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ABSTRACT

As Language Model (LM) capabilities advance, evaluating and supervising them
at scale is getting harder for humans. There is hope that other language models
can automate both these tasks, which we refer to as “AI Oversight”. We study
how model similarity affects both aspects of AI oversight by proposing Chance
Adjusted Probabilistic Agreement (CAPA): a metric for LM similarity based on
overlap in model mistakes. Using CAPA, we first show that LLM-as-a-judge
scores favor models similar to the judge, generalizing recent self-preference results.
Then, we study training on LM annotations, and find complementary knowledge
between the weak supervisor and strong student model plays a crucial role in
gains from “weak-to-strong generalization”. As model capabilities increase, it
becomes harder to find their mistakes, and we might defer more to AI oversight.
However, we observe a concerning trend – model mistakes are becoming more
similar with increasing capabilities, pointing to risks from correlated failures. Our
work underscores the importance of reporting and correcting for model similarity,
especially in the emerging paradigm of AI oversight.

1 INTRODUCTION

Machine Learning model capabilities have improved immensely over the last few years. Scaling
up the amount of data used for training has played a crucial role in these improvements (Kaplan
et al., 2020). Initially, most of the gains in Language Model (LM) capabilities came from scaling
pretraining data (Llama Team, 2024a). Recently, there is increasing interest in post-training, either
with human preferences (Ouyang et al., 2022), or task-specific expert annotations (Lightman et al.,
2023). Collecting human preferences or annotations is slow and expensive. Therefore, with increasing
model capabilities, an attractive alternative is to use LMs to annotate training data (Gilardi et al.,
2023) and score model outputs (Zheng et al., 2023), to boost both training (Stiennon et al., 2020) and
evaluation (Li et al., 2024b). In this paper, we refer to both these techniques together as AI oversight1.

Can we rely on AI oversight going forward? This remains a topic of much debate. In this work, we
study oversight from the perspective of model similarity. When assessing or teaching humans, it is
well recognized that individuals have different strengths and weaknesses. Similarly, two models with
50% accuracy may misclassify completely different samples and thus be highly dissimilar (having
different ‘strengths’). To measure model similarity, we build on error consistency (Geirhos et al.,
2020), which measures overlap in the samples where two models err beyond what is expected by
chance due to the two models’ accuracies. In Section 2, we extend the error consistency metric in
two crucial ways – 1) by counting differences in predictions rather than correctness for each sample,
and 2) incorporating output probabilities. In this way, our novel similarity metric, Chance Adjusted
Probabilistic Alignment (CAPA), allows us to quantify functional similarity between models. We use
this to analyze both evaluation and training using AI oversight as depicted in Figure 1:

1. LLM-as-a-Judge. Prior work has shown that LM judges are biased towards their own genera-
tions (Liu et al., 2024; Panickssery et al., 2024). It might seem possible to avoid this concern by
simply using a different model as the judge. However, just like human evaluators prefer candidates

1The term is inspired by “scalable oversight” (Bowman et al., 2022), which studies human-in-the-loop
mechanisms for AI Safety.
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with similar traits (Bagues & Perez-Villadoniga, 2012), could LM judges also exhibit this affinity
bias? In Section 3, we study this using CAPA, finding LM judges indeed assign higher scores to
models that are more similar to themselves.

Figure 1: Our Main Contributions. We
introduce CAPA (κp), a probabilistic model
similarity metric adjusting for chance agree-
ment. Using CAPA, we find: (1) LLM-as-a-
judge scores favor similar models, (2) Weak-
to-strong generalization improves when mod-
els differ more, and (3) Model errors become
more correlated as capabilities rise.

2. Training LMs on annotations of other LMs.
Next, we study the effect of similarity on inter-LM
training setups, where one model annotates data used
to train another model. We hypothesize that perfor-
mance gained through such training leverages com-
plementary knowledge among models, and is thus
inversely proportional to CAPA. We investigate this
hypothesis in Section 4, following the weak-to-strong
generalization setup (Burns et al., 2024), where a
strong (larger) student model is shown to outperform
the weaker (smaller) supervisor whose annotations it
is fine-tuned on. Indeed, we find performance gains
are higher when the supervisor and the student model
are more different. Moreover, our findings indicate
a higher performance ceiling for this setting than
previously estimated, if the weak supervisor’s com-
plementary knowledge is leveraged effectively.

3. With increasing LM capability errors are be-
coming more correlated. AI oversight is gaining
popularity as capabilities increase. The above results
show the benefits of diverse models for AI oversight –
less similarity between models reduces bias in LLM-
as-a-judge, and also leads to greater gains when train-
ing on LM annotations. Unfortunately, in Section 5
we find that as frontier LMs become more capable, their mistakes converge as captured by CAPA.
This trend indicates a risk of common blind-spots and failure modes when using AI oversight, which
is concerning for safety (Kenton et al., 2024).

Overall, our work proposes a novel probabilistic metric for model similarity, and demonstrates the
risks of correlated mistakes in the emerging paradigm of AI oversight. We hope the community shifts
towards releasing sample-wise model predictions alongside benchmark scores (Burnell et al., 2023;
Ghosh et al., 2024), as they enable richer analysis like measuring similarity.

2 METHODOLOGY: MEASURING LM SIMILARITY

2.1 BACKGROUND

Functional similarity: Prior work on model similarity has focused on two classes of similarity
measures: representational and functional similarity (see Klabunde et al. (2024) for a recent survey).
Representation similarity metrics focus on the weights and activations of the networks (Kornblith
et al., 2019), comparing how features are represented internally. In contrast, functional similarity
metrics focus on the input–output behavior of the model. Functional similarity metrics are more
broadly applicable than representation metrics as (1) they allow comparisons across model families
and architectures and (2) are applicable for models behind an API (where weights are not released).
Functional similarity metrics are more interpretable because they operate on data samples rather than
noisy, complex internal representations (Golechha & Dao, 2024). Despite large architectural differ-
ences across models and model families, their outputs can still be fairly similar. Moreover, Geirhos
et al. (2020) argue models with similar internal mechanisms make similar mistakes, and thus mistakes
can proxy whether models use similar internal mechanisms. Therefore, in the present work we focus
on functional similarity metrics.

Error Consistency: A popular similarity metric designed in the context of comparing mistakes of
image-classifiers to humans is error consistency (Geirhos et al., 2020). It quantifies the overlap on
samples where two models make mistakes while normalizing for chance overlap due to accuracy.
First, they define cobs as the “observed error overlap” i.e., the fraction of samples on which both
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models are correct or both models are wrong. This itself is used a metric in recent work on LM
similarity, Dutta et al. (2024). However, as Geirhos et al. (2020) point out, cobs has a crucial
shortcoming: two independent models with high accuracy will have a higher cobs by chance than
two models with low accuracy ( 1 ). An independent model here is one that is correct on a uniform
random subset (size corresponding to accuracy) of samples, and wrong on the others. For instance,
two independent models with 90% accuracy will agree on at least 81% of the samples by chance,
whereas for two models with 50% accuracy, the lower-bound on chance agreement drops to 25%.
Consequently, to account for this, Geirhos et al. (2020) calculate the “expected error overlap” (cexp)
as cexp = acc1 · acc2 +(1 − acc1)(1 − acc2) where acci is the accuracy of model i. Similar to
Cohen’s κ (Cohen, 1960), error consistency (Eq. 1) is then defined as the fraction of excess agreement
observed (cobs − cexp) from what is possible beyond chance (1− cexp):

k =
cobs − cexp

1− cexp
, (1)

Table 1: Comparison of Functional Similarity Metrics. Only CAPA satisfies all three desiderata:
1 Adjusts for accuracy – Does not inflate scores for model pairs with lesser scope to disagree due to

higher accuracy.
2 Distinguishes different mistakes – Considers different wrong predictions as a disagreement.
3 Incorporates probabilities – Uses the probability distribution over predictions models provide.

Metric Adjusts for Distinguishes Incorporates
Accuracy different mistakes Probabilities

%Flips = 1− cobs (Dutta et al., 2024) ✗ ✗ ✗
Cohen’s κ, Scott’s π, Fleiss κ ✗ ✓ ✗
%Agreement (Zheng et al., 2023) ✗ ✓ ✗
Error Consistency (Geirhos et al., 2020) ✓ ✗ ✗
Pearson / Matthew’s Correlation of Errors ✓ ✗ ✗
Divergence metrics like KL, JSD ✗ ✓ ✓

CAPA (Ours) ✓ ✓ ✓

2.2 OUR CONTRIBUTION

We identify two key limitations of error consistency (k):

Does not distinguish differing mistakes ( 2 ): If two models make wrong but different predictions,
error consistency still counts that as an agreement. For example, two models that are always wrong,
even in different ways, have perfect error consistency (k = 1). It thus overestimates similarity.

Does not capture probability information ( 3 ): For comparison to humans, error consistency
assumes a single top prediction, whereas models inherently output a probability distribution. Ignoring
these probabilities can lead to incorrect conclusions about model similarity. Consider two models
whose outputs are [0.49, 0.51] and [0.51, 0.49]. Despite their small differences, binary labels would
classify them as making entirely different predictions (0 and 1). Conversely, models with predictions
[0.99, 0.01] and [0.51, 0.49] may share the same binary output (0 and 0) but differ significantly in
confidence distribution.

Novel Metric. We redefine cobs and cexp to address the above limitations. For clarity we adjust the
notation of our agreement metrics to cpobs and cpexp. To compute cpobs we directly use the model output
probabilities (Eq.2), thus accounting for disagreement on incorrect options and better capturing model
similarity. This approach lets us calculate cpobs without sample-wise ground-truth annotations. For
cpexp, we take into account that the model output predictions can span over multiple options rather
than only looking at sample-wise accuracy.

Definition. We define κp in the context of Multiple Choice Questions (MCQs), which is the format
of many popular benchmarks for LMs. We provide a detailed derivation in Appendix A.1, with
extensions to classification and exact match evaluations in Appendix A.3.

Observed Agreement (cpobs): It represents the probability of agreement if the model’s predictions
were sampled based on the observed likelihoods assigned over options. Formally,

cpobs =
1

|D|
∑
x∈D

∑
oi∈O(x)

p1(oi) · p2(oi), (2)
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where p1(oi) and p2(oi) are the output probabilities for model 1 and 2, respectively, on a data sample
x for option oi. O(x) are the possible options: O(x) = [oi, . . . , on], and |D| is the number of
samples.

Chance Agreement (cpexp): To account for higher accuracies inflating cpobs, we normalize by the
agreement expected from two independent models. First, we define pj as the average probability
model j assigns to the correct option across all samples. For a perfectly calibrated model pj
approaches accuracy, thus aligning with the motivations in error consistency. Then, we define
independent models as assigning pj probability to the correct option, and uniformly distributing
the remaining 1 − pj probability over the incorrect options. The latter is necessary, as there is no
coherent concept of “classes” for MCQ data, i.e. the options can be permuted. This prevents us from
computing class marginals for the remaining options, such as in inter-annotator agreement metrics
like Cohen’s Kappa, Scott’s Pi (Scott, 1955), Fleiss’ Kappa (Fleiss et al., 1981). Formally,

cpexp = p1 · p2︸ ︷︷ ︸
chance agreement on correct option

+ (1− p1) · (1− p2) ·
1

|D|
∑
x∈D

1

|O(x)| − 1︸ ︷︷ ︸
chance agreement on incorrect option

, (3)

where |O(x)| is the number of options in question x. Finally, the equation for CAPA is:

κp =
cpobs − cpexp

1− cpexp
(4)

Interpretation. We prove κp is bounded between −1 and 1 in Appendix A.6. A value of 0 means
the models have the same agreement as independent models given their accuracies. A negative value
means the models disagree, and a positive value indicates they agree beyond independent models with
their accuracy. As κp increases, it means models make more similar mistakes, their errors become
more correlated, and they are functionally less different. We use these interpretations interchangably.

Alternatives and Justification. We summarize comparisons to existing functional similarity measures
based on key desiderata ( 1 - 3 ) in Table 1. In Appendix A.4 we justify design choices for CAPA,
comparing it with various alternatives like using Jensen Shannon Distance (JSD), or defining cpexp
using assumptions similar to Scott’s π instead of Cohen’s κ. We provide plots with alternative
similarity metrics for our main empirical takeaways throughout the Appendix, and find consistent
trends. In each case, κp shows the trend most clearly, with the least noise. CAPA can also be used
when probabilities are unavailable by assigning probability 1 to the predicted option and 0 to the
others. We use this to prove κp is a strict generalization of error consistency, and reduces to it for
binary classification (Appendix A.1). Furthermore, κp can be extended beyond pairwise comparisons
to multiple models, (Appendix A.2). For completeness, we present probabilistic extensions for
Cohen’s κ, Scott’s π, Fleiss’ κF in Appendix A.5 and show comparisons to CAPA on illustrative
examples and synthetic data in Appendix A.7.

3 AFFINITY BIAS IN LLM-AS-A-JUDGE

Evaluating free-response model generations automatically at scale is tricky (Biderman et al., 2024).
This has led to popular leaderboards like Arena-hard-auto (Li et al., 2024b), AlpacaEval 2.0 (Dubois
et al., 2024), and AidanBench (McLaughlin et al., 2024) adopting LLM-as-a-Judge for scoring.
Recent work cautions that language models are biased towards their own outputs (Liu et al., 2024;
Panickssery et al., 2024), and these leaderboards assume that excluding the judge model from the
rankings circumvents this problem. However, it has been shown that human interviewers are biased
towards candidates with similar knowledge and traits, a phenomenon called affinity bias (Bagues &
Perez-Villadoniga, 2012). We study whether LMs also exhibit a bias toward similar models. This
would indicate that it is not sufficient to just use a held-out LM as the judge; one must account for the
confounder of similarity.

3.1 EXPERIMENTAL SETUP

To study whether LM judges prefer more similar models, we evaluate a large set of judges and
models on MMLU-Pro (Wang et al., 2024), a benchmark for hard problem solving questions across
14 domains. We filter 8,707 questions that can also be answered in a free-text response style, without
options, following Myrzakhan et al. (2024).
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Figure 2: Judgment Score vs. Model Simi-
larity. Regression lines fit judgment and sim-
ilarity scores for model-judge pairs. Points
represent pairs, ⋄ indicates same-family mod-
els. Pearson correlation values r show signifi-
cant positive correlation (∗∗: p < 0.01).

Each question is posed to every evaluated model as an
MCQ and as an open-style question. The per-sample
results of the former are used to compute the similar-
ities of judge-model pairs, whereas responses to the
latter are given to an LLM-as-a-judge. The judge has
to make a binary decision on whether a free-text re-
sponse is correct or wrong. This is done based on its
own internal knowledge without access to a ground-
truth solution. We call the average of binary judg-
ments across the benchmark the model’s Judgment
Score for a given judge. Using a parallel MCQ evalu-
ation with ground-truth answers allows us to compare
the judgment scores with verifiable accuracy measure-
ments (details and comparisons to alternatives are in
Appendix B.2), consistent with prior scalable over-
sight research (Bowman et al., 2022). We compute
pairwise similarity with CAPA, κp, across 9 judge
and 39 model pairs. For a complete overview of mod-
els investigated, the question filtering process, the
inference setup and the prompts used for judges see Appendix B.

3.2 RESULTS & DISCUSSION

Table 2: Partial Correlation and Multiple Regression
Results. The table reports partial correlation results
between judgment scores and model similarity when
controlling for accuracy (r - Pearson correlation), as
well as multiple regression results between judgment
scores (DV) ∼ similarity (IV) and accuracy (IV). ∗
and ∗∗ indicate significance level p<0.05 and p<0.01
respectively. Across all judges we find a significant
partial correlation, which implies that after controlling
for accuracy there remains a relationship between judge
score and model similarity. With respect to Multiple
regression, across all judges we find a significant effect
of both IV on judgment scores while holding the other
constant, suggesting a strong positive relationship (for
details, see Appendix B.3).

Judge Partial Cor. Multiple Reg.
r sim acc

Qwen2.5-7B-It 0.60∗∗ 0.59∗∗ 0.51∗∗

Qwen2.5-32B-It 0.43∗∗ 0.41∗∗ 0.86∗∗

Qwen2.5-72B-It 0.42∗∗ 0.47∗∗ 1.04∗∗

Meta-Llama-3.1-8B-It 0.65∗∗ 1.15∗∗ 0.53∗∗

Meta-Llama-3.1-70B-It 0.45∗∗ 0.61∗∗ 0.92∗∗

Llama-3.3-70B-It 0.35∗ 0.50∗ 1.02∗∗

gemma-2-9b-It 0.65∗∗ 0.76∗∗ 0.69∗∗

gemma-2-27b-It 0.65∗∗ 0.71∗∗ 0.68∗∗

Ministral-8B-It-2410 0.60∗∗ 0.82∗∗ 0.43∗∗

Q1: Do LM Judges favor more sim-
ilar models? As a motivating exam-
ple, Qwen2.5-72B-Instruct as a
judge scores Qwen2.5-7B-Instruct
as being 71% correct, while the more
capable (41% vs 51% MCQ accu-
racy) Llama-3.1-70B-Instruct is
deemed less accurate at 67%. In Figure 2
we show that model favoritism extends be-
yond self- or family- preference to all mod-
els that are functionally similar. We find a
significant (p < 0.01) positive correlation
(average Pearson r=0.84) between LLM-
as-a-judge scores and model similarity (κp)
for all judges.

Q2: Is this merely due to better accu-
racy? Note that while κp adjusts for infla-
tion in agreement of highly accurate mod-
els, we do expect models with lower accu-
racy to be less similar with highly capable
judge models, and thus have lower κp. To
control for the accuracy of the evaluated
model we perform multiple regression and
partial correlation analysis (see Table 2).
The multiple regression analysis shows that
both, accuracy and similarity, have a sig-
nificant positive effect on the judge score.
The coefficient of accuracy increases for more capable judge models, consistent with prior work
showing improved alignment with human judges (Thakur et al., 2024). The partial correlation results
control for accuracy and confirm that there is still a significant effect of similarity on judgment scores
even for the best judge models. Altogether, the statistical analysis confirms that judgment scores are
confounded by affinity bias.
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Figure 3: Analysis of weak-to-strong generalization. (a) The strong student gains more from
weak-to-strong training across 12 model pairs on tasks where it differs more from the weak supervisor
(p < 0.01). (b) Complementary knowledge transfer enhances performance beyond mere elicitation,
as test accuracy is partitioned by the correctness of a weak supervisor and an oracle strong model
(averaged over 15 tasks).

