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Abstract

Being able to discover diverse useful skills without external reward functions is
beneficial in reinforcement learning research. Previous unsupervised skill discovery
approaches mainly train different skills in parallel. Although impressive results
have been provided, we found that parallel training procedure can sometimes block
exploration when the state visited by different skills overlap, which leads to poor
state coverage and restricts the diversity of learned skills. In this paper, we take
a deeper look into this phenomenon and propose a novel framework to address
this issue, which we call Recurrent Skill Training (ReST). Instead of training all
the skills in parallel, ReST trains different skills one after another recurrently,
along with a state coverage based intrinsic reward. We conduct experiments on
a number of challenging 2D navigation environments and robotic locomotion
environments. Evaluation results show that our proposed approach outperforms
previous parallel training approaches in terms of state coverage and skill diversity.
Videos of the discovered skills are available at https://sites.google.com/

view/neurips22-rest.

1 Introduction

Recent advances in deep reinforce-
ment learning have shown its promis-
ing performance in domains ranging
from game playing [2, (3], robotics [4}
5] and recommender systems [6].
These applications of reinforcement
learning rely on task-specific reward
functions for the agents to success-
fully accomplish the tasks. However,
intelligent creatures can automatically
explore the environments and learn di-
verse useful skills in the absence of ex-
ternal supervision. Such ability is ben-
eficial in a variety of situations. For
tasks where rewards are non-trivial to
design or where the reward signal is
sparse, unsupervised skill discovery
approaches can provide intrinsic re-
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Figure 1: Skills discovered in a 2D navigation environ-
ment.(a) shows the explored states of skills during the train-
ing phase of DIAYN [[1]], where two skills (red and blue) have
successfully passed through the bottleneck and explored the
states on the right room. (b) shows the states covered by the
converged skills of DIAYN, which does not reach states on
the right, indicating that the two skills (blue and red) visiting
the same state in (a) discourages both skills from visiting that
state later. Our proposed method, as shown in (c), success-
fully reached the states on the right after convergence.
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wards to help accomplish tasks. Moreover, in hierarchical control problems, unsupervised skill
discovery can serve as low-level policies for downstream tasks [7, [1].

Although existing works have shown great potential in discovering diverse useful skills in an unsu-
pervised manner [1,[7, 18], one of the key problems of such methods, as observed in our preliminary
experiments and some recent works [9} [10], is that they might suffer from poor state coverage,
which may lead to failures in learning desirable useful skills. For instance, in robotic locomotion
environments, previous approaches tend to learn ‘posing’ skills instead of dynamic, far-reaching
skills [1]. A straightforward explanation for this phenomenon would be the lack of exploration [9].
However, we argue that this is not the only reason for the poor state coverage. Counterintuitively, we
observed that the skills after convergence may avoid visiting certain states even if they are explored
during training. For instance, as shown in our preliminary 2D navigation experiments, the discovered
skills fail to cover the states passing through the bottleneck to the right (Figure [Ib), even if they have
been explored during training (Figure[Ta). We call this phenomenon Exploration degradation.

In this paper, we take a deeper look into the above phenomenon and show that it is mainly caused
by the parallel training paradigm, which is a common choice for most existing works [1} 7, 8} [10]].
When multiple skills trained in parallel have visited the same state, such state will be prevented
from being visited again. Detailed analysis is provided in Section Based on the analysis, we
propose Recurrent Skill Training (ReST), an unsupervised skill discovery algorithm that addresses
the exploration degradation issue. Instead of training all the skills in parallel, ReST trains the skills
one after another in a recurrent fashion, along with an intrinsic reward that discourages covering
frequently visited states of other skills. A preliminary result of using ReST is shown in Figure[Ic]
where the exploration degradation problem is eliminated and the converged skills are able to visit the
space in the right room. Evaluation results on complex 2D navigation and robot locomotion tasks
show that our approach can achieve better state coverage and skill divergence compared to baselines.

Our contributions are summarized as follows:

* We discover a new phenomenon that reduces state coverage called exploration degradation,
which indicates that some certain states are discouraged from being visited by the learned
skills, even if they have been explored during training.

* We show that the main reason causing exploration degradation is that multiple skills visiting
the same states can reduce the MI reward in the parallel training paradigm. We then propose
Recurrent Skill Training (ReST), a recurrent training paradigm along with a state coverage
based intrinsic reward, which prevents multiple skills from visiting the same states and
alleviates the exploration degradation issue.

