicates that the attention scores are always non-negative. As a result, for both linear and
 736 ReLU attention, we have $\sigma(\mathbf{x}_H^\top \mathbf{W} \mathbf{x}_h) = \mathbf{x}_H^\top \mathbf{W} \mathbf{x}_h$. Hence, it suffices to prove Lemma 3.1 and our
 737 subsequent results for linear attention. More generally, our proof can be extended to any activation
 738 function where $\sigma(x) = cx$ for $c > 0, x \geq 0$.

739 *Proof.* (Of Lemma 3.1) Fix a trigger token $q \in \mathcal{Q}$ and an output token $y \in \mathcal{O}$. Consider sentences
 740 that contain q and y as their trigger and output, respectively. By Lemma D.1, for the linear attention
 741 model, we have

$$742 \xi_{A,j} = \mathbf{e}_j^\top \mathbf{U} \mathbf{V} \sum_{h=1}^H (\mathbf{x}_H^\top \mathbf{W} \mathbf{x}_h) \mathbf{x}_h = \mathbf{e}_j^\top \sum_{h=1}^H \lambda_q \mathbf{1}\{z_{h-1} = q\} \mathbf{U} \mathbf{x}_h = \mathbf{e}_j^\top \sum_{h=1}^H \lambda_q \mathbf{1}\{z_{h-1} = q\} \mathbf{e}_{z_h}.$$

743 Recall that $C_{q,y} = \sum_{h=1}^H \mathbf{1}\{z_{h-1} = q, z_h = y\} \geq 1$. We have $\mathbf{1}\{z_{h-1} = q\} \mathbf{e}_{z_h} = \mathbf{1}\{z_{h-1} = q\} \mathbf{e}_q$
 744 because no tokens other than y follows q in each sentence by construction. Combining this with
 745 $\mathbf{e}_j^\top \mathbf{e}_q = \mathbf{1}\{j = q\}$, we obtain

$$746 \xi_{A,j} = \lambda_q C_{q,y} \mathbf{1}\{j = y\}. \quad (5)$$

756 Since $\xi_{F,j} = 0$ for $\mathbf{F} = \mathbf{0}$, we have $\xi_j = \xi_{A,j} + \xi_{F,j} = \xi_{A,j}$. This implies that the probability of
 757 predicting y is $\lim_{\lambda_q \rightarrow \infty} \frac{\exp(\xi_y)}{\sum_{j \in [N]} \exp(\xi_j)} = \lim_{\lambda_q \rightarrow \infty} \frac{\exp(C_{q,y} \lambda_q)}{\exp(C_{q,y} \lambda_q) + N - 1} = 1$. \square
 758

760 D.2 PROOF OF THEOREM 3.2
 761

762 *Proof.* With linear attention, the population loss is defined as
 763

$$\begin{aligned} 764 \quad L(\boldsymbol{\lambda}) &= \mathbb{E}_{q,y,z} \left[-\ln \frac{\exp(C_{q,y} \lambda_q)}{\exp(C_{q,y} \lambda_q) + N - 1} \right] \\ 765 \\ 766 \quad &= \frac{1}{|\mathcal{Q}|} \sum_{q \in \mathcal{Q}} \mathbb{E}_{y,z} \left[-\ln \frac{\exp(C_{q,y} \lambda_q)}{\exp(C_{q,y} \lambda_q) + N - 1} \right] \\ 767 \\ 768 \quad &= \frac{1}{|\mathcal{Q}|} \sum_{q \in \mathcal{Q}} \mathbb{E}_{y,z} [\ln(\exp(C_{q,y} \lambda_q) + N - 1) - C_{q,y} \lambda_q]. \end{aligned} \quad (6)$$

772 For each $q \in \mathcal{Q}$, the partial derivative of L with respect to λ_q is
 773

$$\frac{\partial L}{\partial \lambda_q} = \mathbb{E}_{y,z} \left[C_{q,y} \left(\frac{\exp(C_{q,y} \lambda_q)}{\exp(C_{q,y} \lambda_q) + N - 1} - 1 \right) \right]. \quad (7)$$

776 It follows that the normalized gradient descent update is
 777

$$\boldsymbol{\lambda}_{t+1} = \boldsymbol{\lambda}_t - \eta \frac{\nabla_{\boldsymbol{\lambda}} L}{\|\nabla_{\boldsymbol{\lambda}} L\|_2} \quad (8)$$

781 where $t = 0, 1, 2, \dots$ denote the number of iterations, η is a constant learning rate and $\nabla_{\boldsymbol{\lambda}} L =$
 782 $[\frac{\partial L}{\partial \lambda_1}, \dots, \frac{\partial L}{\partial \lambda_{|\mathcal{Q}|}}]^\top$. We initialize $\boldsymbol{\lambda}_0 = \mathbf{0}$.
 783

784 From Equation (7), we obtain that the partial derivatives are always negative and thus all $(\lambda_q)_q$
 785 increases monotonically from 0. Next, we will show that $\lambda_{q,t} = \Omega(t)$ for all $q \in \mathcal{Q}, t \geq 0$. Initially,
 786 at $t = 0$ we have $\lambda_{1,t} = \lambda_{2,t} = \dots = \lambda_{|\mathcal{Q}|,t}$. Assume that this property holds for some $t \geq 0$, for
 787 any $1 < k \leq |\mathcal{Q}|$, we have

$$\begin{aligned} 788 \quad \frac{\partial L}{\partial \lambda_{1,t}} &= \mathbb{E}_{y,z} \left[C_{q_1,y} \frac{\exp(C_{q_1,y} \lambda_{1,t})}{\exp(C_{q_1,y} \lambda_{1,t}) + N - 1} - 1 \right] \\ 789 \\ 790 \quad &= \mathbb{E}_{y,z} \left[C_{q_1,y} \frac{\exp(C_{q_1,y} \lambda_{k,t})}{\exp(C_{q_1,y} \lambda_{k,t}) + N - 1} - 1 \right] \\ 791 \\ 792 \quad &= \mathbb{E}_{y,z} \left[C_{q_k,y} \frac{\exp(C_{q_k,y} \lambda_{k,t})}{\exp(C_{q_k,y} \lambda_{k,t}) + N - 1} - 1 \right] \\ 793 \\ 794 \quad &= \frac{\partial L}{\partial \lambda_{k,t}}, \end{aligned}$$

798 where the third equality is from the symmetry in the distribution of the triggers. This implies that
 799 $\lambda_{1,t+1} = \lambda_{2,t+1} = \dots = \lambda_{|\mathcal{Q}|,t+1}$. As a result, for each q ,
 800

$$\frac{1}{\|\nabla_{\boldsymbol{\lambda}} L\|_2} \frac{\partial L}{\partial \lambda_{q,t}} = \frac{1}{\sqrt{|\mathcal{Q}|} (\frac{\partial L}{\partial \lambda_{q,t}})^2} \frac{\partial L}{\partial \lambda_{q,t}} = \frac{-1}{\sqrt{|\mathcal{Q}|}}.$$

804 Therefore, $\lambda_{q,t} = \sum_{s=0}^{t-1} \frac{\eta}{\sqrt{|\mathcal{Q}|}} = \frac{\eta t}{\sqrt{|\mathcal{Q}|}} = \Omega(\eta t / |\mathcal{Q}|)$. Plugging this into (6), we obtain
 805

$$L(\boldsymbol{\lambda}_t) = O \left(\ln \left(1 + \frac{N-1}{\exp(\eta t / |\mathcal{Q}|)} \right) \right) = O(N \exp(-\eta t / |\mathcal{Q}|)).$$

806 \square
 807
 808
 809

810 D.3 PROOF OF THEOREM 3.3
811

812 *Proof.* Since Lemma D.1 holds for any set of output tokens, replacing y by y_{test} everywhere does
813 not affect the attention scores $\mathbf{x}_H^\top \mathbf{W} \mathbf{x}_h = \lambda_q \mathbb{1}\{z_{h-1} = q\}$. This implies that by Equation 5, we have
814 $\xi_j = \xi_{A,j} = \lambda_q C_{q,j} \mathbb{1}\{j = y_{\text{test}}\}$. Therefore,

$$\begin{aligned} 816 \Pr[z_{H+1} = y_{\text{test}} \mid \boldsymbol{\lambda}_t] &:= \frac{\exp(C_{q,y_{\text{test}}} \lambda_{q,t})}{\exp(C_{q,y_{\text{test}}} \lambda_{q,t}) + N - 1} = \frac{\exp(C_{q,y_{\text{test}}} \lambda_{q,t})}{\exp(C_{q,y_{\text{test}}} \lambda_{q,t}) + N - 1} \\ 817 \\ 818 &\geq \frac{\exp(\lambda_{q,t})}{\exp(\lambda_{q,t}) + N - 1} = \frac{\exp(\eta t / |\mathcal{Q}|)}{\exp(\eta t / |\mathcal{Q}|) + N - 1}, \\ 819 \end{aligned}$$

820 where the inequality is from $C_{q,y_{\text{test}}} \geq 1$ and the function $f(C) = \frac{\exp(Cx)}{\exp(Cx) + N - 1}$ is increasing in C
821 for $x, N > 0$. The last equality is due to $\lambda_{q,t} = \eta t / |\mathcal{Q}|$. \square
822

824 D.4 DIRECTIONAL CONVERGENCE OF RUNNING GRADIENT DESCENT ON THE JOINT
825 QUERY-KEY MATRIX
826

827 First, we introduce a variant of the data model in Definition 2.1. The set of trigger words contain only
828 one element e.g. $\mathcal{Q} = \{q\}$. The set of output words contain two elements $\mathcal{O} = \{y_1, y_2\}$. In addition
829 to the set of trigger tokens \mathcal{Q} and the set of output tokens \mathcal{O} , we define a non-empty set of *neutral*
830 tokens \mathcal{N} so that $\mathcal{N} \cap (\mathcal{Q} \cup \mathcal{O}) = \emptyset$. Fix an element $\square \in \mathcal{N}$. The data model is as below:

- 831 • Sample an output word $y \sim \text{Unif}(\mathcal{O})$.
- 832 • Sample a position $\zeta \sim \text{Unif}([H - 3])$ and set $z_\zeta = q, z_{\zeta+1} = y$.
- 833 • Sample $z_h \sim \text{Unif}(\mathcal{N})$ for $h \in [H - 2] \setminus \{\zeta, \zeta + 1\}$.
- 834 • Set $z_{H-1} = \square$ and $z_H = q$.
- 835
- 836

837 We remark that this variant is a special case of the data model in Section 3, where each sentence has
838 exactly one (q, y) bigram and contain no output tokens other than y (given that y are the sampled
839 output words).