4 LEARNING FROM COMPLEMENTARY KNOWLEDGE OF LM ANNOTATORS

We now study the role of similarity in AI supervising training. This can allow scaling up training
data by reducing reliance on costly and time-intensive expert human inputs. There is hope that
models can learn from other models to improve further even on tasks where they surpass human
capabilities (Hughes et al., 2024). Where could this improvement come from? We hypothesize that
the existence of complementary knowledge or capabilities between two LMs can be one mechanism
for driving improvements from LM annotations, if effectively leveraged. This complement can exhibit
itself in the form of differing predictions on training data, and can thus be quantified using functional
similarity between the supervisor and student model. Lower κp is indicative of more complementary
knowledge, and as an implication of our hypothesis, should inversely correlate with the performance
gain of a student model when trained on the supervisor’s annotations.

4.1 EXPERIMENTAL SETUP

Burns et al. (2024) study training a larger student model on annotations from a small task-finetuned
“expert” teacher. They find the student can outperform the supervisor, a phenomenon they call “weak
to strong generalization”. We study this setup as it can seem counter-intuitive when viewed from
the lens of accuracies. How can training a 60% accuracy student on a 70% accuracy task-finetuned
teacher lead to 75% accuracy? To investigate this, we adopt a lens of complementary knowledge.

We measure similarity between the weak supervisor and base student model on the validation set. We
then perform weak-to-strong training on the student model, using the confidence-weighted finetuning
objective proposed in Burns et al. (2024). We investigate if similarity is an apriori predictor of
performance gained on the test set. For our experiments, we study 4 weak models in the 1 − 3B
parameter range, and 3 strong models in the 7−9B parameter range, for a total of 12 model pairs, and
15 of the NLP tasks studied in Burns et al. (2024), specified in Table 17. The full setup is consistent
with the open-weight model reproduction by (Scherlis et al., 2024), and is described in Appendix C.1.

4.2 RESULTS & DISCUSSION

Q1: Does Complementary Knowledge Influence Performance Gain? Figure 3a shows that for
all model combinations, similarity between the weak supervisor and initial strong student inversely
correlates with the improvement obtained from weak-to-strong training (r = −0.85). Even after using
partial correlation analysis to control for the accuracy gap between the weak supervisor and strong
student, similarity is inversely correlated with weak-to-strong gain (r = −0.35, p < 0.01). Thus,
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tasks where the supervisor and student make less correlated errors tend to yield greater improvements.
This contributes towards understanding why gains from weak to strong training vary across tasks, an
open question posed by Burns et al. (2024).

Table 3: Accuracy gains possible from weak-to-
strong training. We average accuracies across 15
datasets and 12 model pairs and report gaps to the stu-
dent model’s initial accuracy. Complementary knowl-
edge transfer can enable higher gains than the previously
considered ceiling estimate from elicitation.

Model Accuracy Gap
Initial Strong Student 75.1%
Weak Supervisor +4.1
Weak to Strong Trained Student +7.4

Ceiling Estimate
Ground-truth Elicitation (previous) +11.2
Elicitation ∪ Complementary (ours) +14.1

Q2. Does Complementary Knowledge
Add Beyond Elicitation? The original
explanation for performance gains from
weak-to-strong generalization is that the
weak supervisor “elicits” the latent knowl-
edge in the superior representations of the
stronger student (Burns et al., 2024). To
investigate whether complementary knowl-
edge adds to this explanation or is sub-
sumed within it, we first obtain the strong
model with “upper-bound” elicitation by
finetuning it on ground-truth annotations.
We refer to this as the strong elicited model.
We can then separate the test data into four
parts based on whether the strong elicited
and weak supervisor model were correct or
wrong, measuring average accuracy of the weak-to-strong model on each part to disentangle gains
from different factors. The experiment setup is discussed further in Appendix C.2.

Figure 3b reports aggregate values across 15 tasks for 12 model pairs. Accuracy on the bottom-left
quadrant (avg. 71.9%) can only be due to successful elicitation, as here the weak supervisor was wrong.
Accuracy on the top-right quadrant (avg. 42.2%) can only be due to complementary knowledge
transfer as here the upper-bound elicitation model was wrong. This confirms that elicitation plays an
important role in weak-to-strong generalization, with complementary knowledge transfer from the
weak supervisor also contributing to significant gains.

Q3. Where can weak-to-strong training improve? The strong elicited model is considered to
represent upper-bound performance, but as shown in Table 3, the actual ceiling is significantly
higher if complementary knowledge of the weak supervisor is fully leveraged. Interestingly, on the
training set, the weak-to-strong trained model shows similar accuracy on the top-left and bottom-right
quadrants as shown in Figure 11. Yet, when generalizing to unseen samples, it falls back more often
to its initial priors. We hope this analysis guides future work on improving weak-to-strong training
methodology, by highlighting complementary knowledge as a concrete avenue for improvement.

5 MODELS ARE MAKING MORE SIMILAR MISTAKES AS CAPABILITIES
INCREASE

The previous two sections highlighted two major advantages of having access to more diverse LMs: a)
it leads to less biased judges, b) it can drive more performance gains from training on LM annotations.
This points to the importance of diversity, or lower model similarity, for AI oversight. As AI oversight
becomes increasingly relevant with advancing capabilities, we now study similarity trends in existing
LMs across different levels of capability. It has been shown model representations across modalities
are converging with increasing capabilities (Huh et al., 2024). This raises the question as to whether
this also leads to more similar mistakes?

5.1 EXPERIMENTAL SETUP

We collect sample-wise evaluation files for 130 official models from the OpenLLM Leaderboard 2
released by HuggingFace, listed in Appendix D.5. We use MMLU-Pro (Wang et al., 2024) and Big
Bench Hard (BBH) (Suzgun et al., 2023) as they measure a broad range of capabilities using MCQ,
and frontier models have reasonable accuracies while not saturating these datasets. We first bucket
these models into five performance percentile ranges. Then, for each model, we compute its mean
similarity (κp) with models in the same bucket from different developers, to prevent confounding from
distillation or continual training. More setup details are provided in Appendix D.1. In Appendix D.3
we also report pairwise results, and using the extension of κp for sets of M > 2 models.
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5.2 RESULTS & DISCUSSION

Figure 4: Average Similarity (κp) vs Model
Capability. We split 130 LMs into 5 buckets
based on their accuracy percentile. For each
LM we compute its mean similarity within
the bucket (across models from different de-
velopers), and plot it against model accuracy.
The size of the scatter points is proportional
to model size. As κp measures overlap in mis-
takes, the positive correlation indicates LM
mistakes are getting more correlated with in-
creasing capabilities.

Q1. Are model errors becoming more correlated
with improving capabilities? Figure 4 shows a
strong positive correlation between model capabili-
ties and κp, which measures similarity beyond chance
agreement due to accuracy. In Appendix D.4 we find
this also holds across individual categories in both
datasets, not just in aggregate.

Potential Implications. If this trend continues, it
could mean greater affinity bias when using LM
judges, and lower potential for gains from inter-LM
training in the context of our earlier results. It could
amplify collective biases, and undermine benefits of
independence when using LM juries. Most concern-
ingly, our results indicate that as model blind-spots
get harder to detect, making us defer more to AI
oversight, models also make more similar mistakes,
posing safety risks from correlated failures.

Q2. Why are model errors becoming more cor-
related? This is an interesting research direction
in itself. We perform a preliminary analysis in Ap-
pendix D.2, summarizing key conclusions here. First,
we observe only a slight increase in similarity for
harder questions, indicating difficulty is not a signifi-
cant confounder for this trend. We find this trend is stronger in instruction-tuned models, and using
alternative architectures like Mamba (Gu & Dao, 2023) may not be enough to increase diversity.

6 RELATED WORK

There is increasing interest in finding differences between models for applications like visual tools for
comparative analytics (Strobelt et al., 2021; Kahng et al., 2024), efficient human evaluation (Boubdir
et al., 2023), comparing learning algorithms (Shah et al., 2023), identifying side-effects of API
updates (Eyuboglu et al., 2024) or quantization (Dutta et al., 2024). Prior work has also looked at
qualitatively describing differences between data distributions (Zhong et al., 2022; 2023; Dunlap
et al., 2024b;a). Our work proposes metrics to quantify LM differences (or similarity). Huh et al.
(2024) used representation similarity metrics (Kornblith et al., 2019; Bansal et al., 2021) to show
convergence in visual representations and their alignment with language representations. In contrast,
we show model mistakes are becoming more correlated as capabilities improve, using sample level
evaluations (Burnell et al., 2023) such as those available on OpenLLMLeaderboard (Myrzakhan
et al., 2024) and HELM (Bommasani et al., 2023). Geirhos et al. (2020) proposed measuring “error
consistency” between image classifiers and humans, with Geirhos et al. (2021) showing an early trend
of data-rich models making more similar mistakes to humans. We enrich this metric, distinguishing
between different mistakes and incorporating probabilistic information.

Our results on AI judges fall in a broader line highlighting their pitfalls (Zheng et al., 2024). These
include biases such as favoring verbose texts or options at certain positions (Koo et al., 2024; Ye
et al., 2024). Interestingly, these biases are also sometimes found in human annotators (Chen et al.,
2024). In fact, there is rich literature documenting biases in human judgements of other humans.
One such bias is affinity bias, where recruiters prefer candidates with similar knowledge and skills
as them (Bagues & Perez-Villadoniga, 2012). We show LM judges also systematically favor other
models that make similar mistakes, generalizing previous results that showed LMs favor their own
outputs (Liu et al., 2024; Panickssery et al., 2024). Overall, we believe AI evaluators should be
accompanied with formal checks like consistency (Fluri et al., 2024).

A second aspect of AI oversight is using another model’s supervision to train better models. This
is similar to training on text generated by an LM (Chiang et al., 2023) with ongoing debates
about its benefits (Kazdan et al., 2024), and an emerging paradigm of exploiting a gap in difficulty
between solution generation and evaluation (Song et al., 2024). In this paper, we study the more
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established setup of training LMs on LM annotations, where Burns et al. (2024) demonstrated the
phenomenon of weak to strong generalization, and it has been leveraged for other applications
like image classification (Guo et al., 2024) and aligning models (Zhu et al., 2024). Prior work
has attempted to understand weak to strong generalization, notably using “misfit error” (Charikar
et al., 2024), which shows that the student’s disagreement with the weak supervisor after weak
to strong training correlates with its accuracy gap from the weak supervisor. Instead, we show
similarity between the weak supervisor and strong student can apriori predict gains from weak-to-
strong training. The benefit of model diversity has previously been discussed in related settings
like knowledge distillation for image classifiers (Roth et al., 2024) and training chess models that
outperform the humans they are trained on (Zhang et al., 2024).

7 CONCLUSION, LIMITATIONS, FUTURE WORK

Our paper shows the importance of measuring functional similarity for language models. We derive a
novel, probabilistic metric for model similarity, CAPA (κp). We then use it to study the implications
of similarity for AI oversight – showing affinity bias in AI judges, and the role of complementary
knowledge when training on LM annotations, such as in weak-to-strong generalization. AI oversight
will become more relevant as capabilities improve, so our finding that increasing capabilities could
lead to more correlated errors is particularly concerning. Thus, we believe measuring and accounting
for model similarity is going to be increasingly important. We now list some limitations of our work,
and avenues for developing a better understanding of model similarity and its implications.

Establishing Causation: We established similarity correlates with both aspects of AI oversight –
evaluation and training supervision. To establish causality, we need methods to make a model less
similar without harming capabilities, which is itself a challenging open problem.

Extending to similarity metrics for free-text outputs: Everyday use of generative models is based
on their free-text responses. Like much work on benchmarking, we had to limit to MCQ tasks as
the science of precisely evaluating free-text is still evolving (Biderman et al., 2024). For example,
both model-free (Papineni et al., 2002) and model-based metrics (Pillutla et al., 2021) suffer from
a wide range of syntax and style sensitivity issues (Kocmi et al., 2021; He et al., 2023). We hope
the community takes up the challenge of designing similarity metrics for free-response text and
reasoning. This would allow studying the role of similarity using more promising oversight setups
like debate (Kenton et al., 2024) and process supervision (Lightman et al., 2023).

Generator-Verifier gap: AI oversight has recently shown promise for tasks where it is easier to
validate a solution than generate it (Song et al., 2024). Similarity may continue to play a role here.
(1) In evaluations, similarity in stylistic preferences of the generated solution may influence judge
scores. (2) In training, the generator-verifier gap may be larger if models are more different.

Safety implications: Researchers separately develop many post-training interventions to reduce
harmfulness, dual-use knowledge, dishonesty etc. In real world model deployments, all these
problems have to be tackled at once, which can benefit from composing interventions (Kolbeinsson
et al., 2024). If the benefits are decorrelated, composing would lead to greater compound safety.
If the side effects are correlated, composing would lead to lower accumulation. More broadly,
measuring LM similarity post-intervention can help characterize decorrelation in research bets, for
granters (Canton, 2025). For example, LM unlearning was recently found to be functionally similar
to refusal training (Łucki et al., 2024), even though it was proposed as a complementary safeguard (Li
et al., 2024a). Finally, as we transition towards language agents, similarity can help understand
collective “blind spots” (He et al., 2023), and could lead to better cooperation (Lowe et al., 2017) but
also scheming (Balesni et al., 2024) between multiple agents.

Qualitative analysis of model differences: We developed quantitative methods for measuring LM
similarity on a given data distribution. One exciting direction is to use these metrics to provide quali-
tative difference descriptors (Dunlap et al., 2024a) between models, by describing data distributions
where models are least similar.
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A METRICS

The following section covers design details for CAPA κp. Firstly, we address derivation of CAPA in
Section A.1 and its theoretical bounds in Section A.6. Secondly, we explain how to extend CAPA to
multi-model set-up (Section A.2) and how to adapt CAPA to classification and exact match settings
(Section A.3). Lastly, we introduce probabilistic versions of popular agreement metrics (Section A.5)
and provide a comparison between them and CAPA (Section A.4).

A.1 DERIVATION OF CAPA

CAPA is intended to be used as a similarity metric in the context of model accuracies. As such, it
extends Error consistency Geirhos et al. (2020), a metric that adjusts chance agreement by taking
into account model accuracy. In particular, the same formula is used to define Cohen’s κ, Scott’s π,
Fleiss’ κ, Error Consistency and CAPA:

observed agreement − chance agreement
maximum possible agreement - chance agreement

, (5)

where the excess agreement is subtracted both from the numerator and denominator, essentially
calculating the proportion of possible excess agreement that is observed between the two models.
Across all metrics, the maximum possible agreement is 1. Where CAPA differs from the existing
metrics is how we calculate the observed and change agreement.

We redefine error consistency Geirhos et al. (2020) by incorporating probabilistic information. To
achieve this we introduce a probabilistic computation of the observed agreement, cobs as cpobs, and the
chance agreement, cexp as cpexp. The new equation becomes:

κp =
cpobs − cpexp

1− cpexp
. (6)

Observed agreement cpobs : Given that we have the predicted output probabilities, p1(o∗)x, by a
LM for all possible options, Ox = [o1, . . . , oN ], for a data sample x, e.g. p1(o∗)x∀o∗ ∈ Ox, we can
compute the relative observed overlap as:

cpobs =
1

|D|

D∑
x=1

O∑
i=1

p1(oi)x · p2(oi)x (7)

where p1(·) is the predicted probability by model 1 and p2(·) is the predicted probability by model 2.
We would like to highlight that the above calculation is performed on sample level to avoid confusion
with the common chance agreement pe calculation in Cohen’s kappa 2.

Agreement by chance cpexp To estimate the model chance agreement cpexp we first start by computing
the average probability that a given model is correct p∗:

p∗ =
1

|D|

D∑
x=1

O∑
i=1

I[oi = gt]p∗(oi)x where gt = ground truth (8)

Performing the above calculation per model accounts for the possibility that each model may
have different marginal distributions. An assumption that is fair to assume in the context of LMs.
Subsequently, given the p∗ per model we can compute the probability that two models are correct
by chance as: p1 · p2. Conversely, to account for model chance disagreement we (1) group all the
remaining options as incorrect and (2) adjust for the number of options: 1

|D|
∑D

x=1
1

|Ox|−1 (1 −
p1)(1− p2). These steps are necessary because (1) MCQ options can be permuted, therefore, class
marginal probabilities cannot be computed, and (2) the chance disagreement without adjusting for
the number of options overestimates the agreement by chance:

0 <
1

|D|

D∑
x=1

1

|Ox| − 1
(1− p1)(1− p2) ≤ (1− p1)(1− p2) (9)

2Cohen’s kappa uses the marginal probabilities across categories to estimate pe. However, in MCQ there
are no ’class categories’ as the options can be permuted across data samples. Therefore, marginal probabilities
cannot be estimated.
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In particular, if the number of options is ignored then the underlying assumption is that both models
put their ’incorrect’ probability mass on the same option, following a Dirac delta δ(o∗) distribution.
This is a very strong assumption, that overestimates model error agreement. Therefore, we propose to
adjust this by assuming that the distribution for the incorrect options follows a uniform distribution
U{o1, on−1} as adjusted by our normalizing factor 1

|D|
∑D

x=1
1

|Ox|−1 , where |Ox| is the total number
of options for a sample x. As such, the overall agreement by chance probability is:

cpexp = p1p2︸︷︷︸
chance agreement correct

+
1

|D|

D∑
x=1︸ ︷︷ ︸

mean

1

|Ox| − 1︸ ︷︷ ︸
uniformity assumption

(1− p1)(1− p2)︸ ︷︷ ︸
chance agreement incorrect

(10)

Moreover, for perfectly calibrated models the mean correct probability p∗ would approach model
accuracy, p∗ → p̂∗ and is upper bounded by it p∗ < p̂∗ as p∗ is computed based on probabilities
(p̂∗ = TP+TN

|D| ).

Reduction of CAPA to Error Consistency for binary classification In binary classification
setting when the underlying probabilities are unavailable CAPA reduces to error consistency, as (1)
cpobs = 1

|D|
∑D

x=1 I[arg max p1 = arg max p2] = cobs, and (2) cpobs = cobs as p∗ = acc∗, and the
normalizing factor simplifies to 1.

A.2 EXTENDING CAPA TO MORE THAN TWO MODELS

In Section 2.2, we computed functional similarity between a pair of models. Here, we extend CAPA
to multi-model comparisons. In the inter-annotator agreement literature, Fleiss’ κ (Fleiss et al., 1981)
is commonly used for this. However, it is ill suited to our modeling paradigm as it defines cpexp
using the assumptions of Scott’s π instead of Cohen’s κ (this is problematic when measuring model
similarity as discussed in the previous section). We derive CAPA for more than two models using
first principles logic, similar to how Fleiss’ κ was derived.

