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ABSTRACT

We study the approximation capabilities, convergence speeds and on-convergence
behaviors of one-layer decoder-only transformers trained on in-context recall tasks —
which requires to recognize the positional association between a pair of tokens from
in-context examples. Existing theoretical results only focus on the in-context recall
behavior of transformers after being trained for one gradient descent step. It remains
unclear what is the on-convergence behavior of transformers being trained by
gradient descent and how fast the convergence rate is. In addition, the generalization
of transformers in one-step in-context recall has not been formally investigated.
This work addresses these gaps. We first show that a class of transformers with
either linear, ReLU or softmax attentions, is provably Bayes-optimal for an in-
context recall task. When being trained with gradient descent, we show via a finite-
sample analysis that the expected loss converges at linear rate to the Bayes risks.
Moreover, we show that the trained transformers exhibit out-of-distribution (OOD)
generalization, i.e., generalizing to samples outside of the population distribution.
Our theoretical findings are further supported by extensive empirical validations,
showing that without proper parameterization, standard one-layer transformer
models surprisingly fail to generalize OOD after being trained by gradient descent.

1 INTRODUCTION

Large language models (LLMs) have shown impressive results in complex tasks that require some
form of “reasoning” where classical models such as feed-forward networks seem to struggle. These
reasoning tasks include, but are not limited to, generating coherent and plausible texts from a given
context, language understanding, and mathematical reasoning (Brown et al., 2020; Achiam et al.,
2023). At the heart of LLMs is the transformer architecture that features the attention mechanism
(Vaswani et al., 2017). Transformers can process a long sequence of contexts and enable in-context
reasoning via attention mechanisms. Despite remarkable empirical performance, the theoretical
understanding of attention in reasoning tasks remains elusive, raising critical risk and safety issues
when it comes to the widespread adoption of LLM technology (Bommasani et al., 2021; Belkin, 2024).

The literature has shown the usefulness of disentangling the behavior of complex models such as
LLM:s via controlled-setting tasks for which we understand the groundtruth behaviors (Allen-Zhu,
2024). For understanding reasoning in LLMs, one of the benchmark tasks that the literature has been
recently embarked on is next-token prediction (NTP), wherein the tasks require a model to understand
the context from a sentence to be able to predict the next token correctly. As a running example,
consider the task of predicting the next token for the sentence “After talking to Bob about Anna,
Charles gives her email address to [?]”. A global bigram statistics would predict the next token to
be “the” as the bigram “to the” naturally occurs in English with high frequency. However, if another
person appears in the context, say Bob, then “Bob” is perhaps a better token prediction, even though
the bigram “to Bob” is not a frequent bigram in the global context. In transformers, there have been
strong (both empirically and theoretically) evidence suggesting that attention heads are responsible
for in-context reasoning such as the in-context bigram “to Bob” (Wang et al., 2022) while feedforward
layers seem to be responsible for storing global statistics or factual knowledge such as the global
bigram “to the” (Geva et al., 2020; Meng et al., 2022; Bietti et al., 2023; Nichani et al., 2024).
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However, a proper understanding of how such capabilities emerge during training is still lacking. For
example, it is unclear how distributional associations such as “to the” and in-context reasoning such
as “to Bob” are automatically assigned to feed-forward layers and self-attention layers by gradient
descent without being explicitly forced to do so during training. Several initial efforts have shed
insights into the above question (Chen et al., 2025; Bietti et al., 2023; Nichani et al., 2024). While they
made an important first progress, we are still far from depicting the whole picture of how reasoning
emerges in transformers. In particular, the existing theoretical results are limited to the reasoning
behavior for just the first gradient steps or an infinite-sample setting, which do not reflect how we
actually train transformers in practice.

In this paper, we narrow the gap above by deriving an effective, interpretable structures of transformers
for in-context recall tasks. We will show how these structures emerge through gradient descent training
on a class of parameterized one-layer transformers with linear, ReLU and softmax attentions. Our
main contributions are as follows.

* In Section 2, we formally define a new in-context reasoning task (Definition 2.1), in which
multiple query tokens can appear in a sentence and the output tokens can be noisy. This is a
more difficult version of the in-context recall tasks in existing works (Bietti et al., 2023; Chen
et al., 2025). Our new data model also enables a natural way to setup out-of-distribution
(OOD) testing via a set of neutral tokens.

* Section 3 considers the noiseless setting. In Lemma 3.1, we present the first parameterization
of one-layer transformers with linear and ReLU attentions that are provably optimal for this
setting. We show that this parameterization mimics a human-like strategy for solving the
task, and that it can be realized via gradient descent training (Theorem 3.2). Furthermore, we
prove that the trained model directly generalizes to OOD sentences (Theorem 3.3), as well as
gradient descent alone is not implicitly biased towards this parameterization (Theorem 3.4).

» Section 4 studies the optimality and convergence of models with softmax attentions for
the noiseless setting. Lemma 4.1 exhibits how the structure for softmax attention can be
constructed from observing the structure for linear and ReLLU attentions. Via a two-phase
analysis, our Theorem 4.2 shows that the loss converges at a linear rate to 0.

» Section 5 studies the noisy setting. Lemmas 5.1 and 5.2 first demonstrate the Bayes-
optimality of one-layer transformers with linear, ReLU and softmax attentions. Next,
Theorem 5.4 shows that by adapting our parameterizations from the noiseless setting to
the noisy setting, one-layer transformers admit a finite-sample analysis that results in a
PAC-style high-probability generalization bound. Moreover, Theorem 5.6 explains how
attention layer and feed-forward layer may converge to perform different functionalities.

* Finally, Section 6 presents experimental results demonstrating the advantages of our parame-
terization over non-parameterized models. These results reveal the crucial role of expressive
power and parameterization in achieving Bayes-optimality and OOD generalization.

1.1 RELATED WORK

Several works have analyzed transformers’ training dynamics for in-context learning of linear
regression and binary classification. Ahn et al. (2024) show a one-layer linear transformer that
performs a preconditioned gradient step, with L layers corresponding to L steps at certain critical
points. Mahankali et al. (2023) find that a one-layer linear transformer trained on noisy data mimics a
single least-squares gradient step. Zhang et al. (2024) prove convergence to a global minimum under
suitable initialization. Huang et al. (2024a) study gradient descent in softmax transformers learning
linear functions. Cui et al. (2024) show that multi-head attention with large embeddings outperforms
single-head variants. Cheng et al. (2023); Li et al. (2025) demonstrate the ability to emulate gradient
descent and generalize with Chain-of-Thought on nonlinear transformers. Siyu et al. (2024); Shen
et al. (2025) studies the training dynamics of (multi-head) softmax transformers for multi-task
linear regression and in-context classification. Tarzanagh et al. (2023) show that self-attention
optimization mirrors hard-margin SVMs, revealing the implicit bias of 1-layer transformers trained
via gradient descent, and that over-parameterization aids global convergence. Ataee Tarzanagh
et al. (2023) demonstrate that gradient descent on softmax attention converges to a max-margin
separator distinguishing between locally optimal tokens. Building on this, Vasudeva et al. (2024)
provide finite-sample analysis. Deora et al. (2023) offer optimization and generalization guarantees
for training single-layer multi-head attention models under the NTK regime.
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Recent works have also examined transformers’ training dynamics for next-token prediction (NTP).
Tian et al. (2023a) show that self-attention acts as a discriminative scanner, focusing on predictive
tokens and down-weighting common ones. Tian et al. (2023b) analyze multilayer dynamics, while Li
et al. (2024) find that gradient descent trains attention to learn an automaton via hard retrieval and soft
composition. Thrampoulidis (2024) study the implicit bias of gradient descent in linear transformers.
Huang et al. (2024b) provide finite-time analysis for a one-layer transformer on a synthetic NTP
task, showing sublinear max-margin and linear cross-entropy convergence. Their setting assumes
one-to-one token mapping, whereas we address a more general case allowing one-to-many mappings
and prove generalization results for this broader task.

Our work also connects to recent views of transformer weight matrices—especially in embedding
and feed-forward layers—as associative memories. Bietti et al. (2023) show that transformers store
global bigrams and adapt to new context at different rates. Chen et al. (2025) find that feed-forward
layers capture distributional associations, while attention supports in-context reasoning, attributing
this to gradient noise (though only analyzing one gradient step). Nichani et al. (2024) theoretically
analyze gradient flow in linear attention models on factual recall tasks.

2 PROBLEM SETUP

Notations. We use bold lowercase letters for vectors and bold uppercase letters for matrices. Let
N be the size of the vocabulary, and V = [N] := {1,..., N} be the vocabulary itself. A token
y € [N] is an element of the vocabulary. A sentence of length H is a sequence of tokens denoted by
z1:1, Where zj, € [N] is the h-th element of z1.5. We use C, , = 52—11 Hzp—1 =2x,2, =y} to
denote the number of times a bigram (x, y) appear in a sentence. Generally, we will use “word” and
“token” interchangeably throughout the paper, although we often use “word” to refer to an element of

a sentence and “token” to refer to a specific type of elements of the vocabulary.

Definition 2.1 (Data Model - In-context Recall Tasks). We study a modified variant of the noiseless
and noisy in-context reasoning tasks proposed in Bietti et al. (2023) and Chen et al. (2025), respec-
tively. More specifically, we define the following two special, non-overlapping sets of tokens: a set of
trigger tokens Q C [N] and a set of output tokens O C [INV], where O N Q = (). A special “generic”
noise token is defined by 7 = N + 1. The noise level is determined by a constant a € [0, 1), where
o = 0 corresponds to the noiseless learning setting (Bietti et al., 2023) and o > 0 corresponds to the
noisy learning setting (Chen et al., 2025). In our model, a sentence z.g7+1 is generated as follows:

* Sample a trigger word ¢ ~ Unif(Q) and an output word y ~ Unif(O).

» Sample randomly (over an arbitrary distribution) z;.z—1 from the set of sentences that satisfy
the following four conditions: (I) there exists at least one bigram (g, y) in the sentence, (II)
7 may appear in a sentence only if « > 0, in that case 7 is always preceded by ¢, (II) all
bigrams of the form (¢, z) take either = y or = 7, and (IV) if another token ¢’ is in the
sentence, then it is followed by an output word 3’ € O.

e Fix zpy = ¢,

* Set zp 41 = 7 with probability o and zx 41 = y with probability 1 — a.

