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ABSTRACT

This work tackles the challenge of generating long videos, which entails produc-
ing videos that surpass the output length of video generation models. Due to
computational constraints, video generation models are restricted to generating
relatively short video clips compared to the length of real-world videos. Existing
approaches employ a sliding window technique to generate long videos during
inference, but this method is often restricted to homogeneous content and recur-
ring events. To generate long videos that encompass diverse content and multi-
ple events, we propose utilizing additional guidance to steer the video generation
process. We further introduce a multi-stage approach to address this challenge,
enabling us to leverage existing video generation models to produce high-quality
videos within a limited time window while holistically modeling the long video
based on the provided guidance. Our method complements existing video genera-
tion efforts. Extensive experiments on challenging real-world videos demonstrate
the advantages of the proposed method, which outperforms the state-of-the-art by
up to 9.5% in objective metrics and is preferred by users over 80% of the time.
The source code and trained models will be released to the public.

1 INTRODUCTION

Video generation has recently attracted increasing attention. As a natural extension of image gen-
eration, most existing works treat video generation as a 3D volume prediction problem and focus
on generating realistic video clips. While this paradigm has demonstrated impressive progress in a
wide range of video generation tasks such as frame prediction (Srivastava et al., 2015; Finn et al.,
2016; van Amersfoort et al., 2017; Oh et al., 2015; Mathieu et al., 2015), class-conditional genera-
tion, unconditional video generation (Vondrick et al., 2016; Saito et al., 2017; Tulyakov et al., 2018;
Saito et al., 2020; Clark et al., 2019), etc., the length of the generated video clip is inherently con-
strained by computational resources. Due to the substantial computational and memory overhead
incurred by state-of-the-art video generation models, they often generate video clips significantly
shorter than real-world videos.

To generate long videos that match the length of real videos, existing works adopt a sliding window
approach. Specifically, the model generates one video clip at a time in temporal order while taking
the previously generated frames as input. The previously generated frames serve as the condition
for the model to ensure that the generated video is consistent across video clips. This approach
has been successfully applied to generate long videos (Ge et al., 2022). However, the results are
far from satisfactory, particularly in real data domains. The synthesized videos are often limited to
homogeneous videos of natural scenes or videos with recurrent human actions. In contrast, many
real videos contain dynamic scenes with multiple, non-recurrent events.

The sliding window approach is sub-optimal for two reasons. First, since a generated clip relies
solely on the preceding clip, it fails to capture the long-range dependencies within the video, such as
the reappearance of an object that had previously left the frame. Second, it assumes that the initial
frames are a sufficient condition for generating long videos. However, accurately inferring the future
solely based on the initial frames is improbable (Yushchenko et al., 2019). To address these short-
comings, incorporating additional guidance to steer the generation process and holistically modeling
the entire video is crucial.

In this work, we tackle the long video generation problem through using additional guidance as con-
trol. We formulate the problem as: given an existing video generation model, a series of guidance,
and a reference frame representing the initial condition of the video, the goal is to generate a video
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Figure 1: Long video generation. Existing schemes (Ge et al., 2022) generate long videos using
a sliding window approach that iteratively extends the generated short video, which often leads to
videos with repetitive patterns. In contrast, we explore the problem of generating long videos using
additional guidance and holistically modeling the entire video, enabling the generation of videos
that encompass multiple, non-repetitive yet coherent events.

covering the events specified by the guidance. The proposed problem aims to generate long video
covering multiple events specified by additional guidance and is complementary to existing efforts
that focus on generating high-quality videos within a fixed temporal window.

We employ object labels as high-level guidance, providing information about the objects that will
be present in the generated video clip. Additionally, we utilize image layouts as low-level guidance,
which can either be generated from the object labels or directly provided by users. While other
forms of guidance are possible, object labels and layouts offer user-friendly input and naturally
support interactive video manipulation such as content insertion or removal.

To solve the long video generation problem, we propose a multi-stage approach by decomposing the
problem into keyframe generation followed by frame interpolation. We first predict all the keyframes
jointly based on the input guidance and reference frame. These keyframes represent the starting
frames of each video clip. We then generate the entire video by predicting the intermediate frames
between keyframes, using the video clip generation model. See Figure 1. The multi-stage approach
allows us to utilize existing video generation models that are highly optimized to generate high-
quality, realistic videos within a short temporal window.

To encourage the temporal consistency of the generated videos, our core idea is to: 1) model the
full video holistically to capture long-range dependencies through the keyframe generation module
and 2) constrain the interaction between layout and keyframe to preserve the object coherency in the
long video using layout-keyframe attention mask. Our evaluations show that the holistic keyframe
modeling and the attention module help to improve the consistency throughout the video.

We conduct extensive quantitative and qualitative experiments on both real and synthetic data. In
particular, we evaluate our method on the EPIC Kitchen dataset, which is challenging for video
generation due to the rapid motion and complex scenes. Empirical results verify the advantage
of the proposed long video generation method and show that it outperforms state-of-the-art video
generation models by 9.5% on FVD. Our main contributions are as follows. First, we study the long
video generation problem which aims to extend the capability of existing video generation models
to generate long videos with dynamic scenes and non-recurrent events. Second, we propose a multi-
stage approach for the long video generation problem. Finally, we conduct extensive evaluations to
validate the efficacy of the proposed framework.