Suppose the number of models is M > 2. We still use the
cpobs−cpexp

1−cpexp
formula, but change the definition

of cpobs and cpexp. For cpobs, Fleiss’ κ measures the proportion of observed pairwise agreements from
the total possible for each question, averaging across questions. This is equivalent to averaging the
observed agreements for each pair of models when all models annotate all questions, which is true in
our case3. This gives us cpobs = 2

M(M−1)

∑
1≤i<j≤M

1
|D|

∑D
x=1

∑O
k=1 pi(ok)x · pj(ok)x.

Second, for cpexp, Fleiss’ κ measures the expected pairwise agreements if all M models were inde-
pendent. This can be obtained by averaging the cpexp for two models across all possible pairs of M
models. This gives us

cpexp =
2

M(M − 1)

∑
1≤i<j≤M

(pi · pj + (1− pi) · (1− pj) · (
1

|D|

D∑
x=1

1

|Ox| − 1
))

.

A.3 HOW TO USE CAPA FOR CLASSIFICATION AND EXACT MATCH SETTINGS?

In Section 2.2 we defined CAPA for MCQs as this is used throughout the paper, and more commonly
for language models. For completeness, we now define CAPA for classification settings and exact
match settings, which are alternate strategies for evaluating models.

Classification: Unlike MCQs, in this setting are coherent classes (categories), representing nominal
data. The model output now is a probability distribution over C classes. Therefore, we compute cpobs
across categories as follows:

cpobs =
1

|D|
∑
x∈D

∑
ci∈C(x)

p1(ci) · p2(ci), (11)

3Fleiss κ is also defined when not all annotators respond to every question, as long as the number of
respondents per question is fixed.
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Metric Formula Description

Cohen’s Kappa κ = Po−Pe

1−Pe
Measures inter-rater reliability P0 while accounting for chance agreement Pe.

Scott’s Pi π = Po−Pe

1−Pe
Similar to Kappa, but uses marginal probabilities for Pe.

Error Consistency k =
cobs−cexp

1−cexp
Adjusts for accuracy via cexp = acc1 · acc2 + (1− acc1)(1− acc2)

CAPA κp =
cpobs−cpexp

1−cpexp
Accounts for sample level probabilities cpobs =

1
|D|

∑D
x=1

∑O
i=1 p1(oi)x · p2(oi)x

and accounts for accuracy via cpexp = p1 · p2 + 1
|D|

∑D
x=1

1
|Ox|−1 (1− p1)(1− p2)

Table 4: Comparison of different inter-rater metrics

where p∗(ci) is the output probability for class ci. For the computation of cpexp we follow the same
definition as in the main paper, but now pj is computed for the correct class and the chance agreement
on the incorrect class is adjusted by the number of classes instead of number of options:

cpexp = p1 · p2︸ ︷︷ ︸
chance agreement on correct class

+ (12)

(1− p1) · (1− p2) ·
1

|D|
∑
x∈D

1

|C(x)| − 1︸ ︷︷ ︸
chance agreement on incorrect class

(13)

In principle, the above implementation could also be adjusted to further take into account the class
categories by computing the marginal probabilities per class as:

p(ci)∗ =
1

|D|

D∑
i=1

p∗(ci) where ci ̸= ground truth, (14)

and replacing the chance agreement on incorrect class with the product of per class ’incorrect’
probabilities.

Exact or Fuzzy Match: Here, models are not provided categories or options to choose between, and
instead provide an answer from an unconstrained set. The model’s output string is matched with a
reference answer. Here, the probability of independent models agreeing by chance approaches zero
due to an unconstrained set of outputs. Further computing probabilistic agreement is difficult over
conditional distributions across multiple tokens. We recommend calculating the discrete version of
CAPA, where cEM

obs = 1
|D|

∑D
x=1 I[m1(x) == m2(x)], and cEM

exp = acc1 · acc2, finally computing
cEM

obs −cEM
exp

1−cEM
exp

.

A.4 DETAILED DISCUSSION ON DESIGN CHOICES

In this section, we discuss alternative design choices we could have taken. For an overview of the
equations for each metric, see table 4.

Why not use inter-annotator agreement metrics like Cohen’s κ? Cohen’s κ, Scott’s π, Krippen-
dorf’s α measure how people differ when answering survey questions, focusing on the reliability of
those questions and the data (Krippendorff, 2004). They assume nominal data and computes marginal
probability distributions per category. However, MCQs do not have an inherent category ‘a’ or ‘b’, i.e.
options can be permuted, so we cannot compute such marginal probability distributions. Moreover,
measuring LM similarity requires adjusting for chance agreement due to accuracy to avoid inflating
similarity for high-accuracy models (Geirhos et al., 2020). For inter-annotator agreement metrics
stemming from human survey studies — where there is no built-in concept of accuracy — and thus
they are unsuitable for LM analysis without additional modification.

Should cpexp be defined similarly to Cohen’s κ or Scott’s π? When measuring similarity between
LM Judges and human annotators, Thakur et al. (2024) recommend using Scott’s π over Cohen’s κ,
as it is a better metric for inter-annotator agreement studies (Krippendorff, 2004). The two differ in
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how they compute cexp, Scott’s π assumes that the two human raters are sampled from a common
distribution, estimating it by averaging the marginal probabilities of the two raters. This is in contrast
to Cohen’s κ, which assumes the given different marginal distributions for the two raters. In our case,
we wish to account for chance agreement due to accuracies rather than the marginal distribution over
classes. To see the relative comparison of how Cohen’s κ and Scott’s π behave in our setting, we
consider an example.

Suppose we have a binary classification problem, where both models always agree when they are
both wrong as there is only one incorrect option. We now consider two pairs of models. Pair 1 has
accuracies 0.2, 0.8, whereas in pair 2, both models have accuracies 0.5. Intuitively, if both pairs were
to have the same observed agreement, it would be more surprising if this happened for pair 1 than pair
2, given the vast difference in their accuracy. In other words, models in pair 2 are more similar than
expected for independent models with the given accuracies than pair 1. We want this to be reflected
in our similarity metric.

For pair 1, Scott’s π, cexp would be computed assuming a joint accuracy of 0.2+0.8
2 = 0.5, and for

pair 2 with the same joint accuracy 0.5+0.5
2 = 0.5, giving cexp = 0.52 + (1− 0.5)2 = 0.5. Cohen’s κ

of pair 2 would be computed as 0.5 · 0.5 + (1− 0.5) · (1− 0.5) = 0.5 too. However, for Cohen’s
κ of pair 1, cexp = 0.2 · 0.8 + 0.8 · 0.2 = 0.32. This means for a fixed observed agreement cobs,
say 0.5, π = 0.5−0.5

1−0.5 = 0 for both models, and similarly κ = 0 for pair 2. However, for pair 1,
κ = 0.5−0.32

1−0.32 = 0.264. Indeed, Scott’s π would lead us to think both pairs are equally similar,
whereas κ indicates pair 2 is more similar, beyond chance agreement arising due to accuracy. Thus κ
has the more desirable behavior.

More broadly, we do not wish to assume both models are drawn from a joint distribution, assigning
them a common mean accuracy. However, Scott’s π does this, which makes sense when calculating
reliability of surveys or measuring alignment between human and LLM judges. However, this does
not make sense in our setting where we wish to adjust for chance agreement expected due to the two
model’s given accuracies. Hence, we choose to define cexp similar to Cohen’s κ, where we retain the
difference in the two model’s accuracies when computing chance agreement.

Why not use Matthews Correlation Coefficient: We could take a completely different approach
by computing the Pearson or Matthews Correlation Coefficient of the binary vectors of sample-
wise correctness for the two models (Chicco et al.). However, it would be difficult to incorporate
probabilistic information, and that models can be incorrect and still disagree by predicting different
options. In other words, it suffers from the same issues as error consistency, and we found it more
difficult to extend.

Why not use regression analysis? We could have performed a multinomial regression using the
probabilities of the first model to predict probabilities of the second model, using this predictability
as a measure of similarity. However, it is unclear whether a linear model would be enough. Ideally
this prediction should also be contextualized on the input sample, but for this we would need a
model-based metric to obtain a representation of the input sample. We chose to stick to a more
interpretable, closed-form metric.

Why not use divergence metrics like KL or JSD? KL-divergence or Jensen–Shannon Distance
(JSD) can measure the divergence between probability distributions assigned by models to the
options with lucrative information-theoretic properties. Further, JSD is a valid distance metric, and
normalized between 0 and 1. We could use the mean JSD over all questions as a model similarity
metric. However, higher-accuracy models are expected to have lower JSD simply because they have
more correct answers, i.e, end up assigning more probability mass to correct options across samples.
Retaining the information-theoretic properties of JSD while adjusting for chance agreement due to
accuracy remains an interesting open problem.

Why not use JSD of the two distributions instead of overlap in computing CAPA?: We could
have plugged 1 − JSD into cpobs in the κp formula. It is also possible to define cpexp by computing
JSD between the two independent model distributions defined and subtracting from 1. However,
JSD instead of probabilistic overlap is not intuitively interpretable, especially when divided by the
possible excess agreement as in κp. cpobs computes the expected agreement when sampling from both
models based on the probability distribution they assign to the options. Intuitively, it gives us the
fraction of times the two models would agree if we kept sampling predictions from these distributions
infinitely.
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A.5 PROBABILISTIC VERSIONS OF POPULAR AGREEMENT METRICS

We now provide probabilistic versions of Cohen’s κ , Scott’s π, and Fleiss’ κF , so that the interested
reader can contrast them with CAPA.

Probabilistic Cohen’s κ One can obtain a probabilistic Cohen’s κ by computing P0 as cpobs,
therefore accounting for the observed agreement based on model output probabilities. While Pe =∑C

i=1
1

|D|
∑D

x=1 p1(ci)x · 1
|D|

∑D
x=1 p2(ci)x where we compute the product of marginals for each

class.

Probabilistic Scott’s π Similarly to Cohen’s κ to compute the observed agreement probabilistically
we compute the average product across probabilities for 2 models, meaning P0 becomes cpobs. While
we adjust Pe computation as follows: Pe =

∑C
i=1(

1
2 (

1
|D|

∑D
x=1 p1(ci)x + 1

|D|
∑D

x=1 p2(ci)x))
2,

where we now compute the sum of the marginal probabilities per class as we assume that both models
have a shared marginal distribution.

Probablistic Fleiss’ Kappa (κF ): It extends the cobs−cexp

1−cexp
formula to more than two models, where

the observed and chance agreement is computed across pairs of two in the set of models. Like π it
assumes chance predictions are sampled from a common combined distribution. While generally
Fleiss’ Kappa allows a partial random subset of annotators for each question, in our work we assume
all models annotate all questions. Let M be the number of models, and |C| be the number of classes.
Let mxi be the number of models that put sample x in class i. Let Px = 1

M(M−1)

∑
i∈C mxi(mxi−1)

be the proportion of observed pairwise agreements for each question. cobs =
1

|D|
∑

x∈D Px. For the

chance agreement, cexp =
∑

i∈C(
∑

1≤j≤M pj(i)

M )2.

Let M be the number of models, and |C| be the number of classes. Let mxi be the number of
models that put sample x in class i. Let Px = 1

M(M−1)

∑
i∈C mxi(mxi − 1) be the proportion of

observed pairwise agreements for each question. cobs =
1

|D|
∑

x∈D Px. For the chance agreement,

cexp =
∑

i∈C(
∑

1≤j≤M pj(i)

M )2.

A.6 THEORETICAL BOUNDS FOR CAPA

Bounds for cpobs. Compared to Geirhos et al. (2020) the resulting observed agreement is strictly
greater than 0, as all probabilities are positive values, and strictly smaller than 1, as the sum of
probability products is strictly smaller than the sum of probabilities:

0 < cpobs < 1 (15)

Theorem: If 0 < a < 1 and 0 < b < 1, and a+ b = 1, then a2 + b2 < a+ b

Proof:

a2 + b2 < a+ b

a2 − a+ b2 − b < 0

a(a− 1) + b(b− 1) < 0

For 0 < a < 1, a > 0 and a− 1 < 0, therefore, a(a− 1) < 0. For 0 < b < 1, b > 0 and b− 1 < 0,
therefore b(b − 1) < 0. Since a(a − 1) < 0 and b(b − 1) < 0, their sum will also be negative
a(a− 1) + b(b− 1) < 0, this implies that indeed a2 + b2 < a+ b.

Bounds for cpexp. The lower bound for cpexp is when the first term approaches zero and the scaling
fraction approach 0, thus resulting in cpexp = 0. The upper bound is maximized when both terms are
maximized, but as the second term is the inverse of the first times a scaling factor, the maximum
upper bound is 1 (as p1 · p2 → 1, (1− p1) · (1− p2)→ 0), resulting in:

0 < cpexp < 1 (16)

Bounds for κp. The upper bound for κp is 1. In particular, κp will always be strictly smaller than 1,
but approaching it in the limit.
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Theorem: Given κp = 1. Then by definition:

Proof:

1 =
cpobs − cpexp

1− cpexp

1− cpexp = cpobs − cpexp

1 = cpobs

However, as cpobs < 1, κp < 1.

Although the above implies that CAPA does not obtain ’perfect agreement’ as originally defined by
Cohen’s k, we show that this is not a concern for our metric as (1) when model probability for the
correct class approach 1, κp → 1 and (2) using probabilities allows us to capture observed agreement
at a more precise level:

1. Theorem: Given probabilities [a,b] and [c,d], where a, c → 1 and conversely b, d → 0,
κp → 1:

Proof:

cpobs = a · c+ b · d
as a · c → 1 and b · d → 0

cpobs → 1

which confirms κp → 1.

2. Geirhos et al. (2020) computes cobs as cobsi,j =
ei,j
n where ei,j is the number of equal

responses. As such, cobsi,j is independent of the observed output probabilities. However,
for a model pair with output probabilities [0.999.. , 0.000..1] versus [0.8. 0.2] (assume the
same for both models), we would like the first case to have a higher observed agreement
than the second, but Geirhos et al. (2020) fails to capture this, while cpobs does:

Theorem: Given two probabilities [a,b] and [c,d] where 0 < a, b, c, d < 1, a + b = 1,
c+ d = 1, and a > c, a > d, c > d, b < d, indicates that a · a+ b · b > c · c+ d · d

Proof:

a · a+ b · b > c · c+ d · d
a2 + (1− a)2 > c2 + (1− c)2

a2 + (1− a)2 − (c2 + (1− c)2) > 0

2a2 − 2c2 − 2a+ 2c > 0

2(a− c)(a+ c− 1) > 0

(a− c)(a+ c− 1) > 0

as a > c ⇒ (a− c) > 0

as a > d and c+ d = 1 ⇒ d = 1− c, a > 1− c ⇒ a+ c > 1, thus,⇒ (a+ c− 1) > 0,

therefore, a · a+ b · b > c · c+ d · d.

The lower bound for κp is -1. In particular, κp will always be strictly greater than -1.

Theorem: κp ≥ −1, given 0 < cpexp < 1, and 0 < cpobs < 1.
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Proof:

cpobs − cpexp

1− cpexp
≥ −1

cpobs − cpexp ≥ −(1− cpexp)

cpobs + 1− 2cpexp ≥ 0

cpobs ≥ 2cpexp − 1

minimal possible cpobs → 0 (complete disagreement)
0 ≥ 2cpexp − 1

1 ≥ 2cpexp

0.5 ≥ cpexp

therefore, κp ≥ −1. Even though, the theoretical lower bound for κp = −1, to achieve κp = −1 in
practice cpobs must be 0 (both models perfectly oppose each other), leading that cpobs = 2cpexp − 1,→
cpexp = 0.5. As cpobs is computed based on probabilities its value is cobs < 1, therefore, the actual
lower bound for κp > −1.

Altogether, the bounds for CAPA are as follows:

−1 < κp < 1 (17)

A.7 CAPA COMPARISON WITH OTHER INTER-RATER METRICS

Numerical Example For a simple mathematical example consider two models with 2 data sam-
ples with the following probability distributions, model 1 = [[0.9,0.1],[0.8, 0.2]] and model 2 =
[[0.7,0.3],[0.6, 0.4]]. The underlying ground truth index is [0,1]. For Cohen’s k and Scott’s π we treat
this is example as a binary classification with option A and B, converting the probabilities to model
1= [A,A], model 2 = [A, A] (these metrics do not take accuracy into account). The accuracy for both
models is 50%. In table 5 we report the computed similarity for each metric as well specify the exact
computation values. As it can be noted, all other metrics suffer from the following limitations: (1)
Cohen’s κ and Scott’s π treat the problem as a classification, as such both metrics report that the
similarity between models is 0.00, indicating no relationship as Po = Pe, (2) Probabilistic versions of
the metrics slightly deviate from 0.00 however still undermine model similarity, (3) Error consistency
over estimates model similarity by ignoring model output probabilities in its cobs calculation. As
such, only CAPA is able to accurately account for the observed sample level similarity across the two
models.

Table 5: Numerical Example

Metric Similarity Computation

κ 0.00 Po = 2
2 = 1.0, Pe =

2
2 · 2

2 + 0
2 · 0

2 = 1.0
Probabilistic κ 0.01 Po = 1

2 (0.9 · 0.7 + 0.1 · 0.3 + 0.8 · 0.6 + 0.2 · 0.4) = 0.61
Pe =

0.9+0.8
2 · 0.7+0.6

2 + 0.1+0.2
2 · 0.3+0.4

2 = 0.605
π 0.00 Po = 1.00, Pe = ( 2+2

2·2 )
2 + ( 0+0

2·2 )
2 = 1.0

Probabilistic π −0.04 Po = 1
2 (0.9 · 0.7 + 0.1 · 0.3 + 0.8 · 0.6 + 0.2 · 0.4) = 0.61

Pe = (( 0.9+0.8
2 + 0.7+0.6

2 ) 12 )
2 + (( 0.1+0.2

2 + 0.3+0.4
2 ) 12 )

2 = 0.625
error consistency 1.00 cobs = 1.00, cexp = 0.5 · 0.5 + (1− 0.5)(1− 0.5) = 0.5

CAPA 0.21 cpobs =
1
2 (0.9 · 0.7 + 0.1 · 0.3 + 0.8 · 0.6 + 0.2 · 0.4) = 0.61

p1 = 1
2 (0.9 + 0.2) = 0.55, p2 = 1

2 (0.7 + 0.4) = 0.55
cexp = 0.55 · 0.55 + 1

2
2

2−1 (1− 0.55)(1− 0.55) = 0.51

Simulation Experiment Furthermore, we design a simulation experiment to compare the ’behavior’
of the above listed inter-rater metrics with our novel contribution CAPA. In particular, we limit the
simulation to a binary classification problem as standard metrics like Cohen’s k and Scott’s π are
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ill-suited for multiple choice question settings. In total we investigate the performance of 4 metrics:
Cohen’s k Probabilistic, Scott’s π Probabilistic, Error consistency, and CAPA. We simulate N=10000
observations for 2 models. For the first model we set it’s accuracy to 90%, it always favors the 1st
option, and has a high calibration, 0.99, meaning the model is highly confident in it’s predictions
(e.g. single data point is [0.99, 0.01]). For the second model we iteratively increase it’s accuracy
by adjusting it’s calibration from 0.01 to 0.99 for the first option, as such, making the models more
similar artificially.