Comparisons to existing works. Compared to the existing task modes in Bietti et al. (2023); Chen
et al. (2025), our task model offers several notable advantages. First, all sentences in our models must
contain at least one (trigger token, output token) bigram, leading to a better signal-to-noise ratio. This
allows us to avoid un-informative sentences that contain no useful signals for learning. Second, our
task models are agnostic with respect to the distribution of the sentences. In other words, we do not
impose any assumptions on how words and sentences are distributed, as long as the conditions are
satisfied. Thus, our distributionally agnostic models are both more applicable to practical scenarios
and more challenging for theoretical analyses. Third, by restricting the output tokens to a subset
of [N], we can study the OOD generalization ability of a model on unseen output tokens. Note
that existing work by Bietti et al. (2023); Chen et al. (2025) did not study OOD generalization.
Furthermore, because there are more than one possible next-token for every trigger word, our next-
token prediction task is more challenging than the task of learning a one-to-one token mapping
in Huang et al. (2024b). We provide additional examples of real-life sentences in Appendix A.

One-layer Decoder-only Transformers. To establish the theoretical guarantees of the optimality and
on-convergence behaviors of transformers, we adopt the popular approach in existing works (Bietti
et al., 2023; Chen et al., 2025; Huang et al., 2024a, e.g.) and consider the following one-layer
transformer model, which is a variant of the model proposed in Chen et al. (2025). Let E : [N] ~ R?
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be the input word embedding, i.e. F(z) € R? is the input embedding of the word z € [N], and
E: [N] — R be a (different) embedding representing the previous token head construction as
in Bietti et al. (2023). Similar to the majority of existing works in the literature (Chen et al., 2025,
e.g.), we employ a common assumption that the embeddings £ and F are fixed and orthogonal, i.e.
E@)TE(j) = E(i)TE(j) = 1{i = j} and E(i) T E(j) = 0 forany i, j € [N].

Let U € RV*4 V € R¥¥4 W € R%*? be the unembedding matrix, the value matrix, and the joint

query-key matrix, respectively. Our model consists of one attention layer and one feed-forward layer.
The input x1.77 and the output of the model are as below.

xn = E(z1) + E(zn-1) € RY,
H
¢(xH,T1.H) = VZJ(mIIWmh)mh eRY, "
h=1
£A = qub(a:H,a:LH) S ]RN,
tp =UF (xy + ¢(xn,z1.1)) € RY,

where F' is the matrix of the linear layer and o : R — R is the activation function which determines
the range of the attention scores. For theoretical and empirical analyses, we use linear attention
o(x;Way,) = Wz, ReLU attention o (x ;, Wx;,) = max(0, ;W z;,) and softmax attention

h
o(xgpWa) = Z;jfi:pf{(gt;)wj). The final logitis £ = £4 + &F.

Compared to Chen et al. (2025), our model in (1) differs in the computation of £ . More specifically,
while their theoretical model used £ = U Fxy, we add Zthl o(x;Wxy,)Vay, to the input of
the feed-forward layer, which is closer to the empirical model used for the experiments in Chen et al.
(2025). As we will show in Section 5, this modification is sufficient for showing the Bayes-optimality
of one-layer transformers. Next, similar to Chen et al. (2025), we fix the three embedding maps
E, E,U, and use cross-entropy loss on &, i.e. the population loss is L = Ey ,, » [f In %} .

3  WARMUP: NOISELESS LEARNING WITH LINEAR AND RELU ATTENTIONS

In this section, we consider the noiseless learning setting in which o« = 0 and 7 never appears in
a sentence. In Section 3.1, we prove the approximation capability of the model defined in (1) by
showing that with linear and ReLLU attentions, there exists a reparameterization of U, V', F' and W
that drives the population loss L to 0. In Section 3.2, we show that the reparameterized model can be
trained by normalized gradient descent (NGD) and the population loss converges to O at linear rate.

3.1 APPROXIMATION CAPABILITIES OF TRANSFORMERS ON NOISELESS SETTING

We show that for any instance of the noiseless data model in Definition 2.1, there is a one-layer
transformer that precisely approximates the task instance, i.e., the population loss is zero. To this end,
we initialize and freeze the matrix F' = 0 so that £z = 0. The population loss becomes

@)

egAyy ee;rUVEthl J(wEth)wh
L(VW)=Egy.=|-In 0.y,2 |~ In
2

Zje[N] efAj e e UV i o(@fWay)z),
where e; is the j-th vector in the canonical basis of RV (i.e., [e;]x = 1{j = k}). Note that the
output embedding U is considered a fixed matrix as in Chen et al. (2025), thus the population loss
is a function of V' and W. We consider a specific parametric class of the weight matrices U,V
and W. Studying a particular parametric class is a common approach for overcoming the highly
non-convex landscape of transformers (e.g. Ahn et al., 2024; Yang et al., 2024; Huang et al., 2025a).
In particular, the following lemma shows that there exists a reparameterization of U, V', and W that
makes the population loss arbitrarily close to 0. The proof is in Appendix D.1.

Lemma 3.1. Let A = {\; € Ry : k € Q} be a set of |Q| of non-negative values. By setting
U=[E(1)EQ?) ... EN)]",V =I;and W =", .o M\ E(k)E (k), for both linear and ReLU
attention, we obtain limx oo L(X) :=lim(y,), .5 00 L (V, W) = 0.

Proof. (Sketch) The crucial observation is that the attention score of the h-th token z; is
o(x;Way) = \g1{zx_1 = ¢}, which is a non-zero (and positive) value for x;, only when zj,_ is
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the trigger word. As a result, the logits of token j € [N]is & = &a,; = A\;Cqy1{j = y}. Hence,

. . P xp (&, . xp(Cq.y A
the probability of outputting y is limy, 0 % = limy, -0 % =1 0O

3.2 CONVERGENCE RATE, GENERALIZATION AND IMPLICIT BIAS OF GRADIENT DESCENT

We analyze the dynamics of normalized gradient descent (NGD) in training one-layer transformers
parameterized in Section 3.1. We will show that with linear and ReL U attentions, the population loss
converges linearly to zero. Moreover, the trained model generalizes to samples that lie completely
outside of the training population.

Convergence rate of NGD. From the proof sketch of Lemma 3.1, the population loss L(A) is

LX) =Egy.» [f In % . We initialize Ay = 0. Running standard gradient descent
a,y7'q

Air1 = A¢ — VAL, where n > 0 is the learning rate, would require knowing the exact distribution
of z since Cy 4 is a random variable depending on z. Instead, we adopt an NGD algorithm, where

. VL
VAL,

i.e. the gradient vectors are normalized by their Euclidean norm. A similar NGD update was used

in Huang et al. (2024b) for learning an injective map on the vocabulary. The following theorem shows

that the update (3) can be implemented without the knowledge of the distribution of z. Moreover,
the population loss converges to zero at a linear rate. The proof can be found in Appendix D.2.

At+1 = At - (3)

Theorem 3.2. Starting from \q o = 0 for all ¢ € Q, the update rule (3) is equivalent to A\, ; = %
forallt > 1. Moreover, L(A;) = O(N exp(—nt/|Q|)).

OOD Generalization to unseen output words. The human-like strategy for solving the noiseless
data model in Definition 2.1 is to predict the word that comes after a trigger token. That is, the position
of the trigger token is the only important factor in this task. Such a strategy does not depend on what
the actual output word y is, and hence would easily generalize to a out-of-distribution sentence where
the bigram (g, y) is replaced by a new bigram (¢, Ytest ), Where yiest is @ non-trigger non-output word.
The following theorem formalizes this intuition, indicating that our parameterization is precisely
implementing this human-like strategy.

Theorem 3.3. Fix any yiest € [IV]\ (O U Q). Take any test sentence generated by the noiseless data
model, except that every bigram (q,y) is replaced with (q, Yiest ). Then, our model after being trained
by normalized gradient descent for t steps, predicts yiest With probability

exp(gytcst) > eXP(Tlt/‘QD
jerv exp(§) — exp(nt/|Q)) + N — 1

In particular, this implies that lim;_, oo Pr[zm11 = Ytest | A¢] = 1

PI"[ZH+1 = Ytest \ >\t] = Z

Reparameterization versus Directional Convergence. In addition to the convergence of the loss
function, existing works (e.g. Ji and Telgarsky, 2021; Huang et al., 2024b) on the training dynamics of
neural networks learned with cross-entropy loss have shown that the trainable matrices directionally
convergence to an optimal solution. More formally, a sequence of A; directionally converges to some
A, if limtﬂoo<m, Hﬁ—:ﬂ) = 1. In our work, the joint query-key matrix W is reparameterized
as a form of associative memory of the trigger tokens, rather than emerging from running gradient
descent for minimizing the population loss L, as in (Bietti et al., 2023; Chen et al., 2025). This raises
a natural question: if we use the reparameterization on U and V but not W, what is the implicit
bias of running gradient descent on W ? In Theorem 3.4 (full proof in Appendix D.4), we show that

gradient desecent does not directionally converges to ) F (QET (q).

Theorem 3.4. For any N > 4, there exists a problem instance in the noiseless setting such that with
Q=1{q},|0| =2 W*:= E(q)E"(q), U and V defined in Lemma 3.1, running gradient descent

on W from Wy = 0 satisfies lim;_, o <Hw7:\l’ H%:IQ = \/% < 1.

4 NOISELESS LEARNING WITH SOFTMAX ATTENTION

Fix a sentence with trigger word g and output word y. Recall that in order to achieve a zero population
logistic loss, it is necessary that the logits &, of the output word y approaches infinity. The proof



Under review as a conference paper at ICLR 2026

sketch of Lemma 3.1 in the previous section showed that having an unbounded attention scores
a(azEWa:h) at zj,—1 = ¢ naturally allows §,, to approach infinity. While this unboundedness hold
for linear and ReLLU attention, it does not hold for softmax attention, where the attention scores
are bounded in the range [0, 1]. The following lemma (proof in Appendix E) shows a modified
parameterization that can drive the logits &, to infinity under softmax attention.