2 RELATED WORK

Video synthesis. Video prediction, class-conditional video generation and unconditional video gen-
eration have been widely studied as the sub-tasks of video generation. GAN-based methods (Von-
drick et al., 2016; Saito et al., 2017; Tulyakov et al., 2018; Clark et al., 2019; Saito et al., 2020;
Skorokhodov et al., 2022a; Tian et al., 2021; Brooks et al., 2022) have demonstrated early success
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Figure 2: Approach overview. The proposed method consists of three stages: 1) Layout generation
predicts a series of layouts from the object label sets. 2) Keyframe generation predicts a sequence of
keyframes of the video from the layout sequences and the reference frame. 3) Frame interpolation
synthesizes the intermediate frames given the keyframe sequence to obtain the complete video.

in generating short video clips, while the generation quality decreases significantly when applying
to long videos. Diffusion models (Voleti et al., 2022; Yang et al., 2022; Ho et al., 2022b) are recently
introduced for video generation. However, the slow sampling speed of diffusion models limits their
ability to generate long videos. Auto-regressive models are first developed to synthesize raw pixels
in videos (Kalchbrenner et al., 2017; Weissenborn et al., 2020; Babaeizadeh et al., 2020). Thanks
to the development of vector quantization (Esser et al., 2021; van den Oord et al., 2017) and trans-
former (Devlin et al., 2019) models, auto-regressive methods are adapted to predict discrete tokens
in the latent space (Yan et al., 2021; Moing et al., 2021; Ge et al., 2022) with impressive visual
quality. In this work, we build upon recent advances of VQVAE and non-autoregressive transformer
models (Chang et al., 2022; Yu et al., 2022a; Kong et al., 2022).

Despite the recent success in video generation, these models mostly focus on generating short clips
(e.g. 16-frame videos) and are limited to synthesizing videos in specific domains (Villegas et al.,
2023; Ge et al., 2022), such as human actions (Soomro et al., 2012; Siarohin et al., 2019; Bodla
et al., 2021), sky timelapse (Xiong et al., 2018), robotics videos (Ebert et al., 2017). Most recently,
a few text-to-video models (Wu et al., 2021; 2022; Hong et al., 2023; Singer et al., 2023; Ho et al.,
2022a; Blattmann et al., 2023) are developed to generate videos given natural language inputs. How-
ever, these models are limited to videos of single scenes without a meaningful storyline. In contrast,
our work aims to generate videos with diverse content and novel events. In addition, we focus on
generating videos beyond the length of a single clip and any existing video clip generation models
can be adopted as a component in our pipeline. There are few works exploring video generation con-
ditioned on input guidance at multiple timesteps (Bar et al., 2021; Yu et al., 2022b; Ge et al., 2022;
Harvey et al., 2022; Yin et al., 2023) while limited to synthetic environments. In contrast, our work
aims to deal with real-world datasets. On the other hand, unconditional video generation (Brooks
et al., 2022; Skorokhodov et al., 2022b) successfully generates long videos but is not applicable to
our conditional scenario.

Story visualization and image manipulation. Story visualization (Li et al., 2019; Song et al.,
2020; Maharana et al., 2021; Maharana & Bansal, 2021) focuses on synthesizing a sequence of
images that visualize a story of multiple sentences. GeNeVA (EI-Nouby et al., 2019; Fu et al., 2020;
Zhenhuan Liu, 2020; Cong et al., 2022) is a conditional text-to-image generation task developed
on CoDraw (Kim et al., 2019) dataset. It studies the problem of constructing a scene iteratively
based on a sequence of descriptions. However, these two lines of work are limited to experiments
on synthetic and cartoon data. These approaches focus on generating a few frames of a visual story
instead of videos. In contrast, we focus on experiments on real-world data and generating videos.

3 APPROACH

In this section, we introduce the proposed method for long video generation. We first give an
overview of the approach and then describe the three main components.
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3.1 OVERVIEW

Given 1) a series of N input guidance, and 2) a reference frame, I as input, our goal is to synthesize
a video V that covers the content provided in the guidance while starting from the initial frame .
The reference frame provides the same initial condition as existing video prediction tasks. We use
sets of object labels {x1,x2, - ,xN} to serve as the input guidance. Each object label set x,,
contains k™ object labels which indicates the objects that will appear in the video. Note that k" may
vary across different timesteps n.

To tackle the long video generation problem, our core idea is to model the entire video jointly
through keyframe generation and utilize existing models to generate high-quality videos within a
short temporal window. We achieve these by 1) generating a series of N keyframes in the video
given the object label sets, each keyframe presents the initial and final frames of the short video clips,
and 2) predicting the intermediate frames between the keyframes to obtain the complete video. Fur-
thermore, we introduce an additional layout generation stage that explicitly predicts the 2D layouts
of the keyframes to reduce the difficulty of keyframe generation. See Figure 2.

The proposed approach offers several noteworthy advantages. First, it facilitates holistic video mod-
eling over an extended time window by representing the video in an abstract intermediate form. The
layout generation process aids in preserving the 2D frame structure, which can easily deteriorate
over time during long video generation. Second, it enables the utilization of various video genera-
tion models to generate intermediate video frames, providing flexibility in video generation. Lastly,
it empowers users to manipulate the generated videos through layout adjustments. See Section A.3
for examples of such manipulations. The following sections provide a detailed description of the
three stages of our approach.

3.2 LAYOUT GENERATION

We first generate a series of layouts from the object label sets to explicitly constrain the keyframe
generation. Given a series of N object label sets {z,,}, and a reference frame I, we synthesize a
series of layouts {L,,}, which represents the layouts of the N keyframes in the video. Since the
reference first frame [ is given, we assume L is known and can be used as a reference layout.
We define the layout L as a set of bounding boxes with variable length k", i.e. {b1,ba, -+ ,bgn }.
The bounding box attributes include its object label, x-coordinate, y-coordinate, width and height,
ie.b={c,x,y,w,h}.

Our layout generator is a transformer-based model. We first apply tokenization to encode the layouts
{L,} and the object label set {x,, } into discrete tokens. We then train the model to predict the layout
tokens given the object label tokens as input. We flatten the input series of object label sets {x.,, }
and layouts {L,,} into token sequences where the values of the bounding box attributes are simply
discretized by uniform quantization. To predict the layout series {f/n}, the tokens of the reference
layout L and the object labels ¢ are given and the other attributes of the bounding boxes {z, y, w, h}
are replaced with a [MASK] token. The transformer model is trained to predict the masked bounding
box attributes for {ﬁn} Our layout generation module predicts multiple layouts jointly at the same
time so that it preserves the temporal consistency of the generated layout sequence.