The first observation from the results reported in Fig. 5 is that both standard inter-rater metrics,
Cohen’s κ and Scott’s π (even when adjusted to take into account probabilities) are ill suited for
the present use-case: capturing model similarity. The main issue stems from the fact that the
computation of Pe if simply adjusted to probabilistic setting without taking into account model
accuracy, obtains a similar computational value as Po (in this case equal to cpobs). P p

e computes
marginal class probabilities as indicated in Section A.5, which is ill suited when the model attributes
all it’s probability mass to a single option (always prefers option A in MCQ setting). Furthermore,
whilst error consistency improves upon Cohen’s κ and Scott’s π it over estimates model similarity. In
particular, when both models reach 90% accuracy error consistency reports perfect agreement, while
in reality model output probabilities differ, [0.99, 0.01] and [0.65, 0.35] respectively. As such, our
metric is the only one that is able to capture model observed agreement cpobs increasing beyond model
accuracy levels and reaching 1 when models are highly calibrated, e.g. [0.99, 0.01] and [0.99, 0.01].

Figure 5: Metric comparison when models tend towards agreement. We compare different metric
values for two models in a binary setting. For first model we set 90% accuracy and calibration to
0.99 (meaning the model is highly confident in its answers). For the second model, we increase it’s
calibration from 0.01 to 0.99 to approach the same distribution as the first model. On y-axis we are
plotting metric value on x-axis we are reporting p for the second model which as the model becomes
more calibrated approaches accuracy of the first model.
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Figure 6: Metric comparison when models tend
towards disagreement (Read plot from right to
left). We compare different metric values for two
models in a binary setting. For the first model,
we set accuracy to 90% and calibration to 0.99
(the model is highly confident in its answers).
For the second model, we incrementally increase
its disagreement with model one by pushing its
probability mass to the second option and in-
creasing its calibration to 0.99.

Figure 7: Metric comparison when models tend
towards disagreement with adjusted κp. Repli-
cation of fig. 6 but with adjusted κp as as κ̂p,
computation following eq. 18.

Limitations of CAPA. In addition, we investigated the ’behavior’ of the above listed metrics as the
models become increasingly dissimilar. In this set up we change that the second model always prefers
the second option. Thus, by iteratively increasing its calibration we obtain models that maximally
differ in their probability distribution, e.g. [0.99, 0.01] and [0.01, 0.99] respectively. As such, also
the accuracy of the second model decreases overtime from random chance (50%) to 0.10 %, and we
would like to obtain metric of -1. As it can be seen in Fig. 6, CAPA never reaches -1. Importantly,
the same issue also can be observed for error consistency. This observation comes from the fact
that both metrics use the original Cohen’s κ equation. As explained in Section A.6, κp = −1 iff
cpexp = 0.5. For probabilistic Cohen’s κ we see the same observation as in Fig. 5, the marginal
probability computation is not suited for the given problem. Interestingly, probabilistic Scott’s π is
the only metric that approaches -1. Whilst a desired final outcome, Scott’s π overestimates model
disagreement when model probabilities are independent, [0.99, 0.01] and [0.5, 0.5].

Possible solution for lower bound. In the context of the current work, the above limitation is
not an issue, as models are trained to maximize accuracy, hence, there will always be some level of
agreement. However, if CAPA would be used in settings like preference judgments, we would advise
to adjust the computation of cpexp as described by Safak (2020):

κp =


cpobs−cpexp

1−cpexp
cpobs ≥ cpexp

cpobs−cpexp

cpexp−cpobs-min
cpobs < cpexp

(18)

where cpobs-min is computed as cpobs-min = max(0, p1 + p2 − 1). This resolves the observed limitation
of CAPA over the negative domain, see Fig. 7. Now, as the models become increasingly dissimilar
κ̂p approaches -1.

B LLM-AS-A-JUDGE

In this section, we extend the LLM-as-a-judge experiments introduced in Section 3. First, we
compare CAPA with the related concept of error consistency (Geirhos et al., 2020), demonstrating its
advantages in this context. We then present additional experiments to analyze the quality and behavior
of the judges, as well as the performance of the evaluated models on the open-style MMLU-Pro
benchmark.
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To validate our findings, we provide detailed results from the statistical tests summarized in Table 6.
Specifically, we conduct Shapiro-Wilk and Breusch-Pagan tests to confirm that the assumptions of
normality and homoscedasticity required for partial correlation and multiple regression analyses are
satisfied.

Additionally, we outline the experimental setup, including: (1) the filtering process for MMLU-Pro
to obtain open-style questions only, (2) the methodology for free-form chain-of-thought inference
on this benchmark, and (3) the design of the LLM-as-a-judge evaluation framework. To ensure full
reproducibility, we include all prompts and specify the language models used as judges and evaluated
models at the end of this section.

B.1 COMPARISON OF JUDGE SCORES FOR OUR SIMILARITY VS ERROR CONSISTENCY

In Figure 8 we compare the relationship of judgment scores on the filtered MMLU-Pro dataset using
different similarity metrics. On the left, we use CAPA and on the right, we compare against the
original error consistency of Geirhos et al. (2020). In both cases, we can see a correlation between
the judge scores and the similarity of the LLM-as-a-judge and the model being evaluated. However,
the relationship for CAPA is stronger, as shown by a mean Pearson r of 0.9 which is greater than the
one of 0.85 if error consistency is used.

Figure 8: Judgment Scores vs CAPA and vs Error Consistency. We compare the relationship of
judge scores on the filtered MMLU-Pro to our improved error consistency and to the original version
of Geirhos et al. (2020).

B.2 EVALUATING JUDGE SCORES AGAINST GROUND-TRUTH

B.2.1 MCQ GROUND-TRUTH

Since we source MCQ evaluations from Huggingface OpenLLM Leaderboard 2 throughout the paper,
we use their default method to obtain probabilities across MCQ options. For MMLU-Pro and BBH
they report the log-likelihood of each option. We apply a softmax to normalize these to 1. We checked
this leads to calibrated predictions for base models and overconfident predictions for instruct models,
consistent with prior observations about uncertainty of language models (OpenAI, 2024).

B.2.2 JUDGE ENSEMBLE WITH ACCESS TO REFERENCE ANSWERS

Since we are evaluating model responses given in open style on filtered MMLU-Pro questions using
LM-as-a-judge, it is important to investigate whether the responses of the evaluated models are
reasonable. To ensure that qualitative differences between models of different sizes and families
remain, we compare their performance using free-form responses to the multiple-choice accuracy on
the same set of questions. This is shown in Figure 9. Using the same question base for free-form
and MCQ evaluation draws a direct connection between functional similarity and the behavior of
LLM-as-judges. Focusing on a setting where we have access to ground-truth responses is important
to accurately analyze the affinity biases of different LMs when used as evaluators.
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Figure 9: Accuracy of free-form responses compared with multiple-choice accuracy on MMLU-
Pro. The free-form responses were rated using an ensemble of five capable LM judges. Each judge
was given access to the original MMLU-Pro reference answers and their decisions whether a given
response is correct or not were aggregated using majority voting.

Experimental Setup Every response is evaluated using an ensemble of five capable LMs used as
LLM-as-a-judge from a range of different model families. The judge is given access to the question,
the model’s free-form response and all MMLU-Pro reference options. For each option we indicate
if it is the correct or a wrong option. Using this information, the judge has to decide whether the
model’s response is correct or wrong. The prompt can be seen in Prompt B.8.2. For every per-sample
response, we aggregate the five binary decisions using majority voting. Since there are five judges
and it is a binary decision task, there are no ties. A qualitative analysis has shown the high quality of
this process in determining the correctness of responses. The judges used are gemma-2-27b-it,
Qwen2.5-32B-Instruct, Qwen2.5-72B-Instruct, Llama-3.1-70-Instruct and
Llama-3.3-70B-Instruct (Gemma Team, 2024; Qwen Team, 2025; Llama Team, 2024a;c).

Open-style and Multiple Choice Correlate As we can see in Figure 9, there is a high alignment
between the performance in MCQ style compared to free-form. For the majority of models, the
ordering with MCQ accuracy and open-style accuracy is very similar. There is a consistent trend that
performance on the more challenging open evaluation is approximately 5-10% lower. The exception
is the instruction-tuned models from the Qwen2.5 and Gemma-2 model families that performed
particularly well when giving free-form responses. For all other model families, the instruction tuned
and base models show similar performance.

B.2.3 JUDGE SCORE VALIDITY AGAINST REFERENCE-BASED ENSEMBLE

To evaluate the quality of different judges and to analyze their similarities and differences, we
compare judge scores to the correctness assessments of the previously introduced ensemble of judges.
The results are shown in Figure 10. As we can see, most models used as LLM-as-a-judge are able to
correctly rank capable and less capable models.

Capability-Dependent Affinity Effects Even if the ordinal ranking of evaluated models is mostly
accurate, there is a consistent trend that too many wrong responses are judged as being right. The
exact behavior varies from judge to judge. Consider the small Llama-3.1-8B-Instruct for
instance: it has a consistent positivity bias and ranks too many wrong responses as correct, even for
models of low capability. Qwen2.5-72B-Instruct on the other hand appears to be much more
capable in identifying the wrong responses of low-capability models. However, as the evaluated LMs
become stronger, it exhibits the same bias as the smaller Llama judge. This aligns with the findings
of Section 3 that LLM-as-judges show an affinity bias, because more capable models are also more
similar to Qwen2.5-72B-Instruct.

B.3 STATISTICAL TESTING

This section provides detailed statistical validation of the affinity bias observed in Section 3. We
confirm that judge-model similarity correlates with judgment scores even after controlling for MCQ
ground-truth accuracy, using partial correlation and multiple regression. Additionally, we verify the
statistical assumptions (normality, homoscedasticity) required for these tests across all nine judges.
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Figure 10: Judgment Scores compared with the ensemble judgment accuracy given access to
reference answers. We compare the judgment scores of each judge using only their own knowledge
and capabilities to the rating of a judge ensemble that has access to the ground-truth options. The
latter is a good proxy of the real correctness of responses.

B.3.1 QUANTIFYING CORRELATION STRENGTH USING PARTIAL CORRELATION

We compute partial correlations between judge scores and judge-model similarity while control-
ling for ground-truth accuracy. All judges show statistically significant positive correlations (Ta-
ble B.3.1), with coefficients ranging from r = 0.35 (Llama-3.3-70B-Instruct) to r = 0.65
(Llama-3.1-8B-Instruct). The strongest correlations occur for smaller judges from the same
gemma-2 family (gemma-2-27b-it and gemma-2-9b-it), while larger Qwen2.5 judges ex-
hibit moderate correlations (r = 0.42 and r = 0.43). All p-values remain significant (p < 0.05),
with the most robust results for the larger gemma judge (p = 0.00001).

Detailed Partial Correlation Results
Judge n r CI 95% p-val

Qwen2.5-7B-Instruct 38 0.60043 [0.34 0.77] 0.00009
Qwen2.5-32B-Instruct 38 0.43376 [0.13 0.66] 0.00732
Qwen2.5-72B-Instruct 38 0.42353 [0.12 0.66] 0.00900
Meta-Llama-3.1-8B-Instruct 38 0.65172 [0.42 0.81] 0.00001
Meta-Llama-3.1-70B-Instruct 38 0.44770 [0.14 0.67] 0.00546
Llama-3.3-70B-Instruct 38 0.34882 [0.03 0.6 ] 0.03435
gemma-2-9b-it 38 0.64639 [0.41 0.8 ] 0.00002
gemma-2-27b-it 38 0.64808 [0.41 0.8 ] 0.00001
Ministral-8B-Instruct-2410 39 0.59745 [0.34 0.77] 0.00007

B.3.2 MULTIPLE REGRESSION

We perform multiple regression analysis with judgment scores as the dependent variable, using model
similarity and ground-truth accuracy from the filtered set of MCQ questions as independent variables.
Key results across all judges include:

• Coefficient Significance: Both similarity and accuracy show statistically signifi-
cant effects (p < 0.05) for all judges. The similarity coefficients range from
β = 0.35 for the large Llama-3.3-70B-Instruct to β = 1.15 for the
smaller Meta-Llama-3.1-8B-Instruct, while accuracy coefficients span β =
0.43 for the small Ministral-8B-Instruct-2410 to β = 1.04 for the large
Qwen2.5-72B-Instruct.

• Model Fit: All regressions achieve high explanatory power with adjusted R2 values between
0.87 (Ministral-8B) and 0.92 (gemma-2-9b-it).

• Assumption Verification:
– Normality: Residuals are normally distributed (Shapiro-Wilk p > 0.05) for 7 of

9 judges. Exceptions: Meta-Llama-3.1-8B-Instruct (p = 0.002) and
Ministral-8B (p = 0.012).
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– Homoscedasticity: All models satisfy constant variance assumptions (Breusch-Pagan
p > 0.05).

For example, the Qwen2.5-7B-Instruct judge model shows:

• Significant positive effects for both similarity (β = 0.59, p < 0.001) and accuracy (β =
0.51, p < 0.001)

• Strong model fit (R2 = 0.91, F (2, 35) = 182.9, p = 2.95× 10−19)

• Normally distributed residuals (Shapiro-Wilk p = 0.690)

Full regression outputs for all judges are provided in the Tables below. We present detailed regression
results for each judge model. Each judge’s statistical analysis includes three components: (1) Test
summary, (2) Coefficient estimates, and (3) Diagnostic statistics. The consistent significance of
similarity coefficients confirms that affinity bias persists even when controlling for actual model
capability.

Judge: Qwen2.5-7B-Instruct (Qwen Team, 2025)

Model: OLS Adj. R-squared: 0.908
Dependent Variable: scores AIC: -134.3091
Date: 2025-01-30 11:42 BIC: -129.3963
No. Observations: 38 Log-Likelihood: 70.155
Df Model: 2 F-statistic: 182.9
Df Residuals: 35 Prob (F-statistic): 2.95e-19
R-squared: 0.913 Scale: 0.0015837

Coef. Std.Err t P¿—t— 95% CI

Intercept 0.092 0.019 4.885 0.000 0.054 0.131
similarity 0.586 0.132 4.442 0.000 0.318 0.853
accuracy 0.506 0.098 5.185 0.000 0.308 0.704

Omnibus: 2.363 Durbin-Watson: 2.097
Prob(Omnibus): 0.307 Jarque-Bera (JB): 1.400
Skew: -0.437 Prob(JB): 0.496
Kurtosis: 3.348 Condition No.: 27

Normality & Homoscedasticity: Shapiro-Wilk Test for Normality: Statistic=0.979, (p-value=0.690).
Residuals are likely normally distributed. Breusch-Pagan test for homoscedasticity: Lagrange
Multiplier statistic: 0.456 (p-value: 0.796), F-value: 0.213 (p-value: 0.809). No evidence of
heteroscedasticity (the residuals have a constant variance, homoscedasticity met).

Judge: Qwen2.5-32B-Instruct (Qwen Team, 2025)

Model: OLS Adj. R-squared: 0.907
Dependent Variable: scores AIC: -114.7801
Date: 2025-01-30 11:42 BIC: -109.8674
No. Observations: 38 Log-Likelihood: 60.390
Df Model: 2 F-statistic: 182.2
Df Residuals: 35 Prob (F-statistic): 3.14e-19
R-squared: 0.912 Scale: 0.0026477

Coef. Std.Err t P¿—t— 95% CI

Intercept 0.045 0.028 1.620 0.114 -0.011 0.101
similarity 0.414 0.145 2.848 0.007 0.119 0.709
accuracy 0.861 0.132 6.513 0.000 0.593 1.129
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Omnibus: 0.227 Durbin-Watson: 2.052
Prob(Omnibus): 0.893 Jarque-Bera (JB): 0.411
Skew: 0.127 Prob(JB): 0.814
Kurtosis: 2.558 Condition No.: 25

Normality & Homoscedasticity: Shapiro-Wilk Test for Normality: Statistic=0.989, (p-value=0.965).
Residuals are likely normally distributed. Breusch-Pagan test for homoscedasticity: Lagrange
Multiplier statistic: 3.097 (p-value: 0.213), F-value: 1.553 (p-value: 0.226). No evidence of
heteroscedasticity (the residuals have a constant variance, homoscedasticity met).

Judge: Qwen2.5-72B-Instruct (Qwen Team, 2025)

Model: OLS Adj. R-squared: 0.913
Dependent Variable: scores AIC: -103.8097
Date: 2025-01-30 11:42 BIC: -98.8969
No. Observations: 38 Log-Likelihood: 54.905
Df Model: 2 F-statistic: 195.4
Df Residuals: 35 Prob (F-statistic): 1.03e-19
R-squared: 0.918 Scale: 0.0035339

Coef. Std.Err t P¿—t— 95% CI

Intercept 0.064 0.032 2.038 0.049 0.000 0.128
similarity 0.474 0.171 2.766 0.009 0.126 0.822
accuracy 1.043 0.156 6.702 0.000 0.727 1.359

Omnibus: 0.139 Durbin-Watson: 1.776
Prob(Omnibus): 0.933 Jarque-Bera (JB): 0.286
Skew: -0.124 Prob(JB): 0.867
Kurtosis: 2.655 Condition No.: 25

Normality & Homoscedasticity: Shapiro-Wilk Test for Normality: Statistic=0.989, (p-value=0.968).
Residuals are likely normally distributed. Breusch-Pagan test for homoscedasticity: Lagrange
Multiplier statistic: 3.562 (p-value: 0.168), F-value: 1.810 (p-value: 0.179). No evidence of
heteroscedasticity (the residuals have a constant variance, homoscedasticity met).