840
841 *Proof.* (Of Theorem 3.4) Let $t \geq 0$ be the index of an iteration where \mathbf{W}_t satisfies $\mathbf{x}_H^\top \mathbf{W}_t \mathbf{x}_h = 0$
842 whenever $z_{h-1} \neq q$. Obviously, this trivially holds at $t = 0$. We will show that this property hold for
843 \mathbf{W}_{t+1} , and thus it holds throughout the gradient descent optimization process.

844 Keeping the reparameterization of $\mathbf{U} = [E(1) \ E(2) \ \dots \ E(N)]^\top, \mathbf{V} = \mathbf{I}_d$ and using $\mathbf{e}_j^\top \mathbf{U} \mathbf{x}_h =$
845 $\mathbb{1}\{z_h = j\}$, we write the population loss $L_t := L(\mathbf{W}_t)$ as

$$\begin{aligned} 846 L_t &= \mathbb{E}_{y,z} \left[-\ln \frac{\exp(\mathbf{e}_y^\top \mathbf{U} \mathbf{V} \sum_{h=1}^H (\mathbf{x}_H^\top \mathbf{W}_t \mathbf{x}_h) \mathbf{x}_h)}{\sum_{j \in [N]} \exp(\mathbf{e}_j^\top \mathbf{U} \mathbf{V} \sum_{h=1}^H (\mathbf{x}_H^\top \mathbf{W}_t \mathbf{x}_h) \mathbf{x}_h)} \right] \\ 847 \\ 848 &= \mathbb{E}_{y,z} \left[-\mathbf{e}_y^\top \mathbf{U} \sum_{h=1}^H (\mathbf{x}_H^\top \mathbf{W}_t \mathbf{x}_h) \mathbf{x}_h + \ln \left(\sum_{j \in [N]} \exp(\mathbf{e}_j^\top \mathbf{U} \sum_{h=1}^H (\mathbf{x}_H^\top \mathbf{W}_t \mathbf{x}_h) \mathbf{x}_h) \right) \right] \\ 849 \\ 850 &= \mathbb{E}_{y,z} \left[-\sum_{h=1}^H (\mathbf{x}_H^\top \mathbf{W}_t \mathbf{x}_h) \mathbb{1}\{z_h = y\} + \ln \left(\sum_{j \in [N]} \exp\left(\sum_{h=1}^H (\mathbf{x}_H^\top \mathbf{W}_t \mathbf{x}_h) \mathbb{1}\{z_h = j\}\right) \right) \right] \\ 851 \\ 852 &= \mathbb{E}_{y,\zeta} \left[-(\mathbf{x}_H^\top \mathbf{W}_t \mathbf{x}_{\zeta+1}) + \ln (\exp(\mathbf{x}_H^\top \mathbf{W}_t \mathbf{x}_{\zeta+1}) + N - 1) \right], \\ 853 \\ 854 \end{aligned}$$

855 where the last equality is due to the fact that
856

- 857 • $\mathbb{1}\{z_h = y\} = 1$ for $h = \zeta + 1$, and $\mathbb{1}\{z_h = y\} = 0$ otherwise.
- 858 • If $j \neq y$ then $z_{h-1} \neq q$. By the induction assumption, this implies $(\mathbf{x}_H^\top \mathbf{W}_t \mathbf{x}_h) \mathbb{1}\{z_h = j\} = 0$ for all $j \neq y$.
- 859
- 860

864 Taking the differential on both sides, we obtain
 865

$$\begin{aligned}
 866 \quad dL_t &= \mathbb{E}_{y,\zeta} \left[-(\mathbf{x}_H^\top (d\mathbf{W}_t) \mathbf{x}_{\zeta+1}) + \frac{\exp(\mathbf{x}_H^\top d\mathbf{W}_t \mathbf{x}_{\zeta+1}) (\mathbf{x}_H^\top d\mathbf{W}_t \mathbf{x}_{\zeta+1})}{\exp(\mathbf{x}_H^\top d\mathbf{W}_t \mathbf{x}_{\zeta+1}) + N - 1} \right] \\
 867 \\
 868 \quad &= \mathbb{E}_{y,\zeta} [-(\mathbf{x}_H^\top (d\mathbf{W}_t) \mathbf{x}_{\zeta+1}) + (\mathbf{x}_H^\top (d\mathbf{W}_t) \mathbf{x}_{\zeta+1}) \hat{p}_y] \\
 869 \\
 870 \quad &= \mathbb{E}_{y,\zeta} [(\hat{p}_{y,t} - 1) (\mathbf{x}_H^\top (d\mathbf{W}_t) \mathbf{x}_{\zeta+1})] ,
 \end{aligned}$$

872 where $\hat{p}_{y,t} = \frac{\exp(\mathbf{x}_H^\top \mathbf{W}_t \mathbf{x}_{\zeta+1})}{\exp(\mathbf{x}_H^\top \mathbf{W}_t \mathbf{x}_{\zeta+1}) + N - 1}$ is the probability that the attention layer predicts y . As a result,
 873 the gradient of L_t with respect to \mathbf{W}_t is
 874

$$\begin{aligned}
 875 \quad \frac{dL_t}{d\mathbf{W}_t} &= \mathbb{E}_{y,\zeta} [(\hat{p}_{y,t} - 1) (\mathbf{x}_H \mathbf{x}_{\zeta+1}^\top)] \\
 876 \\
 877 \quad &= \mathbb{E}_{y,\zeta} [(\hat{p}_{y,t} - 1) (E(q) + \tilde{E}(\square)(E(y) + \tilde{E}(q))^\top)] \\
 878 \\
 879 \quad &= \mathbb{E}_{y,\zeta} [(\hat{p}_{y,t} - 1) (E(q) + \tilde{E}(\square)(E^\top(y) + \tilde{E}^\top(q)))] \\
 880 \\
 881 \quad &= \frac{1}{2} \mathbb{E}_\zeta [(\hat{p}_{y_1,t} - 1) \mid y = y_1] (E(q) + \tilde{E}(\square)(E^\top(y_1) + \tilde{E}^\top(q))) \\
 882 \\
 883 \quad &+ \frac{1}{2} \mathbb{E}_\zeta [(\hat{p}_{y_2,t} - 1) \mid y = y_2] (E(q) + \tilde{E}(\square)(E^\top(y_2) + \tilde{E}^\top(q)))
 \end{aligned}$$

885 Due to the statistical symmetry between y_1 and y_2 , we have $\mathbb{E}_\zeta [(\hat{p}_{y_1,t} - 1) \mid y = y_1] =$
 886 $\mathbb{E}_\zeta [(\hat{p}_{y_2,t} - 1) \mid y = y_2]$. Let $r_t = \mathbb{E}_\zeta [(1 - \hat{p}_{y_1,t}) \mid y = y_1]$. It follows that for some $r_t > 0$,
 887

$$\frac{dL_t}{d\mathbf{W}_t} = r_t \sum_{y \in \{y_1, y_2\}} (E(q) + \tilde{E}(\square))(E^\top(y) + \tilde{E}^\top(q)). \quad (9)$$

891 Furthermore, running gradient descent

$$\mathbf{W}_{t+1} = \mathbf{W}_t - \eta \frac{dL_t}{d\mathbf{W}_t} \quad (10)$$

895 leads to $\mathbf{W}_{t+1} = \mathbf{W}_t + \eta r_t \sum_{y \in \{y_1, y_2\}} (E(q) + \tilde{E}(\square))(E^\top(y) + \tilde{E}^\top(q))$. In a sentence with output
 896 token y , for all $h \in [H]$ such that $z_{h-1} \neq q$, we have $z_h \neq y$. Hence,
 897

$$(E^\top(y) + \tilde{E}^\top(q)) \mathbf{x}_h = (E^\top(y) + \tilde{E}^\top(q))(E(z_h) + \tilde{E}(z_{h-1})) = 0. \quad (11)$$

898 As a result, for all h where $z_{h-1} \neq q$, we have
 899

$$\mathbf{x}_H^\top \mathbf{W}_{t+1} \mathbf{x}_h = \mathbf{x}_H^\top \mathbf{W}_t \mathbf{x}_h + \eta r_t \mathbf{x}_H^\top \sum_{y \in \{y_1, y_2\}} (E(q) + \tilde{E}(\square))(E^\top(y) + \tilde{E}^\top(q)) \mathbf{x}_h \quad (12)$$

$$= 0. \quad (13)$$

900 By induction, we have Equation 9 holds for all t . Recall that we initialized $\mathbf{W}_0 = \mathbf{0}$. With a learning
 901 rate $\eta > 0$, running gradient descent results to
 902

$$\mathbf{W}_t = \left(\sum_{s=0}^t r_s \right) \sum_{y \in \{y_1, y_2\}} (E(q) + \tilde{E}(\square))(E^\top(y) + \tilde{E}^\top(q)) \quad (14)$$

$$= R_t (E(q) + \tilde{E}(\square))(E^\top(y_1) + E^\top(y_2) + 2\tilde{E}^\top(q)) \quad (15)$$

$$= R_t \mathbf{A}, \quad (16)$$

913 where $R_t = \sum_{s=0}^t r_s \in \mathbb{R}_+$ is a positive number and $\mathbf{A} = (E(q) + \tilde{E}(\square))(E^\top(y_1) + E^\top(y_2) +$
 914 $2\tilde{E}^\top(q))$. Thus, \mathbf{W}_t is always in the same direction as \mathbf{A} . Hence,
 915

$$\lim_{t \rightarrow \infty} \frac{\mathbf{W}_t}{\|\mathbf{W}_t\|} = \frac{\mathbf{A}}{\|\mathbf{A}\|}. \quad (17)$$

918 Next, recall that $\mathbf{W}^* = E(q)\tilde{E}^\top(q)$. Let $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{u} \in \mathbb{R}^d$ be five vectors corresponding to
919 $E(q), E(y_1), E(y_2), \tilde{E}(q)$ and $\tilde{E}(\square)$, respectively. Note that these vectors are pairwise orthogonal
920 unit vectors. The two matrices \mathbf{A} and \mathbf{W}^* are written as
921

$$922 \quad \mathbf{A} = (a + u)(b^\top + c^\top + 2d^\top), \\ 923 \quad \mathbf{W}^* = ad^\top.$$