Lemma 4.1. Let s € Rand X = { € Ry : k € Q} By setting U =
B() BQ) ... BN,V = sIiand W = Yo ME(E) (BT = X0, 0 B@)T ), for

softmax attention, we obtain lim,_, . lim(y, ), .o o0 L (V, W) =0

This new parameterization has two modifications compared to the one in Lemma 3.1: a subtraction
- Zi\[:l’w#k E(x)" from W, and a new scaling factor s € R in the value matrix V. The first
modification ensures that ac}}Wach tends to positive and negative infinity for positions & where
zn—1 = q and z,_1 # g, respectively. Correspondingly, the attention scores a(mEWa:h) tends to 1
and 0 for these two cases. The second modification effectively shifts the scaling in £ from W to V,
and implies that the desired optimality comes from lim,_, o, 5 - 1 = 0o and lims_,c s - 0 = 0.

Note that in the statement of Lemma 4.1, the order of the two limit operations are strict and not
exchangeable. Therefore, it is an important question that whether this optimality can actually be
realized by running normalized gradient descent on L(V, W). The following result answers this
question in the positive, showing that from a certain initialization, both s and (A )y approaches
infinity. Moreover, the population loss L(V', W) converges to 0 at a linear rate.

Theorem 4.2. Letn > 0and Ty = lel n H} By running t rounds normalized gradient descent with

learning rate n from mmallzanon Ag,0 =0forallq e Qand sy = M we obtain s; > 1 5+

n(t —Tp) and Ay > ‘Q‘ L for any t > T,. Moreover; this implies L(V, W) < O(N exp(—nt/|Q])).

The proof of Theorem 4.2 divides the training process into two distinct phases: ¢ < Ty and ¢ > Tj.
During this first phase, the signs of the derivatives gL may oscillate between +1 and —1 while A, ;
and the attention scores grow quickly. In the second phase, A, + has become sufficiently large so that
the attention scores become more stable, allowing s; to increase monotonically. Similar stage-wise
convergence analysis of transformers with softmax attention has been observed before in other tasks

such as regression (Huang et al., 2024a) and binary classification (Huang et al., 2025b).
5 NoOISY LEARNING

Recall that our noisy data model, where o > 0, is a variant of the setting in Chen et al. (2025). As
an upgrade from Chen et al. (2025), we allow multiple trigger words, i.e. |Q| > 1. Moreover, we
allow any distributions of bigrams (g, y) and (g, 7) in the sentence, and do not assume that the ratio
of the frequencies of the bigrams (¢, 7) and (g, y) is . In other words, our results are based on

the distribution of the label zy 1 instead of the distribution of the bigrams (¢, 7) and (q,y). We
emphasize that a Bayes-optimal solution for our noisy data model will also be a Bayes-optimal
solution for the model in Chen et al. (2025).

5.1 APPROXIMATION CAPABILITIES OF ONE-LAYER TRANSFORMERS ON NOISY SETTING

First, we show that by relying on just the distribution of zp 1, the model defined in (1) is capable of
making the population loss arbitrarily close to the loss of the Bayes optimal strategy. Fix a trigger
word ¢ and an output word y. The label of a sentence that contains both (¢, 7) and (¢, y) is either 7
with probability « or y with probability 1 — «, independent of other tokens in the sentence. Thus, the
Bayes optimal strategy is to predict 7 and y with the same probabilities. Let ¢ be the prediction of this
strategy. Its expected loss is equal to the entropy Lpayes = —alna — (1 — &) In(1 — «). Similar to
the previous sections, we set and fix the unembedding layer U = [E(1) E(2) ... E(N) E(N+1)]"
The following two lemmas demonstrate that the Bayes optimality of specific parameterization for
linear/ReL.U and softmax attentions.

Lemma 5.1. Let A,y € R. By setting V.= I, W = A} o E(¢)(ET(q) — ET(7)) and

F=E(1) (X ,c07E™(9) + ET(q)) and using linear or ReLU attention, we obtain

exp (§ZH+1 )

lp T \EHHL)
Zje[N+1] exp(&;)

lim L(A,y) = lim E

Y:Z1:H+1
a a
A—o0,y—=In 2 -

= LBayes~
A—o00,y—In 2

o
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Lemma 5.2. Let s,\,yv € R. By setting V.= slg, W = AZqGQE(q)(ET(q) —2E7(7) —

25:1,1;&4 E(x)") and F = E(1) (> g0 YET(q) + ET(q)) and using softmax attention,
. . . eXP(sz+1)
lim L(s,A,7y) :== lim lim Ey,z,. -In &——————-—

( 7) Y,21:H+1 Zje[N+1] 6Xp(€j)

s—00,A\—00,y—In % “a

- LBaycs~
=5 §—00 A—o0,y—In 12

Remark 5.3. These results are distribution-agnostic in the sense that they hold for any word distribu-
tion as long as the conditions of the data model are satisfied. Moreover, they hold even for o > 0.5.
This is a major advantage over the existing results in Chen et al. (2025), which required o < 0.5.
Setting o > 0.5 also reflects a wider range of practical scenarios where the generic bigrams such as
“to the” often appear more frequently than context-dependent bigrams such as “to Bob”.

5.2 TRAINING DYNAMICS AND ON-CONVERGENCE BEHAVIOR: A FINITE-SAMPLE ANALYSIS

For ease of exposition, we focus on linear and ReLU attentions. The analysis for softmax attention
follows a nearly identical proof with an additional beginning phase similar to the analysis in Section 4.
Let M denote the size of a dataset of i.i.d. sentences zp i generated from the data model in
Definition 2.1. Instead of minimizing the full population loss as in existing works (Bietti et al., 2023;
Huang et al., 2024a; Chen et al., 2025), which would require either knowing « or taking M — oo,
we aim to derive a finite-sample analysis that holds for finite M/ and unknown «.

Before presenting our training algorithm and its finite-sample analysis, we first discuss the easier case
where « is known and explain why it is difficult to derive the convergence rate of the population loss
in (67). Observe that the function fc(),7) = —CA — ay + In(e“* + €97 + N — 1) is jointly
convex and 1/2-smooth with respect to A and . Hence, at first glance, it seems that the convergence
rate of L(\,v) = E¢[fc(), )] follows from existing results in (stochastic) convex and smooth
optimization (Nemirovski et al., 2009). However, as a convex function on unbounded domain with
negative partial derivatives, no finite minimizer exists for L(\,~). This implies that minimizing
L(\, ) is a multi-dimensional convex optimization problem on astral space (Dudik et al., 2022). To
our knowledge, nothing is known about the convergence rate to the infimum for this problem.

Training Algorithm. Our approach for solving this astral space issue is to estimate y directly from the
dataset and then run normalized gradient descent on A. More specifically, recall that M is the number

of i.i.d. sentences in the training set. We use the superscript (m) to denote quantities that belong to
™m)

the m-th sentence, where m € [M]. Let M, = E%zl ]1{2;1 3y

where zg 41 is 7. Let & = 1\]\4/[ and 4 = In ﬁ be the unbiased estimates for & and v = In ﬁ,

, = T} be the number of sentences

respectively. We use 4 in the parameterization of F,ie. F' = E(7)(3_ co AET(q) + ET(q)).

exp(€),)

2 je(N+1) ©XP (5;'7")
gradient descent on Ley, (M) with a constant learning rate > 0. The formal procedure is given in
Algorithm 1 in Appendix F.2. The following theorem shows that the population loss converges at a
linear rate to the Bayes risk, similar to the noiseless setting.

Theorem 5.4. With probability at least 1 — § over the training set of size M, after t iterations of
normalized gradient descent on Lem (), Algorithm 1 guarantees that
In(2/6)

1
min(a, 1 — a) — /In(2/6)/2M 2M
OOD Generalization to unseen output words. Similar to Theorem 3.3 for noiseless learning, the
following theorem shows that Algorithm 1 produces a trained model that generalizes to an unseen
output word Yrest ¢ O U Q in the noisy setting. The proof can be found in Appendix F.3.
Theorem 5.5. Fix any yiest € [N]\ (O U Q). Take any test sentence generated by the noisy data
model, except that every bigram (q,y) is replaced with (q, Yiest ). Then, with probability at least 1 — 6,
after t iterations, Algorithm I returns a model that predicts yiesy and T with probabilities

The empirical 1oss is Lemp(A) = 55 an\le —1In ) Then, we run normalized

L(s = 1,X,9) < Lpayes + +(N—=1e ™.

Pr[ZH+1 = Ytest ‘ At7ﬁ/} = Z exp(gytcm)({j) =1-a+0 ( ln(l/é) + N2e2nt> )

jeIN+1) &XP M
_ 1 exp(&r) _ In(1/9) 2 ot
Prize =71 Ae]= Y ievin () aro ( o e .
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Figure 1: Population and OOD test loss of models trained on the population loss in noiseless and noisy
settings. First row, left to right: the population loss, OOD test losses of Origin (no parameterization)
models and OOD test losses of re-parameterized models in noiseless learning. Second row, left to
right: the corresponding losses as in the first row in the noisy setting with o = 0.5.

Layer-wise Functionality. An important empirical on-convergence behavior observed in Chen et al.
(2025) is that after training, given a sentence which contains both bigrams (g,y) and (g, 7), the
feed-forward layer tends to predict the noise token 7 while the attention layer tends to predict the
output token y. This property can be expressed formally in terms of the final logits as

§ay > max{y ;and max§{p; < Epr. 4
J#y J#T

The following theorem shows that (4) always hold after a sufficiently large number of iterations.
Theorem 5.6. Algorithm 1 guarantees that with probability 1 — 0, the condition (4) holds after any

1n<1 —a+ mg%‘”) —1In (a — lng\g‘;))

6 EMPIRICAL VALIDATION

t > max(1, % ) training iterations.

Noiseless Noisy

Models 0-Loss? Unseen y? | Bayes-Loss? Unseen y?

Origin-Linear — — —
Origin-RelLU

Origin-Softmax

Reparam-Linear-w
Reparam—ReLU-W
Reparam-Softmax-W

Reparam-Softmax
Reparam-Linear
Reparam—ReLU

DN NN NN
RSN NN
DRI N
SN

Table 1: Performance comparison of the original (no reparameterization) and parameterized models
trained on the population loss. 0-Loss and Bayes—1oss indicate whether a model’s Bayes-optimal
in noiseless and noisy settings, respectively. Unseen y indicate whether a model generalizes to
unseen output words. The best models are highlighted.