Judge: Meta-Llama-3.1-8B-Instruct (Llama Team, 2024a)

Model: OLS Adj. R-squared: 0.881
Dependent Variable: scores AIC: -114.9610
Date: 2025-01-30 11:42 BIC: -110.0482
No. Observations: 38 Log-Likelihood: 60.481
Df Model: 2 F-statistic: 138.6
Df Residuals: 35 Prob (F-statistic): 2.34e-17
R-squared: 0.888 Scale: 0.0026351

Coef. Std.Err t P¿—t— 95% CI

Intercept 0.327 0.023 14.309 0.000 0.281 0.374
similarity 1.149 0.226 5.083 0.000 0.690 1.608
accuracy 0.532 0.106 5.035 0.000 0.317 0.746

Omnibus: 23.344 Durbin-Watson: 2.611
Prob(Omnibus): 0.000 Jarque-Bera (JB): 52.336
Skew: -1.424 Prob(JB): 0.000
Kurtosis: 7.994 Condition No.: 31

Normality & Homoscedasticity: Shapiro-Wilk Test for Normality: Statistic=0.892, (p-value=0.002).
Residuals are likely not normally distributed. Breusch-Pagan test for homoscedasticity: Lagrange
Multiplier statistic: 4.186 (p-value: 0.123), F-value: 2.166 (p-value: 0.130). No evidence of
heteroscedasticity (the residuals have a constant variance, homoscedasticity met).
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Judge: Meta-Llama-3.1-70B-Instruct (Llama Team, 2024a)

Model: OLS Adj. R-squared: 0.903
Dependent Variable: scores AIC: -103.3457
Date: 2025-01-30 11:42 BIC: -98.4329
No. Observations: 38 Log-Likelihood: 54.673
Df Model: 2 F-statistic: 172.4
Df Residuals: 35 Prob (F-statistic): 7.60e-19
R-squared: 0.908 Scale: 0.0035773

Coef. Std.Err t P¿—t— 95% CI

Intercept 0.140 0.031 4.533 0.000 0.077 0.202
similarity 0.615 0.208 2.962 0.005 0.193 1.036
accuracy 0.917 0.157 5.827 0.000 0.598 1.237

Omnibus: 4.624 Durbin-Watson: 1.984
Prob(Omnibus): 0.099 Jarque-Bera (JB): 3.237
Skew: -0.616 Prob(JB): 0.198
Kurtosis: 3.724 Condition No.: 28

Normality & Homoscedasticity: Shapiro-Wilk Test for Normality: Statistic=0.974, (p-value=0.502).
Residuals are likely normally distributed. Breusch-Pagan test for homoscedasticity: Lagrange
Multiplier statistic: 2.975 (p-value: 0.226), F-value: 1.487 (p-value: 0.240). No evidence of
heteroscedasticity (the residuals have a constant variance, homoscedasticity met).

Judge: Llama-3.3-70B-Instruct Llama Team (2024c)

Model: OLS Adj. R-squared: 0.884
Dependent Variable: scores AIC: -94.3204
Date: 2025-01-30 11:42 BIC: -89.4077
No. Observations: 38 Log-Likelihood: 50.160
Df Model: 2 F-statistic: 142.6
Df Residuals: 35 Prob (F-statistic): 1.49e-17
R-squared: 0.891 Scale: 0.0045363

Coef. Std.Err t P¿—t— 95% CI

Intercept 0.162 0.036 4.544 0.000 0.089 0.234
similarity 0.487 0.221 2.202 0.034 0.038 0.935
accuracy 1.022 0.177 5.770 0.000 0.662 1.381

Omnibus: 4.168 Durbin-Watson: 1.898
Prob(Omnibus): 0.124 Jarque-Bera (JB): 2.830
Skew: -0.584 Prob(JB): 0.243
Kurtosis: 3.652 Condition No.: 27

Normality & Homoscedasticity: Shapiro-Wilk Test for Normality: Statistic=0.978, (p-value=0.642).
Residuals are likely normally distributed. Breusch-Pagan test for homoscedasticity: Lagrange
Multiplier statistic: 2.500 (p-value: 0.287), F-value: 1.232 (p-value: 0.304). No evidence of
heteroscedasticity (the residuals have a constant variance, homoscedasticity met).

Judge: gemma-2-9b-it (Gemma Team, 2024)

Model: OLS Adj. R-squared: 0.917
Dependent Variable: scores AIC: -122.8074
Date: 2025-01-30 11:42 BIC: -117.8946
No. Observations: 38 Log-Likelihood: 64.404
Df Model: 2 F-statistic: 206.0
Df Residuals: 35 Prob (F-statistic): 4.36e-20
R-squared: 0.922 Scale: 0.0021435
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Coef. Std.Err t P¿—t— 95% CI

Intercept 0.134 0.021 6.356 0.000 0.091 0.177
similarity 0.763 0.152 5.012 0.000 0.454 1.072
accuracy 0.688 0.097 7.129 0.000 0.492 0.884

Omnibus: 6.751 Durbin-Watson: 1.901
Prob(Omnibus): 0.034 Jarque-Bera (JB): 5.969
Skew: -0.621 Prob(JB): 0.051
Kurtosis: 4.492 Condition No.: 25

Normality & Homoscedasticity: Shapiro-Wilk Test for Normality: Statistic=0.959, (p-value=0.179).
Residuals are likely normally distributed. Breusch-Pagan test for homoscedasticity: Lagrange
Multiplier statistic: 2.550 (p-value: 0.279), F-value: 1.259 (p-value: 0.297). No evidence of
heteroscedasticity (the residuals have a constant variance, homoscedasticity met).

Judge: gemma-2-27b-it (Gemma Team, 2024)

Model: OLS Adj. R-squared: 0.919
Dependent Variable: scores AIC: -121.3075
Date: 2025-01-30 11:42 BIC: -116.3947
No. Observations: 38 Log-Likelihood: 63.654
Df Model: 2 F-statistic: 212.0
Df Residuals: 35 Prob (F-statistic): 2.76e-20
R-squared: 0.924 Scale: 0.0022298

Coef. Std.Err t P¿—t— 95% CI

Intercept 0.191 0.022 8.655 0.000 0.146 0.235
similarity 0.705 0.140 5.034 0.000 0.421 0.989
accuracy 0.677 0.106 6.407 0.000 0.462 0.892

Omnibus: 8.920 Durbin-Watson: 1.882
Prob(Omnibus): 0.012 Jarque-Bera (JB): 8.659
Skew: -0.791 Prob(JB): 0.013
Kurtosis: 4.722 Condition No.: 24

Normality & Homoscedasticity: Shapiro-Wilk Test for Normality: Statistic=0.945, (p-value=0.062).
Residuals are likely normally distributed. Breusch-Pagan test for homoscedasticity: Lagrange
Multiplier statistic: 1.645 (p-value: 0.439), F-value: 0.792 (p-value: 0.461). No evidence of
heteroscedasticity (the residuals have a constant variance, homoscedasticity met).

Judge: Ministral-8B-Instruct-2410 (Mistral AI, 2024)

Model: OLS Adj. R-squared: 0.868
Dependent Variable: scores AIC: -146.8086
Date: 2025-01-30 11:42 BIC: -141.8179
No. Observations: 39 Log-Likelihood: 76.404
Df Model: 2 F-statistic: 125.6
Df Residuals: 36 Prob (F-statistic): 5.80e-17
R-squared: 0.875 Scale: 0.0012608

Coef. Std.Err t P¿—t— 95% CI

Intercept 0.117 0.016 7.187 0.000 0.084 0.150
similarity 0.825 0.185 4.470 0.000 0.451 1.199
accuracy 0.432 0.063 6.803 0.000 0.303 0.560

Omnibus: 9.707 Durbin-Watson: 1.766
Prob(Omnibus): 0.008 Jarque-Bera (JB): 8.755
Skew: -0.999 Prob(JB): 0.013
Kurtosis: 4.180 Condition No.: 36
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Normality & Homoscedasticity:Shapiro-Wilk Test for Normality: Statistic=0.925, (p-value=0.012).
Residuals are likely not normally distributed. Breusch-Pagan test for homoscedasticity: Lagrange
Multiplier statistic: 1.270 (p-value: 0.530), F-value: 0.606 (p-value: 0.551). No evidence of
heteroscedasticity (the residuals have a constant variance, homoscedasticity met).

B.4 EXPERIMENTAL SETUP FOR FILTERING MMLU-PRO

We evaluate or models and judges on a set of questions that can be answered as MCQ as well as in
open-style without access to reference options. This benchmark is obtained by using the filtering
process proposed by Myrzakhan et al. (2024) on MMLU-Pro, whereas it was originally used to
filter MMLU (Hendrycks et al., 2021; Wang et al., 2024). Every question is evaluated twice using
a Qwen-2.5-32B-Instruct LM: first, it is judged in a binary way whether it is possible to
answer the question without access to the MCQ options. In the second iteration, the judge gives a
fine-grained confidence score. If either the binary decision is positive or the confidence is above a
threshold, the question becomes part of our filtered benchmark. After this filtering process, 8707 of
the original 12032 questions remain. The detailed prompts are described in Prompts B.8.5 and B.8.6.

B.5 EXPERIMENTAL SETUP TO PERFORM FREE-FORM INFERENCE ON FILTERED MMLU-PRO

To obtain the per-sample responses of every model on the filtered MMLU-Pro benchmark, we evaluate
them using a custom task on the LM Evaluation Harness (Gao et al., 2023). Whereas the MCQ results
from the Open LLM Leaderboard were generated using 5-shot evaluation without chain-of-thought
(CoT) prompt, we included CoTs when performing free-form inference (Myrzakhan et al., 2024).
This was necessary to ensure sufficient instruction following and response quality even for small base
models, because free-form generation is more challenging than MCQ evaluation, where access to
reference answers is given.

We modified every 5-shot CoT prompt by removing the answer options from the end of the question
and replacing every reference to them in the CoT with the corresponding answer text. An example
of this process is shown in Prompts B.8.3 and B.8.4. Our benchmark is implemented as a task for
the LM Eval Harness (Gao et al., 2023). Every CoT response is generated until a stop condition
is met. The final response that is judged is extracted using regex matching. We use vLLM as the
backend for the LM Eval Harness (Kwon et al., 2023). Even for instruction-tuned models, the
options --apply chat template and --fewshot as multiturn were omitted because
for the majority of LMs inspected the quality of responses decreased slightly to severely. However,
we did not thoroughly investigate whether this is the case for every single model.

B.6 EXPERIMENTAL SETUP FOR LLM-AS-A-JUDGE ON FILTERED MMLU-PRO

This section describes the setup of the experiment for Figure 2. On the x-axis we show the similarity
between our LLM-as-a-judge and the LM that is being evaluated, whereas the y-axis shows how the
given responses of that model were rated by the same judge. The list of judges is shown in Table 6
and the pool of models evaluated can be seen in Table 7.

For the computation of similarities, we use the logs of the official evaluation runs of Myrzakhan
et al. (2024) that are provided on huggingface.co. The set of responses is filtered to include only
those questions that were rated as answerable in open-style without access to the reference options,
as previously described in Section B.4. Using the logarithmic probabilities of the models for the
answer options of this set of questions, we compute CAPA and other similarities. In addition, for
each model-judge pair data samples where the ground truth option differed were excluded from the
final analysis, for the final sample count per pair see from table 8 to table 16.

Next, the judgment scores are obtained by prompting each LLM-as-a-judge to decide whether a
given response to a question is correct or not. To mimic more common, but ungrounded settings
for automatic AI evaluation, such as Arena-hard-auto or AlpacaEval 2.0, we do not provide the
judge with access to ground-truth responses or MCQ answer options (Li et al., 2024b; Dubois et al.,
2024). Since ground-truth responses for each question are available, it is possible to analyze the
affinity bias of different judges and determine if there is any unfair preference. The prompt given to
the judge is shown in Section B.8.1. Each final decision was given as token “0” (incorrect) or “1”
(correct). Instruction-following is exceptional for the models used as LLM-as-a-judge, so the amount
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of discarded samples due to invalid responses is negligible. Finally, the Judge Score of an evaluated
model is computed by averaging the judge decisions across the set of questions.

B.7 LIST OF JUDGES AND EVALUATED LANGUAGE MODELS

Our judge preference experiments were performed using nine high-capability, open-weight models
from four different model families. The models that represent the current state-of-the-art of open-
weight language models from very small up to models with 72 billion parameters. Whereas the
judges are all instruction-tuned, the list of evaluated models contains base models as well.

Whenever possible, we evaluated both the base and the instruction-tuned model for every combination
of size and model family. Sometimes this was not possible, because the base model’s weights were
not available on huggingface, evaluations on the Open LLM Leaderboard v2 were not provided or
the LM consistently crashed in vLLM when performing inference (Myrzakhan et al., 2024; Kwon
et al., 2023). The list below shows all models that are part of our experiments.

Table 6: LMs used as LLM-as-a-Judge

Judge Model Name
google/gemma-2-9b-it (Gemma Team, 2024)
google/gemma-2-27b-it (Gemma Team, 2024)
Qwen/Qwen2.5-7B-Instruct (Qwen Team, 2025)
Qwen/Qwen2.5-32B-Instruct (Qwen Team, 2025)
Qwen/Qwen2.5-72B-Instruct (Qwen Team, 2025)
meta-llama/Meta-Llama-3.1-8B-Instruct (Llama Team, 2024a)
meta-llama/Meta-Llama-3.1-70B-Instruct (Llama Team, 2024a)
meta-llama/Llama-3.3-70B-Instruct (Llama Team, 2024c)
mistralai/Ministral-8B-Instruct-2410 (Mistral AI, 2024)

B.8 PROMPTS

B.8.1 LM-JUDGE PROMPT WITHOUT REFERENCE ANSWER

Prompt for Free-Form Evaluation

Your task is to judge whether the given response to a
question is correct or not. You are only given a question
and the response you are judging.

Possible judgments:
"0": The response is incorrect.
"1": The response is correct.

Question: "[Insert the question here]"
Response: "[Insert the response here]"

To the best of your knowledge: Does the provided response
answer the question correctly? This is part of an automated
evaluation process, therefore you must only output a single
word: "0" or "1". Do not justify your decision.

Evaluation (0/1):
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Table 7: LMs Evaluated on the Filtered MMLU-Pro Benchmark

Model Name
Base Models Instruction-tuned Models

Gemma-2 Family (Gemma Team, 2024)
google/gemma-2-2b google/gemma-2-2b-it
google/gemma-2-9b google/gemma-2-9b-it
google/gemma-2-27b google/gemma-2-27b-it

SmolLM2 Family (Allal et al., 2024)
HuggingFaceTB/SmolLM2-135M-Instruct
HuggingFaceTB/SmolLM2-360M-Instruct

HuggingFaceTB/SmolLM2-1.7B HuggingFaceTB/SmolLM2-1.7B-Instruct

Llama 3.1/3.2/3.3 Model Family (Llama Team, 2024a;b;c)
meta-llama/Meta-Llama-3.1-8B meta-llama/Meta-Llama-3.1-8B-Instruct
meta-llama/Meta-Llama-3.1-70B meta-llama/Meta-Llama-3.1-70B-Instruct
meta-llama/Llama-3.2-1B meta-llama/Llama-3.2-1B-Instruct
meta-llama/Llama-3.2-3B meta-llama/Llama-3.2-3B-Instruct

meta-llama/Llama-3.3-70B-Instruct

Phi-4 Family (Microsoft Research, 2024)
microsoft/phi-4

Qwen2.5 Family (Qwen Team, 2025)
Qwen/Qwen2.5-0.5B Qwen/Qwen2.5-0.5B-Instruct
Qwen/Qwen2.5-1.5B Qwen/Qwen2.5-1.5B-Instruct
Qwen/Qwen2.5-3B Qwen/Qwen2.5-3B-Instruct
Qwen/Qwen2.5-7B Qwen/Qwen2.5-7B-Instruct
Qwen/Qwen2.5-14B Qwen/Qwen2.5-14B-Instruct
Qwen/Qwen2.5-32B Qwen/Qwen2.5-32B-Instruct
Qwen/Qwen2.5-72B Qwen/Qwen2.5-72B-Instruct

Falcon-3 Model Family (Technology Innovation Institute, 2024)
tiiuae/Falcon3-1B-Instruct

tiiuae/Falcon3-7B-Base tiiuae/Falcon3-7B-Instruct
tiiuae/Falcon3-10B-Base tiiuae/Falcon3-10B-Instruct
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Table 8: Final Sample Count (N) for Qwen2.5-7B-Instruct on Similarity Computation of Filtered
MMLU-Pro

judge model N

Qwen2.5-7B-Instruct HuggingFaceTB/SmolLM2-1.7B 8707
HuggingFaceTB/SmolLM2-1.7B-Instruct 8706
HuggingFaceTB/SmolLM2-135M-Instruct 8707
HuggingFaceTB/SmolLM2-360M-Instruct 8707
Qwen/Qwen2.5-0.5B 8707
Qwen/Qwen2.5-0.5B-Instruct 8707
Qwen/Qwen2.5-1.5B 8707
Qwen/Qwen2.5-1.5B-Instruct 8707
Qwen/Qwen2.5-14B 8707
Qwen/Qwen2.5-14B-Instruct 8707
Qwen/Qwen2.5-32B 8707
Qwen/Qwen2.5-32B-Instruct 8707
Qwen/Qwen2.5-3B 8707
Qwen/Qwen2.5-3B-Instruct 8707
Qwen/Qwen2.5-72B 8707
Qwen/Qwen2.5-72B-Instruct 8707
Qwen/Qwen2.5-7B 8707
google/gemma-2-27b 8702
google/gemma-2-27b-it 8702
google/gemma-2-2b 8702
google/gemma-2-2b-it 8685
google/gemma-2-9b 8702
google/gemma-2-9b-it 8702
meta-llama/Llama-3.2-1B 8707
meta-llama/Llama-3.2-1B-Instruct 8707
meta-llama/Llama-3.2-3B 8707
meta-llama/Llama-3.2-3B-Instruct 8707
meta-llama/Llama-3.3-70B-Instruct 8706
meta-llama/Meta-Llama-3.1-70B 8685
meta-llama/Meta-Llama-3.1-70B-Instruct 8685
meta-llama/Meta-Llama-3.1-8B 8685
meta-llama/Meta-Llama-3.1-8B-Instruct 8702
microsoft/phi-4 8706
tiiuae/Falcon3-10B-Base 8706
tiiuae/Falcon3-10B-Instruct 8706
tiiuae/Falcon3-1B-Instruct 8706
tiiuae/Falcon3-7B-Base 8706
tiiuae/Falcon3-7B-Instruct 8706
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Table 9: Final Sample Count (N) for Qwen2.5-32B-Instruct on Similarity Computation of Filtered
MMLU-Pro

