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ABSTRACT

The dynamic imbalance of the fore-background is a major challenge in video ob-
ject counting, which is usually caused by the sparsity of foreground objects. This
often leads to severe under- and over-prediction problems and has been less stud-
ied in existing works. To tackle this issue in video object counting, we propose a
density-embedded Efficient Masked Autoencoder Counting (E-MAC) framework
in this paper. To effectively capture the dynamic variations across frames, we
utilize an optical flow-based temporal collaborative fusion that aligns features to
derive multi-frame density residuals. The counting accuracy of the current frame
is boosted by harnessing the information from adjacent frames. More importantly,
to empower the representation ability of dynamic foreground objects for intra-
frame, we first take the density map as an auxiliary modality to perform Density-
Embedded Masked mOdeling (DEMO) for multimodal self-representation learning
to regress density map. However, as DEMO contributes effective cross-modal re-
gression guidance, it also brings in redundant background information and hard
to focus on foreground regions. To handle this dilemma, we further propose an
efficient spatial adaptive masking derived from density maps to boost efficiency.
In addition, considering most existing datasets are limited to human-centric sce-
narios, we first propose a large video bird counting dataset DroneBird, in natural
scenarios for migratory bird protection. Extensive experiments on three crowd
datasets and our DroneBird validate our superiority against the counterparts.

1 INTRODUCTION

Video object counting aims to estimate the number of objects in video scenes and has been used in
various practical applications, from traffic management to public security. It has the potential to be
used in decreasing the workload of public management and protecting migratory birds. Due to the
crucial role of object counting in multiple application scenarios, it has attracted broad attention in
recent years with the development of computer vision.

Despite many excellent works that have been proposed over the past decades, most of these methods
are based on static single-frame images (Zhang et al., 2016; Li et al., 2018) extracted from video,
leading to significant loss of dynamic inter-frame information, especially for the swiftly moving tar-
gets. In practice, such as crowd or animal activity analysis, the source data is often captured in video
form by surveillance cameras or drones. Unlike static single-frame images, video data is signifi-
cantly dynamic in the spatial motion variations of foreground objects across adjacent time instances,
thereby providing richer contextual information. Therefore, by capturing the inter-frame information
between video frames, the model is qualified to better perceive dynamical targets, thereby improv-
ing the accuracy and stability of the counting performance. To this concern, some video counting
methods appeared recently (Zou et al., 2019; Bai & Chan, 2021; Hossain et al., 2020), which aim to
capture the dynamism between frames by employing techniques such as 3D convolutions or incor-
porating additional information. However, since the video data inherently suffers from the problem
of redundant background information Zhou et al. (2022), extracting features of dynamic targets in
multiple frames may lead to an imbalance between foreground and background information, posing
challenges for the model’s optimization and inference.

More recently, inspired by the unprecedented strong self-representation ability of pre-trained vision
foundational models (He et al., 2021; Tong et al., 2022), researchers have injected these foundation
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models into downstream vision tasks to fully exploit their representational potential. In this spirit,
we present an Efficient Masked Autoencoder Counting (E-MAC) framework for video object count-
ing. Our E-MAC introduced optical flow-based Temporal Collaborative Fusion (TCF) to establish
inter-frame relationships, constructing a pre-trained visual foundation model-based video counting
framework. The optical flow between frames is used to warp the predicted density map of the adja-
cent frame to the current frame. Then, we perform cross-attention between the warped density map
and the predicted current density map to get the final result.

However, the high dynamics of video data often lead to imbalanced optimization of the sparse fore-
ground. Different from most existing techniques, we take the density map as an additional auxiliary
modality of images and transfer the self-representation foundation model to object counting for
the first time. We constructed a Density-Embedded Masked mOdeling (DEMO) that takes inputs from
both the image and the density map, which performs feature interaction through the encoder and
reconstructs the density map from masked image and density map. To this end, the density self-
representation learning drives the regression implicitly by reconstructing the masked density maps.
In addition, while the self-representation learning of density maps facilitates efficient density re-
gression, the dynamic nature of foreground objects in video data still brings significant imbalanced
challenges to optimization. Stochastic masked image modeling struggles to focus the model on
extracting features from dynamic moving targets, leading to redundant background reconstruction
that hinders model optimization. To handle this dilemma, we further develop a Spatial Adaptive
Masking (SAM) to generate dynamic efficient masks. During training, SAM dynamically generates
masks based on the correlated density map of each sample, providing valid information while filter-
ing out redundant background details. Our framework employs a post-fusion strategy and develops
a simple cross-attention module to compute the residuals between adjacent predicted density maps,
and design a skip connect to add the residuals to the predicted density map of the current frame,
which ultimately filters the non-dynamic objects in the background.