924 We will show that the Frobenius product $\langle \frac{\mathbf{A}}{\|\mathbf{A}\|}, \frac{\mathbf{W}^*}{\|\mathbf{W}^*\|} \rangle$ is not equal 1. We have
925

$$926 \quad \langle \mathbf{A}, \mathbf{W}^* \rangle = \text{Tr}((\mathbf{W}^*)^\top \mathbf{A}) \\ 927 \quad = \text{Tr}(da^\top(a + u)(b^\top + c^\top + 2d^\top)) \\ 928 \quad = \text{Tr}(d(b^\top + c^\top + 2d^\top)) \\ 929 \quad = \text{Tr}((b^\top + c^\top + 2d^\top)d) \\ 930 \quad = 2, \\ 931$$

932 where the equalities follow from $a^\top a = d^\top d = 1$ and the pairwise orthogonality. Furthermore,
933

$$934 \quad \|\mathbf{A}\| = \sqrt{\text{Tr}(\mathbf{A}^\top \mathbf{A})} = \sqrt{\text{Tr}((b + c + 2d)(a^\top + u^\top)(a + u)(b^\top + c^\top + 2d^\top))} \\ 935 \quad = \sqrt{2 \text{Tr}((b + c + 2d)(b^\top + c^\top + 2d^\top))} \\ 936 \quad = \sqrt{12}, \\ 937$$

938 and
939

$$940 \quad \|\mathbf{W}^*\| = \sqrt{\text{Tr}((\mathbf{W}^*)^\top \mathbf{W}^*)} = \sqrt{\text{Tr}(da^\top ad^\top)} = 1.$$

941 Obviously, $\langle \frac{\mathbf{A}}{\|\mathbf{A}\|}, \frac{\mathbf{W}^*}{\|\mathbf{W}^*\|} \rangle = \frac{2}{\sqrt{12}} < 1$. □
942

943 E MISSING PROOFS IN SECTION 4

944 E.1 PROOF OF LEMMA 4.1

945 *Proof.* Consider a sentence with a trigger q and output y . Similar to the proof of Lemma 3.1, we first
946 compute the pre-softmax attention scores $\mathbf{x}_H^\top \mathbf{W} \mathbf{x}_h$. We have
947

$$948 \quad \mathbf{x}_H^\top \mathbf{W} \mathbf{x}_h = (E(q) + \tilde{E}(z_{h-1}))^\top \left(\sum_{q' \in \mathcal{Q}} \lambda_{q'} E(q') \left(\tilde{E}(q')^\top - \sum_{x=1, x \neq q'}^N \tilde{E}(x)^\top \right) \right) \mathbf{x}_h \quad (19)$$

$$949 \quad = \lambda_q \left(\tilde{E}(q)^\top - \sum_{x=1, x \neq q}^N \tilde{E}(x)^\top \right) (E(z_h) + \tilde{E}(z_{h-1})) \quad (20)$$

$$950 \quad = \lambda_q \left(\tilde{E}(q)^\top - \sum_{x=1, x \neq q}^N \tilde{E}(x)^\top \right) \tilde{E}(z_{h-1}) \quad (21)$$

$$951 \quad = \lambda_q (\mathbb{1}\{z_{h-1} = q\} - \mathbb{1}\{z_{h-1} \neq q\}). \quad (22)$$

952 It follows that
953

$$954 \quad \mathbf{x}_H^\top \mathbf{W} \mathbf{x}_h = \begin{cases} \lambda_q & \text{if } z_{h-1} = q, \\ -\lambda_q & \text{otherwise.} \end{cases} \quad (23)$$

955 The attention score at the h -th token in a sentence is
956

$$957 \quad \sigma(\mathbf{x}_H^\top \mathbf{W} \mathbf{x}_h) = \frac{\exp(\mathbf{x}_H^\top \mathbf{W} \mathbf{x}_h)}{\sum_{j=1}^H \exp(\mathbf{x}_H^\top \mathbf{W} \mathbf{x}_j)} = \frac{\exp(\lambda_q (\mathbb{1}\{z_{h-1} = q\} - \mathbb{1}\{z_{h-1} \neq q\}))}{\sum_{j=1}^H \exp(\lambda_q (\mathbb{1}\{z_{h-1} = q\} - \mathbb{1}\{z_{h-1} \neq q\}))} \quad (24)$$

$$958 \quad = \begin{cases} \frac{\exp(\lambda_q)}{C_{q,y} \exp(\lambda_q) + (H - C_{q,y}) \exp(-\lambda_q)} & \text{if } z_{h-1} = q, \\ \frac{\exp(-\lambda_q)}{C_{q,y} \exp(\lambda_q) + (H - C_{q,y}) \exp(-\lambda_q)} & \text{otherwise.} \end{cases} \quad (25)$$

972 Obviously, $\lim_{\lambda_q \rightarrow \infty} \sigma(\mathbf{x}_H^\top \mathbf{W} \mathbf{x}_h) = 1$ if $z_{h-1} = q$ and $\lim_{\lambda_q \rightarrow \infty} \sigma(\mathbf{x}_H^\top \mathbf{W} \mathbf{x}_h) = 0$ otherwise.
 973

974 Next, we compute ξ_j for $j = y$ and $j \neq y$. Recall that $\mathbf{V} = s\mathbf{I}_d$ and $\mathbf{e}_y^\top \mathbf{U} \mathbf{x}_h = \mathbb{1}\{z_h = y\}$. With
 975 $j = y$, we have

$$979 \quad \xi_y = \mathbf{e}_y^\top \mathbf{U} \mathbf{V} \sum_{h=1}^H \sigma(\mathbf{x}_H^\top \mathbf{W} \mathbf{x}_h) \mathbf{x}_h = s \sum_{h=1}^H \sigma(\mathbf{x}_H^\top \mathbf{W} \mathbf{x}_h) \mathbb{1}\{z_h = y\} \quad (26)$$

$$982 \quad = s \left(\sum_{z_{h-1}=q} \sigma(\mathbf{x}_H^\top \mathbf{W} \mathbf{x}_h) \mathbb{1}\{z_h = y\} + \sum_{z_{h-1} \neq q} \sigma(\mathbf{x}_H^\top \mathbf{W} \mathbf{x}_h) \mathbb{1}\{z_h = y\} \right) \quad (27)$$

$$984 \quad = s \frac{C_{q,y} \exp(\lambda_q) + (C_y - C_{q,y}) \exp(-\lambda_q)}{C_{q,y} \exp(\lambda_q) + (H - C_{q,y}) \exp(-\lambda_q)}. \quad (28)$$

987 With $j \neq y$, we have
 988

$$993 \quad \xi_j = \mathbf{e}_j^\top \mathbf{U} \mathbf{V} \sum_{h=1}^H \sigma(\mathbf{x}_H^\top \mathbf{W} \mathbf{x}_h) \mathbf{x}_h = s \sum_{h=1}^H \sigma(\mathbf{x}_H^\top \mathbf{W} \mathbf{x}_h) \mathbb{1}\{z_h = j\} \quad (29)$$

$$996 \quad = s \sum_{h=1}^H \frac{\exp(-\lambda_q)}{C_{q,y} \exp(\lambda_q) + (H - C_{q,y}) \exp(-\lambda_q)} \mathbb{1}\{z_h = j\} \quad (30)$$

$$1000 \quad = s \frac{C_j \exp(-\lambda_q)}{C_{q,y} \exp(\lambda_q) + (H - C_{q,y}) \exp(-\lambda_q)}. \quad (31)$$

1004 The desired statement follows from the fact that $1 \leq C_{q,y} < H, 0 \leq C_j < H$ and thus
 1005 $\lim_{\lambda_q \rightarrow \infty} \frac{C_{q,y} \exp(\lambda_q) + (C_y - C_{q,y}) \exp(-\lambda_q)}{C_{q,y} \exp(\lambda_q) + (H - C_{q,y}) \exp(-\lambda_q)} = 1$ and $\lim_{\lambda_q \rightarrow \infty} \frac{C_j \exp(-\lambda_q)}{C_{q,y} \exp(\lambda_q) + (H - C_{q,y}) \exp(-\lambda_q)} = 0$
 1006 for $j \neq y$. Hence,
 1007

$$1010 \quad \lim_{s \rightarrow \infty} \lim_{\lambda_q \rightarrow \infty} \xi_y = \lim_{s \rightarrow \infty} s = \infty \quad (32)$$

$$1012 \quad \lim_{s \rightarrow \infty} \lim_{\lambda_q \rightarrow \infty} \xi_j = \lim_{s \rightarrow \infty} 0 = 0. \quad (33)$$

1017 \square
 1018
 1019
 1020
 1021

1022 E.2 PROOF OF THEOREM 4.2

1023
 1024 *Proof.* Consider a sample sentence with trigger word q and output word y . We use short-hand
 1025 notations $A = C_{q,y}, B = C_y, x = \lambda$. Note that $1 \leq A < B < H$. The loss incurred by this sample