3.3 KEYFRAME GENERATION

Next, we generate a sequence of keyframes from the predicted layout sequences. Given a reference
first frame I and a series of layouts {ﬁn} either given by the users or synthesized in the previous
stage, we aim to generate a sequence of keyframes {fn} We use a transformer-based model as
our keyframe generator. A VQVAE (Esser et al., 2021) is used to encode the images [ into visual
tokens e, and a bidirectional transformer model is used to predict the tokens for the target keyframes.
Finally, the decoder of VQVAE is used to map the predicted keyframe tokens € back into raw images
I. Specifically, the keyframe sequence {1, } are transformed into tokens i.e. {e,, }. At training time,
the tokens of layouts and keyframes are concatenated as s = { Ly, ﬁl, ceey f,N, €0,€1,° - ,eN}in
dataset D. We randomly replace the tokens in the sequence with the [MASK] token and obtain the
masked sequence s,s. The transformer model is trained to predict the masked tokens s;,t € M by
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Figure 3: Keyframe generation. Our key ideas are: 1) Holistic keyframe modeling: the transformer
model predicts multiple keyframes jointly to maintain the coherency given the layouts and the refer-
ence frame as input. 2) Temporal layout-keyframe attention: the attention mask between irrelevant
keyframe and layout tokens is set as zero to encourage the model to focus on relevant tokens where
the tokens within a bounding box and the layout tokens represent the same object in the sequence.

minimizing the negative log-likelihood:

L=—FE Zlogp(st|sM) €))
S€D fonr
At test time, the tokens of the layout sequence and the first frame { Lo, I:l, cee L N, €o} are given,

and the model predicts the tokens of the following keyframes {é,}, which is reconstructed to the
target keyframes {fn} by the decoder of VQGAN. See Figure 3. Our keyframe generator predicts all
the frames jointly. This provides a holistic model for the entire video. As shown in the experiment,
our design improves the consistency across keyframes and the coherency of the video.

Temporal layout-keyframe attention. To further improve the quality and coherency of keyframe
generation, we propose a temporal layout-keyframe attention mask. As our input to the keyframe
generator is a concatenation of the layout and keyframe tokens, each token is attended to every other
token without considering the relationship between the layout and the keyframe. However, this may
be redundant as the visual tokens within a specific bounding box in the keyframe (€é,) are highly
related to the layout tokens of the corresponding bounding box in L,,. In addition, as we generate
a series of keyframes jointly, the tokens of each bounding box in a single layout L, are correlated
with every relevant visual token in all the keyframes {e, }, as long as the bounding box represents
the same instance in the sequence. We encode this prior knowledge into our model through the
temporal layout-keyframe attention mask, where we set the irrelevant attention as zero in order to
guide the model to focus on relevant tokens. This prior knowledge helps the model to 1) respect the
relation between layout and keyframe to improve their alignment and 2) constrain the generation of
the same instance in the sequence to be correlated to improve the coherency.

3.4 FRAME INTERPOLATION

Finally, given the reference frame I and a sequence of generated keyframes {fn} as inputs, we can
adopt any existing video clip generation model (Ge et al., 2022; Yu et al., 2022a) to generate the
video between the keyframes. Specifically, we use a transformer-based model as our frame inter-
polation model. The model predicts the intermediate frames given the initial and final keyframe as
input. We first convert the video into discrete tokens using a 3D-VQVAE model. A transformer
model is then used to predict the masked video tokens of intermediate frames. Finally, the interpo-
lated video tokens are mapped back to the raw videos by the 3D-VQVAE decoder.

During inference time, given two consecutive keyframes I,,_1 and I,,, the model predicts the video
token sequences that connect between the two keyframes, i.e. 2,,. N clips of video tokens {2, } are
predicted and concatenated as a sequence to be mapped to the long video by the 3D decoder. Note
that our frame interpolation requires video generation between keyframes with a long temporal dis-
tance, while existing works (Huang et al., 2022; Bao et al., 2019) are limited to interpolate adjacent
frames with small motion. See Section D.1 for further comparison.
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Table 1: Quantitative results of video genera- Table 2: Quantitative results on nuScenes.

tion on EPIC Kitchen. LPIPS is averaged across Methods FVD| LPIPS| AP?
all frames, AP is evaluated using the 45" frame. MAGVIT (frame pred.) 171.1 0478  0.044
. Ours 1589 0448  0.059
Our method consistently outperforms state-of-the-
art video generation methods on video, image and Ours (GT layouts) 1060 0384 0.137
. . Ours (GT keyframes) 84.5 0.306 0219
detection metrics.
Methods FVD| LPIPS| AP?
TATS 737.6 0615 0.072 Table 3: User study. We report the percentage
StyleGAN-V 581.8 0550 0.074 P h P hod d i
MAGVIT (frame pred.) 2914 0475  0.133 of raters that prefer our method per video quality
MAGVIT (class cond.) ~ 285.6 0469  0.140 and reproduction of the ground truth videos.
Ours 2584 0421  0.192 - -
Methods Quality Reproduction
Ours (GT layouts) 214.7 0.346  0.390 Ours vs. MAGVIT (frame pred.) 76.3% 82.1%
Ours (GT keyframes) 174.1 0.242 0451 Ours vs. MAGVIT (class cond.)  68.4% 66.7%

4 EXPERIMENTS

We validate our approach on both challenging real-world videos and synthetic data. We first evaluate
the video generation results by comparing with state-of-the-art methods. Next, we verify our model
design through ablation study.