judge model N

Qwen2.5-32B-Instruct HuggingFaceTB/SmolLM2-1.7B 8707
HuggingFaceTB/SmolLM2-1.7B-Instruct 8706
HuggingFaceTB/SmolLM2-135M-Instruct 8707
HuggingFaceTB/SmolLM2-360M-Instruct 8707
Qwen/Qwen2.5-0.5B 8707
Qwen/Qwen2.5-0.5B-Instruct 8707
Qwen/Qwen2.5-1.5B 8707
Qwen/Qwen2.5-1.5B-Instruct 8707
Qwen/Qwen2.5-14B 8707
Qwen/Qwen2.5-14B-Instruct 8707
Qwen/Qwen2.5-32B 8707
Qwen/Qwen2.5-3B 8707
Qwen/Qwen2.5-3B-Instruct 8707
Qwen/Qwen2.5-72B 8707
Qwen/Qwen2.5-72B-Instruct 8707
Qwen/Qwen2.5-7B 8707
Qwen/Qwen2.5-7B-Instruct 8707
google/gemma-2-27b 8702
google/gemma-2-27b-it 8702
google/gemma-2-2b 8702
google/gemma-2-2b-it 8685
google/gemma-2-9b 8702
google/gemma-2-9b-it 8702
meta-llama/Llama-3.2-1B 8707
meta-llama/Llama-3.2-1B-Instruct 8707
meta-llama/Llama-3.2-3B 8707
meta-llama/Llama-3.2-3B-Instruct 8707
meta-llama/Llama-3.3-70B-Instruct 8706
meta-llama/Meta-Llama-3.1-70B 8685
meta-llama/Meta-Llama-3.1-70B-Instruct 8685
meta-llama/Meta-Llama-3.1-8B 8685
meta-llama/Meta-Llama-3.1-8B-Instruct 8702
microsoft/phi-4 8706
tiiuae/Falcon3-10B-Base 8706
tiiuae/Falcon3-10B-Instruct 8706
tiiuae/Falcon3-1B-Instruct 8706
tiiuae/Falcon3-7B-Base 8706
tiiuae/Falcon3-7B-Instruct 8706
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Table 10: Final Sample Count (N) for Qwen2.5-72B-Instruct on Similarity Computation of Filtered
MMLU-Pro

judge model N

Qwen2.5-72B-Instruct HuggingFaceTB/SmolLM2-1.7B 8707
HuggingFaceTB/SmolLM2-1.7B-Instruct 8706
HuggingFaceTB/SmolLM2-135M-Instruct 8707
HuggingFaceTB/SmolLM2-360M-Instruct 8707
Qwen/Qwen2.5-0.5B 8707
Qwen/Qwen2.5-0.5B-Instruct 8707
Qwen/Qwen2.5-1.5B 8707
Qwen/Qwen2.5-1.5B-Instruct 8707
Qwen/Qwen2.5-14B 8707
Qwen/Qwen2.5-14B-Instruct 8707
Qwen/Qwen2.5-32B 8707
Qwen/Qwen2.5-32B-Instruct 8707
Qwen/Qwen2.5-3B 8707
Qwen/Qwen2.5-3B-Instruct 8707
Qwen/Qwen2.5-72B 8707
Qwen/Qwen2.5-7B 8707
Qwen/Qwen2.5-7B-Instruct 8707
google/gemma-2-27b 8702
google/gemma-2-27b-it 8702
google/gemma-2-2b 8702
google/gemma-2-2b-it 8685
google/gemma-2-9b 8702
google/gemma-2-9b-it 8702
meta-llama/Llama-3.2-1B 8707
meta-llama/Llama-3.2-1B-Instruct 8707
meta-llama/Llama-3.2-3B 8707
meta-llama/Llama-3.2-3B-Instruct 8707
meta-llama/Llama-3.3-70B-Instruct 8706
meta-llama/Meta-Llama-3.1-70B 8685
meta-llama/Meta-Llama-3.1-70B-Instruct 8685
meta-llama/Meta-Llama-3.1-8B 8685
meta-llama/Meta-Llama-3.1-8B-Instruct 8702
microsoft/phi-4 8706
tiiuae/Falcon3-10B-Base 8706
tiiuae/Falcon3-10B-Instruct 8706
tiiuae/Falcon3-1B-Instruct 8706
tiiuae/Falcon3-7B-Base 8706
tiiuae/Falcon3-7B-Instruct 8706
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Table 11: Final Sample Count (N) for Meta-Llama-3.1-8B-Instruct on Similarity Computation of
Filtered MMLU-Pro

judge model N

Meta-Llama-3.1-8B-Instruct HuggingFaceTB/SmolLM2-1.7B 8702
HuggingFaceTB/SmolLM2-1.7B-Instruct 8701
HuggingFaceTB/SmolLM2-135M-Instruct 8702
HuggingFaceTB/SmolLM2-360M-Instruct 8702
Qwen/Qwen2.5-0.5B 8702
Qwen/Qwen2.5-0.5B-Instruct 8702
Qwen/Qwen2.5-1.5B 8702
Qwen/Qwen2.5-1.5B-Instruct 8702
Qwen/Qwen2.5-14B 8702
Qwen/Qwen2.5-14B-Instruct 8702
Qwen/Qwen2.5-32B 8702
Qwen/Qwen2.5-32B-Instruct 8702
Qwen/Qwen2.5-3B 8702
Qwen/Qwen2.5-3B-Instruct 8702
Qwen/Qwen2.5-72B 8702
Qwen/Qwen2.5-72B-Instruct 8702
Qwen/Qwen2.5-7B 8702
Qwen/Qwen2.5-7B-Instruct 8702
google/gemma-2-27b 8707
google/gemma-2-27b-it 8707
google/gemma-2-2b 8707
google/gemma-2-2b-it 8690
google/gemma-2-9b 8707
google/gemma-2-9b-it 8707
meta-llama/Llama-3.2-1B 8702
meta-llama/Llama-3.2-1B-Instruct 8702
meta-llama/Llama-3.2-3B 8702
meta-llama/Llama-3.2-3B-Instruct 8702
meta-llama/Llama-3.3-70B-Instruct 8701
meta-llama/Meta-Llama-3.1-70B 8690
meta-llama/Meta-Llama-3.1-70B-Instruct 8690
meta-llama/Meta-Llama-3.1-8B 8690
microsoft/phi-4 8701
tiiuae/Falcon3-10B-Base 8701
tiiuae/Falcon3-10B-Instruct 8701
tiiuae/Falcon3-1B-Instruct 8701
tiiuae/Falcon3-7B-Base 8701
tiiuae/Falcon3-7B-Instruct 8701
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Table 12: Final Sample Count (N) for Meta-Llama-3.1-70B-Instruct on Similarity Computation of
Filtered MMLU-Pro

judge model N

Meta-Llama-3.1-70B-Instruct HuggingFaceTB/SmolLM2-1.7B 8685
HuggingFaceTB/SmolLM2-1.7B-Instruct 8684
HuggingFaceTB/SmolLM2-135M-Instruct 8685
HuggingFaceTB/SmolLM2-360M-Instruct 8685
Qwen/Qwen2.5-0.5B 8685
Qwen/Qwen2.5-0.5B-Instruct 8685
Qwen/Qwen2.5-1.5B 8685
Qwen/Qwen2.5-1.5B-Instruct 8685
Qwen/Qwen2.5-14B 8685
Qwen/Qwen2.5-14B-Instruct 8685
Qwen/Qwen2.5-32B 8685
Qwen/Qwen2.5-32B-Instruct 8685
Qwen/Qwen2.5-3B 8685
Qwen/Qwen2.5-3B-Instruct 8685
Qwen/Qwen2.5-72B 8685
Qwen/Qwen2.5-72B-Instruct 8685
Qwen/Qwen2.5-7B 8685
Qwen/Qwen2.5-7B-Instruct 8685
google/gemma-2-27b 8690
google/gemma-2-27b-it 8690
google/gemma-2-2b 8690
google/gemma-2-2b-it 8707
google/gemma-2-9b 8690
google/gemma-2-9b-it 8690
meta-llama/Llama-3.2-1B 8685
meta-llama/Llama-3.2-1B-Instruct 8685
meta-llama/Llama-3.2-3B 8685
meta-llama/Llama-3.2-3B-Instruct 8685
meta-llama/Llama-3.3-70B-Instruct 8684
meta-llama/Meta-Llama-3.1-70B 8707
meta-llama/Meta-Llama-3.1-8B 8707
meta-llama/Meta-Llama-3.1-8B-Instruct 8690
microsoft/phi-4 8684
tiiuae/Falcon3-10B-Base 8684
tiiuae/Falcon3-10B-Instruct 8684
tiiuae/Falcon3-1B-Instruct 8684
tiiuae/Falcon3-7B-Base 8684
tiiuae/Falcon3-7B-Instruct 8684
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Table 13: Final Sample Count (N) for Llama-3.3-70B-Instruct on Similarity Computation of Filtered
MMLU-Pro

judge model N

Llama-3.3-70B-Instruct HuggingFaceTB/SmolLM2-1.7B 8706
HuggingFaceTB/SmolLM2-1.7B-Instruct 8707
HuggingFaceTB/SmolLM2-135M-Instruct 8706
HuggingFaceTB/SmolLM2-360M-Instruct 8706
Qwen/Qwen2.5-0.5B 8706
Qwen/Qwen2.5-0.5B-Instruct 8706
Qwen/Qwen2.5-1.5B 8706
Qwen/Qwen2.5-1.5B-Instruct 8706
Qwen/Qwen2.5-14B 8706
Qwen/Qwen2.5-14B-Instruct 8706
Qwen/Qwen2.5-32B 8706
Qwen/Qwen2.5-32B-Instruct 8706
Qwen/Qwen2.5-3B 8706
Qwen/Qwen2.5-3B-Instruct 8706
Qwen/Qwen2.5-72B 8706
Qwen/Qwen2.5-72B-Instruct 8706
Qwen/Qwen2.5-7B 8706
Qwen/Qwen2.5-7B-Instruct 8706
google/gemma-2-27b 8701
google/gemma-2-27b-it 8701
google/gemma-2-2b 8701
google/gemma-2-2b-it 8684
google/gemma-2-9b 8701
google/gemma-2-9b-it 8701
meta-llama/Llama-3.2-1B 8706
meta-llama/Llama-3.2-1B-Instruct 8706
meta-llama/Llama-3.2-3B 8706
meta-llama/Llama-3.2-3B-Instruct 8706
meta-llama/Meta-Llama-3.1-70B 8684
meta-llama/Meta-Llama-3.1-70B-Instruct 8684
meta-llama/Meta-Llama-3.1-8B 8684
meta-llama/Meta-Llama-3.1-8B-Instruct 8701
microsoft/phi-4 8707
tiiuae/Falcon3-10B-Base 8707
tiiuae/Falcon3-10B-Instruct 8707
tiiuae/Falcon3-1B-Instruct 8707
tiiuae/Falcon3-7B-Base 8707
tiiuae/Falcon3-7B-Instruct 8707
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Table 14: Final Sample Count (N) for gemma-2-9b-it on Similarity Computation of Filtered MMLU-
Pro

judge model N

gemma-2-9b-it HuggingFaceTB/SmolLM2-1.7B 8702
HuggingFaceTB/SmolLM2-1.7B-Instruct 8701
HuggingFaceTB/SmolLM2-135M-Instruct 8702
HuggingFaceTB/SmolLM2-360M-Instruct 8702
Qwen/Qwen2.5-0.5B 8702
Qwen/Qwen2.5-0.5B-Instruct 8702
Qwen/Qwen2.5-1.5B 8702
Qwen/Qwen2.5-1.5B-Instruct 8702
Qwen/Qwen2.5-14B 8702
Qwen/Qwen2.5-14B-Instruct 8702
Qwen/Qwen2.5-32B 8702
Qwen/Qwen2.5-32B-Instruct 8702
Qwen/Qwen2.5-3B 8702
Qwen/Qwen2.5-3B-Instruct 8702
Qwen/Qwen2.5-72B 8702
Qwen/Qwen2.5-72B-Instruct 8702
Qwen/Qwen2.5-7B 8702
Qwen/Qwen2.5-7B-Instruct 8702
google/gemma-2-27b 8707
google/gemma-2-27b-it 8707
google/gemma-2-2b 8707
google/gemma-2-2b-it 8690
google/gemma-2-9b 8707
meta-llama/Llama-3.2-1B 8702
meta-llama/Llama-3.2-1B-Instruct 8702
meta-llama/Llama-3.2-3B 8702
meta-llama/Llama-3.2-3B-Instruct 8702
meta-llama/Llama-3.3-70B-Instruct 8701
meta-llama/Meta-Llama-3.1-70B 8690
meta-llama/Meta-Llama-3.1-70B-Instruct 8690
meta-llama/Meta-Llama-3.1-8B 8690
meta-llama/Meta-Llama-3.1-8B-Instruct 8707
microsoft/phi-4 8701
tiiuae/Falcon3-10B-Base 8701
tiiuae/Falcon3-10B-Instruct 8701
tiiuae/Falcon3-1B-Instruct 8701
tiiuae/Falcon3-7B-Base 8701
tiiuae/Falcon3-7B-Instruct 8701
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Table 15: Final Sample Count (N) for gemma-2-27b-it on Similarity Computation of Filtered MMLU-
Pro

judge model N

gemma-2-27b-it HuggingFaceTB/SmolLM2-1.7B 8702
HuggingFaceTB/SmolLM2-1.7B-Instruct 8701
HuggingFaceTB/SmolLM2-135M-Instruct 8702
HuggingFaceTB/SmolLM2-360M-Instruct 8702
Qwen/Qwen2.5-0.5B 8702
Qwen/Qwen2.5-0.5B-Instruct 8702
Qwen/Qwen2.5-1.5B 8702
Qwen/Qwen2.5-1.5B-Instruct 8702
Qwen/Qwen2.5-14B 8702
Qwen/Qwen2.5-14B-Instruct 8702
Qwen/Qwen2.5-32B 8702
Qwen/Qwen2.5-32B-Instruct 8702
Qwen/Qwen2.5-3B 8702
Qwen/Qwen2.5-3B-Instruct 8702
Qwen/Qwen2.5-72B 8702
Qwen/Qwen2.5-72B-Instruct 8702
Qwen/Qwen2.5-7B 8702
Qwen/Qwen2.5-7B-Instruct 8702
google/gemma-2-27b 8707
google/gemma-2-2b 8707
google/gemma-2-2b-it 8690
google/gemma-2-9b 8707
google/gemma-2-9b-it 8707
meta-llama/Llama-3.2-1B 8702
meta-llama/Llama-3.2-1B-Instruct 8702
meta-llama/Llama-3.2-3B 8702
meta-llama/Llama-3.2-3B-Instruct 8702
meta-llama/Llama-3.3-70B-Instruct 8701
meta-llama/Meta-Llama-3.1-70B 8690
meta-llama/Meta-Llama-3.1-70B-Instruct 8690
meta-llama/Meta-Llama-3.1-8B 8690
meta-llama/Meta-Llama-3.1-8B-Instruct 8707
microsoft/phi-4 8701
tiiuae/Falcon3-10B-Base 8701
tiiuae/Falcon3-10B-Instruct 8701
tiiuae/Falcon3-1B-Instruct 8701
tiiuae/Falcon3-7B-Base 8701
tiiuae/Falcon3-7B-Instruct 8701
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Table 16: Final Sample Count (N) for Ministral-8B-Instruct-2410 on Similarity Computation of
Filtered MMLU-Pro

judge model N

Ministral-8B-Instruct-2410 HuggingFaceTB/SmolLM2-1.7B 8706
HuggingFaceTB/SmolLM2-1.7B-Instruct 8707
HuggingFaceTB/SmolLM2-135M-Instruct 8706
HuggingFaceTB/SmolLM2-360M-Instruct 8706
Qwen/Qwen2.5-0.5B 8706
Qwen/Qwen2.5-0.5B-Instruct 8706
Qwen/Qwen2.5-1.5B 8706
Qwen/Qwen2.5-1.5B-Instruct 8706
Qwen/Qwen2.5-14B 8706
Qwen/Qwen2.5-14B-Instruct 8706
Qwen/Qwen2.5-32B 8706
Qwen/Qwen2.5-32B-Instruct 8706
Qwen/Qwen2.5-3B 8706
Qwen/Qwen2.5-3B-Instruct 8706
Qwen/Qwen2.5-72B 8706
Qwen/Qwen2.5-72B-Instruct 8706
Qwen/Qwen2.5-7B 8706
Qwen/Qwen2.5-7B-Instruct 8706
google/gemma-2-27b 8701
google/gemma-2-27b-it 8701
google/gemma-2-2b 8701
google/gemma-2-2b-it 8684
google/gemma-2-9b 8701
google/gemma-2-9b-it 8701
meta-llama/Llama-3.2-1B 8706
meta-llama/Llama-3.2-1B-Instruct 8706
meta-llama/Llama-3.2-3B 8706
meta-llama/Llama-3.2-3B-Instruct 8706
meta-llama/Llama-3.3-70B-Instruct 8707
meta-llama/Meta-Llama-3.1-70B 8684
meta-llama/Meta-Llama-3.1-70B-Instruct 8684
meta-llama/Meta-Llama-3.1-8B 8684
meta-llama/Meta-Llama-3.1-8B-Instruct 8701
microsoft/phi-4 8707
tiiuae/Falcon3-10B-Base 8707
tiiuae/Falcon3-10B-Instruct 8707
tiiuae/Falcon3-1B-Instruct 8707
tiiuae/Falcon3-7B-Base 8707
tiiuae/Falcon3-7B-Instruct 8707
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B.8.2 LM-JUDGE PROMPT WITH MCQ OPTIONS

Prompt for Free-Form Evaluation with Access to MCQ Reference Options

Your task is to judge whether the given response to a
question is correct or not. You are given a question, a
ground truth response, incorrect options and the response
you are judging.

Possible judgments:
"0": The response is incorrect. It does not match the
ground-truth answer or is more similar to any of the
incorrect options than to the ground-truth answer.
"1": The response is correct. It matches the ground-truth.

Question: "[Insert the question here]"
Ground truth: "[Insert the ground-truth option here]"
Incorrect option (1): "[Insert the 1st wrong option here]"
...
Incorrect option (9): "[Insert the 9th wrong option here]"
Response: "[Insert the response here]"

To the best of your knowledge: Does the provided response
answer the question correctly, taking the ground-truth
and wrong answer options into account? This is part of an
automated evaluation process, therefore you must only output
a single word: "0" or "1". Do not justify your decision.

Evaluation (0/1):

B.8.3 ORIGINAL MCQ COT PROMPT

We describe how an original MCQ prompt on MMLU-Pro is transformed into an open-style prompt
for free-form inference without access to the reference options. The original chain-of-thought (CoT)
prompt consists of general information about the task, a few-shot list of questions-answer pairs and
finally the actual question that is to be solved.