In this paper, we validate our E-MAC not only in human-centric scenarios but also in natural scenar-
ios. A large-scale video bird counting dataset DroneBird is collected for migratory bird protection.
To the best of our knowledge, DroneBird is the first video bird counting dataset that is captured
from a drone’s viewpoint and provides abundant annotations and rich attributions. Experimental re-
sults on three human-centric datasets and our DroneBird dataset demonstrate the superiority of our
method over the competing methods. Our main contributions are summarized as follows:

• We propose a density-embedded efficient masked autoencoder counting framework for
video object counting, which integrates the foundational model and takes the density map
as an auxiliary modality to perform self-representation learning, effectively driving density
map regression implicitly.

• We propose an efficient spatial adaptive masking method to overcome the dynamic density
distribution and make the model focus on the foreground regions. It adaptively generates
image masks according to the corresponding density maps, effectively addressing the prob-
lem of imbalanced fore-background.

• We propose a large-scale bird counting dataset DroneBird for bird activities analysis. To
our knowledge, DroneBird is the first video bird counting dataset. Extensive experiments
on three human-centric scenarios and our DroneBird dataset validate our superiority com-
pared to the competing methods.

2 RELATED WORK

Object Counting. The vast majority of proposed object counting methods were commonly based
on a single image. Existing counting methods (Li et al., 2018; Liu et al., 2019; Liang et al., 2022)
were mainly based on density map estimation, which generated the density map from point anno-
tations and took it as the ground truth. Most current counting methods tend to use density map
regression as the pretext task of object counting since it provides more low-level supervision sig-
nals and is easier to optimize. Earlier researchers (Zhang et al., 2016; Li et al., 2018) explored
improving convolutional neural network structures to enhance density regression performance by
extracting multi-scale features from images. Recent methods (Ma et al., 2019; Lin et al., 2022)
utilized Bayesian loss for density contribution models from point labeling, improving upon density
map supervision. Additionally, researchers have integrated CNNs and Transformers to leverage the
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Figure 1: The chord diagram illustrates the associations between various attributes of our proposed
dataset. Each attribute showcases a portion of the dataset’s examples as references. We provide two
zoomed-in examples for better visualization. The right part represents the experimental result of our
proposed method and previous video counting method on each attribute of our DroneBird dataset.

attention mechanism (Tian et al., 2021; Liang et al., 2022). More recently, some methods intro-
duced pre-trained foundational models to build object counting methods (Jiang et al., 2023; Kang
et al., 2024), thereby counting the number of any examples. This inspired us to explore the visual
foundation model based video object counting framework.

Video Object Counting. The single-frame image methods focus on spatial information from static
images and neglect temporal processing, making it difficult to address the dynamic nature of video
object counting tasks. The target of video object counting is to predict the number of objects in each
frame of the video. For the evaluation of counting results, video counting calculates the difference
between the predicted results and the ground truth for each frame, and then computes the mean
absolute error (MAE) and mean squared error (RMSE) across all frame. Video object counting
methods aim to leverage information from neighboring frames to enhance the estimation of the
current frame. LSTM and 3D convolutions are commonly used methods for modeling temporal
dependencies between frames (Zou et al., 2019; Shi et al., 2015). Unlike these implicit methods of
establishing frame associations, leveraging object movement direction and optical flow information
can further enhance counting accuracy (Zhu et al., 2021; Hou et al., 2023). However, existing video
counting methods (Liu et al., 2020; Hou et al., 2023) mainly address temporal relationships but often
neglect intra-frame dynamics of foreground regions. Additionally, the high cost of dot annotations
restricts the availability of large video counting datasets, complicating effective learning of dynamic
regions. Our proposed method treats counting as a density reconstruction task, incorporating self-
representation learning of density maps with a dynamic spatial adaptive masking module, which
significantly enhances the counting performance.

Masked Image Modeling. Masked image modeling refers to the reconstruction of the masked por-
tion of a masked image by learning its representation. With the application of Transformer (Vaswani
et al., 2017) in vision and the success of the BERT (Devlin et al., 2019) pre-training paradigm in
natural language processing in recent years, masked image modeling has achieved great progress.
After some enlightening work (Vincent et al., 2008; Chen et al., 2020; Bao et al., 2022), MAE (He
et al., 2021) chunks the image, randomly masks out the majority of the image patches and then
reconstructs them, which has achieved great success on downstream tasks. Inspired by MAE, many
works (Tong et al., 2022; Bachmann et al., 2022) have begun to apply masked image prediction
to diverse scenarios. Considering the strong representation ability of visual foundation models,
we attempt to embed the density map to guide the masked prediction for intra-frame, performing
density-driven regression from image to density map and forming an efficient self-representation
learning framework for video object counting.