Dataset. We validate our method on three datasets in different domains. 1) EPIC Kitchen (Damen
et al., 2022) consists of egocentric videos of kitchen activities. Compared with commonly used
datasets for video generation research, e.g. UCF (Soomro et al., 2012), Kinetics (Kay et al., 2017),
and BAIR (Ebert et al., 2017), EPIC Kitchen videos contain complex and dynamic scenes. The
foreground objects move in and out of the camera field-of-view, and the background scenes and
camera viewpoint change frequently, e.g. moving to different rooms. To synthesize such video, the
video generation model needs to generate multiple, non-recurrent events within a short time window,
i.e. multiple actions performed by the subject. 2) nuScenes (Caesar et al., 2019) consists of driving
videos including both the motion of objects e.g. moving cars or people, and the dynamics caused
by the egocentric motion e.g. background scenes change over time. 3) CoDraw (Kim et al., 2019)
is a synthetic dataset consisting of sequences of images. While it is not a video dataset, it contains
diverse object classes and provides complete annotation for the object labels and layouts. We use
CoDraw to evaluate our keyframe generation. See Section C.1 for additional details.

Evaluation metrics. FVD assesses the quality of generated videos by measuring whether the dis-
tribution of generated videos is close to that of real videos in the feature space. FID assesses the
quality of generated images similar to FVD. LPIPS assesses the similarity between the generated
frames and the ground truth video frames. AP and F1 assess the semantic accuracy of generated
videos by measuring the correctness of the generated objects. We measure AP by comparing the
detected objects between the generated and ground truth frames. See Section B.1 for details.

Implementation details. We leverage an off-the-shelf segmentation model (Cheng et al., 2021), not
specifically trained on our dataset, to automatically extract sparse labels. This automated process
eliminates the need for manual annotation and can be applied to arbitrary data. In addition to the
foreground objects, the dynamic background scenes are described by “stuff” labels such as wall,
floor and table. Each video sequence contains 64 frames, and the videos are generated at 128 x128.
We sample one keyframe every 16 frames in the 64-frame clips so that the keyframe sequence
contains N = 4 synthesized keyframes at 256 x256. See Section C.2 for additional information.

4.1 VIDEO GENERATION

We evaluate video generation on the EPIC Kitchen and the nuScenes datasets. The goal is to verify
the effectiveness of additional guidance and holistic video modeling in long video generation.
Baselines. We compare with the following state-of-the-art video generation methods:

o MAGVIT (frame pred.) (Yu et al., 2022a): given the reference frame as input, we apply MAGVIT

to generate a 16-frame clip. We then take the last predicted frames as input to iteratively generate
the entire video. This is the standard sliding window approach for long video generation.
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o MAGVIT (class cond.): we condition MAGVIT on both the reference frame and the object label.
This extends the sliding window approach to take additional guidance similar to our method.

e StyleGAN-V (Skorokhodov et al., 2022b): we train their unconditional model to generate a 64-
frame video, and apply GAN projection method to condition the model on the reference frame.

o TATS (Ge et al., 2022): similar to MAGVIT, we generate a 16-frame clip and use sliding window.

e Ours (GT layouts) and Ours (GT keyframes): to understand how the quality of layout and
keyframe generation affects the video generation results, we compare with two variants of our
method that take the ground truth layouts and keyframes as inputs.

Quantitative results. The results are in Table 1 and Table 2. Our method obtains substantial,
i.e. ~9% and ~7% improvements upon baselines on the video metric. The generated videos are
closer to the ground truth as evaluated by the image metric, and the detection score validates that our
model generates videos that contain the set of objects as specified by the input guidance. The results
verify the effectiveness of the proposed approach. Note that MAGVIT (class cond.) performs better
than MAGVIT (frame pred.), which shows the benefit of additional guidance. Our approach further
improves MAGVIT (class cond.), which suggests that both the additional guidance and the holistic
video modeling provided by our approach are helpful for long video generation. On the other hand,
Ours (GT layouts) and Ours (GT keyframes) significantly improve the output video quality. The
results suggest that there is significant room for improvement in long video generation given the very
same video generation model. It verifies that optimizing video generation for a single clip (i.e. 16
frames) alone is not sufficient for solving the long video generation problem. Our proposed method
for generating video beyond a single clip, which is orthogonal to existing efforts, is essential. Note
that our multi-stage approach allows users to manually improve the intermediate representations,
e.g. provide more detailed layouts, which allows further improvement for the generated videos in an
interactive generation setting.

User study. We conduct a user study to augment the quantitative evaluation. In the study, we present
two videos generated by different methods together with the ground truth video and ask the raters
1) Quality: which video has the better visual quality, and 2) Reproduction: which video better
reproduces the content of the ground truth video. We conduct the study with 40 videos and 11
participants. The results are in Table 3, which is consistent with the quantitative results and further
validates the clearly visible gain of our method compared to the baselines.

Qualitative results. Figure 4 shows the per-frame | ———— —ynar

LPIPS score. X-axis shows the frame number, rang- ' M:\G\;’T '

ing from O to 64. Y-axis shows the LPIPS of a spe- , ,| | |7 (class cond.)

cific frame averaging over all test videos. The gener- % — Ours

ated image quality degraded rapidly in MAGVIT, es- ;| 1 = & ayouts)

pecially when we generate videos beyond the length /\//_\,J\f\ _ Ouws

of the training clip (i.e. 16 frames). In contrast, our ,,* . . . . | (GT keyframes)
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approach experiences a slower quality degradation, Frame Numbers

which further verifies its benefit in generating video Figure 4: Per-frame video results. Our

beyond the training clip. method slows down quality degradation.

Figure 5 and Figure 6 show the qualitative results. TATS, StyleGAN-V and MAGVIT tend to gen-
erate video with homogeneous contents, and the quality degrades for long sequences. On the other
hand, our method generates video with scene change (wall to table), object deletion (plate at the
bottom) and object insertion (left/right hand), showing the ability of our model to generate videos
with multiple events. We further show that Ours (GT layouts) generates videos with the layouts
close to the upper bound results i.e. Ours (GT keyframes). On the other hand, Ours generates videos
that match the label sets but with different layouts. The results validate the ability of our model to
generate videos that satisfy different levels of the input guidance i.e. object label sets or (more con-
strained) layouts. We show good results for the challenging long video generation problem where
the objects move in and out of camera views with large motion and changing scenes.