To understand the impacts on empirical performances of the reparameterization presented in Sections 3
and 5, we evaluate the one-layer transformers (1) with different choices of parameterization and
attention activation functions on the following data model.
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Data Model’s Parameters. We set the vocabulary size N = 60, the embedding dimension d = 128
and the context length H = 256. We use ) = 5 trigger words and O = 4 output words. The
orthogonal embeddings are the standard basis vectors in R%. For the noisy setting, we choose
a € {0.2,0.5,0.8} to cover all three cases of @ < 0.5,a = 0.5 and « > 0.5. Our sentences are
generated by picking uniformly at random a position for the bigram (g, y) and a position for the
bigram (g, 7) (in the noisy setting). All other words in a sentence are chosen uniformly at random
from the set [V] \ (Q U O). For training on the population loss, we run normalized gradient descent
with batch size 512 over T' = 2000 steps. For the finite-sample analysis, we train the models for 100
epochs on a fixed training set of M = 2048 samples. Further details and results are in Appendix H.

Baselines. We compare 9 different models which differ in one or more following aspects: model
type (Reparam versus Origin), attention type (linear versus ReLU versus Softmax), and whether
the joint query-key matrix W is trained in full without reparameterization. More specifically, the
term Origin refers to a model where the three trainable matrices V', W and F’ are trained without
reparameterization, while Reparam indicates that they are re-parameterized as in Lemmas 3.1, 4.1
and 5.1. Note that Ori gin-Softmax corresponds to the one-layer transformer in Chen et al. (2025).
Finally, the model whose name contains both Reparam and —W has V' and F' re-parameterized but
W is trained in full without any reparameterization.

6.1 Lo0SS CONVERGENCE IN NOISELESS AND NOISY LEARNING

We train 9 models, shown in Table 1, to minimize the population loss of noiseless and noisy settings.
In the noiseless setting, only Origin—-Linear fails to achieve a zero loss, indicating the limited
approximation power of linear attention. In the noisy setting, 4 out of 9 models fail to achieve the
Bayes risk. These four models consists of the three Or igin models and Reparam-Linear—W.
This shows that despite the high expressive power of one-layer transformers, gradient descent alone
may not be able to find the in-distribution optimal solution. In contrast, all fully-parameterized
one-layer models, including the one with linear attention, converge to Bayes-optimal solutions. This
emphasizes the crucial role of structural parameterization in guiding gradient descent training towards
better solutions, especially on models with low expressive power (i.e. linear attentions). In addition,
Figures 1a and 1d show that for the models that converge to Bayes risk, their convergence rate is
indeed linear. This empirically supports our theoretical claims in Theorems 3.2, 4.2 and 5.4.

6.2 OOD GENERALIZATION ON UNSEEN OUTPUT WORDS

For each model, we examine whether their performance on seen output words in O is similar
to that on unseen output words not in (. Table 1 shows that the ability to generalize to unseen
output words consistently increase with more parameterization and a model’s expressiveness. On
the other hand, for models with limited expressive power (i.e. one-layer linear transformers),
parameterization plays a more important role. In particular, when all three matrices are trained
without reparameterization, they collectively fail to generalize to unseen output words regardless of
the type of attention. Figures 1b and le indicate that the test loss on unseen output words even diverges
for original, non-reparameterized models. These results strongly suggest that (I) generalization to
unseen output words is an important performance criterion for in-context recall learning, and (II)
while one-layer transformers have the representational capacity to adapt to unseen output words,
the solutions found by gradient descent are not naturally biased towards this adaptivity. On the
other hand, Figures lc and 1f shows that combining partial parameterization (on V' and F') and
non-linear attention functions (e.g. ReLU or softmax) already leads to models that are simultaneously
Bayes-optimal and generalize out-of-distribution. Moreover, similar to Bayes-optimality, OOD
generalization can also be obtained with linear attention by careful parameterization. These empirical
results hold for both o < 0.5 and a > 0.5, which further confirms the generality of our Theorem 5.5.

7 CONCLUSION

We studied the approximation capabilities of transformer for a one-step in-context recall task. Via a
novel reparameterization regime, we rigorously proved that one-layer transformers are capable of
achieving Bayes-optimal performance when being trained either directly on the population loss or on
a finite dataset. Moreover, the same reparameterization allows one-layer transformers to generalize
to sentences that are never seen during training. At the same time, our empirical results also show
that without appropriate reparameterization, running gradient descent alone is unlikely to achieve
non-trivial out-of-distribution generalization ability. Future works include an in-depth study on
the theoretical guarantees and empirical performance of non-parameterized transformers that can
simultaneously achieve Bayes-optimality and out-of-distribution generalization.
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A ADDITIONAL EXAMPLE SENTENCES FOR THE IN-CONTEXT RECALL TASK

The in-context recall task considered in our paper encompasses a large range of practical linguistic
scenarios. In this section, we provide additional example sentences in two domains: object identifica-
tion and transitive inference. In all of these examples, each sentence contains at least one bigram
(¢,y) before the last query word.

A.1 OBIECT IDENTIFICATION

The task is to identify the right in-context object. Examples include:

Input: “To Harry” were the first two words in a letter that Ron and Hermione wrote to [?]
Output: Harry.

Input: People living the province of Quebec are proud of the natural beauty of the [?]
Output: province.

Input: You should travel on Sunday instead of on Monday, since there is a lot of traffic on [?]
Output: Monday.

A.2 TRANSITIVE INFERENCE

The task is to identify the right object that has a specific relationship with other objects in the sentence.
Examples include:

Input: If London is on the same continent as Paris, and Paris is on the same continent as Milan, then
London is on the same continent as [?]
Output: Milan.

Input: If the table has the same color as the book, and the book has a different color than the chair,
then the table has a different color than the [?]
Output: chair.

Input: If the GDP of Germany is larger than the combined GDP of Singapore and Spain, then it is
certain that the GDP of Spain is smaller than the GDP of [?]
Output: Germany.

B COMPARISON TO THE LINEAR CONVERGENCE RATE RESULTS IN HUANG
ET AL. (2024B)

In this section, we highlight the fundamental differences between our convergence rate results and
those of Huang et al. (2024b), who also frame their convergence analysis in a next-token prediction
problem and prove a linear convergence rate of the loss function (e.g. their Proposition 1).

* One-stage (ours) versus two-stage (theirs) training procedure : in our work, we train the
(parameterized) key-query and value matrices simultaneously, which can also be seen as a
one-stage training. In contrast, Huang et al. (their Algorithm 1) follow a two-stage training
first train the value matrix for 7" rounds, only then they train the key-query matrix.

» The absence (ours) or presence (theirs) of a hard-margin sub-problem: a key mechanism
leading to the linear convergence rate in Huang et al. is the presence of a hard-margin sub-
problem (see their Equation 2). This sub-problem arises out of their assumption that there
exists a collocation (i.e., a one-to-one mapping) in their training sample. This assumption,
and hence the hard-margin sub-problem, does not exist in our work.

Note that the two differences above are with respect to the technical mechanism in proving linear
convergence rates. There are also fundamental differences in the problem setups between our work
and Huang et al. (2024b), even though both belong to the category of next-token prediction tasks.
In particular, our setup is an in-context noisy task where there could be multiple outputs for each
sentence, while Huang et al. (2024b) studies a collocation-learning task where each token is always
followed by an exact other token. In other words, Huang et al. (2024b) assumes the existence of an
injective map between tokens, which is not the case in our setup.

13
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C COMPARISON TO THE ANALYSIS IN BIETTI ET AL. (2023)

The nature of the theoretical results in Bietti et al. (2023) is fundamentally different from ours. In
particular,

e The central theoretical results in Bietti et al. (2023) are their Lemma 1, Lemma 2 and
Theorem 3. Their Lemmas 1 and 2 consider a very simple linear model with convex
objective that does not involve any attention mechanism. Their Theorem 3 holds for
sequential one-step gradient update on the population loss for the output, key and value
matrices in that order. This sequential GD training on the matrices seem unnatural, and
different from the simultaneous training procedure, albeit on re-parameterized matrices, in
our work.

* QOur task considers noisy output problems, where the output may be a noise token instead of
a proper output. Bietti et al. (2023) consider noiseless problems only.

* Our task tests the model on unseen, out-of-distribution samples. Bietti et al. (2023) does not
study out-of-distribution samples.

e Qur analysis is both distribution-agnostic (for training on population samples) and finite-
sample robust (for training on a finite dataset). Bietti et al. (2023)’s analysis uses specific,
explicitly defined distributions (see their page 16, the first paragraph in appendix B.3), and
does not consider finite-sample analysis.

D MISSING PROOFS IN SECTION 3

D.1 PROOF OF LEMMA 3.1

First, we prove the following lemma on the attention scores. We write {a = b = ¢} for the event that
a,b, and c are equal, i.e. {a =bNb=c}.

Lemma D.1. Under the reparameterization in Lemma 3.1, for all h € [H| a sentence with trigger
word g, we obtain x [, W ), = AU zh—1 = 25 = ¢}

Proof. Let W), = A\, E(k)E T (k). We have
mkxh = )\kE(k)ET(k)(E(Zh) + E(Zh_l)) = /\kE(k)ET(k)E(zh_ﬂ = /\kE(k)]l{Zh_l = k}

Hence, z [, W @), = A 1{z,—1 = k}(E(zm) + E(zg_1))TE(k) = M1{zn_1 = zir = k}. By
construction, the sentence has only one trigger word q. We conclude that

x Way, = Z T Wiah = Ag1{zh_1 = zm = ¢}
keQ
O

Lemma D.1 indicates that the attention scores are always non-negative. As a result, for both linear and
ReLU attention, we have o(xz ;W) = x ;W z),. Hence, it suffices to prove Lemma 3.1 and our
subsequent results for linear attention. More generally, our proof can be extended to any activation
function where o(x) = cx forc > 0,2 > 0.