3 DRONEBIRD DATASET

Video object counting methods not only hold promising application prospects in human-centric ac-
tivity analysis, but also possess invaluable potential in natural scenarios, such as migratory bird
protection. In the scenario of counting volant species like birds, to the best of our knowledge, the
existing open-source data is largely limited to discrete image data (Arteta et al., 2016; Wang et al.,
2023), which makes it challenging to apply these methods to dynamic bird activity analysis scenar-
ios. To alleviate the issue of data scarcity as well as to assist in migratory bird activity analysis, we
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Figure 2: An overview of our E-MAC. For the temporal collaborative fusion, we use optical flow
to fuse multi-frame density maps. For the density-embedded masked modeling, the image and
density map are treated as multi-modal data and are fed into the transformer autoencoder for self-
representation masked modeling simultaneously. The spatial adaptive masking uses the density map
to balance the dynamic fore-background. During inference, the density map is fully masked.

collected a new large-scale video bird dataset called DroneBird. DroneBird provides point annota-
tions for bird counting, and also provides additional trajectory annotations for further bird tracking.
To the best of our knowledge, DroneBird is the first bird dataset captured in video from a drone’s
viewpoint and provides both point annotations and trajectory annotations.

We have collected statistics on various aspects of our DroneBird dataset and compared them with
some existing datasets in Table. 4. All the videos in DroneBird are recorded at 30 frames per second
with resolutions of 2160× 4096 or 2160× 3840. Each frame contains between 8 and 673 annotated
objects, averaging 171.5 per frame. The dataset includes 3, 686, 409 bird annotations and 9, 389
bird trajectories, ranging from 1 to 500 frames in length. To further investigate DroneBird, we have
analyzed five main attributes of each sample, i.e., Illumination, Density, Perspective, Distance, and
Posture. We present the distribution of these attributes and their correlation in the Fig. 3. Each arc
represents a attribute, and each chord connects between two arcs, indicating that there are images
that possess both attributes represented by the two arcs. For each attribute, we provide two example
images in DroneBird dataset for reference. Detailed descriptions of these attributes and clearer
visualization are presented in Appendix A.1.

4 METHOD

In this paper, we introduce an Efficient Masked Autoencoder Counting (E-MAC) framework based
on a self-representation foundation model for video object counting. The framework of our E-
MAC is depicted in Fig. 2, which consists of temporal collaborative fusion (TCF), density-embedded
masked modeling (DEMO), and spatial adaptive masking (SAM). We utilize optical flow to establish
connections across multiple frames to capture inter-frame information. A temporal residual map is
constructed by leveraging optical flow information between frames, which utilizes historical data to
enhance the counting performance of the current frame. For intra-frame information, we employ
density-embedded masked modeling (DEMO) and spatial adaptive masking (SAM) based on the self-
representation foundation model to effectively balance the learning on foreground and background
for more accurate density map estimation.

4.1 TEMPORAL COLLABORATIVE FUSION

The temporal collaborative fusion aims to integrate multiple frames for more accurate estimation.
Given the frames at time t and t− 1, each sample consists of a frame image and a density map. The
samples of two frames can be described as St = {It, Dt} and St−1 = {It−1, Dt−1}, which are then
fed into the DEMO for density-embedded masked modeling. Different from most existing methods,
we take the density map as an auxiliary modality corresponding to the image modality.
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Specifically, for a sample St = {It, Dt}, the patch embedding module patchifies and embeds both
the image modality and density map modality into multi-modal tokens. The SAM removes specific
patches from these multi-modal tokens before the transformer encoder. After passing through the
encoder, the masked positions of density map are filled with random mask tokens. The decoder
then reconstructs the complete original density map based on the incomplete input information.
In our framework, two temporally adjacent samples {St,St−1} are simultaneously fed into the
DEMO, where the aforementioned process is used to complete the reconstruction and generation of
the predicted density maps {D̂t, D̂t−1}.

The reconstructed density maps {D̂t−1, D̂t} are obtained by the output of DEMO. To align their
spatial distributions, a pre-trained optical flow network (Sun et al., 2018) estimates the motion dis-
placement, followed by a warp operation on D̂t−1, resulting in D̂warp

t−1 . The cross-attention between
D̂warp

t−1 and D̂t then produces D̂res
t , representing the temporal density residuals of adjacent frames.

D̂res
t and D̂t are combined via element-wise addition to output the final fused prediction D̂fuse. The

TCF can be formally described by Equation 1. The fusion effect is improved by utilizing an opti-
cal flow to align information between adjacent frames. We present the whole training process in
Appendix A.2 to make it easy to understand.