4.2 KEYFRAMES GENERATION

Next, we evaluate the performance of our keyframe generation model. The goal is to verify 1) the
importance of generating all the keyframes jointly, and 2) the importance of additional guidance for
generating content across a large temporal window.
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Figure 5: Qualitative results of video generation on EPIC Kitchen. TATS, StyleGAN-V and
MAGVIT predict videos with quality degradation for long sequences. Our method generates long
videos with meaningful events e.g. scene change, object insertion and deletion.
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Figure 6: Qualitative results of video generation on nuScenes. MAGVIT predicts relatively static
videos and repetitive patterns when inferring long videos that are beyond the output length of the
model, while our method generates dynamic and non-recurrent long videos.

Baselines. We compare the following baselines and variants of our method:

e MaskGIT (Chang et al., 2022): the model takes the reference as input and iteratively predicts the
next keyframe. This model represents keyframe generation without input guidance.

e HCSS (Jahn et al., 2021): the model takes a single layout as input and generates a single keyframe.
This model represents independent keyframe generation without full video modeling.

e Ours: our keyframe generation given the predicted layouts as inputs.
o Ours (GT): our keyframe generation using the ground truth layouts (upper bound).

e Ours single (GT): iterative approach that predicts keyframes conditioning on the previous
keyframe and the ground truth layout, representing generation without full video modeling.
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Figure 7: Qualitative results of keyframe generation on EPIC Kitchen and CoDraw. MaskGIT
predicts similar content, and HCSS fails to generate consistent frames. The superior performance of
our model shows the importance of providing additional input guidance and holistic video modeling.

Quantitative results. The results are in Table 4. Our method consistently outperforms HCSS on
both real and synthetic data, which verifies the importance of joint prediction for all keyframes. Our
method also performs better than MaskGIT except for LPIPS in the synthetic dataset. We observed
that MaskGIT tends to predict repetitive keyframes with little changes across frames which implies
that the video will remain static and is not suitable for video generation.

The F1 score shows that our method can  Taple 4: Quantitative results of keyframe genera-

generate better keyframes than MaskGIT,  tjon, Metrics are averaged on keyframes.
which verifies the importance of guidance.

. . CoDraw EPIC Kitchen

We also compare different variants of our
thod. In particular, the superior perfor- —acthods FID{ [LPPS| Fif FDJ LPIPS|
method. In p ’ perior p MaskGIT 108 0304  61.66 469 0633
mance of Ours (GT) over Ours single (GT)  Hcss 9.8 0425 8155 502 0.653
further verifies that a model that consid- _Ours 74 0325  90.04 299 0.548
he entire video iointly leads to bett Ours (GT) 39 0106 9468 242 0416
ers the entire video jointly leads to better gy gingle GT) 4.6 0.156 9133 275 0.480

keyframe generation. See Section B.1.

Qualitative results. Figure 7 shows the qualitative results. As mentioned before, MaskGIT tends to
generate keyframes with similar content, which shows the importance of providing input guidance
at multiple timesteps. HCSS fails to generate consistent results across the keyframes e.g. different
styles of the sink. Similarly, we can see the iterative approach Ours single (GT) fails to generate
consistent keyframes compared to Ours (GT). The examples clearly demonstrate the importance of
joint modeling for the entire video.

Ablation study of temporal layout-keyframe attention. In Ta- Typle 5. Ablation study of
ble 5, we report the result of removing the layout-keyframe atten-  Jayout-keyframe attention.
tion mask so that each layout token is attended to each keyframe = —= FID | LPIPS |
token, denoted as w/o mask. With the proposed attention mask, Ours wio mask _34.8 0575
our model generates keyframes that better align with the reference =~ Ours 29.9 0.548
frame and contain more details, achieving better FID and LPIPS.

5 CONCLUSIONS

We tackle the problem of long video generation which aims to generate videos beyond the output
length of video generation models. We show that the existing sliding window approach is sub-
optimal, and there is significant room for improvement using the same video generation model. To
improve long video generation, we propose to use additional guidance to control the generation
process. We further propose a multi-stage approach which utilizes existing video generation mod-
els while capturing long-range dependency within the video. Empirical results validate our model
design and show favorable results over state-of-the-art video generation methods.
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A ADDITIONAL QUALITATIVE RESULTS

A.1 VIDEO GENERATION

We provide a qualitative comparison of the generated videos. We demonstrate the videos synthesized
by our method, StyleGAN-V, MAGVIT (frame pred.), MAGVIT (class cond.) on the EPIC Kitchen
dataset and the nuScenes dataset in Figure 8, Figure 9, Figure 10 and Figure 11. We also compare
with two variants of our method that take the ground truth layouts and keyframes as inputs, i.e. Ours
(GT layouts) and Ours (GT keyframes). More video results are attached in the zip file.

MAGVIT MAGVIT
(class cond.) (frame pred.) StyleGAN-V

Ours

MAGVIT MAGVIT
(class cond.) (frame pred.) StyleGAN-V

Ours

MAGVIT
(frame pred.) StyleGAN-V

MAGVIT
(class cond.)

Ours
ﬁ

Figure 8: Additional results of video generation on the EPIC Kitchen dataset.
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MAGVIT MAGVIT
(class cond.) (frame pred.) StyleGAN-V

Ours

MAGVIT MAGVIT
(class cond.) (frame pred.) StyleGAN-V

Ours

MAGVIT MAGVIT
(class cond.) (frame pred.) StyleGAN-V

Ours

Figure 9: Additional results of video generation on the EPIC Kitchen dataset.

StyleGAN-V and MAGVIT tend to predict a relatively static video with repetitive motions, and the
quality degrades for long sequences. On the other hand, our method generates video with back-
ground change, object deletion and object insertion, showing the ability of our model to generate
videos with multiple events. We have shown good results in the challenging long video generation
problem on real-world datasets.
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MAGVIT

£
é

|Ours (GT keyframes) Ours (GT layouts)

MAGVIT

Ours

Ours (GT keyframes) Ours (GT layouts)

Figure 10: Additional results of video generation on the nuScenes dataset.