Proof. (Of Lemma 3.1) Fix a trigger token ¢ € Q and an output token y € O. Consider sentences
that contain ¢ and y as their trigger and output, respectively. By Lemma D.1, for the linear attention
model, we have
H H H
aj= e;-rUV Z(mEWmh):ch = e;r Z AHzno1 = q}Uxy, = e;-r Z AHzn—1 = qle.,.
h=1 h=1 h=1

Recall that C, ,, = Zthl Hzp—1 =q,2n, =y} > 1. We have 1{z,_1 = q}e., = 1{zn_1 = q}e,
because no tokens other than y follows ¢ in each sentence by construction. Combining this with
T

ej e, = 1{j = q}, we obtain

§a,j = )‘qu,y]l{j = y} (5)
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Since {r; = 0 for F = 0, we have §; = {4 ,; + §rj = £a,;. This implies that the probability of

Lo .. exp(&y) T exp(Cq,yNq) _
predlctlng Y18 hm,\q*)oo m = hm)\qg)oo W =1. O

D.2 PROOF OF THEOREM 3.2

Proof. With linear attention, the population loss is defined as

eXP(Cq y>‘q)
LA =E; . |— 2
() oo [ " eXp(Cq,y)‘q) +N -1
1 eXP(Cq y/\q) ]
= — ]E 2= ln -
1% q%é . { exp(CyyAg) + N — 1 (6)
1

> By [In(exp(Cyg) + N = 1) = CayAgl.
qgeQ

el

For each g € Q, the partial derivative of L with respect to A, is

oL Cyy
- = ]Ey 5 O{] y exp( 9,y q) -1 (7)
OAq ’ P\ exp(Cqyg) + N —1
It follows that the normalized gradient descent update is
VaL
Atr1 = At — Ny ®)
VALl
where t = 0,1,2... denote the number of iterations, 7 is a constant learning rate and VL =
[(%Ll e aié, ]T. We intialize Ag = 0.

From Equation (7), we obtain that the partial derivatives are always negative and thus all (\;),
increases monotonically from 0. Next, we will show that A\, ; = Q(t) for all ¢ € Q,t > 0. Initially,
att = 0 we have A1y = A\gy = -+ = \|g| ;- Assume that this property holds for some ¢ > 0, for
any 1 < k < |QJ, we have

OL _E —C exp(Cy, y A1) .
(9)\1,25 vz L -y exp(qu’y)\Lt) + N -1
[ exp(Cyy yAk.1) }
=E,.|C o -1
P2 Y exp(Cyy y M) + N — 1
[ exp(CapyAk,t) }
=E, . |Cq S -1
P2 exp(Cyp y M) + N — 1
0L
O
where the third equality is from the symmetry in the distribution of the triggers. This implies that
ALl = A2041 = -+ = A|g|,¢+1- As aresult, for each g,
1 oL 1 oL -1
IVALlp 0Xge  [iQ|(2L )2 OXae  \/]Q]
gt
Therefore, A\, = ZZ;B "7@ = TQ\ = Q(nt/|Q)|). Plugging this into (6), we obtain
2 =0 (14 o)) = OWvexpl-nt/ Q)
t) = n — = exp(—n .
exp(nt/|Q))
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D.3 PROOF OF THEOREM 3.3

Proof. Since Lemma D.1 holds for any set of output tokens, replacing y by yi.st everywhere does
not affect the attention scores &y Wx), = A;1{z,—1 = ¢}. This implies that by Equation 5, we have
& =&a,; = AgCq,;1{J = Ytest } Therefore,

eXp(Cq Ytest )‘q t) eXp(Cq Ytest Aq t)
P = Ytes A = 2Jtes d = pJtes >
Herer = grest | M exp(Coyrea Agit) T N =1 exp(Cgy,Agt) + N — 1
eXp()‘q’t) _ eXp( 1)

“exp(Ag) + N —1  exp(nt/|Q)+ N -1’

where the inequality is from C ,,.., > 1 and the function f(C) = % is increasing in C'

for z, N > 0. The last equality is due to A\, ; = nt/|Q)|. O

D.4 DIRECTIONAL CONVERGENCE OF RUNNING GRADIENT DESCENT ON THE JOINT
QUERY-KEY MATRIX

First, we introduce a variant of the data model in Definition 2.1. The set of trigger words contain only
one element e.g. Q = {q}. The set of output words contain two elements O = {y1,y2}. In addition
to the set of trigger tokens Q and the set of output tokens O, we define a non-empty set of neutral
tokens AV so that N N (Q U O) = (. Fix an element [J € . The data model is as below:

* Sample an output word y ~ Unif(O).
* Sample a position ¢ ~ Unif([H — 3]) and set z; = ¢, z¢11 = .
* Sample zj, ~ Unif(N) for h € [H — 2]\ {¢,{ + 1}.
e Setzy_1 =0and zgg = q.
We remark that this variant is a special case of the data model in Section 3, where each sentence has

exactly one (g, y) bigram and contain no output tokens other than y (given that y are the sampled
output words).

Proof. (Of Theorem 3.4) Let ¢ > 0 be the index of an iteration where W; satisfies wEWtwh =0
whenever zj,_1 # ¢. Obviously, this trivially holds at ¢ = 0. We will show that this property hold for
Wit1, and thus it holds throughout the gradient descent optimization process.

Keeping the reparameterization of U = [E(1) E(2) ... E(N)]T,V = I; and using e] Uz, =
1{zn = j}, we write the population loss L; := L(W;) as

exp(ef UV S () Wawn)
2 jeln) eXP( JUV YL, mHWtwh)mh)

H H
=Ey. —e?;rU Z(m}'}thh)mh +1In Z exp (e;r Z :EHWtQJh )
h=1

h=1 JEIN]

Lt = ]Ey,z —1In

H H
=E,. Z (x,Wiz)1{z, =y} +1n Z exp <Z (x Wiz 1{z = ]}>

JE[N] =

=Ey ¢ [—(a;HthCH) +1n (exp(wIT{Wthl) N -1)],

where the last equality is due to the fact that

e 1{z;, =y} =1forh =(+1, and 1{z, = y} = 0 otherwise.

o If j # y then 2;,_1 # q. By the induction assumption, this implies (z ; W;x)1{z), =
j} =0forall j #y.

16
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Taking the differential on both sides, we obtain

exp(x [ Wimc 1) (x f (AW )@ 11)
exp(a:EWt:cHl) + N -1

=Ey ¢ [~ (@ (dWy)xcin) + (T (AW @ 11)py |

=Ey ¢ [(Bys — D(@f(dWi)zc1a)]

cxp(mEthHl)
exp(m;Wta:Grl)—&-N—l
the gradient of L, with respect to W, is

dL

dL; = Ey ¢ |— (@ (dWy)aeqn) +

where p, ; = is the probability that the attention layer predicts y. As a result,

aw, =Ey ¢ [(py,t meC‘i’l)}
—E,. [py, 1) (Bla) + EO)(E@) + E)")]
=By [(w.t 1) (BE@) + EO)E () + ET(a)))]

% [y = 1) |y =] (E@ + BEO)E () + E7()))

+ 3B [Py — 1) [y =2l (B(a) + BONET () + BT (@)

Due to the statistical symmetry between y; and y», we have E¢[(Py,+— 1) |y=uy1] =
E¢ [(Pyot — 1) | y = y2]. Let ry = E¢ [(1 — Py, ¢) | y = y1]. It follows that for some r, > 0,
dL;
dW,

=r Y (B +EQ)ET () +E (). ©

y€{y1,y2}
Furthermore, running gradient descent

dLy

Wi =W, oW
t

(10)

leads to Wi 1 = Wi 30 c 1y oy (B(a) + E(D)(E" (y)+ ET (q)). In a sentence with output
token y, for all h € [H] such that z,_1 # g, we have z;, # y. Hence,

(BT () + ET(@)zn = (ET(y) + ET(9))(E(zn) + E(zn-1)) = 0. (11)
As aresult, for all h where z;,_1 # ¢, we have
Wiz, =z, Wiy, + nrax )y Z )+ EONE (y) + ET(@)xn  (12)

ye{ylny}
—0. (13)

By induction, we have Equation 9 holds for all ¢. Recall that we initialized Wy = 0. With a learning
rate 17 > 0, running gradient descent results to

Z?‘t Y (El)+ E@)ET(y) + £ (q) (14)
y€{y1,y2}

= Ri(E(q) + E@)(E" (1) + ET (y2) + 2E " (¢)) (15)

= ReA, (16)

where R; = Zi:o ry € Ry is a positive number and A = (E(q) + E(O))(ET (y1) + ET (y2) +
2E7(q)). Thus, W, is always in the same direction as A. Hence,
W, A
m —— = ——. a7
t=oe [Wil| [ A]|

17
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Next, recall that W* = E(q)E" (q). Let a,b,c,d,u € R? be five vectors corresponding to
E(q), E(y1), E(y2), E(q) and E(OJ), respectively. Note that these vectors are pairwise orthogonal

unit vectors. The two matrices A and W* are written as
A=(a+u)b" +¢" +2d7),

W* =ad'.
We will show that the Frobenius product < AT’ ”W* 0 ) is not equal 1. We have
(A, W) = Tr(( )

(w
=Tr(da" (a+u)(b" +c" +2d"))
=Tr(d(b" +c' +2d"))
=Te((b" +c" +2d")d)

)

where the equalities follow from a”a = d ' d = 1 and the pairwise orthogonality. Furthermore,

Al = \/Tr(ATA) = \/Tr((b +e42d)(aT +uT)(a+u)bT +cT +2d7))

= \2TR(b+ e+ 2d)(bT +¢T +2d7))
_ Vi,

and

W[l = \/Te(W*) TW*) = /Tx(daTad") = 1.

<1

Obviously, (14 =%
E MISSING PROOFS IN SECTION 4

E.1 PROOF OF LEMMA 4.1

(18)

Proof. Consider a sentence with a trigger ¢ and output y. Similar to the proof of Lemma 3.1, we first

compute the pre-softmax attention scores x }; W x;,. We have

N
Wy = (E(q) + E(zn1)" | Y MEW) |EWQ@) = > E@'| |
7€Q z=1,2#£q

N
=X\ | E(@" = > E@7 | (BE() + E(zn-1))

z=1,z7#q

N

=N | E@" = > E@)' ) E(zn)

z=1,2%#q

=g (H{zp-1=q} = {zn-1 # q}).