* We conduct experiments on various 2D navigation tasks and robot locomotion tasks. Evalu-
ation results show that our method achieves better state coverage and divergence compared
to baseline methods. Moreover, ReST learns diverse meaningful robot locomotion skills
that have not been shown in previous works.

2 Preliminaries

2.1 Markov Decision Process

Markov decision process (MDP) can be used to find a reward maximizing policy. It is represented
by a tuple (S, A, P, R,~, 1), where S, A are the state and action spaces. P : S x A x S — [0, 1]
is the transition dynamic that maps the state and action into a probability distribution over the next
state. R : S x A — R is the reward function. = is the discount factor for the reward function while
w8 — [0,1] is the initial state distribution. The expected discounted cumulative reward can be
formulated as Jp(m) = E.wr[> ;o7 R(st,a;)]. Thus the overall optimization problem can be
written as 7* = arg max, Jp (7).

2.2 Unsupervised Skill Discovery

Generally speaking, unsupervised skill discovery aims to find a family of skills conditioned on latent
z, which results in a latent-conditioned policy 7(a|s, z) that maximizes the mutual information
between state and latent:
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where s € S, a € A, z € Z are the state, action and latent respectively. Let (S, Z) ~ p(s, z) as
the random variables of the state distribution and the latent distribution. As suggested by [[L1], a
variational lower bound for Equation (1)) can be derived as:

I<57 Z) > E(z,s)Np(z,s) [log Q¢(Z|S) - Ing(Z)] (3)
where g4 (z|s) is a learned discriminator approximating p(z|s). Such lower bound also exists for
Equation (2):

I(S;Z) > E(. s)mp(z,s) [l0g qg(s]2) — log p(s)] 4)

where g (s|z) is a learned function approximator of p(s|z).

3 Recurrent Skill Training

Unvisited states Both visited states Visited by skill 1 Visited by skill 2

(a) Explored (b) Parallel (c) Recurrent

Figure 2: Grid world example. The orange grids are states explored by both the two skills and the
green and yellow grids denotes states explored by skill 1 and 2 respectively. Blue grids are unvisited
states. (a) shows the state visitation map during exploration while (b) and (c) shows the state visitation
of the final converged policies of parallel and recurrent training paradigms respectively.

In this section, we first introduce the exploration degradation phenomenon of previous skill discovery
approaches with parallel training paradigm. Then we present our proposed recurrent skill training
method that addresses this issue.
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Figure 3: Intuitive illustration of the ReST algorithm. Each color represents a skill. The lines in the
figures represent trajectory rollouts of skills whereas the shaded areas indicate the estimated state
distribution of the skills. The figure on the left demonstrates the initialization of the three skills, where
all skills’ trajectories are entangled together. Then ReST starts with training skill 1 by optimizing the
reward function in Equation (7)), which encourages the trained skill to stay away from the estimated
state visitation distributions of other skills. ReST then continues to optimize skill 2, 3 and goes back
to optimize skill 1 recurrently. After convergence, the skills would be spreaded out to cover diverse
states as shown in the figure on the right.



Algorithm 1 Recurrent Skill Training

Initialize: random initialized skill 7, RND networks f and f
fori =1to N do
Setskill m; = 7 . R
Set RND network f; = f, fi = f
Collect on-policy samples with 7;
Update RND network fz by minimizing loss in Equation
end for
repeat
for : = 1to N (V is the number of skills) do
for ) = 1 to M (M is the number of training epochs for each skill) do
Collect on-policy samples with 7;;
Calculate reward using Equation (7);
Update skill policy 7; using any RL algorithms;
Update RND network f,i by minimizing loss in Equation using the latest on-policy
samples;
end for
end for
until convergence

3.1 Exploration Degradation

As we observed in our preliminary experiment shown in Figure [I, previous unsupervised skill
discovery approaches might suffer from the exploration degradation problem, such that some explored
states (e.g, states near the bottleneck and in the right room in Figure are prevented from being
visited by the learned skills. We now provide a simplified analysis to show that this phenomenon is
mainly caused by the parallel training paradigm commonly used in previous works.