1026

is

$$\begin{aligned}
1028 \quad f(s, x) &= -\ln \frac{\exp(\xi_y)}{\exp(\xi_y) + \sum_{i \neq y} \exp(\xi_i)} \\
1029 \\
1030 \quad &= -\xi_y + \ln \left(\exp(\xi_y) + \sum_{i \neq y} \exp(\xi_i) \right) \\
1031 \\
1032 \quad &= -s \frac{C_{q,y} \exp(x) + (C_y - C_{q,y}) \exp(-x)}{C_{q,y} \exp(x) + (H - C_{q,y}) \exp(-x)} \\
1033 \\
1034 \quad &+ \ln \left(\exp \left(s \frac{C_{q,y} \exp(x) + (C_y - C_{q,y}) \exp(-x)}{C_{q,y} \exp(x) + (H - C_{q,y}) \exp(-x)} \right) + \sum_{i \neq y} \exp \left(s \frac{C_i \exp(-x)}{C_{q,y} \exp(x) + (H - C_{q,y}) \exp(-x)} \right) \right) \\
1035 \\
1036 \quad &= -s \frac{A \exp(x) + (B - A) \exp(-x)}{A \exp(x) + (H - A) \exp(-x)} \\
1037 \\
1038 \quad &+ \ln \left(\exp \left(s \frac{A \exp(x) + (B - A) \exp(-x)}{A \exp(x) + (H - A) \exp(-x)} \right) + \sum_{i \neq y} \exp \left(s \frac{C_i \exp(-x)}{A \exp(x) + (H - A) \exp(-x)} \right) \right) \\
1039 \\
1040 \quad &= -s \frac{Ae^{2x} + B - A}{Ae^{2x} + H - A} + \ln \left(\exp \left(s \frac{Ae^{2x} + B - A}{Ae^{2x} + H - A} \right) + \sum_{i \neq y} \exp \left(s \frac{C_i}{Ae^{2x} + H - A} \right) \right). \\
1041 \\
1042 \\
1043 \\
1044 \\
1045 \\
1046 \\
1047 \\
1048 \quad &\text{Let } g(x) = Ae^{2x} + H - A \text{ and } u(x) = Ae^{2x} + B - A. \text{ We have} \\
1049 \\
1050 \quad f(s, x) &= -s \frac{u(x)}{g(x)} + \ln \left(\exp \left(s \frac{u(x)}{g(x)} \right) + \sum_{i \neq y} \exp \left(s \frac{C_i}{g(x)} \right) \right). \\
1051 \\
1052 \\
1053 \quad \text{Let } v(s, x) &= \exp \left(s \frac{u(x)}{g(x)} \right) + \sum_{i \neq y} \exp \left(s \frac{C_i}{g(x)} \right). \text{ Note that } v(s, x) > 0 \text{ for all } s, x \in \mathbb{R}. \\
1054 \\
1055 \quad \text{Next, we compute the partial derivatives of } f \text{ with respect to } x \text{ and } s. \text{ We have} \\
1056 \quad \frac{dg}{dx} &= 2Ae^{2x} \\
1057 \\
1058 \quad \frac{du}{dx} &= 2Ae^{2x} \\
1059 \\
1060 \quad \frac{d\frac{u}{g}}{dx} &= \frac{u'(x)g(x) - u(x)g'(x)}{g(x)^2} \\
1061 \\
1062 \quad &= \frac{2Ae^{2x}(Ae^{2x} + H - A) - 2Ae^{2x}(Ae^{2x} + B - A)}{g(x)^2} \\
1063 \\
1064 \quad &= \frac{2Ae^{2x}(H - B)}{g(x)^2} \\
1065 \\
1066 \quad \frac{d\frac{1}{g}}{dx} &= -\frac{g'(x)}{g(x)^2} = \frac{-2Ae^{2x}}{g(x)^2}. \\
1067 \\
1068 \\
1069 \\
1070 \quad \text{Additionally,} \\
1071 \quad \frac{\partial v}{\partial x} &= s \frac{d\frac{u}{g}}{dx} \exp \left(s \frac{u(x)}{g(x)} \right) + \sum_{i \neq y} sC_i \frac{d\frac{1}{g}}{dx} \exp \left(s \frac{C_i}{g(x)} \right) \\
1072 \\
1073 \\
1074 \quad &= s \left(\frac{2Ae^{2x}(H - B)}{g(x)^2} \exp \left(s \frac{u(x)}{g(x)} \right) + \sum_{i \neq y} -2C_i \frac{Ae^{2x}}{g(x)^2} \exp \left(s \frac{C_i}{g(x)} \right) \right) \\
1075 \\
1076 \\
1077 \\
1078 \quad &= \frac{2Ase^{2x}}{g(x)^2} \left((H - B) \exp \left(s \frac{u(x)}{g(x)} \right) - \sum_{i \neq y} C_i \exp \left(s \frac{C_i}{g(x)} \right) \right), \\
1079
\end{aligned} \tag{34}$$

1080

and

1081

$$\frac{\partial v}{\partial s} = \frac{u(x)}{g(x)} \exp\left(s \frac{u(x)}{g(x)}\right) + \sum_{i \neq y} \frac{C_i}{g(x)} \exp\left(s \frac{C_i}{g(x)}\right) \quad (45)$$

1082

1083

$$= \frac{1}{g(x)} \left(u(x) \exp\left(s \frac{u(x)}{g(x)}\right) + \sum_{i \neq y} C_i \exp\left(s \frac{C_i}{g(x)}\right) \right) \quad (46)$$

1084

It follows that

1085

1086

1087

$$\frac{\partial f}{\partial x} = -s \frac{d \frac{u}{g}}{dx} + \frac{\frac{\partial v}{\partial x}}{v(x)} \quad (47)$$

1088

1089

1090

$$= -\frac{2Ase^{2x}(H - B)}{g(x)^2} + \frac{1}{v(x)} \frac{2Ase^{2x}}{g(x)^2} \left((H - B) \exp\left(s \frac{u(x)}{g(x)}\right) - \sum_{i \neq y} C_i \exp\left(s \frac{C_i}{g(x)}\right) \right) \quad (48)$$

1091

1092

1093

1094

$$= -\frac{2Ase^{2x}}{g(x)^2 v(x)} \left(v(x)(H - B) - (H - B) \exp\left(s \frac{u(x)}{g(x)}\right) + \sum_{i \neq y} C_i \exp\left(s \frac{C_i}{g(x)}\right) \right) \quad (49)$$

1095

1096

1097

$$= -\frac{2Ase^{2x}}{g(x)^2 v(x)} \left(\sum_{i \neq y} (H - B + C_i) \exp\left(s \frac{C_i}{g(x)}\right) \right). \quad (50)$$

1098

1099

1100

1101

Since $A > 0$, $H - B + C_i > 0$ and $v(x) > 0$, we have $\frac{\partial f}{\partial x} < 0$ whenever $s > 0$.

1102

Next, we have

1103

1104

1105

1106

$$\frac{\partial f}{\partial s} = -\frac{u(x)}{g(x)} + \frac{\frac{\partial v}{\partial s}}{v(x)} \quad (51)$$

1107

1108

1109

$$= \frac{1}{g(x)v(x)} \left(-u(x)v(x) + u(x) \exp\left(s \frac{u(x)}{g(x)}\right) + \sum_{i \neq y} C_i \exp\left(s \frac{C_i}{g(x)}\right) \right) \quad (52)$$

1110

1111

1112

$$= \frac{1}{g(x)v(x)} \left(\sum_{i \neq y} (C_i - u(x)) \exp\left(s \frac{C_i}{g(x)}\right) \right) \quad (53)$$

1113

1114

1115

$$= -\frac{1}{g(x)v(x)} \left(\sum_{i \neq y} (Ae^{2x} + B - A - C_i) \exp\left(s \frac{C_i}{g(x)}\right) \right). \quad (54)$$

1116

Obviously, if $x \geq \frac{\ln H}{2}$, then $Ae^{2x} \geq AH \geq H > C_i$, which implies that $\frac{\partial f}{\partial s} < 0$.

1117

Phase Analysis. With $\eta \in (0, 1)$ be the learning rate, define $T_0 = \lceil \frac{|\mathcal{Q}| \ln H}{2\eta} \rceil$. Recall that s is initialized by $s_0 = \frac{|\mathcal{Q}| \ln H + 2}{2}$ and $\lambda_{q,0} = 0$ for all q . We divide the training process into two phases: the first phase is from round $t = 1$ to $t = T_0$, and the second phase is from $t = T_0 + 1$ onwards.

1118

1119

1120

1121

1122

1123

1124

1125

1126

- In the first phase $1 \leq t \leq T_0$, we first show that s_t may fluctuate but is always positive. Recall that for scalar value of s , the normalize gradient descent is equal to sign descent $s_t = s_{t-1} - \eta \text{sign} \frac{\partial L}{\partial s}$. In the worst case, the signs of the partial derivatives are always positive. It follows that

$$s_t \geq s_0 - \eta T_0 \geq s_0 - \frac{|\mathcal{Q}| \ln H + 1}{2} \geq \frac{1}{2}. \quad (55)$$

1127

1128

1129

1130

1131

1132

1133

Thus, $s_t > 0$ always holds in the first phase. This implies that $\frac{\partial f}{\partial \lambda_q} < 0$ in the first phase.

Therefore, the update formula $\lambda_{q,t} = \frac{\eta t}{|\mathcal{Q}|}$ always holds, which implies

$$\lambda_{q,T_0} = \frac{\eta T_0}{|\mathcal{Q}|} \geq \frac{\ln H}{2}. \quad (56)$$

This implies that $\frac{\partial L}{\partial s} < 0$.

1134 • In the second phase $t > T_0$, we now have that the signs of all partial derivatives are negative.
 1135 Therefore,

1136
$$s_t \geq \frac{1}{2} + \eta(t - T_0), \quad (57)$$

1137
$$\lambda_{q,t} = \frac{\eta t}{|\mathcal{Q}|}. \quad (58)$$

1141 Plugging these into (35), we obtain

1142
$$f(s_t, \lambda_{q,t}) = \ln \left(1 + \sum_{i \neq y} \frac{\exp\left(s_t \frac{C_i}{g(\lambda_{q,t})}\right)}{\exp\left(s_t \frac{u(\lambda_{q,t})}{g(\lambda_{q,t})}\right)} \right) = \sum_{i \neq y} \frac{\exp\left(s_t \frac{C_i}{g(\lambda_{q,t})}\right)}{\exp\left(s_t \frac{u(\lambda_{q,t})}{g(\lambda_{q,t})}\right)} \quad (59)$$

1143
$$\leq N \frac{\exp\left(s_t \frac{H}{g(\lambda_{q,t})}\right)}{\exp\left(s_t \frac{u(\lambda_{q,t})}{g(\lambda_{q,t})}\right)} \leq O\left(N \frac{\exp\left(s_t \frac{H}{g(\lambda_{q,t})}\right)}{\exp(2s_t)}\right) \quad (60)$$

1144
$$\leq O(N \exp(-\eta t)), \quad (61)$$

1145 where the second inequality is from $\frac{u(x)}{g(x)} \geq \frac{1}{2}$ for sufficiently large x , and the last inequality
 1146 is from $2s_t = \Omega(\eta t)$ and

1147
$$s_t \frac{H}{g(\lambda_{q,t})} \leq (s_0 + \eta T_0 + \eta t) \frac{H}{C_{q,y} e^{2\lambda_{q,t}} + H - C_{q,y}} \quad (62)$$