D̂fuse =
(
ϕca(ϕwarp(ϕOpticalFlow(It, It−1), D̂t−1), D̂t)

)
︸ ︷︷ ︸

Temporal residual density of adjacent frames

⊕D̂t. (1)

4.2 DENSITY-EMBEDDED MASKED MODELING

As depicted in Fig. 2, the density-embedded masked modeling (DEMO) is a Transformer-based au-
toencoder. The input sample St is first divided into patches {Ipatch,Dpatch}, which are then converted
into a token sequence T ∈ RB×L×C where B represents the batch size, L is the number of tokens,
and C denotes the feature channels. The image It and density map Dt are tokenized simultaneously,
then concatenated along the L dimension, where L = NI +ND. NI and ND represent the number
of tokens from the image and density map modalities. SAM is a density-guided masking strategy that
uses human annotations as priors. Further details are provided in Sec.4.3. It retainsN ret

I foreground
tokens from image It and randomly keeps N ret

D tokens from Dt, generating a new token sequence
Tret ∈ RB×(N ret

I +N ret
D )×C .

The retained tokens are sent to the transformer encoder, while the remaining tokens are discarded and
not passed into the Transformer. The output token dimension of the encoder is B×(N ret

I +N ret
D )×D.

In the decoder, the retained density map tokens Tret
D are separated from the retained token sequence

Tret, where Tret ∈ RB×(N ret
I +N ret

D )×C and Tret
D ∈ RB×N ret

D×C . The learnable random mask tokens
are filled at the masked positions in the retained density map tokens Tret

D as placeholders, and we
use T̂D to represent the filled density map tokens. Cross-attention is then applied, with T̂D as the
query and Tret as the key and value. Then, the reconstructed density map D̂t is generated by the two
layer transformer, as the end of the self-representation masked modeling.

4.3 SPATIAL ADAPTIVE MASKING

The masked modeling approach discards a subset of tokens prior to the transformer encoder, utiliz-
ing the decoder to reconstruct the missing information. This process allows the model to capture
the relationships between tokens. In the context of multi-modal masked modeling, it further enables
the model to learn associations and interaction mechanisms across different modalities. A substan-
tial body of research indicates that random masking strategies may introduce excessive redundant
information due to the imbalanced fore-background, which is detrimental to the model’s learning
process. To this concern, we developed spatial adaptive masking (SAM) for efficient learning of
the dynamic changing targets in videos. This strategy reduces redundant background optimization
and focuses the model’s attention on the image foreground, thereby improving the efficiency of
self-representation learning.

For a video frame I , its density distribution D serves as the standard for delimiting the fore-
ground and the background. The lower-left part of Fig. 2 provides a detailed illustration of the
SAM. The symmetric Dirichlet distribution (Bachmann et al., 2022) is used to determine the number
of retained tokens for the image modality and density map modality when generating multi-modal
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masks, denoted as N ret
I and N ret

D , respectively. We calculate the number of targets Vi
D in the i-

th density map patch Di
patch corresponding to each token, and VD = {V1

D,V2
D, · · ·VNI

D }, where
Vi

D = ϕsum(D
i
patch). ϕsum represents the pixel-wise sum operation in each density patch (Zhang

et al., 2016; Li et al., 2018), and the results represent the number of targets in the corresponding
patch. To focus on the foreground, we sort the image tokens according to the number of targets
Vi

D in the corresponding density map modality. While the foreground provides more valid informa-
tion, the background should not be completely ignored. Therefore, we set a background retention
probability (BRP) P to introduce the background information, where BRP determines the sorting
manner, in ascending order with a probability of P (focus on the background) or in descending or-
der with a probability of 1 - P (focus on the foreground). Detailed experiments of P are presented
in the Sec. 5.4. The first N ret

I tokens are retained to guide the masking of image I , preserving the
foreground while discarding the background. Here, we denote K as the set of positions that should
be kept, and N is a random variable that follows a Uniform distribution between 0 and 1, which is
produced by a random number generator.

K =

{
argsortdes(ϕsum(D

i
patch)){1 : N ret

I }, if N ≤ 1− P,
argsortasc(ϕsum(D

i
patch)){1 : N ret

I }, otherwise.
(2)

Based on this, we can obtain the spatial adaptive mask Madaptive = {M i
adaptive|1 ≤ i ≤ NI} for

image I . For each token in position i and its corresponding mask M i
adaptive, we have

M i
adaptive =

{
0, if i ∈ K,
1, otherwise,

(3)

where 0 represent keeping and 1 represent masking. We denote the retained tokens from the image
I as Tret

I ∈ RB×N ret
I ×C , where Tret

I = TI ⊗ (1−Madaptive) and TI denotes all the tokens of image
I . For the density token TD corresponding to density map patch Dpatch, we generate a random mask
Mrandom to retain N ret

D tokens as Tret
D ∈ RB×N ret

D×C . These retained tokens are then concatenated to
Tret ∈ RB×(N ret

I +N ret
D )×C and fed into the decoder for prediction.