It follows that
A if zp_1 =
e W = {—q)\q othgrv;ise.%

The attention score at the h-th token in a sentence is

exp(a:EWa:h) exp(Ag(1{zn—1 = ¢} — 1{zn—1 # q}))

olx, W) = =
(W) Y exp(zWa;) L exp(Ag(1{zn-1 = ¢} — 1{zn-1 # ¢}))

exp(Aq) 3 —
= { Cq.y exp(Aq)+(H7C,§,y)exp(7A4) if Zh—1 =4,

exp(—Aq .
oy s O HH -y ep(—x,)  Otherwise.
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Obviously, limy, 00 o(x ;W) = 1if 2,1 = g and limy, o0 o (2 ;W) = 0 otherwise.

Next, we compute &; for j = y and j # y. Recall that V' = sI; and e;U.’Jch = 1{z, = y}. With
j =y, we have

H
& =e, UV Z (@aWay)o, =5 Y oleaWan)1{z, =y} (26)
h=1 h=1
=5( Z o(legWap)1{z =y} + Z ol@egWap)1{zn = y}) (27)
Zh-1=4 Zh—17q
_ qu’y exp(Aq) + (Cy — Cyy) CXp(—)\q). 28)

Coyexp(Ag) + (H — Cyy) exp(—Aq)

)

With j # y, we have

H
& = eTUVZ (egWap)x Z (xgWap)1{z, = j} (29)
h=1 h=1
H
exp(—/\q) .
=5 1z = (30)
2 Gy expOhg) + (H = Cryyp( ) =7}
Cjexp(—Aq)

= . 31
ch,y exp(Ag) + (H — Cyy) exp(—Ag) GD

The desired statement follows from the fact that 1 < Cy, < H,0 < C; < H and thus
Cq,y exP(Ag)+(Cy—Clq,y) exp(=Aq) _ Cjexp(=Aq)

hm)\qﬁoo Cq,y exp(Ag)+(H—Cq,y) exp(—Aq) 1 and hm)“zﬁoo Cq,y exp(Ag)+(H—Cq,y) exp(—Aq) =0
for j # y. Hence,
lim lim &, = hm s =00 (32)
§—00 \g—+00 —00
lim lim §; = hm 0=0. (33)
§—00 A\g—00
O

E.2 PROOF OF THEOREM 4.2

Proof. Consider a sample sentence with trigger word ¢ and output word y. We use short-hand
notations A = Cy ,, B = C,,z = A. Note that 1 < A < B < H. The loss incurred by this sample

19
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is

o)~ exp(6,)

exp(€y) + 2ize xp(&)

=—¢ +In (exp (&) + Zexp (&) )

iy

Q
<
@
[}
k=)
—
~
-+
S
I
5
<
~
@
”
k=)
n
8
~

+
] 4.y €XP(x)
. (eXp( o)+ (F

SAeXp(:zz) +(B-4) exp(fa?)
Aexp(z) + (H — A) exp(—2x)

Aexp(z) + (B — A) exp(—x) Ciexp(—z)
o (eXp (SAexp(z) + (H — A) eXp(—I)) - Z P (SAeXp(x) +(H - 4) eXp(_I)>)

_ AeraBoa AT B A S e o)
T Ay H A P\ A2 yH—A Z P\ A2 yH—A

(34)

Let g(z) = Ae®* + H — A and u(z) = Ae** + B — A. We have

(z) ( ;C )+§;exp<s>) (35)

o) (

Letv(s,z) = exp( e ) + D izy exp( 9@ )) Note that v(s,z) > 0 forall s,z € R.

f(S,.’L‘) =

Next, we compute the partial derivatives of f with respect to « and s. We have
dg

el 2x
I 2Ae (36)
du g yp2e (37)
dx
d¥ / _ !
dx g(z)?
2Ae% (Ae®® + H — A) — 2Ae**(Ae®** + B — A)
_ . (39)
g9(z)
2Ae?*(H — B)
— (40)
g9(z)?
dl / _ 2x
dx g(x)?  g(z)?
Additionally,
v dy u(x) d% C;
o s% eXp(Sg(x)> —1—;5635 exp(sgx)) (42)

< (e ) T @
)-3 c<f)>) "

20
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and
o _u) (@)Y s~ G (o
5= e(he) 2 o (305) @
_ b u(z) exp (su(x)) + Z Ciexp (s) (46)
o(x) o))t 2 @
It follows that
of _ 45 &
or dcc + v(x) “7)
2Ase**(H — B) 1 2Ase?” ( u(:c))
- — + H — B — Cz
aF T gr | eelagg ) T2 G
(48)
_ 2Ase* u(z) C
= 779(1‘)20(@ v(z)(H — B) — (H — B) exp(sg(x > + ;C’i exp(sg . (49)
2Ase® C;
- e H-B+C; i 50
Saroa) | 2 o (5,5 c0
Since A > 0, H — B+ C; > 0 and v(x) > 0, we have % < 0 whenever s > 0.
Next, we have
of _ ulx) , 5
9~ @) o) D
B 1 u(x) c, C; 52
= 0@ —u(z)v(z) + u(z) exp ; exp sg—x (52)
1 C;
S - C; — i 53
S (2O i@ ew (Sg@c)) 9
1 C.
= Ae** + B - A-C; () : 54
s (2 PP o) oo
Obviously, if x > %, then Ae?* > AH > H > C;, which implies that % < 0.

Phase Analysis. With € (0, 1) be the learning rate, define T, = . Recall that s is

_ |Q|InH+2
2

Q|InH
[T

intialized by sg = and A4 o = O for all g. We divide the training process into two phases:
the first phase is from round ¢ = 1 to ¢t = T, and the second phase is from ¢t = Ty + 1 onwards.

* In the first phase 1 < ¢t < Tp, we first show that s; may fluctuate but is always positive.
Recall that for scalar value of s, the normalize gradient descent is equal to sign descent
_ _ iy aiL . . . .
st = s¢—1 — nsign 5. In the worst case, the signs of the partial derivatives are always
positive. It follows that
[Q/InH +1 <
— 5 2
Thus, s; > 0 always holds in the first phase This implies that < 0 in the first phase.

st > so—nlo > so — (55)

l\D\»—t

Therefore, the update formula A\, ; = @ always holds, which 1mp11es
77To In H

ATy = —_. 56

q,T() |Q| - 2 ( )

This implies that L <.
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* In the second phase ¢ > Tf, we now have that the signs of all partial derivatives are negative.

Therefore,
1
st > 3 +n(t —To), (57)
nt
Aot = —. (58)
R[e]

Plugging these into (35), we obtain

C; C;
(s, Agt) =In[ 1+ Z o (St-‘mw)) _ Z oxp (Stg(iq:t;) (59)

” exp(stuo‘q’t)> exp(s Wla.t )
7Y 9(Xq.t) i#y t9(Xgt)
H H
- NeXP (St g(qut)> <0 NeXP (St g(qut)) (60)
~ exp (st ;‘8:3) a exp(2s;)
< O(N exp(—nt)), (61)

where the second inequality is from Z((g > % for sufficiently large z, and the last inequality
is from 2s; = Q(nt) and

H H

8 I (62)
tg()\q,t) (so+nTo+n )quyew‘q’t +H—Cyy
H
] i t 63
(so+nTo+mn )Cq,ye%t/lgl +H —Cqy >
o (64)
O

F MISSING PROOFS IN SECTION 5

F.1 PROOF OF LEMMA 5.1

We prove the following two lemmas on the optimality of linear and softmax attention for the noisy
setting.

Lemma F.1. (Optimality of linear and ReLU attention for noisy task) Under the reparameterization
regime defined in Lemma 5.1, for all o € (0, 1), using linear and ReLU attention, we obtain

exp (&)
Zje[NJrl] exp(§;)

lim L(\7) = lim Ey 21501 [ In = Lpayes. (65)

A—roo,y—In 125 A—roo,y—In 125

Proof. Fix a sentence with trigger ¢ and output y. It suffices to show that

&= 1{] =yVj= 7—}()‘Oq,y + ]l{] = T}’Y)? (66)

since this implies

E

€xp <£2H+1) eXp(ngﬂ)
=k Z1:H+1 -1
D je[N+1] exp(fj)] ! [ ! > jein+1) exp(&5) v

ecq,y)‘ ecq,y)\JF'Y
- Eq’y |:]EZI:H l:(Oé B 1) (hl eCavA 4 eCawrty 4 N — 1) -« (ln eCavA 4 eCay Y 4 N — 1>:|:| '

L()‘”Y) = Eq7y721;H+1 [_ In

(67)
The desired statement follows from the facts that
i eCA . ik eCAIn 125
1m o = — (¢, an 1m o =
Aroo eCA 4 CMINTET 4 N _ ’ Aroo eCA  oCAMINTES | N
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for any bounded 0 < C' < H. Note that we require « strictly larger than 0 so that we can use
. eCa,yrt . eCayrty
limy oo In T eI ) = In(limy_ oo T eI ) = In .