1148
$$= (s_0 + \eta T_0 + \eta t) \frac{H}{C_{q,y} e^{2\eta t/|\mathcal{Q}|} + H - C_{q,y}} \quad (63)$$

1149
$$\leq O(1). \quad (64)$$

1150 \square

F MISSING PROOFS IN SECTION 5

F.1 PROOF OF LEMMA 5.1

1166 We prove the following two lemmas on the optimality of linear and softmax attention for the noisy
 1167 setting.

1168 **Lemma F.1.** *(Optimality of linear and ReLU attention for noisy task) Under the reparameterization
 1169 regime defined in Lemma 5.1, for all $\alpha \in (0, 1)$, using linear and ReLU attention, we obtain*

1170
$$\lim_{\lambda \rightarrow \infty, \gamma \rightarrow \ln \frac{\alpha}{1-\alpha}} L(\lambda, \gamma) := \lim_{\lambda \rightarrow \infty, \gamma \rightarrow \ln \frac{\alpha}{1-\alpha}} \mathbb{E}_{y, z_{1:H+1}} \left[-\ln \frac{\exp(\xi_{z_{H+1}})}{\sum_{j \in [N+1]} \exp(\xi_j)} \right] = L_{\text{Bayes}}. \quad (65)$$

1174 *Proof.* Fix a sentence with trigger q and output y . It suffices to show that

1175
$$\xi_j = \mathbb{1}\{j = y \vee j = \tau\}(\lambda C_{q,y} + \mathbb{1}\{j = \tau\}\gamma), \quad (66)$$

1176 since this implies

1177
$$\begin{aligned} L(\lambda, \gamma) &= \mathbb{E}_{q, y, z_{1:H+1}} \left[-\ln \frac{\exp(\xi_{z_{H+1}})}{\sum_{j \in [N+1]} \exp(\xi_j)} \right] = \mathbb{E}_y \left[\mathbb{E}_{z_{1:H+1}} \left[-\ln \frac{\exp(\xi_{z_{H+1}})}{\sum_{j \in [N+1]} \exp(\xi_j)} \mid y \right] \right] \\ &= \mathbb{E}_{q, y} \left[\mathbb{E}_{z_{1:H}} \left[(\alpha - 1) \left(\ln \frac{e^{C_{q,y}\lambda}}{e^{C_{q,y}\lambda} + e^{C_{q,y}\lambda + \gamma} + N - 1} \right) - \alpha \left(\ln \frac{e^{C_{q,y}\lambda + \gamma}}{e^{C_{q,y}\lambda} + e^{C_{q,y}\lambda + \gamma} + N - 1} \right) \right] \right]. \end{aligned} \quad (67)$$

1178 The desired statement follows from the facts that

1179
$$\lim_{\lambda \rightarrow \infty} \frac{e^{C\lambda}}{e^{C\lambda} + e^{C\lambda + \ln \frac{\alpha}{1-\alpha}} + N - 1} = 1 - \alpha, \text{ and } \lim_{\lambda \rightarrow \infty} \frac{e^{C\lambda + \ln \frac{\alpha}{1-\alpha}}}{e^{C\lambda} + e^{C\lambda + \ln \frac{\alpha}{1-\alpha}} + N - 1} = \alpha$$

for any bounded $0 \leq C \leq H$. Note that we require α strictly larger than 0 so that we can use $\lim_{\lambda \rightarrow \infty} \ln \left(\frac{e^{C_{q,y}\lambda+\gamma}}{e^{C_{q,y}\lambda} + e^{C_{q,y}\lambda+\gamma+N-1}} \right) = \ln \left(\lim_{\lambda \rightarrow \infty} \frac{e^{C_{q,y}\lambda+\gamma}}{e^{C_{q,y}\lambda} + e^{C_{q,y}\lambda+\gamma+N-1}} \right) = \ln \alpha$.

We turn to proving (66). Similar to the proof of Lemma 3.1, we start by examining the attention scores $\mathbf{x}_H^\top \mathbf{W} \mathbf{x}_h$ for $h = 1, 2, \dots, H$. First, the product $\mathbf{x}_H^\top \mathbf{W}$ is equal to

$$(E(q)^\top + \tilde{E}(z_{H-1})^\top) \lambda \left(\sum_{q' \in \mathcal{Q}} E(q') \left(\tilde{E}^\top(q') - E^\top(\tau) \right) \right) \quad (68)$$

$$= \lambda E(q)^\top \left(\sum_{q' \in \mathcal{Q}} E(q') \left(\tilde{E}^\top(q') - E^\top(\tau) \right) \right) \quad (69)$$

$$= \lambda (\tilde{E}(q)^\top - E(\tau)^\top). \quad (70)$$

Next, we consider two cases:

- For $z_h = \tau$, we have $z_{h-1} = q$, therefore

$$\mathbf{x}_H^\top \mathbf{W} \mathbf{x}_h = \lambda \left(\tilde{E}^\top(q) - E^\top(\tau) \right) (E(\tau) + \tilde{E}(q)) = \mathbf{0}. \quad (71)$$

- For $z_h \in [N+1] \setminus \{\tau\}$, we have

$$\mathbf{x}_H^\top \mathbf{W} \mathbf{x}_h = \lambda \left(\tilde{E}^\top(q) - E^\top(\tau) \right) (E(z_h) + \tilde{E}(z_{h-1})) = \lambda \mathbb{1}\{z_{h-1} = q\}. \quad (72)$$

It follows that the attention scores are (using $\mathbf{x}_H = E(q) + \tilde{E}(z_{H-1})$)

$$\mathbf{x}_H^\top \mathbf{W} \mathbf{x}_h = \lambda \mathbb{1}\{z_{h-1} = q, z_h = y\} \quad (73)$$

Next, we compute $\xi_{A,j}$ for $j \in [N+1]$. Recall that $C_{q,y} = \sum_{h=1}^H \mathbb{1}\{z_{h-1} = q, z_h = y\}$. For $j \neq \tau$, we have $\xi_{A,j} = \lambda C_{q,y} \mathbb{1}\{j = y\}$ similar to the proof of Lemma 3.1. For $j = \tau$, we have

$$\xi_{A,\tau} = \mathbf{e}_\tau^\top \mathbf{U} \mathbf{V} \sum_{h=1}^H (\mathbf{x}_H^\top \mathbf{W} \mathbf{x}_h) \mathbf{x}_h = \mathbf{e}_\tau^\top \sum_{h=1}^H (\mathbf{x}_H^\top \mathbf{W} \mathbf{x}_h) \mathbf{e}_{z_h} = 0.$$

We conclude that for all $j \in [N+1]$,

$$\xi_{A,j} = \lambda C_{q,y} \mathbb{1}\{j = y\} \quad (74)$$

Next, we compute $\xi_{F,j}$ for $j \in [N]$. We have $\mathbf{V} = \mathbf{I}_d$, $\mathbf{F} = E(\tau) \left(\sum_{q' \in \mathcal{Q}} \gamma E^\top(q') + \tilde{E}^\top(q') \right)$ and

$$\begin{aligned} \xi_F &= \mathbf{U} \mathbf{F} \left(\mathbf{x}_H + \sum_{h=1}^H (\mathbf{x}_H^\top \mathbf{W} \mathbf{x}_h) \mathbf{V} \mathbf{x}_h \right) \\ &= \mathbf{U} E(\tau) \left(\sum_{q' \in \mathcal{Q}} \gamma E^\top(q') + \tilde{E}^\top(q') \right) \left(\mathbf{x}_H + \sum_{h=1}^H (\mathbf{x}_H^\top \mathbf{W} \mathbf{x}_h) \mathbf{x}_h \right) \\ &= \mathbf{e}_\tau \left(\sum_{q' \in \mathcal{Q}} \gamma E^\top(q') + \tilde{E}^\top(q') \right) (E(q) + \tilde{E}(z_{H-1}) + \lambda C_{q,y} (E(y) + \tilde{E}(q))) \\ &= \mathbf{e}_\tau \left(\gamma E^\top(q) + \tilde{E}^\top(q) \right) (E(q) + \tilde{E}(z_{H-1}) + \lambda C_{q,y} (E(y) + \tilde{E}(q))) \\ &= (\gamma + \lambda C_{q,y}) \mathbf{e}_\tau, \end{aligned}$$

where the last two equalities uses the fact that z_{H-1} cannot be a trigger word, otherwise the condition IV in the data model 2.1 would be violated.

1242 It follows that
 1243

$$1244 \quad \xi_{F,j} = (\gamma + \lambda C_{q,y}) \mathbb{1}\{j = \tau\}. \quad (75)$$

1245 Overall, we have
 1246

$$1247 \quad \xi_{A,y} = \lambda C_{q,y}, \quad \xi_{A,\tau} = 0, \quad \xi_{F,y} = 0, \quad \xi_{F,\tau} = \gamma + \lambda C_{q,y}.$$

1248 This implies that
 1249

- 1250 • If $j = y$ then $\xi_j = \xi_{A,y} + \xi_{F,y} = \lambda C_{q,y}$.
- 1251 • If $j = \tau$ then $\xi_j = \xi_{A,\tau} + \xi_{F,\tau} = \gamma + \lambda C_{q,y} = \lambda C_{q,y} + \ln \frac{\alpha}{1-\alpha}$.
- 1253 • Otherwise, $\xi_j = 0$.