During inference, the density maps tokens are fully masked and removed. Only the image tokens are
fed into the trained network, which is then required to fully reconstruct the density maps. In other
words, we set N ret

D = 0 and N ret
I = NI .

4.4 LOSS FUNCTION

In this work, we minimize the Mean Square Error (MSE) to ensure that both multi-frame fused
density map D̂fuse and the single-frame predicted result D̂t approach the ground-truth density map
Dt. To simplify the optimization of the optical flow network, we apply an MSE loss between the
warped Îwarp

t−1 and the original image It:

LMSE =
1

2hw

h∑
i=1

w∑
j=1

(
Êi,j −Gi,j

)2

, (4)

where Ê and G represent the estimated vector and its ground truth. Specifically, Ê inLfuse,Lcur,Lopt

represents D̂fuse, D̂t and Îwarp
t−1 respectively, and the corresponding G represents Dt, Dt and It. A

Total Variations (TV) loss (Rudin et al., 1992) is introduced as a regular term to encourage spatial
smoothness in D̂fus. TV loss can be expressed as:

LTV =
1

hw

h∑
i=1

w∑
j=1

[(
D̂i,j

fuse − D̂i−1,j
fuse

)2

+
(
D̂i,j

fuse − D̂i,j−1
fuse

)2
]
. (5)

The objective loss function can be expressed as follow, where λ1 - λ4 are hyperparameters.
L = λ1Lfuse + λ2Lcur + λ3Lopt + λ4LTV. (6)

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Datsets and Metrics. We conduct experiments on our DroneBird dataset and three video object
counting datasets: Fudan-ShanghaiTech (FDST) (Fang et al., 2019), Mall (Loy et al., 2013) and
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Table 1: Quantitative comparison between our proposed method and existing methods with metrics
MAE and RMSE, lower metrics better. Further comparative results can be found in Sec. A.3.

Method Type Mall FDST VSCrowd DroneBirdMethod Type MAE↓ RMSE↓ MAE↓ RMSE↓ MAE↓ RMSE↓ MAE↓ RMSE↓
MCNN (Zhang et al., 2016) Image - - 3.77 4.88 27.1 46.9 122.35 149.07
CSRNet (Li et al., 2018) Image 2.46 4.70 2.56 3.12 13.8 21.1 66.11 79.33
CAN (Liu et al., 2019) Image - - - - - - 70.21 92.15
MAN (Lin et al., 2022) Image - - 2.79 4.21 8.3 10.4 39.11 50.08
HMoDE (Du et al., 2023) Image 2.82 3.41 2.49 3.51 19.8 39.5 67.47 81.40
PET (Liu et al., 2023) Image 1.89 2.46 1.73 2.27 6.6 11.0 45.10 52.35
Gramformer (Lin et al., 2024) Image 1.69 2.14 5.15 6.32 8.09 15.65 49.11 65.50

EPF (Liu et al., 2020) Video - - 2.17 2.62 10.4 14.6 97.22 133.01
PFTF (Avvenuti et al., 2022) Video 2.99 3.72 2.07 2.69 - - 89.76 101.02
GNANet (Li et al., 2022) Video - - 2.10 2.90 8.2 10.2 - -
FRVCC (Hou et al., 2023) Video 1.41 1.79 1.88 2.45 - - - -
STGN (Wu et al., 2023) Video 1.53 1.97 1.38 1.82 9.6 12.5 92.38 124.67

Ours Video 1.35 1.76 1.29 1.69 6.0 10.3 38.72 42.92

VSCrowd (Li et al., 2022) datasets. We use a fixed Gaussian kernel (σ = 6) to generate the ground-
truth density map on these datasets. Following previous methods, we evaluate the counting perfor-
mance by using Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) fore each frame
in datasets. MAE measures accuracy as MAE = 1

n

∑n
i=1

∣∣∣Di − D̂i

∣∣∣, and RMSE measures robustness

as RMSE =
√

1
n

∑n
i=1

(
Di − D̂i

)2 , where n is the number of samples in datasets, Di and D̂i represent
the ground truth and predicted density maps of the i-th sample, respectively.