We turn to proving (66). Similar to the proof of Lemma 3.1, we start by examining the attention

scores « ; Wy, for h = 1,2, ..., H. First, the product ;W is equal to
(B@)" + EGzu-) DA | Y E() (ET(d) — ET(n)) (68)
q’'€Q
=2E(@)" | Y B@) (E"(¢) - ET(n) (69)
q€Q
=ME(g)" - E(m)7). (70)

Next, we consider two cases:

e For z;, = 7, we have 25, _1 = ¢, therefore

e, Wy, = A (ET(q) - ET(T)) (E(r) + E(q)) = 0. (1)

* For zj, € [N + 1] \ {7}, we have

2 Way, = (ET(q) = ET(1) (B() + E(sn1)) = \i{zn 1 =g} (72)

It follows that the attention scores are (using g = E(q) + EN‘(zH,l))
ZB—{IWSC}L =A1{zp_1 =q,2n =y} (73)

Next, we compute {4 ; for j € [N + 1]. Recall that C, ,, = Zle 1{zh—1 =q,2n = y}. Forj # T,
we have {4 ; = ACy ,1{j = y} similar to the proof of Lemma 3.1. For j = 7, we have

H H
€ar = elUV Z(:DI—;th)wh =e! Z(‘ngmh)e% =0.
h=1 h=1

We conclude that for all j € [N + 1],
§a,j = ACqy1{j =y} (74)

Next, we compute g ; for j € [N]. We have V = I;, F = E(7) (ZQ/GQVET((]’) + ET(q’)>
and

H
¢p=UF (mH + Z(wEth)V:Bh>

h=1

=UE(7) Z YET(¢)+ ET(d) (:L'H + Z(dJEth)wh)

a’eQ h=1
—e | Y BT (@) +ET(d) | (B(9) + E(zu-1) + A\Cqy (E(y) + E(q)))
q'eQ
= e (VET (@) + ET(q)) (B(@) + E(zi-1) + ACyuy(E() + E(@)))
= (v + ACqy)er,

where the last two equalities uses the fact that z;_; cannot be a trigger word, otherwise the condition
IV in the data model 2.1 would be violated.
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It follows that
Epy = (v +ACy ) 1{j =T}

Overall, we have
é-A,y - )\Cq,y; gA,‘r - 07 gF.,y = 07 gF,‘r =7 + >\Cq,y-
This implies that
. Ifj =y then gj = §A,y + gF,y = /\Oq,y.
clfj=7then; =8ar+&rr =7+ ACqy = ACyy +In 2.

* Otherwise, ; = 0.

We conclude that §; = 1{j =y V j = 7}(A\Cyy + 1{j = 7}7).

Lemma F.2. (Optimality of softmax attention for noisy task) By setting U

(75)

O

[E(1) E(2) ... E(N) E(N +1)]",V = s}, W = )\qugE(q)(ET(q) — 2ET (1) —
Ziv:l,miq E(x)") and F = E(1) qug(vET(q) + ET(q)), for all o € (0,1), using softmax

attention we obtain

lim L(s,v,\) :=
8—00,A—00,y—In 25
. . exp(&-
lim lim By, |—In (Y ~ | = LBayes-
§—00 A—o00,y—In 25 ZjG[N+1] exp(fj)

Proof. Consider a sentence with a trigger ¢ and output y. We have

N
ahW = (E(q) + E(zu-1)) A Y E(d)ET(¢)-2ET(1) - Y E@)")
q'eQ z=L,x#q’
=MNET(9) 2B (1)~ ) E@@)").
rz=1,x#q

It follows that

N
wgwwh:(E(Q)+E(ZH—1))T/\E(Q)(NT(Q)_ZET(T)_ Y. E@T |

N
A ET@ 2T - Y E@)T | (Bl + E(n)
r=1,x#q

=A(—21{zn =7} + 1{zn—1 =q} — 1{zn-1 # q}).

Hence,
A ifar=q 2=y
wl—';th =< =X fzp1=¢z2,=T
—\ otherwise.
Consequently,

H
Z exp(z;Wap) = Z exp(A) + Z exp(—A\)

j=1 Zj_1=q,2;=y (zj—1,25)#(q:y)

= Cyyexp(A) + (H — Cyy) exp(=A)
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The attention score at the h-th token in a sentence is

T

w
oy Way) = —b (@5 Twh> (86)

Zj:1 exp(wHW:Bj)
exp(2) if z =q,z2p =
— { Cay eXP(Aq)‘F(H—/\C)'q,y)eXP(—A) h-1 4% =Y (87)
ex — .
e exp(/\q)+(prCq,y) sp(—yy  Otherwise.
Next, we compute £4 ;. With j =y, we have
H
Eay=e, UVZ o(xy W)z Z o(xyWap)1{z, =y} (88)
h=1 h=1
=s Z o(x,Wep)1{z, =y} + Z o(xyWa,)1{z, =y} (39)
Zh—1—¢q Zh—174q
_ qu’y exp(A) + (Cy — Cyy) exp(—)\). 90)
Cyyexp(X) + (H — Cy ) exp(—A)
With j # y, we have
H H
£a,j = e}—UV Z o(x W)z, =5 Za(wLW&:h)l{zh =7} 1)
h=1 h=1
exp(—A\) )
=5 1z, =j} 92)
Zh;q Cqyexp(Ag) + (H — Cyy) exp(—A)
C; -

j exp(—) ©93)

=S .
Cqyexp(A) + (H — Cyy) exp(—2Aq)

Next, the logits of the feed-forward layer is

H
¢p=UF (mH + Z o(wEW:ch)th>

h=1

H
=UE(T) Z YET () +E"(¢) | (E(q) + E(za_1) + s ZJ(wEW:Bh):Bh)
h=1

q7'€Q
H H )
=e, |v+s Z v Z o(x W) ET (¢, + Z o(x W) ET (¢,
q'€eQ h=1 h=1

H
=e, 'y+sZ'yZ oz, W) ]l{zh—q’}—i—ZJa:HW:ch {21 =4q}

q'eQ h=1 =1
~Cy exp(—A)
= eT
qze:g Coyexp(X) + (H — Cy ) exp(—A)
+e Cyyexp(A) + Crexp(=A) T Z Cy exp(—X)
"\ " Cyyexp(\) + (H — C,y) exp(—A) Cyyexp(N\) + (H — Cyy)exp(—=A) |’

q'€Q.,q9'#q

where we used E7 (¢ )y, = 1{z), = ¢’} and E7 (¢)z5, = 1{z_1 = ¢'}. As a result, the combined
logits of attention and feed-forward layers is

e If j =y, then
gy = EA,y + §F,y = fA,y (94)
Cqyexp(A) + (Cy — Cqy) exp(—A)

= 522 : . 95
5 Cy oxp(N) + (H — Cyy) exp(—N) ©3)

25



Under review as a conference paper at ICLR 2026

It follows that limy o §y = s.

e If j = 7, then

g‘r = §A,7‘ + §F,T (96)
_ 2C; exp(—A) + vCy exp(—A) tyts Co.yexp(A)
Cyyexp(Ag) + (H — Cyy) exp(—Ag) Cyyexp(A) + (H — Cyy) exp(=A)
7
n Z Cy exp(—A) 98)

q'€Q,q'#q Coyexp(A) + (H — Cgy) exp(=A)’

It follows that limy 00 & = s + 7.

. Cjexp(—X\
» Otherwise, & = &, + &r5 = €4, = S 5—smr AT e

It follows that limy _, &5 = 0.

Then, Lemma F.2 follows directly from

lim lim exp(&y) = lim exp(s)
s=00 A=00 exp(€,) + exp(&;) + Zi\’:m#y exp(&y) 5000 exp(s) +exp(s+v)+ N -1
= lim 1
s=o0 1 +exp(y) + (N — 1) exp(—s)
_ 1
- 1+exp(y)

=1—-«a as'y—>ln<a>,
l-—a

and
o exp(&r) . exp(s +7)
lim lim ~ = lim
570 A0 exp(§y) +exp(§r) + Doy 4y XP(Er) ST exp(s) +exp(s+v)+ N —1
. exp(7y)
=1
B8 T4 exp(7) + (N — 1) exp(—s)
__ep(y)
1+ exp(y)

o
=« as*y—>ln<>.
11—«

F.2 ANALYSIS OF NORMALIZED GRADIENT DESCENT ON POPULATION AND EMPIRICAL
LOSSES

To avoid notational overload, we write C’q(f’;) for C’;";?m) . We first consider the case where « is known,
and then extend the analysis to the case of unknown .

F.2.1 KNOWN a: RUNNING NORMALIZED GRADIENT DESCENT ON THE POPULATION LOSS
L(A)

We will drop the subscript in C,, and just write C' when it is referring to a generic g, y under the
expectation sign. Set v = In 12 and let f = CA + . The population loss in the noisy learning
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Algorithm 1 Finite-Sample Training Algorithm with unknown «

Input: M i.i.d sentences (zﬂnH)H)m:l,g,,,_,M, learning rate 7 > 0

Compute M, = Y01 1{=(7), =7}
Compute & = J;f—f and y = In 25
Initialize A\g =0
for eachroundt =1,...,do
Compute Ctgfz) = hH:_11 ]1{22@1 =q, z}(Lm) =y}
exn(C0™) X
Compute Lemp = - (Zﬁf_l —O™\ + 1n<"(04v“) +N - 1>) 4 Moy o

1-& &

Update Ay = \;_1 — n%/\,rp

setting is defined as
[ eCA eb
Lyop(A,7) =E _(1 — ) <—1n O T TN 1> + (—ln T N 1)]
=E[(1-a)(—CA) —af +In(e“* + e+ N - 1)]

=FE (a—l)C)\—a(C)\—i—lnla )—&-ln(ec’\—l-eC)‘loz—i-N—l)}

-« -«
r CA
=F C)\+1n<e +N1>a1n @ }

i 1-a l1-a

[ODN . .
€ _ 1L N — 1) is negative. Hence, de‘;\“p < 0.

By Lemma G.1, the derivative of f(\) = —CA + ln(

It follows that running normalized gradient descent on Ly, () from Ao = 0 gives

11—«

dLpop

At —/\t—l_n’de)\ =M_1+n=nt. 99)
dA

It follows that

[ ecmyAf «
Lyop(A,y) =E _—C'q7y)\t—|—ln< o + N — 1) —aln T —a}

r CaryAe

=E ln(e‘c‘by’\t (eqy—i—N—l))—aln a }
i l-«a l1-a
[ 1

E_ln(l_a+ecq'y”t(Nl)>alnlfa}

[ 1 e
< —nt _ _
_[E_ln<1_a+e (N 1)) ozlnl_a]

<—alna—(1—a)ln(l —a)+ (N —1)e ™,

where the last two inequalities are from Cy; , > 1 and

ln<1ia +e"t(N1)) 1n(1ia) +In(1+(1—a)(N—1)e ™)
Sln( ! >+(N—1)e_”t

11—«

duetoIln(l +z) < zforall z > —1.