1255 We conclude that $\xi_j = \mathbb{1}\{j = y \vee j = \tau\}(\lambda C_{q,y} + \mathbb{1}\{j = \tau\}\gamma)$. \square
 1256

1257 **Lemma F.2.** (Optimality of softmax attention for noisy task) By setting $\mathbf{U} = [E(1) \ E(2) \ \dots \ E(N) \ E(N+1)]^\top$, $\mathbf{V} = s\mathbf{I}_d$, $\mathbf{W} = \lambda \sum_{q \in \mathcal{Q}} E(q)(\tilde{E}^\top(q) - 2E^\top(\tau) - \sum_{x=1, x \neq q}^N \tilde{E}(x)^\top)$ and $\mathbf{F} = E(\tau) \sum_{q \in \mathcal{Q}} (\gamma E^\top(q) + \tilde{E}^\top(q))$, for all $\alpha \in (0, 1)$, using softmax attention we obtain
 1260

$$1262 \quad \lim_{s \rightarrow \infty, \lambda \rightarrow \infty, \gamma \rightarrow \ln \frac{\alpha}{1-\alpha}} L(s, \gamma, \lambda) := \quad (76)$$

$$1264 \quad \lim_{s \rightarrow \infty} \lim_{\lambda \rightarrow \infty, \gamma \rightarrow \ln \frac{\alpha}{1-\alpha}} \mathbb{E}_{y, z_1: H+1} \left[-\ln \frac{\exp(\xi_{z_{H+1}})}{\sum_{j \in [N+1]} \exp(\xi_j)} \right] = L_{\text{Bayes}}. \quad (77)$$

1268 *Proof.* Consider a sentence with a trigger q and output y . We have
 1269

$$1270 \quad \mathbf{x}_H^\top \mathbf{W} = (E(q) + \tilde{E}(z_{H-1}))^\top \lambda \sum_{q' \in \mathcal{Q}} E(q')(\tilde{E}^\top(q') - 2E^\top(\tau) - \sum_{x=1, x \neq q'}^N \tilde{E}(x)^\top) \quad (78)$$

$$1273 \quad = \lambda(\tilde{E}^\top(q) - 2E^\top(\tau) - \sum_{x=1, x \neq q}^N \tilde{E}(x)^\top). \quad (79)$$

1276 It follows that
 1277

$$1278 \quad \mathbf{x}_H^\top \mathbf{W} \mathbf{x}_h = (E(q) + \tilde{E}(z_{H-1}))^\top \lambda E(q) \left(\tilde{E}^\top(q) - 2E^\top(\tau) - \sum_{x=1, x \neq q}^N \tilde{E}(x)^\top \right) \mathbf{x}_h \quad (80)$$

$$1281 \quad = \lambda \left(\tilde{E}^\top(q) - 2E^\top(\tau) - \sum_{x=1, x \neq q}^N \tilde{E}(x)^\top \right) (E(z_h) + \tilde{E}(z_{h-1})) \quad (81)$$

$$1284 \quad = \lambda(-2\mathbb{1}\{z_h = \tau\} + \mathbb{1}\{z_{h-1} = q\} - \mathbb{1}\{z_{h-1} \neq q\}). \quad (82)$$

1285 Hence,
 1286

$$1287 \quad \mathbf{x}_H^\top \mathbf{W} \mathbf{x}_h = \begin{cases} \lambda & \text{if } z_{h-1} = q, z_h = y \\ -\lambda & \text{if } z_{h-1} = q, z_h = \tau \\ -\lambda & \text{otherwise.} \end{cases} \quad (83)$$

1291 Consequently,
 1292

$$1293 \quad \sum_{j=1}^H \exp(\mathbf{x}_H^\top \mathbf{W} \mathbf{x}_h) = \sum_{z_{j-1}=q, z_j=y} \exp(\lambda) + \sum_{(z_{j-1}, z_j) \neq (q, y)} \exp(-\lambda) \quad (84)$$

$$1295 \quad = C_{q,y} \exp(\lambda) + (H - C_{q,y}) \exp(-\lambda) \quad (85)$$

1296 The attention score at the h -th token in a sentence is

$$1298 \quad \sigma(\mathbf{x}_H^\top \mathbf{W} \mathbf{x}_h) = \frac{\exp(\mathbf{x}_H^\top \mathbf{W} \mathbf{x}_h)}{\sum_{j=1}^H \exp(\mathbf{x}_H^\top \mathbf{W} \mathbf{x}_j)} \quad (86)$$

$$1300 \quad = \begin{cases} \frac{\exp(\lambda)}{C_{q,y} \exp(\lambda_q) + (H - C_{q,y}) \exp(-\lambda)} & \text{if } z_{h-1} = q, z_h = y \\ \frac{\exp(-\lambda)}{C_{q,y} \exp(\lambda_q) + (H - C_{q,y}) \exp(-\lambda)} & \text{otherwise.} \end{cases} \quad (87)$$

1303 Next, we compute $\xi_{A,j}$. With $j = y$, we have

$$1304 \quad \xi_{A,y} = \mathbf{e}_y^\top \mathbf{U} \mathbf{V} \sum_{h=1}^H \sigma(\mathbf{x}_H^\top \mathbf{W} \mathbf{x}_h) \mathbf{x}_h = s \sum_{h=1}^H \sigma(\mathbf{x}_H^\top \mathbf{W} \mathbf{x}_h) \mathbf{1}\{z_h = y\} \quad (88)$$

$$1307 \quad = s \left(\sum_{z_{h-1}=q} \sigma(\mathbf{x}_H^\top \mathbf{W} \mathbf{x}_h) \mathbf{1}\{z_h = y\} + \sum_{z_{h-1} \neq q} \sigma(\mathbf{x}_H^\top \mathbf{W} \mathbf{x}_h) \mathbf{1}\{z_h = y\} \right) \quad (89)$$

$$1310 \quad = s \frac{C_{q,y} \exp(\lambda) + (C_y - C_{q,y}) \exp(-\lambda)}{C_{q,y} \exp(\lambda) + (H - C_{q,y}) \exp(-\lambda)}. \quad (90)$$

1312 With $j \neq y$, we have

$$1314 \quad \xi_{A,j} = \mathbf{e}_j^\top \mathbf{U} \mathbf{V} \sum_{h=1}^H \sigma(\mathbf{x}_H^\top \mathbf{W} \mathbf{x}_h) \mathbf{x}_h = s \sum_{h=1}^H \sigma(\mathbf{x}_H^\top \mathbf{W} \mathbf{x}_h) \mathbf{1}\{z_h = j\} \quad (91)$$

$$1317 \quad = s \sum_{z_{h-1} \neq q} \frac{\exp(-\lambda)}{C_{q,y} \exp(\lambda_q) + (H - C_{q,y}) \exp(-\lambda)} \mathbf{1}\{z_h = j\} \quad (92)$$

$$1320 \quad = s \frac{C_j \exp(-\lambda)}{C_{q,y} \exp(\lambda) + (H - C_{q,y}) \exp(-\lambda)}. \quad (93)$$

1322 Next, the logits of the feed-forward layer is

$$1324 \quad \xi_F = \mathbf{U} \mathbf{F} \left(\mathbf{x}_H + \sum_{h=1}^H \sigma(\mathbf{x}_H^\top \mathbf{W} \mathbf{x}_h) \mathbf{V} \mathbf{x}_h \right)$$

$$1325 \quad = \mathbf{U} E(\tau) \left(\sum_{q' \in \mathcal{Q}} \gamma E^\top(q') + \tilde{E}^\top(q') \right) (E(q) + \tilde{E}(z_{H-1}) + s \sum_{h=1}^H \sigma(\mathbf{x}_H^\top \mathbf{W} \mathbf{x}_h) \mathbf{x}_h)$$

$$1326 \quad = \mathbf{e}_\tau \left(\gamma + s \sum_{q' \in \mathcal{Q}} \gamma \sum_{h=1}^H \sigma(\mathbf{x}_H^\top \mathbf{W} \mathbf{x}_h) E^\top(q') \mathbf{x}_h + \sum_{h=1}^H \sigma(\mathbf{x}_H^\top \mathbf{W} \mathbf{x}_h) \tilde{E}^\top(q') \mathbf{x}_h \right)$$

$$1327 \quad = \mathbf{e}_\tau \left(\gamma + s \sum_{q' \in \mathcal{Q}} \gamma \sum_{h=1}^H \sigma(\mathbf{x}_H^\top \mathbf{W} \mathbf{x}_h) \mathbf{1}\{z_h = q'\} + \sum_{h=1}^H \sigma(\mathbf{x}_H^\top \mathbf{W} \mathbf{x}_h) \mathbf{1}\{z_{h-1} = q'\} \right)$$

$$1328 \quad = \mathbf{e}_\tau \left(\gamma + \left(s \sum_{q' \in \mathcal{Q}} \frac{\gamma C_{q'} \exp(-\lambda)}{C_{q,y} \exp(\lambda) + (H - C_{q,y}) \exp(-\lambda)} \right) \right)$$

$$1329 \quad + \mathbf{e}_\tau \left(s \frac{C_{q,y} \exp(\lambda) + C_\tau \exp(-\lambda)}{C_{q,y} \exp(\lambda) + (H - C_{q,y}) \exp(-\lambda)} + \sum_{q' \in \mathcal{Q}, q' \neq q} \frac{C_{q'} \exp(-\lambda)}{C_{q,y} \exp(\lambda) + (H - C_{q,y}) \exp(-\lambda)} \right),$$

1330 where we used $E^\top(q') \mathbf{x}_h = \mathbf{1}\{z_h = q'\}$ and $\tilde{E}^\top(q') \mathbf{x}_h = \mathbf{1}\{z_{h-1} = q'\}$. As a result, the combined
1331 logits of attention and feed-forward layers is

1332

1333 • If $j = y$, then

$$1334 \quad \xi_y = \xi_{A,y} + \xi_{F,y} = \xi_{A,y} \quad (94)$$

$$1335 \quad = s \frac{C_{q,y} \exp(\lambda) + (C_y - C_{q,y}) \exp(-\lambda)}{C_{q,y} \exp(\lambda) + (H - C_{q,y}) \exp(-\lambda)}. \quad (95)$$

1350 It follows that $\lim_{\lambda \rightarrow \infty} \xi_y = s$.
 1351

1352 • If $j = \tau$, then
 1353

$$1354 \xi_\tau = \xi_{A,\tau} + \xi_{F,\tau} \quad (96)$$

$$1355 = s \frac{2C_\tau \exp(-\lambda) + \gamma C_q \exp(-\lambda)}{C_{q,y} \exp(\lambda_q) + (H - C_{q,y}) \exp(-\lambda_q)} + \gamma + s \frac{C_{q,y} \exp(\lambda)}{C_{q,y} \exp(\lambda) + (H - C_{q,y}) \exp(-\lambda)} \quad (97)$$

$$1358 + \sum_{q' \in \mathcal{Q}, q' \neq q} \frac{C_{q'} \exp(-\lambda)}{C_{q,y} \exp(\lambda) + (H - C_{q,y}) \exp(-\lambda)}. \quad (98)$$

1361 It follows that $\lim_{\lambda \rightarrow \infty} \xi_\tau = s + \gamma$.
 1362

1363 • Otherwise, $\xi_j = \xi_{A,j} + \xi_{F,j} = \xi_{A,j} = s \frac{C_j \exp(-\lambda)}{C_{q,y} \exp(\lambda) + (H - C_{q,y}) \exp(-\lambda)}$.
 1364