Each question is preceded by the keyword “Question:”, followed by the question text and the list of
answer options. Every option text is marked with a letter. Next, a reference chain-of-thought is given
after the key-phrase “Answer: Let’s think step by step” to provide an in-context example on how to
solve related questions. This CoT can include references to the answer options. The CoT answer ends
with the key-phrase “The answer is (X)” where “X” is the letter of the correct option. The phrase
nudges the evaluated LM to answer in the same way, allowing to extract the final response using regex
matching. The number of in-context examples depends on the --num fewshot parameter. In our
experiment, we use five examples, but for reasons of brevity, only a single one is part of the example
prompt below. Finally, the phrase that starts a CoT is repeated right before the model’s response.

We automatically transform these MCQ into OSQ CoT prompts. The general information is slightly
adjusted to indicate the type of task. All key-phrases remain the same. We completely omit the MCQ
options at the end behind the question. Any reference to an option in the chain-of-thought is replaced
with the option text itself – e.g. “(G)” is replaced with the corresponding “(The second and third
pharyngeal arches)”. This includes the final response: “The answer is (XYZ).”. Our experiments
have shown that even the smallest models evaluated are able to follow these instructions and provide
free-form responses that can be automatically extracted in the vast majority of cases.
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Few-shot CoT MCQ Prompt

The following are multiple choice questions (with answers)
about health. Think step by step and then finish your answer
with ẗhe answer is (X)ẅhere X is the correct letter choice.

Question: What is the embryological origin of the hyoid
bone?
Options:
A. The third and fourth pharyngeal arches
B. The fourth pharyngeal arch
C. The third pharyngeal arch
D. The second pharyngeal arch
E. The second, third and fourth pharyngeal arches
F. The first pharyngeal arch
G. The second and third pharyngeal arches
H. The first and third pharyngeal arches
I. The first, second and third pharyngeal arches
J. The first and second pharyngeal arches

Answer: Let’s think step by step. We refer to Wikipedia
articles on anatomy for help. Let’s solve this problem
step by step. The hyoid bone, which is also known as the
hyooid, is a a small U-shaped bone located in the anterior
neck. In its resting position, it lies between the base of
the mandible and the third cervical vertebrae. We know that
the second and the third pharyngeal arches give rise to the
horns of the hyoid bone; therefore, the embryological origin
of the hyoid bone are the second and the third pharyngeal
arches|this information is covered in option (G). Therefore,
we conclude that (G) must be the correct answer. The answer
is (G)

Question: ...

Question: Which disease do polyomaviruses predominantly
cause?
Options:
A. Tumours
B. Brain pathology
C. No disease at all
D. Kidney infections

Answer: Let’s think step by step.
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B.8.4 OPEN-STYLE COT PROMPT

Few-shot CoT OSQ Prompt

The following are multiple choice questions (with answers)
about health. Think step by step and then finish your answer
with ẗhe answer is (X)ẅhere X is the correct letter choice.

Question: What is the embryological origin of the hyoid
bone?

Answer: Let’s think step by step. We refer to Wikipedia
articles on anatomy for help. Let’s solve this problem
step by step. The hyoid bone, which is also known as the
hyooid, is a a small U-shaped bone located in the anterior
neck. In its resting position, it lies between the base of
the mandible and the third cervical vertebrae. We know that
the second and the third pharyngeal arches give rise to the
horns of the hyoid bone; therefore, the embryological origin
of the hyoid bone are the second and the third pharyngeal
arches|this information is covered in option (The second
and third pharyngeal arches). Therefore, we conclude that
(The second and third pharyngeal arches) must be the correct
answer. The answer is (The second and third pharyngeal
arches)

Question: ...

Question: Which disease do polyomaviruses predominantly
cause?

Answer: Let’s think step by step.

These are the two prompts used for coarse and fine-grained filtering to get the OSQ version of
MMLU-Pro. They almost exactly match the original ones provided by Myrzakhan et al. (2024), but
we performed minimal adjustments to make them more suitable to MMLU-Pro.
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B.8.5 COARSE FILTERING PROMPT

Coarse Prompt

Your task is to review a series of multiple-choice questions
and evaluate their ability to be answered without the
provided answer choices.

For questions that begin with an incomplete sentence (e.g.,
"During swallowing, ..."), use your knowledge to attempt
to complete the sentence accurately. For direct questions
that ask for specific information or identification (e.g.,
"Which of the following structures is part of the small
intestine?"), assess whether the question is formulated
clearly enough that an informed answer can be given without
seeing the multiple-choice options. For mathematical or
analytical questions (e.g., "Find all cosets of the subgroup
4Z of 2Z"), determine if the question provides enough context
and information for a solution to be formulated without
additional options.

Please follow this format for your evaluation:

QUESTION: [Insert the question here]

VERDICT: Respond with "YES" if the question is clear and can
be directly answered based on its content alone, or "NO" if
it relies on the answer choices to be understood or answered.
Your response should include only the verdict without any
justification or reasoning.
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B.8.6 FINE-GRAINED FILTERING PROMPT

Fine-grained Prompt

You will assign a numerical score from 1 to 10 based on how
confidently it can be answered without the choices. The
scoring criteria are as follows:

1: The question is entirely dependent on its choices for
an answer, making it impossible to answer without them.
Example: ‘Which of the following statements is correct?’

10: The question can be easily and confidently answered
based solely on the question stem,without any need to refer
to the provided options. Example: ‘What is the first law of
thermodynamics in physics?’

Intermediate Scores:

2-4: The question stem gives very little information and is
highly reliant on the choices forcontext. Example: ‘Which
of these is a prime number?’ ’The perspective on
sustainability resulted from growth models that analysed the
carrying capacity of the planet, overall concluding that the
finite capacity of the earth and , and by
current and past generations could reduce quality of life for
future generations.’
5: The question provides some context or information,
that gives a moderate possibility to answer the question.
Example: ‘Which of the following best describes the
structure that collects urine in the body?’
6: The question provides a good amount of context or
information, that gives a moderate possibility to answer
the question. Example: ‘Statement 1 | A factor group of
a non-Abelian group is non-Abelian. Statement 2 | If K is a
normal subgroup of H and H is a normal subgroup of G, then K
is a normal subgroup of G.’
7: The question provides a good amount of context or
information, that gives a high possibility to answer the
question. Example: ‘The element (4, 2) of Z 12 x Z 8 has
order’
8-9: The question provides a good amount of context or
information, that gives a high possibility to answer the
question. Example: ‘A "dished face" profile is often
associated with’

ONLY GIVE THE VALUE BETWEEN 1-10 AS YOUR ANSWER. DO NOT
INCLUDE ANY OTHER INFORMATION IN YOUR RESPONSE.

C WEAK-TO-STRONG TRAINING

C.1 SETUP

We follow the weak to strong generalization setup proposed in Burns et al. (2024), focusing on NLP
tasks. The original paper reported results with GPT (Radford et al., 2019) model versions. Instead,
we use larger, more capable and recent open-weight models to make observations at the frontier. For
this, we used the codebase of Scherlis et al. (2024) that uses open-weight models on Huggingface
instead. We now describe the full setup here.
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Table 17: Datasets, Weak Models and Strong Models Used in the Weak to Strong Experiments.

Models Datasets
Weak Models sciq (Welbl et al., 2017)
google/gemma-2-2b (Gemma Team, 2024) anli-r2 (Nie et al., 2019)
Qwen/Qwen2.5-1.5B (Qwen Team, 2025) boolq (Clark et al., 2019)
meta-llama/Llama-3.2-1B (Llama Team, 2024a) cola (Warstadt et al., 2019)
microsoft/phi-2 (Li et al., 2023) ethics-utilitarianism (Hendrycks et al., 2020)
Strong Models sst2 (Socher et al., 2013)
google/gemma-2-9b twitter-sentiment (Zhang et al., 2019)
Qwen/Qwen2.5-7B dream (Sun et al., 2019)
meta-llama/Llama-3.1-8B mc-taco (Zhou et al., 2019)

multirc (Khashabi et al., 2018)
quail (Rogers et al., 2020)
quartz (Tafjord et al., 2019)
social-i-qa (Sap et al., 2019)
wic (Pilehvar & Camacho-Collados, 2018)
cosmos-qa (Huang et al., 2019)

The setup uses a pretrained weak base model W , a pretrained strong base model S and a dataset D,
where Dtr, Dval, Dte are the training (10,000 samples), validation (1,000 samples) and test (5,000
samples) datasplits respectively. Dtr is divided into two halves, independently assigning each sample
to Dtr1, Dtr2 with 50% probability each. All the datasets studied convert standard NLP MCQ
datasets into binary classification, by randomly sampling one of the wrong options. Predictions ≥ 0.5
are considered as class 1, and < 0.5 as class 0. We highlight the models and datasets used in our
study in Table 17.

First, the weak base model W is finetuned on ground-truth labels in Dtr1 to obtain the weak supervisor
Ws. In the original setup, this is meant to simulate a human that is an expert at the given task. Then,
Wgt annotates samples in Dtr2, and the strong student model S is finetuned on these annotations to
obtain the Weak to Strong trained model Sw2s. In the original setup, the strong base model simulates
a future model with superhuman intelligence, but not finetuned for specific domain knowledge.

Finetuning Methodology: For the above finetuning steps we use Low Rank Adapters (LoRA) (Hu
et al., 2021) due to budget constraints, and train a binary classifier the same as Scherlis et al. (2024).
We use the confidence weighted loss proposed by Burns et al. (2024). This loss encourages the strong
model’s predictions to align with both a weaker model and its own ”hardened” predictions. The
hardened predictions are derived by thresholding the strong model’s output. The loss function is
defined as:

L(f) = (1− α) · CE(f(x), fw(x)) + α · CE(f(x), f̂(x)) (19)

where f(x) is the strong model’s output, fw(x) is the weak model’s output, f̂(x) = I[f(x) > t]
represents the hardened predictions using an adaptive threshold t, and α is a weight that increases
over the initial phase of training.

Following Scherlis et al. (2024) we use a cosine learning rate schedule, with 40 warmup steps, the
learning rates for the weak, strong model are 5 × 10−4, 8 × 10−5 respectively, and we train for 3
epochs which is sufficient for the train and validation loss to stabilize.

Weak to Strong Gain Metric: We wish to study the gain achieved from weak to strong training for
the strong student model. To characterize the initial accuracy of the strong student model, we train a
binary classifier head to obtain Sb. The weak to strong gain is then quantified as:

Acc(Sw2s)−Acc(Sb) (20)

Note that this is different from the PGR metric reported by Burns et al. (2024). Their goal was to
show weak to strong training can make the strong student cross the accuracy of the weak supervisor.
Thus, they measured accuracy gained over the weak supervisor Acc(Sw2s)−Acc(Wgt), normalizing
it by an “upper-bound” obtained by training the strong student on ground-truth labels on Dtr2, giving
PGR =

Acc(Sw2s)−Acc(Wgt)
Acc(Sgt)−Acc(Wgt)

. In our work, we show that leveraging complementary knowledge
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effectively might actually allow Sw2s > Sgt, questioning their “upper-bound”. Thus we stick to
reporting how much the student model improved as described in Equation 20.

Similarity vs Weak to Strong Gain: In Figure 12 we reported weak-to-strong gain (Equation 20) on
the Y-axis, and similarity (κp) on the X-axis. We plot linear grouped by model pair, thus varying the
task within each model pair for the linear fit. Figure 12 shows the same scatter points but colored
based on the dataset. This shows that weak-to-strong gain is consistently higher for tasks where
models are less similar, and how similar two models are depends mostly on the task, i.e. there is not
much variance in similarity across the model pairs for a fixed task.

Discarded Results: We had initially run experiments with three more weak models: SmolLM 1.7B,
Qwen-2.5-0.5B, Llama-3.2-1B against the same list of strong models reported above. However, we
found that on some tasks, the weak-to-strong gain was negative. The weak supervisor (Wgt) models
had lower accuracy compared to the strong student Sb, leading to a decrease in accuracy for the
strong student after weak to strong training. We thus removed these weak models from our analysis.
Similarly, we had also tried the Hellaswag dataset, but found that both weak and strong models had
very low accuracies, often below 60% where chance is 50% for binary classification, consistent with
Scherlis et al. (2024), and decided to not include it in our analysis.

C.2 ELICITATION VS COMPLEMENTARY KNOWLEDGE

Table 18: Models and Sources of Knowledge in Complementary Knowledge vs Elicitation
Comparison.

Model Ground-truth labels in Dtr1 Latent Knowledge of W Latent Knowledge of S
Wgt ✓ ✓ ✗
Sgt ✓ ✗ ✓

Sw2s ✓4 ✓ ✓

Figure 3a points to the fact that similarity or difference between the weak supervisor and the
initial strong student are strong predictors of weak-to-strong gain. However, the initially proposed
explanation of weak-to-strong generalization is “elicitation”, i.e. the strong student has latent
capabilities that are brought out by finetuning on weak annotations (Burns et al., 2024). To quantify the
contribution of these two sources for weak-to-strong gain, elicitation and complementary knowledge,
we establish the following setup.

First, our functional similarity metric cannot capture latent knowledge in the strong student’s repre-
sentations. For this, we follow Burns et al. (2024) and finetune the strong student S on ground-truth
labels of Dtr1 to obtain the elicited strong student model Sgt. Note that we use Dtr1 instead of Dtr2

here so that the training set of Sw2s, Dtr2, remains held-out, and we can analyze the relative effect of
eliciation and complementary knowledge on both the train and test set.

Table 18 summarizes sources of knowledge for the weak supervisor Wgt, strong elicited Sgt, and
weak-to-strong trained student Sw2s in our setup. Sw2s benefits from the latent knowledge of S,
complementary knowledge transfer of latent knowledge of W , and distillation of knowledge in Dtr1

from Wgt. It learns imperfectly from all three sources of knowledge. Given this, we now discuss how
Figure 3b compares elicitation and complementary knowledge transfer:

• Bottom-Left = Elicitation: Wgt does not benefit from latent knowledge of S, so Sw2s

accuracy on samples where it is wrong but Sgt is correct signify knowledge that could only
be from elicitation.

• Top-Right = Complementary Knowledge Transfer: Sgt does not benefit from the latent
knowledge of W , so Sw2s accuracy on samples where it is wrong but Wgt is correct signify
knowledge that could only be from complementary knowledge transfer.

• Top-Left = Could be Both: Accuracy of Sw2s on samples where both Wgt, Sgt are correct
could come from both their latent knowledge, and the ground-truth annotations in Dtr1.
Thus, these could be both elicitation and complementary knowledge transfer, or also learning
from the finetuning data.

• Bottom-Right = Random flips: We find that 10% predictions can flip even when finetuning
W,S on ground-truth labels from Dtr2 instead of Dtr1, which were split into two halves
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Figure 11: We decompose the accuracy of the weak to strong trained model on four parts of the
train data distribution based on whether the weak supervisor and an oracle strong elicited model
(using ground-truth annotations) are correct or wrong. All results are averaged over 15 datasets.
Sub-rectangles represent weak, strong model pairs. On the train dataset, complementary knowledge
transfer (mean accuracy 0.59) plays an equal role as elicitation (mean accuracy 0.56).

at random from Dtr. Thus, the roughly 10% accuracy on samples that both Wgt, Sgt got
wrong could just be random flips to the correct prediction (since its a binary classification
setting).

Behavior on the Train Set: Figure 11 reports the same comparison of elicitation and complementary
knowledge transfer but on Dtr2 on which the weak-to-strong training occurs. This set is unseen for
both the weak supervisor Wgt and the strong elicited model Sgt. We find that in fitting the training
data complementary knowledge transfer plays an equal or bigger role than elicitation. This is to
be expected as Sw2s is trained by fitting on Wgt’s annotations of Dtr2. The weak-to-strong trained
student however still generalizes more similarly to the strong elicited model than the weak supervisor,
though complementary knowledge transfer is also visible on test set predictions as seen in Figure 3b.

C.3 EFFECT OF DIFFERENT SIMILARITY METRICS
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Figure 12: Various Similarity Metrics vs Weak-to-Strong gain. The highest correlation is seen for
CAPA κp, though in the binary classification setup of weak-to-strong generalization the probabilistic
information does not add much value compared to error consistency. 1− JSD gives a more noisy
scatter plot, with lower correlation (r).
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Figure 13: Test Accuracies for various models and ceiling estimates in Weak-to-Strong training.
The accuracies are averaged over 12 model pairs. The initial strong student model has consistently
lower accuracy than the weak supervisor consistent with Burns et al. (2024); Scherlis et al. (2024).
The weak-to-strong trained student surpasses the weak-supervisor across datasets. However it has
lower accuracy than the elicitation ceiling which trains the strong student on ground-truth annotations.
Finally, our new estimated ceiling which incorporates the complementary knowledge of the weak
supervisor has even higher accuracies, showing even more scope for improvements.

We now report similarity vs weak-to-strong gain for various alternate similarity metrics. Here, we
color the scatter points by dataset instead of model pair, and fit a single line, for ease of interpretation.
We report the following similarity metrics:

• Error Consistency - In this setting of binary classification, this is equivalent to the non-
probabilistic version of CAPA, as there is only one incorrect option so models cannot
disagree when both are incorrect on a sample.

• CAPA (κp) - Our metric which incorporates probabilistic information into error consistency.

• 1− JSD - Since Jensen-Shannon Distance measures difference between distributions and
is normalized between 0 and 1, by subtracting it from 1 we can obtain a similarity metric for
ease of comparison with the previous metrics.

In Figure 12 we see that all metrics can show the same trend, that is, tasks where models differ more
have larger gain from weak-to-strong training. The highest correlation is seen for CAPA, though in
the binary classification setup of weak-to-strong generalization the probabilistic information does not
add much value compared to error consistency. 1− JSD gives a more noisy scatter plot, with lower
correlation (r).

C.4 ACCURACIES IN WEAK-TO-STRONG TRAINING

In Figure 13 we report average across the 12 model pairs for all 15 datasets. Consistently, the ordering
is as follows: the initial strong student has lower accuracy than the weak supervisor, but surpasses it
after weak-to-strong training. However, it is not able to match the performance ceiling of ground-truth
elicitation. Finally, if the take a union over the correct predictions of the weak supervisor and strong
elicited model, the performance ceiling can be even higher.
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C.5 WEAK-TO-STRONG ACCURACY VALUE DETAILS IN ELICITATION VS COMPLEMENTARY
KNOWLEDGE ANALYSIS

In Table 19 and Table 20 we report the underlying numbers for Figure 3b and Figure 11 respectively.
The astute observer may be confused about the around 12% accuracy on the test set when when
both the weak supervisor and strong elicited model are wrong (bottom-right quadrant). We find that
merely finetuning on a different random subset of training data leads to around 11% predictions
being flipped. Thus, much of this accuracy could just be due to random chance because of the binary
classification setup. This also indicates that complementary knowledge transfer explains much of the
beyond-chance accuracy not accounted for by elicitation.