F.2.2 UNKNOWN «: PROOF OF THEOREM 5.4
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Proof. Let 3™ = Cy (m))\ + In == . The empirical loss is

emp i = ( g?;)—l )

m= Zje[NH] €Xp (53(‘m))

M
M Z Sﬂl +In Z exp (fj(m))

=1 JEN+1]
M M
w3 Sl 3 efe)
m= 12H+1_T 7n=1,Z§{m_3175T m=1 JEIN+1]

Using &™) = gm) —

’gym) — C(%))\ and gj(_m) =0 forj ¢ {q,y}, we obtain

M M
1
Lemp(>\) = H Z B(m) + Z O(m A+ Z hl(eXp (B(m)) + exp (Oéz)A) + N — 1)
m=1, S m=1,2{™) T
H+1 P H 41
- L Z —C{mX + ln(eXp(B(m)) + eXp(C(mU\) +N - 1) My, @
M = Y 4.y Vi 1—a
M (m)
1 eXP<Cq,y )‘) M. &
- _m) N/ _ T
a7 | 2o O A+ — S N1 |+

m=1
By Lemma G.1, we have dr dj‘“’ < 0. As aresult, running normalized gradient descent on Lep,, gives
At = nt. The population loss is

[ eCwA Cqy e+t
Lpop(At,7) = E _(1 —a) (_ln eCavrt 4 eCavrtie 4 N — 1) To (_ln eCavr + cOMTr + N — 1”

=E [—C'%y)\t + ln( CawAe 4 eCawretie L N 1) — oﬁy]

r eCave
=E —C’q’y)\t—i—ln( T +N - 1)} —a¥

(07

— [ 1 —Cqynt _ —
E_ln(l &+e (N 1)>} odn1 -

—

1
Sln(l_d+ent(N—1)> —ozln1 < -

—

<—alné—(1—a)ln(l —a)+ (N —1)e ™
=—alna—(1-a)ln(l—a)+ KL(a| &)+ (N —1)e ™
= LBayes + KL(a ” é‘) + (N - 1)677715’

where K L(« || &) is the Kullback-Leibler divergence between two Bernoulli distributions Ber(«)
and Ber(&). By Lemma G.2, we have with probability at least 1 — 4,

1 In(2/0)

min(a, 1 — a) — 4/ LS\?) 2M

Lpop()‘h ) < LBayes + + (N — 1)€_nt.

O
F.3 PROOF OF THEOREM 5.5
Proof. By Equation (66), we have
& = 1{j = Yrest V= THMCyypens +1{5 = 7H). (100)
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Using 4 = In 125, we obtain
2 eXp(fUt -t)
Prlzm i1 = Yrest | A, 7] i= == (101)
Zje[N-H] exp(&;)
— eXp()\t CQ7ytest ) (102)
eXp(Athyytest) + exp()‘thyytest + ;Y) +N -1
CyyA
- (CeXp( qj ) (103)
exp lq ’L/;e:.t +N-1
1
=(1-a 104
(1-4) 1+ (N —1)(1 — &)eCaveese e (104
1
=(1-a 105
( &) 1+(N-1)(1 - &)e_cq’yrest”t (105)
For large t, the quantity e~ C@.veest is close to 0. By Taylor’s theorem, we have +— = 1-2+0(z 2)

for small x. Therefore, with probability at least 1 — 6,
Prlen 1 = st | M) = (1= @) (1= (V = 1)(1 = @)™ Crmen ™ 4 QN2 Crns )

(106)
=1—a+ O(N%e2) (107)
In(1/6
_1—Oé+0< n( /)+N2€_2nt>, (108)
M
where the last equality is from & = o — O( In(1/ 6>) with probability at least 1 — 4.
The proof for Pr{zg1 = 7 | A, ] follows similarly. O

F.4 PROOF OF THEOREM 5.6

Proof. Recall that 4 = In 1_7“ By Hoeffding’s inequality, we have |o — &| < 4/ 1“&%‘5) with

probability at least 1 — . Hence, ¢t > max(1,

implies that ¢ > max(1, —5/7).
By Equation (74), we have

Eay = MCyqy =ntCqy >0 = I?;ngyf (109)
By Equation (75), we have
Err=MCqy+72nt+75 >O:m;3X5F,J‘ (110)
JFT

since Cy, > 1 and Ay = nt > max(0, —4) for t > max(1, f%) We conclude that the condition (4)
is satisfied with probability at least 1 — §. O

G TECHNICAL LEMMAS

Lemma G.1. Forany N > 1,a € [0,1),C > 0, the derivative of the function

f(@) = cx+1n<eX1p£Cj) LN 1)

is negative for all x € R.

CeCT

_ __C(-=N)
exp(CJ:)+N 1 ex{)ECaw)+N_1

Proof. We have df =-C+ < 0. O
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Lemma G.2. Let o € (0,1). Let M i.i.d samples (X;)c[ar) be drawn from X; ~ Ber(a). Let
a = ﬁ Zﬁl X;. With probability at least 1 — §, we have
1 In(2/0)

In(2/5) 2M
2M

KL(a]a) <
min(a, 1 — a) —

Proof. By the reverse Pinsker’s inequality (Sason, 2015, Theorem 3), we have

2 _AN2
KL(a] &)< 2070
min(&, 1 — &)
By Hoeffding’s inequality, the event |ov — &| < % holds with probability at least 1 — §. Under

this event, we have (o — &)? < %. Also, & > o — \/% andl —a>1—a—4/ lngv/[é).

Hence, min(&, 1 — &) > min(a, 1 — o) — 4/ 1“5%5). The statement follows immediately.

O

H FURTHER DETAILS ON EXPERIMENTS

H.1 ADDITIONAL DETAILS ON THE EXPERIMENTAL SETUP

Hyperparameters The majority of our experiments are repeated five times with five random seeds
from 0 to 5. However, possibly due to the large number of iterations and large size of the finite
dataset, no significant differences are observed between different random seeds.

We also experimented with several different values of learning rates ranging from 0.1 to 0.8. Consis-
tent with the theoretical findings, we find that the more reparamterized a model is, the less sensitive it
is to changes in the learning rate. All of our results are reported for learning rates set at either 0.1, 0.2
or 0.8.

In finite-sample experiments, we train the models on a dataset of size M = 2048 samples and then
compute the models’ population losses and unseen output test losses. To calculate the population
loss, we use a freshly sampled dataset of size 10M = 20480 samples. To calculate the unseen output
test losses, we use a freshly sampled dataset of size 512 samples, where y € [1, 4] is replaced by a
randomly chosen ycst € [5, 59)].

Computing Resources The experiments are implemented in PyTorch. All experiments are run on a
single-CPU computer. The processoris 11th Gen Intel (R) Core 1i7-11700K with 32 GB
RAM. Training all models simultaneously takes about 30 minutes from start to finish.

H.2 ATTENTION LAYER LEARNS TO PREDICT OUTPUT TOKENS WHILE FEED-FORWARD
LAYER LEARNS TO PREDICT NOISE TOKEN

To measure the extent to which we can separate the learning functionality of the attention
layer and the feed-forward layer, we train three models Origin-Linear, Reparam-Linear
and Reparam-Linear—W, and record the logits of each layer on the output tokens, the noise tokens
and the maximum values in the logits of the two layers on all three noisy tasks with a = 0.2, 0.5 and
0.8. We use 7 = 0.1 in all experiments. The results are reported in Figures 3 to 5.

We say that the attention layer and the feed-forward layer learns to predict the output and noise tokens,
respectively, if £4 , = max; {4 ; and {rr = max; {r . It can be observed that all three models
exhibit some layer-specific learning mechanism, including the original model where all three matrices
V. W and F are trained from scratch without reparameterization. However, depending on the noise
level, at least one of the two layers in the original model do not fully specialize in either the output nor
the noise tokens. For o < 0.5, Figures 3a and 3d show that the attention layer in Origin-Linear
learns to predict output tokens perfectly, however the feed-forward layer does not always predict 7.
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Figure 2: Population and Unseen Output Test Losses of Reparam-Linear-W with n = 0.1 (first
row), n = 0.5 (second row). Population losses converge with limited generalization to unseen output
words.

focus entirely on the output tokens.

At o = 0.8, the feed-forward layer succeeds in learning to predict 7 but the attention layer fails to

In contrast, the fully-reparameterized model Reparam-Linear exhibits perfect separation in the
functionality of the two layers, which verified our Theorem 5.6. The same phenomenon is also
observed in Reparam-Linear—W, which suggests that reparameterizing F' is sufficient to force
the two layers to be biased towards two different types of tokens.
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7 e
. i
61!
3 T
! —— Population Loss
ot ~=~ Unseen Output Test Loss
2 s ~ Entropy of Ber(0.2)
2
. 2
—— Attention Logits of Output Tokens —— Feed-forward Logits of Noise Tokens
=== Maximum Value of Attention Logits === Maximum Value of Feed-forward Logits !
0
] 2 0 0 50 100 0 20 0 0 50 100 ] 20 0 0 50 100
Iteration Iteration Iteration
&y versus max; E4, £py versus max; &p Population and Unseen Output Test Losses
i 45
4.0
3 35
30 —— Population Loss
24 === Unseen Output Test Loss
! 20 —-= Entropy of Ber(0.5)
i 20
" 15
| —— Attention Logits of Output Tokens —— Feed-forward Logits of Noise Tokens o
=== Maximum Value of Attention Logits === Maximum Value of Feed-forward Logits
0
05
0 2 & 60 50 100 0 2 0 0 0 100 0 2 0 0 0 100
Iteration Iteration Iteration
&4y versus max; £ &y vers Population and Unseen Output Test Losses
5 —— Population Loss
30
=== Unseen Output Test Loss
1 —-= Entropy of Ber(0.8)
25
3
/ 20
S 10
| —— Attention Logits of Output Tokens —— Feed-forward Logits of Noise Tokens
i == Maximum Value of Attention Logits == Maximum Value of Feed-forward Logits s
0 2 10 0 50 100 0 2 10 0 50 100 0 20 10 [ 0 100

Iteration

(2)

Iteration

()

Tteration

®

Figure 3: Origin-Linear with a = 0.2 (first row), « = 0.5 (second row) and o = 0.8 (third
row). The learning rate is n = 0.1.
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Figure 4: Reparam-Linear-W with a
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Figure 5: Reparam-Linear with a = 0.2 (first row), a = 0.5 (second row) and o = 0.8 (third

row). The learning rate is n = 0.1.
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