MAGVIT

(Ours (GT keyframes) Ours (GT layouts)

MAGVIT

Ours (GT keyframes) Ours (GT layouts)

Figure 11: Additional results of video generation on the nuScenes dataset.
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A.2 KEYFRAME GENERATION

We include additional comparison of keyframe generation on the CoDraw dataset and the EPIC
Kitchen dataset in Figure 12 and Figure 13. We show the keyframes generated by our method,
MaskGIT (Chang et al., 2022), HCSS (Jahn et al., 2021). We also include the results of Ours
(GT), where the keyframe generation uses the ground truth layouts as inputs and Ours single (GT)
where the keyframes are predicted iteratively conditioning on the previous keyframe and ground
truth layouts.

MaskGIT tends to generate keyframes with similar content, which shows the importance of provid-
ing input guidance at multiple timesteps. Comparing HCSS and our method, we can see that HCSS
fails to generate consistent results across the keyframes. Similarly, when we compare Ours (GT)
with Ours single (GT), we can see the iterative approach fails to generate consistent keyframes. The
examples clearly demonstrate the importance of joint modeling for the entire video.

MaskGIT

‘J X

HCSS

Ours

Keyframe 1 Keyframe 2 Keyframe 3 Keyframe 4 Keyframe 1  Keyframe2  Keyframe 3  Keyframe 4

Ours single (GT) Ours (GT)

HCSS MaskGIT

Ours

Ours single (GT) Ours (GT)

Keyframe 1 Keyframe 2 Keyframe 3 Keyframe 4

Keyframe 1 Keyframe2  Keyframe3 Keyframe 4

Figure 12: Additional results of keyframe generation.
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HCSS MaskGIT

Ours

Ours single (GT) Ours (GT)

Fseils

o <\
Keyframe 1 Keyframe 2 Keyframe 3 Keyframe 4 Keyframe 1 Keyframe2  Keyframe 3  Keyframe 4

---hhh

HCSS MaskGIT

Ours

Ours single (GT) Ours (GT)

Keyframe 1  Keyframe2  Keyframe3 Keyframe 4

Keyframe 4

Keyframe 1 Keyframe 2 Keyframe 3

Figure 13: Additional results of keyframe generation.
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A.3 VIDEO MANIPULATION

Our layout generation module brings an additional benefit that the users can manipulate the gener-
ated videos by editing the layouts such as content insertion or removal. Figure 14 shows that our
method allows users to generate different videos by sampling different layouts from the model. It
also allows video manipulation through layout, where the user may remove an object, change the
size and position of the objects, efc.

Sample 1

Sample 2

E<]
2
=
=
B
]
g
=

Sample 1

Sample 2

Manipulated

Frame 24 Frame 40 Frame 56

Figure 14: Video manipulation through layouts. Users can generate different videos by sampling
different layouts, as shown in the first two rows. Users can even manipulate the videos by editing
the layouts. The yellow cross in the third row shows object deletion, and the yellow arrow in the last
row shows object movement.

B ADDITIONAL QUANTITATIVE RESULTS

B.1 KEYFRAME GENERATION

We evaluate the performance of our keyframe generation model using additional metrics PSNR
and SSIM. The results are in Table 6. The PSNR and SSIM scores are consistent with LPIPS.
Our method consistently outperforms HCSS on both real and synthetic data, which verifies the
importance of joint prediction for all keyframes. Our method also performs better than MaskGIT
except for the metrics of similarity with ground truth on the synthetic CoDraw dataset. However, we
observe that MaskGIT tends to predict repetitive keyframes with little changes across frames, which
is not suitable for video generation. We provide further quantitative evaluation in Table 7.

Table 6: Quantitative results for keyframe generation. The metrics are averaged across
keyframes. We include additional metrics PSNR and SSIM. The results are consistent with LPIPS.

CoDraw EPIC Kitchen
Methods FID|, PSNR{1 SSIMt LPIPS| FID] PSNRT SSIMT LPIPS|
MaskGIT (Chang et al., 2022) 10.8 17.822 0.846 0.304 46.9 10.471 0.251 0.633
HCSS (Jahn et al., 2021) 9.8 14.534 0.748 0.425 50.2 10.121 0.235 0.653
Ours 7.4 16.952 0.809 0.325 34.8 11.541 0.268 0.575
Ours (GT) 39 22.114 0.889 0.106 24.2 14.158 0.367 0.416
Ours single (GT) 4.6 20.233 0.860 0.156 27.5 12.902 0.320 0.480
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The standard image quality metrics such as FID and LPIPS cannot evaluate whether a generated
keyframe contains the set of objects given in the object label set. Following GeNeVA (EI-Nouby
et al., 2019), we train an object detector and localizer on our CoDraw data. We apply the object
detector to the generated keyframes and the ground truth keyframes and report the object detection
metrics: precision, recall and F1 scores. In addition, we report the relational similarity as in (EI-
Nouby et al., 2019). It constructs the graph where the vertices are objects and the edges are the
positional relations. The relational similarity compares the similarity of the graph built by the gen-
erated keyframes and the ground truth keyframes.

We observe that our results are significantly better than MaskGIT (Chang et al., 2022) and
HCSS (Jahn et al., 2021), which verifies a model that considers the entire video jointly leads to
better keyframe generation and validates the importance of the input guidance. As discussed in Ta-
ble 6, although MaskGIT obtains better LPIPS scores on the CoDraw dataset, it gets much lower
object detection metrics compared to our model. The results validate that our method generates
keyframes with correct objects compared to MaskGIT.

Table 7: Object detection metrics for keyframe generation. The metrics are averaged across
keyframes. Our method achieves significantly better scores than baselines.