Implementation Details. For the backbone network, the optical flow network leverages the pre-
trained PWCNet (Sun et al., 2018), while the pre-trained ViT-B from MultiMAE (Bachmann et al.,
2022) is used as the encoder in E-MAC. During inference, the density maps {Dt−1, Dt} are fully
masked, leaving the video frames {It−1, It} intact, enabling the model to reconstruct the complete
density map D̂fus from the input video alone. We adopt random horizontal flipping to perform data
augmentation. Density maps are standardized by mean and standard deviation for better optimiza-
tion. For hyperparameter settings, the model employs a linear learning rate warm-up for the first
15 epochs, followed by a cosine decay learning rate. The AdamW’s weight decay is set to 0.05,
and layer decay is set to 0.75 for the encoder. The mask ratio is 0.72. Empirically, to maintain a
balance between foreground and background tokens, setting a small probability P of retaining only
the background improves the model’s performance for SAM. The probability P for spatial adaptive
masking is set to 0.2. The trade-off weights λ1, λ2, λ3, λ4 are set to 10, 10, 1, and 20.

5.2 COMPARISONS

We compare our method with several state-of-the-art methods on our DroneBird dataset, the FDST
dataset, the Mall dataset, and the VSCrowd dataset.

Mall. Mall provides video data from a fixed viewpoint in a shopping mall, where factors such
as lighting are relatively controllable. On the Mall dataset, we follow the previous works (Bai &
Chan, 2021; Hossain et al., 2020) for a fair comparison. The model is trained with the first 800
frames of the Mall dataset, and the rest 1, 200 frames are used as the test set. The input images
are set to the size of 448 × 640 and the batch size is set to 3. The quantitative comparisons are
reported in Table 1. Our method achieved significant advantages on MAE and RMSE metrics, which
improves 4% of MAE and 2% of RMSE compared to the runner-up method FRVCC (Hou et al.,
2023) based on CSRNet (Li et al., 2018). Compared to the PFTF, our method achieves significant
reductions in MAE and RMSE of 55% and 53%. We compared our method to a video counting
method PFTF (Avvenuti et al., 2022) and visualized the results on Mall dataset in the Fig. 3. Our
method produces more clear and accurate density distributions of distant low-pixel targets, resulting
in superior visualization performance. The quantitative and qualitative experimental results proved
the superiority of our framework in the indoor scenarios.

FDST. The FDST dataset provides a wider range of scenarios, including various outdoor scenes,
with more diverse variables compared to the Mall dataset, thus posing greater challenges. For quan-
titative comparison, we reported the MAE and RMSE metrics of our model and competing methods
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Figure 3: Visualized comparisons on the FDST dataset and the Mall dataset.
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Figure 4: Visualized comparisons on the VScrowd dataset and our DroneBird dataset.

on the FDST dataset in Table 1. The result shows that our method achieves the best MAE and RMSE,
decreasing the two metrics of 7% compared to the runner-up method STGN (Wu et al., 2023), and
31% compared to FRVCC (Hou et al., 2023), respectively. For qualitative comparison, we visualize
the predicted results of our method and the competing video counting method PFTF (Avvenuti et al.,
2022) on several scenarios in Fig. 3. Our method offers better visualization effects and delivers more
accurate quantitative predictions. These experimental results validate our method maintains superior
performance in more complex scenarios, such as outdoor environments.

VSCrowd. VSCrowd collected more videos by using surveillance cameras or the Internet. Com-
pared to FDST, the VSCrowd dataset provides a more diverse and complex set of outdoor scenes and
presents greater challenges for video crowd counting. The evaluation results of our method and the
competing method on the VSCrowd dataset are presented in Table 1. Compared to existing methods,
our approach achieves superior performance on MAE and runner-up performance on RMSE met-
rics. Compared to the recent video counting method STGN (Wu et al., 2023), our method improves
the performance by 38% in MAE and 18% RMSE, respectively. Compared to the runner-up method
GNANet (Li et al., 2022), our method beat GANNet on the MAE metric and achieved competitive
performance on the RMSE metric. We present detailed visualizations on the VSCrowd datasets in
Fig. 4. Our method achieves accurate counting results under low-light or long-distance dense con-
ditions compared to the previous method (Lin et al., 2022), showing the priority of our framework.
These quantitative and qualitative comparison results demonstrate that our framework still possesses
competitive performance in more diverse and complex outdoor scenarios.