Table 19: Weak-to-strong trained model’s accuracies on four parts of the test data distribution,
based on relative mistakes of weak-supervisor, strong elicited model. This table reports the
underlying numbers for Figure 3b, with accuracy averaged across the 15 datasets studied for each
model pair. We see that the weak-to-strong model is almost always correct when both the weak-
supervisor, strong elicited model are correct. It is more correct when the strong elicited model is
correct and the weak-supervisor is wrong than vice-versa. This indicates weak-to-strong training
currently exploits more of the possible gains from elicitation, but less of the possible gains from
complementary knowledge transfer.

Common Knowledge Complementary Knowledge Transfer

Pair Acc (%)
(gemma-2-2b, gemma-2-9b) 97.4
(gemma-2-2b, Qwen2.5-7B) 97.1
(gemma-2-2b, Llama-3.1-8B) 97.0
(Qwen2.5-1.5B, gemma-2-9b) 97.1
(Qwen2.5-1.5B, Qwen2.5-7B) 97.4
(Qwen2.5-1.5B, Llama-3.1-8B) 96.5
(Llama-3.2-3B, gemma-2-9b) 97.6
(Llama-3.2-3B, Qwen2.5-7B) 97.5
(Llama-3.2-3B, Llama-3.1-8B) 97.3
(phi-2, gemma-2-9b) 97.3
(phi-2, Qwen2.5-7B) 97.3
(phi-2, Llama-3.1-8B) 97.4

Pair Acc (%)
(gemma-2-2b, gemma-2-9b) 45.2
(gemma-2-2b, Qwen2.5-7B) 34.9
(gemma-2-2b, Llama-3.1-8B) 40.1
(Qwen2.5-1.5B, gemma-2-9b) 47.1
(Qwen2.5-1.5B, Qwen2.5-7B) 36.9
(Qwen2.5-1.5B, Llama-3.1-8B) 39.6
(Llama-3.2-3B, gemma-2-9b) 46.2
(Llama-3.2-3B, Qwen2.5-7B) 36.2
(Llama-3.2-3B, Llama-3.1-8B) 41.7
(phi-2, gemma-2-9b) 50.2
(phi-2, Qwen2.5-7B) 44.2
(phi-2, Llama-3.1-8B) 44.2

Elicitation Both Wrong
Pair Acc (%)
(gemma-2-2b, gemma-2-9b) 71.0
(gemma-2-2b, Qwen2.5-7B) 75.0
(gemma-2-2b, Llama-3.1-8B) 72.3
(Qwen2.5-1.5B, gemma-2-9b) 69.4
(Qwen2.5-1.5B, Qwen2.5-7B) 73.3
(Qwen2.5-1.5B, Llama-3.1-8B) 72.1
(Llama-3.2-3B, gemma-2-9b) 71.0
(Llama-3.2-3B, Qwen2.5-7B) 77.2
(Llama-3.2-3B, Llama-3.1-8B) 73.4
(phi-2, gemma-2-9b) 67.9
(phi-2, Qwen2.5-7B) 71.1
(phi-2, Llama-3.1-8B) 69.0

Pair Acc (%)
(gemma-2-2b, gemma-2-9b) 12.9
(gemma-2-2b, Qwen2.5-7B) 10.7
(gemma-2-2b, Llama-3.1-8B) 13.0
(Qwen2.5-1.5B, gemma-2-9b) 11.4
(Qwen2.5-1.5B, Qwen2.5-7B) 11.6
(Qwen2.5-1.5B, Llama-3.1-8B) 13.5
(Llama-3.2-3B, gemma-2-9b) 12.5
(Llama-3.2-3B, Qwen2.5-7B) 11.2
(Llama-3.2-3B, Llama-3.1-8B) 13.8
(phi-2, gemma-2-9b) 12.3
(phi-2, Qwen2.5-7B) 11.6
(phi-2, Llama-3.1-8B) 11.5

D SIMILARITY TRENDS WITH INCREASING CAPABILITIES

D.1 SETUP DETAILS

We utilize two prominent benchmark datasets from the OpenLLM leaderboard to explore the re-
lationship between model similarity and capability: MMLU Pro and BBH. For the BBH dataset,
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Table 20: Weak-to-strong trained model’s accuracies on four parts of the train data distribution,
based on relative mistakes of weak-supervisor, strong elicited model. This table reports the
underlying numbers for Figure 11, with accuracy averaged across the 15 datasets studied for each
model pair. On the train distribution, the weak-to-strong model is almost equally correct on the
only-elicitable and only learnable from complementary knowledge samples, with a slight lean towards
the latter. Yet, Table 19 showed it generalizes more similarly to the strong elicited model.

Common Knowledge Complementary Knowledge Transfer

Pair Acc (%)
(gemma-2-2b, gemma-2-9b) 98.6
(gemma-2-2b, Qwen2.5-7B) 98.6
(gemma-2-2b, Llama-3.1-8B) 98.5
(Qwen2.5-1.5B, gemma-2-9b) 98.5
(Qwen2.5-1.5B, Qwen2.5-7B) 98.6
(Qwen2.5-1.5B, Llama-3.1-8B) 98.5
(Llama-3.2-3B, gemma-2-9b) 98.7
(Llama-3.2-3B, Qwen2.5-7B) 98.7
(Llama-3.2-3B, Llama-3.1-8B) 98.5
(phi-2, gemma-2-9b) 98.0
(phi-2, Qwen2.5-7B) 98.4
(phi-2, Llama-3.1-8B) 98.2

Pair Acc (%)
(gemma-2-2b, gemma-2-9b) 66.8
(gemma-2-2b, Qwen2.5-7B) 52.5
(gemma-2-2b, Llama-3.1-8B) 56.8
(Qwen2.5-1.5B, gemma-2-9b) 65.2
(Qwen2.5-1.5B, Qwen2.5-7B) 56.9
(Qwen2.5-1.5B, Llama-3.1-8B) 57.0
(Llama-3.2-3B, gemma-2-9b) 67.2
(Llama-3.2-3B, Qwen2.5-7B) 53.8
(Llama-3.2-3B, Llama-3.1-8B) 58.8
(phi-2, gemma-2-9b) 64.4
(phi-2, Qwen2.5-7B) 53.7
(phi-2, Llama-3.1-8B) 54.8

Elicitation Both Wrong
Pair Acc (%)
(gemma-2-2b, gemma-2-9b) 50.7
(gemma-2-2b, Qwen2.5-7B) 63.5
(gemma-2-2b, Llama-3.1-8B) 57.3
(Qwen2.5-1.5B, gemma-2-9b) 49.2
(Qwen2.5-1.5B, Qwen2.5-7B) 62.2
(Qwen2.5-1.5B, Llama-3.1-8B) 58.2
(Llama-3.2-3B, gemma-2-9b) 47.9
(Llama-3.2-3B, Qwen2.5-7B) 60.3
(Llama-3.2-3B, Llama-3.1-8B) 52.4
(phi-2, gemma-2-9b) 52.6
(phi-2, Qwen2.5-7B) 62.3
(phi-2, Llama-3.1-8B) 60.1

Pair Acc (%)
(gemma-2-2b, gemma-2-9b) 8.6
(gemma-2-2b, Qwen2.5-7B) 8.3
(gemma-2-2b, Llama-3.1-8B) 9.5
(Qwen2.5-1.5B, gemma-2-9b) 9.6
(Qwen2.5-1.5B, Qwen2.5-7B) 7.4
(Qwen2.5-1.5B, Llama-3.1-8B) 7.7
(Llama-3.2-3B, gemma-2-9b) 8.8
(Llama-3.2-3B, Qwen2.5-7B) 7.9
(Llama-3.2-3B, Llama-3.1-8B) 8.5
(phi-2, gemma-2-9b) 10.8
(phi-2, Qwen2.5-7B) 9.4
(phi-2, Llama-3.1-8B) 9.1

we aggregate 23 distinct tasks that can be studied as multiple-choice questions from the Big-Bench
Hard benchmark to ensure that each model is evaluated on sufficient questions, thereby ensuring
statistically significant results. The MMLU Pro dataset consists of MCQs across 14 different subjects,
with varying numbers of options per question. Notably, some questions are repeated with shuffled
option orders. To maintain consistency, we filter the dataset by retaining only those questions for
which both the question text and the correct option index remain consistent across all models. This
filtering process yields a refined dataset of 11,828 questions.

To analyze trends across model capabilities, we divide 130 models (Table 22) into five bins based on
their individual accuracy percentiles. This binning strategy is followed for all experimental setups
and ensures an approximately equal distribution of models per bin, maintaining a consistent sample
size across bins. We select model pairs within each bin and compute their similarity and average
accuracy. This approach ensures that the average accuracy of the pairs remains representative of the
individual model accuracies within the bin. We do not consider model pairs from the same family
to avoid confounding effects of model similarity being attributed to model family rather than the
capability.
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D.2 WHY ARE MODEL MISTAKES BECOMING MORE SIMILAR? A PRELIMINARY ANALYSIS

D.2.1 INSTRUCTION-TUNING EXACERBATES THE TREND

Figure 14: LM Similarity (κp) vs Capabilities in Instruct-tuned and Base models on MMLU pro
and BBH. After applying the same model binning stratergy and pairwise similarity, a steeper trend is
observed in the instruct-tuned models compared to base models for both datasets.

Instruction-tuned models are base models that have been fine-tuned on instruction datasets and their
corresponding outputs, enhancing their ability to follow user instructions accurately. Among the
models analyzed for the capability-similarity trend, we categorize them into instruction-tuned and
base models. Using the same binning strategy as discussed in the previous section, we first assign
all models to bins based on their accuracy percentiles. When computing pairwise similarity and
accuracy, we restrict to pairs of the same model type— base-base and instruct-instruct models. As
illustrated in Fig. 14, instruction-tuned model pairs exhibit a stronger similarity trend with a steeper
slope compared to base models. This can likely be attributed to the fact that instruction-tuned models
may have been fine-tuned on similar instruction datasets, leading to a higher similarity trend among
them.

D.2.2 IS THE TREND CONFOUNDED BY QUESTION DIFFICULTIES?

To address the potential confounder that models might exhibit higher similarity as their capability
increases simply due to their inherent ability to solve harder problems, we analyze the relationship
between question hardness and model similarity on MMLU Pro and BBH. Question hardness is
determined by the percentage of models that answer a question correctly, with harder questions being
those that fewer models answer correctly. We split the data samples into percentile bins based on
question hardness and compute the average similarity across all capability bins of the initial setting,
as illustrated in Fig. 15(a).

Fig. 15(a) demonstrates that the overall average similarity remains consistent across different levels
of question hardness, with only a slight increase observed for the hardest questions (100th percentile).
This consistency indicates that the hardness of the questions does not significantly confound the
observed trend of increasing similarity with model capability. These findings reinforce the hypothesis
that the growing similarity among models is not merely a byproduct of their ability to solve harder
problems but reflects a deeper trend in model behavior as their capabilities improve.

D.2.3 CAN CHANGING ARCHITECTURE REDUCE MODEL SIMILARITY?

To study the effect of model similarities across different architectures, we analyze Falcon3 Mamba
7B base and instruct models by computing their CAPA values with Falcon3 7B transformer, Mistral
7Bv0.3, and Llama 3.1 8B base and instruct models. We ensure that the accuracies of the non-Falcon3
transformers are within ±5% of the Mamba model to ensure comparable capabilities.

In Table 21, Similarity1 presents the CAPA between the Falcon3 Mamba and Falcon3 Transformer,
Similarity2 the CAPA between Falcon3 Mamba and Llama/Mistral Transformer, and Similarity3
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Figure 15: Role of question difficulty in similarity-capability trend. We plot in parallel (a) Scatter
plot with model pairs, illustrating the increasing trend of similarity (κp) with model capability. (b)
Average similarity (κp) across all capability bins for different levels of question hardness. CAPA
is mostly consistent across question hardness, with a slight increase on the hardest questions. This
shows that question difficulty is not a significant confounder for increasing similarity in mistakes.

between Falcon3 Transformer and Llama/Mistral Transformers. The results reveal that base models
exhibit lower overall similarity compared to instruction-tuned models, with pairwise similarity
between Falcon3 Mamba and non-Falcon Mistral/Llama Transformers showing the least similarity.
Within the base model category, Falcon3 Mamba and Falcon Transformers demonstrate the highest
similarity. For instruction-tuned models, Falcon3 Transformer and Mistral/Llama Transformer pairs
exhibit the highest similarity, followed closely by Falcon3 Mamba and Falcon3 Transformer.

The Falcon Mamba-Falcon Transformers maintain higher similarity overall, potentially due to their
shared model family, despite differences in their underlying architectures. This observation highlights
that architectural differences may play a less significant role in model similarity compared to factors
such as training data and fine-tuning procedures. From the earlier section, instruction-tuned models
exhibit a stronger similarity trend, similar to as observed in this setting.

Table 21: Analyzing the effect of difference in architecture on CAPA κp. Using base and instruct
variants of Falcon3 Mamba and Falcon3 Transformer of size 7B, we compare it with transformers
with similar size and accuracy from a different model family- LLama and Mistral. Similarity1
consistently has an overall higher similarity due to models belonging to the same family. In instruct-
tuned models, Similarity3 is the highest, possibly due to the instruct-tuning.

Falcon Mamba Falcon Transformer Transformer Model Similarity1 Similarity2 Similarity3

7B Base 7B Base Llama 3.1 8B 0.0619 0.0167 0.0422
Mistral v0.3 7B 0.0105 0.0235

7B Instruct 7B Instruct Llama 3.1 8B Instruct 0.1111 0.0665 0.173
Mistral v0.3 7B Instruct 0.0582 0.1584

D.3 ALTERNATIVE SIMILARITY METRICS

As discussed in earlier sections, multiple metrics can be employed to quantify the similarity between
models, each with its own strengths and limitations. In this analysis, we evaluate several alternative
metrics under the same experimental setting used for CAPA, including the binning and averaging
strategies, for the two benchmark datasets. Fig. 17a presents the results for discrete κp, which
does not utilize logit information, while Fig. 17b demonstrates a similar trend using κp for M > 2
(κp extended for more than 2 models). Additionally, Fig. 16 includes results for Jensen-Shannon
Divergence (JSD) and Error Consistency Geirhos et al. (2020).
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Figure 16: Error consistency and JSD for model similarity on BBH and MMLU Pro. The y-axis
represents the similarity computed using JSD and Error consistency. JSD exhibits high variance and
a flat trend, whereas Error Consistency shows an increasing trend with model capability, similar to
the trend observed in κp.

(a) LM Similarity (κp for M > 2) vs Average Accu-
racy of Model Pairs in each Capability bin

(b) LM Similarity (Discrete κp) vs Average Accuracy
of Model Pairs in each Capability bin

Figure 17: Discrete κp and κp for M > 2 values computed on the MMLU Pro and BBH dataset.
An increasing trend in similarity is observed across both datasets in accordance with the hypothesis.
Discrete κp uses similar averaging idea as used in κp while in κp for M > 2, the similarity is
computed using all models in a capability bin at once.

Discrete κp exhibits an increasing trend with model capability, closely mirroring the trend observed
with κp. Similarly, κp for M > 2, which leverages probabilistic information, unlike Discrete κp,
shows a strong upward trend. Unlike other metrics, κp for M > 2 provides a direct measure of
similarity that quantifies agreement among all models within a bin, eliminating the need for averaging
pairwise similarities. Models of same family within the same bin are retained when computing the
metric. In contrast, JSD does not exhibit a clear trend and remains flat with high variance across the
capability axis. Error Consistency, however, aligns with the upward trend observed in other metrics,
further supporting the hypothesis that model similarity increases with capability.

D.4 MODEL CAPABILITY VS SIMILARITY ACROSS DOMAINS

The scatter plot in Fig 4 shows the increasing similarity trend after aggregating across the subjects
(MMLU pro) and tasks (BBH). Fig 18 and Fig 19 show the observed trend within each individual
subject and task for MMLU Pro and BBH respectively.

In the MMLU Pro dataset, the trend of increasing average similarity within each bin as model
capability improves is consistently observed across all individual subjects. For the BBH tasks, while
the trend is not as pronounced in some tasks, it remains significant in the majority of them. This
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Figure 18: LM Similarity (κp) vs Capability on MMLU pro for each subject. The increasing
trend holds for all 14 subjects in MMLU pro. The similarity trend is therefore not a consequence of a
particular domain or subject in MMLU Pro.

weaker trend in certain BBH tasks can be attributed to the limited number of questions per task for
each model, with a maximum of 250 questions per task, which reduces the reliability of the results
compared to the more robust MMLU Pro dataset. This is also visible through the high confidence
interval in the BBH tasks, unlike MMLU pro subjects.

D.5 LIST OF MODELS
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Figure 19: LM Similarity (κp) vs Capability on each Big-Bench Hard task. The increasing trend
holds for most BBH tasks. Each task has atmost 250 questions, resulting in minimal data to compute
similarity for the individual tasks.
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Table 22: Models from OpenLLM leaderboard used to study the capability-similarity trend.
Models across different families, architectures, size and versions were used to ensure robustness in
the experimental results. The models included are both base and fine-tuned versions where available.

Dev Model Family Size Type

01-ai Yi-1.5 9B, 34B Base, Instruct
Yi 34B Base, Instruct

CohereForAI c4ai-command-r-plus – Base, Instruct
aya-expanse 32b Base

EleutherAI Pythia 160m, 410m, 2.8b, 6.9b, 12b Base

Google

Gemma 2b, 7b Base, Instruct
Gemma-1.1 2b, 7b Instruct
Gemma-2 2b, 9b, 27b Base, Instruct
Flan-T5 Small, Base, Large, XL, XXL Base

Meta

Llama-2 7b, 13b, 70b Base, Instruct
Llama-3.2 1B, 3B Base, Instruct
Llama-3 8B, 70B Base, Instruct
Llama-3.1 8B, 70B Instruct
Llama-3.3 70B Instruct

Mistral AI
Mistral-7B v0.1, v0.2, v0.3 Base, Instruct
Mixtral-8x7B v0.1 Base, Instruct
Mistral-Large – Instruct

Nvidia Mistral-NeMo-Minitron 8B Base, Instruct

Qwen

Qwen2 0.5B, 1.5B, 7B, 72B Base, Instruct
Qwen2.5 0.5B, 1.5B, 3B, 7B, 14B, 32B, 72B Base, Instruct
Qwen2-Math 7B, 72B Base, Instruct
Qwen2-VL 7B, 72B Instruct
Qwen2.5-Coder 7B Base, Instruct
Qwen1.5 32B, 110B Base, Chat

Tiiuae
Falcon 7b, 11B, 40b Base, Instruct
Falcon3 7B, 10B Base, Instruct
Falcon-mamba 7b Base

Upstage solar-pro-preview – Instruct
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