Methods Precision T Recallt FI11 Rsim1
MaskGIT (Chang et al., 2022) 72.40 58.00 61.66  52.86
HCSS (Jahn et al., 2021) 82.87 81.76 81.55 68.39
Ours 93.24 88.19 90.04 7532
Ours (GT) 96.00 94.10 94.68  91.64
Ours single (GT) 92.35 91.27 91.33  87.38

B.2 LAYOUT GENERATION

We compare the performance of layout generation to BLT (Kong et al., 2022), where their model
takes a single object label set as input and generates a single layout. BLT represents independent
layout generation without full video modeling.

We evaluate the performance following BLT using the below metrics:

e 10U, Overlap: measures the absolute quality with the intuition that a better layout contains
objects without much overlap.
o Similarity: computes the distance between ground truth layouts and generated layouts.

Table 8 shows that our method that jointly predicts a sequence of layouts achieves better metrics
than BLT where each of the layouts in the series is generated independently from a single object
label set. Our model preserves the temporal consistency of the layout sequences while BLT fails.

Table 8: Quantitative results for layout generation. The metrics are average across keyframes.
Our method obtains better scores than baseline BLT.

CoDraw EPIC Kitchen
Methods IOU} Overlap) Simf IOU| Overlap] Simf
BLT (Kong et al., 2022) 0.171 0.092  0.073 0.758 1.796  0.124
Ours 0.117  0.060 0.084 0.684 1.341 0.145

C IMPLEMENTATION DETAILS

C.1 DATASET

EPIC Kitchen. The dataset contains 20M frames extracted from 700 videos with a total length
of 100 hours. The videos have variable lengths and cover a long period. We follow the original
train and test split and cut the videos into 64-frame sequences. We first re-sample the sequences
with double the frame rate, so that each 64-frame sequence covers a 5-second video with the five
keyframes sampled equidistantly.
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Specifically, to train the frame interpolation module, we create short training sequences of 16 frames
which cover 1.28 seconds (25 fps). To train the layout generation and keyframe generation modules,
we sample one frame every 16 frames and form the 5-frame keyframe sequences that cover 64
frames which are around 5.12 seconds of the video. Therefore, our model generates four 16-frame
video clips of 1.28 seconds between the five keyframes and finally creates a 64-frame video covering
5.12 seconds. With the preprocessing, we create 276k sequences for training and 3k sequences of
non-overlapping frames for testing.

Since there are no object labels and layout annotations in the EPIC Kitchen dataset, we use Mask-
Former (Cheng et al., 2021) to extract the semantic map for each frame and convert them into the
object labels and bounding boxes, which serve as the input guidance and ground truth layout. We
use 133 object labels as predicted by the MaskFormer model. We further apply temporal smoothing
to clean up the object labels and remove small objects that cover less than 2% of the image. Finally,
the connected components extracted from the semantic segmentation maps are used as the pseudo
ground truth of our object labels and layouts.

nuScenes. We follow the original train split and select 600 videos as the test split. We use the same
frame sampling strategy as EPIC Kitchen.

CoDraw. The dataset contains 10k sequences of the scene manipulation process. Although the
sequences have variable lengths, we sample every consecutive 5 frames to form 67k training se-
quences and 4k test sequences. The dataset contains 58 different objects with the same appearance
for each object. To analyze the temporal consistency between the generated keyframes, we extend
the original CoDraw data by creating 6 different appearances for each clip object class using color
harmonization code and re-render the data using the original layouts. The object instances have the
same appearance in the same sequence while having different appearances in other sequences. In
addition, the object can be resized and horizontally flipped in one sequence. These changes allow us
to evaluate whether the models preserve the consistency of object appearance when predicting the
keyframe sequences.

C.2 TRAINING

Layout generation. We first apply tokenization to encode the object label sets {z,, } into discrete
tokens. We then learn a transformer model that predicts the layout tokens given the object label sets
as input. We use a transformer model with 4 layers, 8 attention heads, 512 embedding dimensions,
and 2048 hidden dimensions. We use Adam optimizer and train the transformer models on 4 x 4
TPU with a batch size of 64 and peak learning rate 5 x 10~ for 100k iterations.

We set the maximum number of objects in the layout to 14. For the CoDraw dataset, we use the
original layout representation b = {c, 2, y, w, h}. Each object in the layout is encoded into 5 tokens,
which results in a 70-token layout and the layout sequence including 5 x 70 = 350 tokens. If the
object label set has less than 14 objects, we pad the sequences with padding tokens. At test time, the
first 70 tokens and the class tokens c are given, and the model predicts the bounding box attributes
x,y,w, h. We use uniform quantization to encode bounding box attributes into integer numbers
between 0 and 31.

We use a different layout representation for the EPIC Kitchen and the nuScenes datasets. The
objects in real-world videos are not aligned with a rectangular bounding box in general, and
there are many background pixels included if one uses bounding boxes as the layout repre-
sentation. We use the extreme point representation (Zhou et al., 2019) where four points,
i.e. (top-most, left-most, bottom-most, right-most) are used to represent the location and size
of an object. The extreme point representation provides more compact boundaries for the ob-
jects and preserves the object shape and orientation information. Specifically, we use b =
{¢, Ttop, Ytops Tieft, Yleft, C; Thottom, Yoottoms Tright Yright §- Each object in the layout is encoded
into 10 tokens, which results in a 140-token layout and the layout sequence including 5 x 140 = 700
tokens. At test time, the first 140 tokens and the class tokens c are given, and the model predicts the
other extreme point attributes.

Keyframe generation. We convert the keyframe generation into tokenization and sequence predic-
tion. We use a VQVAE (Esser et al., 2021) model to encode the raw images into discrete visual
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tokens, and a bidirectional transformer model is used to predict the masked image tokens i.e. target
keyframes. Finally, the decoder of VQVAE is used to map the visual token into raw images.

We train the model to generate keyframes at 256 x 256 resolution. The VQVAE model encodes an
image into 16 x 16 tokens with codebook size 1024. Similar to the layout encoding process above,
one layout is translated and padded into a sequence of 128 tokens. Therefore, the transformer model
takes a sequence of (16 x 16 4+ 128) x 5 = 1920 with (16 x 16) x 4 = 1024 token replaced with
[MASK] as input, and the model predicts the masked tokens.