1365 It follows that $\lim_{\lambda \rightarrow \infty} \xi_j = 0$.
 1366

1367 Then, Lemma F.2 follows directly from
 1368

$$1369 \begin{aligned} 1370 \lim_{s \rightarrow \infty} \lim_{\lambda \rightarrow \infty} \frac{\exp(\xi_y)}{\exp(\xi_y) + \exp(\xi_\tau) + \sum_{x=1, x \neq y}^N \exp(\xi_x)} &= \lim_{s \rightarrow \infty} \frac{\exp(s)}{\exp(s) + \exp(s + \gamma) + N - 1} \\ 1371 &= \lim_{s \rightarrow \infty} \frac{1}{1 + \exp(\gamma) + (N - 1) \exp(-s)} \\ 1372 &= \frac{1}{1 + \exp(\gamma)} \\ 1373 &= 1 - \alpha \quad \text{as } \gamma \rightarrow \ln\left(\frac{\alpha}{1 - \alpha}\right), \end{aligned}$$

1379 and
 1380

$$1381 \begin{aligned} 1382 \lim_{s \rightarrow \infty} \lim_{\lambda \rightarrow \infty} \frac{\exp(\xi_\tau)}{\exp(\xi_y) + \exp(\xi_\tau) + \sum_{x=1, x \neq y}^N \exp(\xi_x)} &= \lim_{s \rightarrow \infty} \frac{\exp(s + \gamma)}{\exp(s) + \exp(s + \gamma) + N - 1} \\ 1383 &= \lim_{s \rightarrow \infty} \frac{\exp(\gamma)}{1 + \exp(\gamma) + (N - 1) \exp(-s)} \\ 1384 &= \frac{\exp(\gamma)}{1 + \exp(\gamma)} \\ 1385 &= \alpha \quad \text{as } \gamma \rightarrow \ln\left(\frac{\alpha}{1 - \alpha}\right). \end{aligned}$$

1391 \square
 1392

1393

F.2 ANALYSIS OF NORMALIZED GRADIENT DESCENT ON POPULATION AND EMPIRICAL 1394 LOSSES

1395 To avoid notational overload, we write $C_{q,y}^{(m)}$ for $C_{q,y^{(m)}}$. We first consider the case where α is known,
 1396 and then extend the analysis to the case of unknown α .
 1397

1398

F.2.1 KNOWN α : RUNNING NORMALIZED GRADIENT DESCENT ON THE POPULATION LOSS 1399 $L(\lambda)$

1400 We will drop the subscript in $C_{q,y}$ and just write C when it is referring to a generic q, y under the
 1401 expectation sign. Set $\gamma = \ln \frac{\alpha}{1 - \alpha}$ and let $\beta = C\lambda + \gamma$. The population loss in the noisy learning
 1402

1458 *Proof.* Let $\beta^{(m)} = C_{q,y}^{(m)} \lambda + \ln \frac{\hat{\alpha}}{1-\hat{\alpha}}$. The empirical loss is
 1459

$$\begin{aligned}
 1460 \quad L_{\text{emp}}(\lambda) &= \frac{1}{M} \sum_{m=1}^M -\ln \frac{\exp(\xi_{z_{H+1}}^{(m)})}{\sum_{j \in [N+1]} \exp(\xi_j^{(m)})} \\
 1461 \\
 1462 \quad &= \frac{1}{M} \sum_{m=1}^M -\xi_{z_{H+1}}^{(m)} + \ln \left(\sum_{j \in [N+1]} \exp(\xi_j^{(m)}) \right) \\
 1463 \\
 1464 \quad &= \frac{1}{M} \left(\sum_{m=1, z_{H+1}^{(m)}=\tau}^M -\xi_{\tau}^{(m)} + \sum_{m=1, z_{H+1}^{(m)} \neq \tau}^M -\xi_y^{(m)} + \sum_{m=1}^M \ln \left(\sum_{j \in [N+1]} \exp(\xi_j^{(m)}) \right) \right). \\
 1465 \\
 1466 \\
 1467 \\
 1468 \\
 1469 \\
 1470
 \end{aligned}$$

1471 Using $\xi_{\tau}^{(m)} = \beta^{(m)} = C_{q,y}^{(m)} \lambda + \ln \frac{\hat{\alpha}}{1-\hat{\alpha}}$, $\xi_y^{(m)} = C_{q,y}^{(m)} \lambda$ and $\xi_j^{(m)} = 0$ for $j \notin \{q, y\}$, we obtain
 1472

$$\begin{aligned}
 1473 \quad L_{\text{emp}}(\lambda) &= \frac{1}{M} \left(\sum_{m=1, z_{H+1}^{(m)}=\tau}^M \beta^{(m)} + \sum_{m=1, z_{H+1}^{(m)} \neq \tau}^M -C_{q,y}^{(m)} \lambda + \sum_{m=1}^M \ln \left(\exp(\beta^{(m)}) + \exp(C_{q,y}^{(m)} \lambda) + N - 1 \right) \right) \\
 1474 \\
 1475 \quad &= \frac{1}{M} \left(\sum_{m=1}^M -C_{q,y}^{(m)} \lambda + \ln \left(\exp(\beta^{(m)}) + \exp(C_{q,y}^{(m)} \lambda) + N - 1 \right) \right) + \frac{M_{\tau}}{M} \ln \frac{\hat{\alpha}}{1-\hat{\alpha}} \\
 1476 \\
 1477 \quad &= \frac{1}{M} \left(\sum_{m=1}^M -C_{q,y}^{(m)} \lambda + \ln \left(\frac{\exp(C_{q,y}^{(m)} \lambda)}{1-\hat{\alpha}} + N - 1 \right) \right) + \frac{M_{\tau}}{M} \ln \frac{\hat{\alpha}}{1-\hat{\alpha}}. \\
 1478 \\
 1479 \\
 1480 \\
 1481 \\
 1482
 \end{aligned}$$

1483 By Lemma G.1, we have $\frac{dL_{\text{emp}}}{d\lambda} < 0$. As a result, running normalized gradient descent on L_{emp} gives
 1484 $\lambda_t = \eta t$. The population loss is
 1485

$$\begin{aligned}
 1486 \quad L_{\text{pop}}(\lambda_t, \hat{\gamma}) &= \mathbb{E} \left[(1-\alpha) \left(-\ln \frac{e^{C_{q,y} \lambda_t}}{e^{C_{q,y} \lambda_t} + e^{C_{q,y} \lambda_t + \hat{\gamma}_t} + N - 1} \right) + \alpha \left(-\ln \frac{e^{C_{q,y} \lambda_t + \hat{\gamma}_t}}{e^{C_{q,y} \lambda_t} + e^{C_{q,y} \lambda_t + \hat{\gamma}_t} + N - 1} \right) \right] \\
 1487 \\
 1488 \quad &= \mathbb{E} \left[-C_{q,y} \lambda_t + \ln \left(e^{C_{q,y} \lambda_t} + e^{C_{q,y} \lambda_t + \hat{\gamma}_t} + N - 1 \right) - \alpha \hat{\gamma} \right] \\
 1489 \\
 1490 \quad &= \mathbb{E} \left[-C_{q,y} \lambda_t + \ln \left(\frac{e^{C_{q,y} \lambda_t}}{1-\hat{\alpha}} + N - 1 \right) \right] - \alpha \hat{\gamma} \\
 1491 \\
 1492 \quad &= \mathbb{E} \left[\ln \left(\frac{1}{1-\hat{\alpha}} + e^{-C_{q,y} \eta t} (N-1) \right) \right] - \alpha \ln \frac{\hat{\alpha}}{1-\hat{\alpha}} \\
 1493 \\
 1494 \quad &\leq \ln \left(\frac{1}{1-\hat{\alpha}} + e^{-\eta t} (N-1) \right) - \alpha \ln \frac{\hat{\alpha}}{1-\hat{\alpha}} \\
 1495 \\
 1496 \quad &\leq -\alpha \ln \hat{\alpha} - (1-\alpha) \ln (1-\hat{\alpha}) + (N-1)e^{-\eta t} \\
 1497 \\
 1498 \quad &= -\alpha \ln \alpha - (1-\alpha) \ln (1-\alpha) + KL(\alpha \parallel \hat{\alpha}) + (N-1)e^{-\eta t} \\
 1499 \\
 1500 \quad &= L_{\text{Bayes}} + KL(\alpha \parallel \hat{\alpha}) + (N-1)e^{-\eta t},
 \end{aligned}$$

1501 where $KL(\alpha \parallel \hat{\alpha})$ is the Kullback-Leibler divergence between two Bernoulli distributions $\text{Ber}(\alpha)$
 1502 and $\text{Ber}(\hat{\alpha})$. By Lemma G.2, we have with probability at least $1 - \delta$,

$$L_{\text{pop}}(\lambda_t, \hat{\gamma}) \leq L_{\text{Bayes}} + \frac{1}{\min(\alpha, 1-\alpha) - \sqrt{\frac{\ln(2/\delta)}{2M}}} \frac{\ln(2/\delta)}{2M} + (N-1)e^{-\eta t}.$$

1503 \square
 1504
 1505

F.3 PROOF OF THEOREM 5.5

1506 *Proof.* By Equation (66), we have
 1507

$$\xi_j = \mathbb{1}\{j = y_{\text{test}} \vee j = \tau\}(\lambda_t C_{q,y_{\text{test}}} + \mathbb{1}\{j = \tau\}\hat{\gamma}). \quad (100)$$

1512 Using $\hat{\gamma} = \ln \frac{\hat{\alpha}}{1-\hat{\alpha}}$, we obtain
 1513

$$1514 \Pr[z_{H+1} = y_{\text{test}} \mid \lambda_t, \hat{\gamma}] := \frac{\exp(\xi_{y_{\text{test}}})}{\sum_{j \in [N+1]} \exp(\xi_j)} \quad (101)$$

$$1515 = \frac{\exp(\lambda_t C_{q,y_{\text{test}}})}{\exp(\lambda_t C_{q,y_{\text{test}}}) + \exp(\lambda_t C_{q,y_{\text{test}}} + \hat{\gamma}) + N - 1} \quad (102)$$

$$1516 = \frac{\exp(C_{q,y} \lambda_t)}{\frac{\exp(C_{q,y} \lambda_t)}{1-\hat{\alpha}} + N - 1} \quad (103)$$

$$1517 = (1 - \hat{\alpha}) \frac{1}{1 + (N - 1)(1 - \hat{\alpha})e^{-C_{q,y_{\text{test}}} \lambda_t}} \quad (104)$$

$$1518 = (1 - \hat{\alpha}) \frac{1}{1 + (N - 1)(1 - \hat{\alpha})e^{-C_{q,y_{\text{test}}} \eta t}} \quad (105)$$