DroneBird. Different from the previous three datasets, our DroneBird provides bird flock data from
a drone’s perspective, with scenes mostly consisting of open outdoor areas and exhibiting higher dy-
namics which pose a significant challenges for video object counting. We assessed several existing
methods on ours dataset, as detailed in Table 1. Our method outperforms both recent video and im-
age counting techniques, achieving a 58% improvement in MAE and a 66% improvement in RMSE
compared to the STGN (Wu et al., 2023) method. Additionally, our approach shows enhancements in
MAE and RMSE over the previous optimal method, MAN (Lin et al., 2022). For qualitative compar-
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Table 2: Ablation studies on three components.
Exp. DEMO SAM TCF MAE↓ RMSE↓

I 2.45 3.22
II ✓ 2.32 2.69
III ✓ ✓ 1.57 1.99
IV ✓ ✓ 1.69 2.20
V ✓ ✓ ✓ 1.29 1.69

Table 3: Effect of each loss functions.
Exp. Lfuse Lcur Lopt LTV MAE ↓ RMSE ↓
VI ✓ 1.87 2.50
VII ✓ ✓ 1.80 2.37
VIII ✓ ✓ ✓ 1.60 2.03
IX ✓ ✓ ✓ 1.39 1.77
X ✓ ✓ ✓ ✓ 1.29 1.69

ison, we compared the visualization results in multiple challenging scenarios. Our method achieves
more accurate counting results of birds, even in complex areas like water reflections. The quantita-
tive experimental results across different attributes and the visualization effects demonstrate that our
framework still exhibits superior counting performance in even more complex and variable outdoor
scenes from a drone’s perspective, thereby highlighting the superiority of our framework. Further-
more, we conduct attribute comparisons with three competing methods (Avvenuti et al., 2022; Liu
et al., 2020; Wu et al., 2023) on various attributes of the DroneBird dataset, as illustrated in Fig. 3.
These experiments fully demonstrate our superiority in various complex scenarios.

5.3 ABLATION STUDY

We perform the ablation study on the FDST dataset to investigate the effectiveness of Density-
embedded masked modeling (DEMO), spatial adaptive masking (SAM), and temporal collaborative
fusion (TCF). We construct the same architecture as that in comparison experiments and trained for
200 epochs. The hyperparameters are set to the same as the previous experiments on the FDST
dataset unless otherwise noted.

We evaluate five variants of our method to evaluate the effect of DEMO, SAM, and TCF in experi-
ments I-V and report the quantitative results in Table 2. Exp.I denotes the baseline model of E-MAC,
which performs density map regression in a pure transformer. In Exp.II, we add the optimal flow
information and fusion module to construct inter-frame relationship. In Exp.III, we add the SAM
based on Exp.II to perform adaptive masks. In Exp.IV, we perform the self-representation learning
to Exp.II to evaluate the effect of DEMO. Notes that in Exp.IV, we randomly mask both images and
density maps, while in Exp.III we only perform masks to images with our proposed SAM. In Exp.V,
we simultaneously used DEMO and SAM to test the model’s comprehensive performance.

Effect of TCF. We incorporated the optical flow module and fusion module into Exp.II and compared
its performance with Exp.I. The results indicate that the construction of inter-frame relationships
brought a performance improvement of 5% to 16% in terms of MAE and RMSE. By employing
optical flow mapping, we were able to effectively leverage the inherent temporal information present
in video data, enhancing the information of the current frame and improving the overall performance.
Further study and visualization on TCF are presented in Appendix A.5.

Effect of DEMO. As shown in Exp.II and Exp. IV in Table 2, DEMO brings in 27% and 18% im-
provement on MAE and RMSE metrics. In Exp.V, the introduction of the self-representation learing
of density maps resulted in 17% and 15% improvement in MAE and RMSE compared to Exp.III.
The self-representation learning of density maps implicitly drive the regression of density maps and
effectively boost the counting performance.

Effect of SAM. In Exp.III, foreground tokens from images are selected while all image tokens are
selected in Exp.II. As shown in Exp.II and Exp.III, our proposed spatial adaptive masking brings an
improvement of 32% in MAE and 26% in RMSE. Exp.II and Exp.III show the effect of our proposed
SAM. Additionally, SAM brought 23% performance improvement to DEMO in Exp.V. Hyperparameter
P is set to 0.2 in Exp.III and Exp.IV.

5.4 DISCUSSION

Loss Analysis. We conducted a detailed analysis for each loss function. We trained our model
for 200 epochs, and reported the quantitative results in Table 3. Experiments VI-X correspond
to the performance with different losses, showcasing the effectiveness of employing different loss
functions in our proposed framework. We take Exp.VI as the baseline, which only uses Lfuse in
the framework, and then gradually adds the loss term in subsequent experiments. Specifically, the
addition of LTV leads to a 4% and 5% enhancement in MAE and RMSE, respectively. In Exp.VIII,
we introduce supervision through Lopt, which optimizes the optical flow network by considering
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Figure 5: Hyperparameter analysis of background retention probability, mask ratio, and loss weights.

the warped previous frame. This results in 11% and 14% performance improvement compared to
Exp.VII. In Exp.IX, we add the constraint of Lcur, targeting the density map generated from a single
frame image. Compared to Exp.VII, MAE and RMSE in Exp.IX improves 23% and 25%. Building
upon Exp.VIII, Exp.X involves the addition of Lcur. This leads to a significant improvement of 19%
and 17% in MAE and RMSE over the performance of Exp.VII. Lcur provides a more direct constrain
signal for DEMO, thus achieving more improvements compared to other loss terms.