We use a transformer model with 24 layers, 8 attention heads, 768 embedding dimensions, and 3072
hidden dimensions. We use Adam optimizer and train the transformer models on 4 x 4 TPU with
a batch size of 128 and peak learning rate 10~* for 400k iterations. We utilize the VQVAE model
pre-trained on ImageNet (Chang et al., 2022) and finetune it for 1200k iterations on our datasets.

Frame interpolation. We use a transformer model to generate intermediate frames similar to the
video interpolation task of MAGVIT (Yu et al., 2022a). The model takes the initial and final frames
of the video as input. It first converts the input frames into discrete video tokens using 3D-VQVAE.
A transformer model is then used to predict the tokens of intermediate frames. Finally, the interpo-
lated video tokens are mapped back to the raw videos by the 3D decoder.

We train the model to generate 16-frame videos at 128 x 128 resolution with stride 2. The 3D-
VQVAE model encodes a 16-frame video into 4 x 16 x 16 tokens using the codebook size 1024.
We use MAGVIT 3D-VQ (B) with 41M parameters. The transformer model predicts a sequence of
length 1024. We use MAGVIT (B) with 128M parameters. Both models are trained on batch size
128 using Adam optimizer and a peak learning rate 10~ with linear warm-up and cosine decay for
100k iterations. We implement the model in JAX and the training is conducted on 8x8 TPU-v2
chips.

At test time, the transformer model is applied N times to predict the tokens between two keyframes
which serve as the initial and final frame of the video clips. Specifically, we repeatedly pad the
initial frame and the final frame 8 times to form a 16 x 128 x 128 video, which is encoded to
4 x 16 x 16 = 1024 tokens. The transformer model is then used to re-generate the corresponding
1024 tokens. We obtain N sequences and the tokens sequences are concatenated to sequences of
length N x 1024 and reshaped to 4N x 16 x 16. We input the reshaped tokens into the 3D-VQVAE
decoder to reconstruct 16 N x 128 x 128 video. N is set as 4 in our experiments.

C.3 BASELINES

MAGVIT. We train MAGVIT using the same transformer architecture and training strategy as ours
for fair comparison. We train the model to generate 16-frame videos at 128 x 128 resolution. We
use MAGVIT 3D-VQ (B) and MAGVIT (B). Both models are trained on batch size 128 using Adam
optimizer and a peak learning rate 10~* with linear warm-up and cosine decay for 100k iterations.
We implement the model in JAX and the training is conducted on 8 x8 TPU-v2 chips.

TATS, StyleGAN-V. We train the model using their released code and training strategy.

MaskGIT, HCSS. We train MaskGIT and HCSS using the same transformer architecture and train-
ing strategy as ours for fair comparison. We train the model to generate keyframes at 256 x 256
resolution. The VQVAE model encodes an image into 16 x 16 tokens with codebook size 1024. One
layout is translated and padded into a sequence of 128 tokens. We use Adam optimizer and train the
transformer models on 4 x 4 TPU with a batch size of 128 and peak learning rate 10~# for 400k
iterations.

D DISCUSSIONS

D.1 COMPARISON TO FLOW-BASED INTERPOLATION

We use transformer-based model (Yu et al., 2022a) as our frame interpolation module (Section 3.4)
instead of using flow-based interpolation models as we study a different problem. The flow-based
models (Niklaus & Liu, 2020; Huang et al., 2022; Bao et al., 2019) interpolate adjacent frames within
a short temporal window (0.04sec, 25fps to 100fps, 4 x frames) while our task requires interpolating
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keyframes with a long temporal distance (0.64sec, 1.56fps to 25fps, 16 xframes). Their standard
benchmarks (UCF and Vimeo) contain limited and holistic motion, e.g. <6 pixels in a 128x128
image, and our task tackles large and local motion with removed/added objects between frames. As
shown in Figure 15, our method (bottom) creates the motion of hand and cut board moving in the
frame while RIFE (top) cannot handle large motion and generates blurry results.

Figure 15: Comparison to flow-based interpolation.

D.2 COMPARISON TO LONGVIDEOGAN

EPIC Kitchen contains complex scene structures consisting of multiple objects, e.g. motion caused
by both camera and object movement, changing scenes (moving to different rooms), and the videos
consist of multiple events, i.e. multiple actions performed by the subject. Additional guidances at
multiple timesteps are therefore essential to describe the videos. In contrast, motions in the videos
from LongVideoGAN (Brooks et al., 2022) are dominated by (forward) camera movement with a
few objects in the same outdoor scene, and the videos contain monotonous events which can be
described more compactly. We train LongVideoGAN on our data and show that it cannot generate
high-quality videos as shown in Figure 16. Note that LongVideoGAN is an unconditional generation
model and cannot be compared with ours directly.

Figure 16: Comparison to LongVideoGAN. We show two random videos generated from (Brooks
et al., 2022). They are mainly holistic contents without considering objects.

E LIMITATIONS AND FUTURE WORK

We discuss the limitations of our method as follows. First, the output quality of our method is
limited by the frame interpolation module. Specifically, the output videos do not accurately cover
the transition of the hand action, which contains complex non-rigid motions. In addition, the details
of the objects e.g. hand and containers still need further improvement to capture. Second, our multi-
stage approach successfully utilizes the powerful frame interpolation module of existing work to
reduce the difficulty of synthesizing long videos to achieve good quality. However, the current
training strategy does not allow different stages to correct the errors of other training stages since

23



Under review as a conference paper at ICLR 2024

the SoTA frame interpolation modules are all large in size and cannot be combined with other stages.
We plan to explore an end-to-end learning approach in future work. Third, our evaluation metrics
do not fully reflect the improvement of our model on the long video generation task, because FVD
is biased towards image quality and will be good if a model generates good images but degenerate
motion and the image metrics cannot fully reflect all the possibility of generated videos. Better
metrics for long video generation should be developed in future work.
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