1519 For large t , the quantity $e^{-C_{q,y_{\text{test}}} \eta t}$ is close to 0. By Taylor's theorem, we have $\frac{1}{1+x} = 1 - x + O(x^2)$
 1520 for small x . Therefore, with probability at least $1 - \delta$,
 1521

$$1522 \Pr[z_{H+1} = y_{\text{test}} \mid \lambda_t, \hat{\gamma}] = (1 - \hat{\alpha}) (1 - (N - 1)(1 - \hat{\alpha})e^{-C_{q,y_{\text{test}}} \eta t} + O(N^2 e^{-2C_{q,y_{\text{test}}} \eta t})) \quad (106)$$

$$1523 = 1 - \hat{\alpha} + O(N^2 e^{-2\eta t}) \quad (107)$$

$$1524 = 1 - \alpha + O\left(\sqrt{\frac{\ln(1/\delta)}{M}} + N^2 e^{-2\eta t}\right), \quad (108)$$

1525 where the last equality is from $\hat{\alpha} = \alpha - O(\sqrt{\frac{\ln(1/\delta)}{M}})$ with probability at least $1 - \delta$.
 1526

1527 The proof for $\Pr[z_{H+1} = \tau \mid \lambda_t, \hat{\gamma}]$ follows similarly. \square
 1528

1529 F.4 PROOF OF THEOREM 5.6

1530 *Proof.* Recall that $\hat{\gamma} = \ln \frac{1-\hat{\alpha}}{\hat{\alpha}}$. By Hoeffding's inequality, we have $|\alpha - \hat{\alpha}| \leq \sqrt{\frac{\ln(2/\delta)}{2M}}$ with
 1531 probability at least $1 - \delta$. Hence, $t \geq \max(1, \frac{1}{\eta} \left| \ln\left(1 - \alpha + \sqrt{\frac{\ln(2/\delta)}{2M}}\right) - \ln\left(\alpha - \sqrt{\frac{\ln(2/\delta)}{2M}}\right) \right|)$
 1532 implies that $t \geq \max(1, -\hat{\gamma}/\eta)$.
 1533

1534 By Equation (74), we have
 1535

$$1536 \xi_{A,y} = \lambda_t C_{q,y} = \eta t C_{q,y} > 0 = \max_{j \neq y} \xi_{A,j}. \quad (109)$$

1537 By Equation (75), we have
 1538

$$1539 \xi_{F,\tau} = \lambda_t C_{q,y} + \hat{\gamma} \geq \eta t + \hat{\gamma} > 0 = \max_{j \neq \tau} \xi_{F,j} \quad (110)$$

1540 since $C_{q,y} \geq 1$ and $\lambda_t = \eta t > \max(0, -\hat{\gamma})$ for $t \geq \max(1, -\frac{\hat{\gamma}}{\eta})$. We conclude that the condition (4)
 1541 is satisfied with probability at least $1 - \delta$. \square
 1542

1543 G TECHNICAL LEMMAS

1544 **Lemma G.1.** *For any $N > 1, \alpha \in [0, 1], C > 0$, the derivative of the function*

$$1545 f(x) = -Cx + \ln\left(\frac{\exp(Cx)}{1-\alpha} + N - 1\right)$$

1546 is negative for all $x \in \mathbb{R}$.
 1547

1548 *Proof.* We have $\frac{df}{dx} = -C + \frac{\frac{Ce^{Cx}}{1-\alpha}}{\frac{\exp(Cx)}{1-\alpha} + N - 1} = \frac{C(1-N)}{\frac{\exp(Cx)}{1-\alpha} + N - 1} < 0$. \square
 1549

1566 **Lemma G.2.** Let $\alpha \in (0, 1)$. Let M i.i.d samples $(X_i)_{i \in [M]}$ be drawn from $X_i \sim \text{Ber}(\alpha)$. Let
 1567 $\hat{\alpha} = \frac{1}{M} \sum_{i=1}^M X_i$. With probability at least $1 - \delta$, we have
 1568

$$1569 \quad KL(\alpha \parallel \hat{\alpha}) \leq \frac{1}{\min(\alpha, 1 - \alpha) - \sqrt{\frac{\ln(2/\delta)}{2M}}} \frac{\ln(2/\delta)}{2M}.$$

$$1570$$

$$1571$$

$$1572$$

$$1573$$

1574 *Proof.* By the reverse Pinsker’s inequality (Sason, 2015, Theorem 3), we have
 1575

$$1576 \quad KL(\alpha \parallel \hat{\alpha}) \leq \frac{2(\alpha - \hat{\alpha})^2}{\min(\hat{\alpha}, 1 - \hat{\alpha})}.$$

$$1577$$

$$1578$$

1579 By Hoeffding’s inequality, the event $|\alpha - \hat{\alpha}| \leq \sqrt{\frac{\ln(2/\delta)}{2M}}$ holds with probability at least $1 - \delta$. Under
 1580 this event, we have $(\alpha - \hat{\alpha})^2 \leq \frac{\ln(2/\delta)}{2M}$. Also, $\hat{\alpha} \geq \alpha - \sqrt{\frac{\ln(2/\delta)}{2M}}$ and $1 - \hat{\alpha} \geq 1 - \alpha - \sqrt{\frac{\ln(2/\delta)}{2M}}$.
 1581 Hence, $\min(\hat{\alpha}, 1 - \hat{\alpha}) \geq \min(\alpha, 1 - \alpha) - \sqrt{\frac{\ln(2/\delta)}{2M}}$. The statement follows immediately.
 1582

1583 \square

$$1584$$

$$1585$$

1586 H FURTHER DETAILS ON EXPERIMENTS

$$1587$$

1588 H.1 ADDITIONAL DETAILS ON THE EXPERIMENTAL SETUP

$$1589$$

1590 **Hyperparameters** The majority of our experiments are repeated five times with five random seeds
 1591 from 0 to 5. However, possibly due to the large number of iterations and large size of the finite
 1592 dataset, no significant differences are observed between different random seeds.

1593 We also experimented with several different values of learning rates ranging from 0.1 to 0.8. Consis-
 1594 tent with the theoretical findings, we find that the more reparameterized a model is, the less sensitive it
 1595 is to changes in the learning rate. All of our results are reported for learning rates set at either 0.1, 0.2
 1596 or 0.8.

1597 In finite-sample experiments, we train the models on a dataset of size $M = 2048$ samples and then
 1598 compute the models’ population losses and unseen output test losses. To calculate the population
 1599 loss, we use a freshly sampled dataset of size $10M = 20480$ samples. To calculate the unseen output
 1600 test losses, we use a freshly sampled dataset of size 512 samples, where $y \in [1, 4]$ is replaced by a
 1601 randomly chosen $y_{\text{test}} \in [5, 59]$.

1602 **Computing Resources** The experiments are implemented in PyTorch. All experiments are run on a
 1603 single-CPU computer. The processor is 11th Gen Intel (R) Core i7-11700K with 32 GB
 1604 RAM. Training all models simultaneously takes about 30 minutes from start to finish.
 1605

1606 H.2 ATTENTION LAYER LEARNS TO PREDICT OUTPUT TOKENS WHILE FEED-FORWARD 1607 LAYER LEARNS TO PREDICT NOISE TOKEN

$$1608$$

1609 To measure the extent to which we can separate the learning functionality of the attention
 1610 layer and the feed-forward layer, we train three models `Origin-Linear`, `Reparam-Linear`
 1611 and `Reparam-Linear-W`, and record the logits of each layer on the output tokens, the noise tokens
 1612 and the maximum values in the logits of the two layers on all three noisy tasks with $\alpha = 0.2, 0.5$ and
 1613 0.8. We use $\eta = 0.1$ in all experiments. The results are reported in Figures 3 to 5.

1614 We say that the attention layer and the feed-forward layer learns to predict the output and noise tokens,
 1615 respectively, if $\xi_{A,y} = \max_j \xi_{A,j}$ and $\xi_{F,\tau} = \max_j \xi_{F,\tau}$. It can be observed that all three models
 1616 exhibit some layer-specific learning mechanism, including the original model where all three matrices
 1617 \mathbf{V} , \mathbf{W} and \mathbf{F} are trained from scratch without reparameterization. However, depending on the noise
 1618 level, at least one of the two layers in the original model do not fully specialize in either the output nor
 1619 the noise tokens. For $\alpha \leq 0.5$, Figures 3a and 3d show that the attention layer in `Origin-Linear`
 learns to predict output tokens perfectly, however the feed-forward layer does not always predict τ .

Figure 2: Population and Unseen Output Test Losses of Reparam-Linear-W with $\eta = 0.1$ (first row), $\eta = 0.5$ (second row). Population losses converge with limited generalization to unseen output words.

At $\alpha = 0.8$, the feed-forward layer succeeds in learning to predict τ but the attention layer fails to focus entirely on the output tokens.

In contrast, the fully-reparameterized model Reparam-Linear exhibits perfect separation in the functionality of the two layers, which verified our Theorem 5.6. The same phenomenon is also observed in Reparam-Linear-W, which suggests that reparameterizing \mathbf{F} is sufficient to force the two layers to be biased towards two different types of tokens.

Figure 3: Origin-Linear with $\alpha = 0.2$ (first row), $\alpha = 0.5$ (second row) and $\alpha = 0.8$ (third row). The learning rate is $\eta = 0.1$.

Figure 4: Reparam-Linear-W with $\alpha = 0.2$ (first row), $\alpha = 0.5$ (second row) and $\alpha = 0.8$ (third row). The learning rate is $\eta = 0.1$.

Figure 5: Reparam-Linear with $\alpha = 0.2$ (first row), $\alpha = 0.5$ (second row) and $\alpha = 0.8$ (third row). The learning rate is $\eta = 0.1$.