Impact of Background Retention Probability. We have conducted an in-depth analysis for our
SAM. Considering that discarding background redundant information altogether leads to imbal-
anced learning towards foreground, which in turn exhibits a decrease in performance. On the other
hand, omissions during manual annotation could result in some counting information being present
in the background. Therefore, we retain only the background of It during SAM with a certain prob-
ability P . Based on Exp.V, we conduct further experiments on the choices of P . We choose five
sampling points: 0, 0.1, 0.2, 0.4, and 1, in our experiments and compared them with the Exp.V in the
ablation study. The subfigure (a) of Fig. 5 provides a more intuitive view of the final performance
with respect to the probability P . The horizontal axis indicates the probability of sorting the tokens
in ascending order. We notice that the curve shows a clear downward rebound trend, and the quanti-
tative metrics show a decline of different degrees in both four experiments compared to Exp.V. We
finally choose 0.2 as the default probability in our experiments.

Impact of Mask Ratio. We conducted experiments and set the mask ratio to different values to
evaluate the impact of the mask ratio on DEMO. To more clearly evaluate the impact of the mask ra-
tio, these experiments were specifically performed on the our E-MAC without considering temporal
information. The subfigure (b) of Fig. 5 shows the impact of mask ratio on counting performance.
We varied the mask ratio in the range of 0.67 to 0.83, the lower the mask ratio, the more tokens
entered into the model. The results show that the MAE decreases as the mask ratio decreases. How-
ever, when we set the mask ratio to 0.67, the performance of the model decreases by 7% compared
to the model with a 0.72 mask ratio. We consider that a lower mask ratio can provide sufficient in-
formation to support reconstruction learning. While a mask ratio that is too low may bring in partial
redundant information, which may affect the performance.

Hyperparameter Analysis. We conducted experiments on the setting of the hyperparameters
{λ1, λ2, λ3, λ4} of each loss function, as shown in subfigure (c-f)of Fig 5. We vary the weights
of the remaining loss terms while fixing the weights of the other three loss terms, and the experi-
mental results correspond to the four subfigures of Fig 5. We finally fixed the weights λ1, λ2, λ3, λ4

of each loss term to 10, 10, 1, 20 in our experiments.

6 CONCLUSION

This paper aims to address the dynamic imbalance of the fore-background in video object counting.
Considering the dynamic sparsity of foreground objects, we proposed a density-embedded efficient
masked autoencoder counting framework. We introduced the self-representation foundation model
to video object counting, which first takes the density map as an auxiliary modality and devel-
ops density-embedded masked modeling (DEMO) to drive the regression of density map estimation.
To handle the infra-frame dynamic density distribution and make the model focus more on the fore-
ground region in the self-representation learning, we proposed a simple but efficient Spatial Adaptive
Masking (SAM), which dynamically generates masks depending on density maps to eliminate the ef-
fect of redundant background information and boost the performance. Furthermore, accounting for
the inter-frame dynamism and utilizing the inherent temporal information in the video, we introduce
the optical flow and propose a temporal collaborative fusion that learns to harness the inter-frame
differences. Besides, we first proposed a new large-scale video bird dataset in the drone perspective,
named DroneBird. Our DroneBird provides point and trajectory annotations in different scenes for
counting and further localization and tracking tasks. Experimental results verify our superiority.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

C. Arteta, V. Lempitsky, and A. Zisserman. Counting in the wild. In European Conference on
Computer Vision, 2016.

Marco Avvenuti, Marco Bongiovanni, Luca Ciampi, Fabrizio Falchi, Claudio Gennaro, and Nicola
Messina. A spatio-temporal attentive network for video-based crowd counting. In 2022 IEEE
Symposium on Computers and Communications (ISCC), pp. 1–6, 2022. doi: 10.1109/ISCC55528.
2022.9913019.

Roman Bachmann, David Mizrahi, Andrei Atanov, and Amir Zamir. MultiMAE: Multi-modal multi-
task masked autoencoders. European Conference on Computer Vision, 2022.

Haoyue Bai and S. H. Gary Chan. Motion-guided non-local spatial-temporal network for video
crowd counting, 2021.

Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. BEit: BERT pre-training of image trans-
formers. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=p-BhZSz59o4.

Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, and Ilya Sutskever.
Generative pretraining from pixels. In Hal Daumé III and Aarti Singh (eds.), Proceedings of
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