Let us focus on discrete latent case with NV different skills. Consider at state s, skill k visited state s
with p(zy|s) probability, which is modeled by the discriminator g, (zx|s). Assume state sg is only
visited by skill & whereas s is visited by multiple skills, which means p(zx|so) = 1 and p(z|s1) < 1.
As long as the discriminator g, can model the difference and output g4 (2 |s0) > ¢4 (2k|s1), which is
not a strong assumption, the intrinsic reward used by MI approaches would encourage the visitation
of state sg by skill k£ and discourage visiting s;. This means MI based approaches end up with
skills that prefer exploiting states only visited by themselves in the previous training epochs, causing
exploration degradation.

For clarity, we further explain this issue with a toy example. Consider a 2 x 2 grid world as shown
in Figure [2. There are four states 0, 1, 2, 3 and at each state, there are three actions to take: go to
the two adjacent states or stay where it is. For simplicity, we use the number of the next state to
denote the action, for instance, if the agent is in state 0 and chooses to go to state 1, then the action
will be denoted as 1. We use the mutual information described in Equation (1)) and assume that the
discriminator is perfect: g4(z|s) = px(z|s). Consider a case when the number of skills is N = 2
and during the first collection of samples, skill 1 visited {0, 2, 3} while skill 2 visited {0, 1, 3}, as
shown in Figure Since we have a perfect discriminator, for state 3 the discriminator would
output ¢4 (21]|3) = gy (22]3) = 0.5, which results in 0 reward for both skills. Therefore, the optimal
converged policy for skill 1 would generate trajectory {0, 2, 2} while skill 2 would generate trajectory
{0, 1,1}, as shown in Figure State 3 is not covered, which is undesirable. This example indicates
that even in such an extremely simple case, the exploration degradation phenomenon still exists.

3.2 Recurrent Skill Training

Instead of training all skills in parallel, we propose a recurrent training paradigm, along with a state
coverage intrinsic reward. We now introduce the details of our proposed method.

Recurrent Training Paradigm. As analyzed in Section|3.1, the main reason causing the exploration
degradation issue is that the same states are visited by multiple skills in the parallel training paradigm.
A natural way to alleviate this issue is to train the skills one after another recurrently. In this way,



we can encourage the latter trained skills to avoid entering the same states covered by the previous
skills. Figure [3]illustrates the recurrent training paradigm. Starting with N randomly initialized skills
(N = 3 in this case), the recurrent training paradigm trains one skill at each epoch whereas the parallel
training paradigm trains all the skills together. Furthermore, in order to improve convergence, the
recurrent training paradigm updates each skill for M epochs (M = 2 in this case) before switching
to another skill. In this work, we use N independent neural networks to parametrize the N skills,
which can be considered as discrete latent conditioned policies.

State Coverage Intrinsic Reward. When implementing the above recurrent training paradigm,
the latter trained skill needs to avoid visiting the states frequently visited by other skills. In order
to accomplish this objective, we need to identify how frequently each state is visited by each skill,
or equally, how novel a given state is to a skill. In this paper, we adopt random network distillation
(RND) [12], a simple yet scalable novelty detection approach, to estimate the novelty of a state to a
specific skill.

Random network distillation (RND) [12]] mainly involves two networks for state novelty detection: a
randomly initialized target neural network whose parameters are kept fixed throughout the whole
training process and a predictor network trying to fit the target neural network. The target network
f:8— R*, where k is the dimension of the output vector, maps a state to a vector while the
predictor network f : & — R¥ is trained to minimize the expected mean square error between the
output vector and the target output vector: ||f(s) — f(s)||2, which distills the target network into the
predictor. Therefore, the predictor should have low prediction error on the data it is trained on while
have high prediction error on other states. We call such target network and predictor a pair of RND
networks.

We assign each skill with a pair of RND networks. Each skill’s predictor network is trained on the
the on-policy data it visited during the last rollout, which means for each skill with latent z; € Z,
where ¢ € {1,2,..., N} is the index of the skill, with state distribution s ~ p(s|z;), we can train the
predictor network using gradient decent by minimizing the mean square error loss £;

Ei :Eswp(s\z,) Hfz(s) _fZ(S)H2i| (5)
As mentioned above, the learned predictor network’s prediction error || f;(s) — f;(s)||? can indicate
visitation frequency of a certain state s. Intuitively, a higher prediction error indicates higher
uncertainty of fi on this state, which further implies its higher novelty. Since we need to avoid
visiting states visited by other skills when training a certain skill, a straightforward solution is to
define a reward function for skill 7 with state s; and action a; as:

ri(se,a1) = je{l,QI?.i,I]lV},j;éi 1fi(sex1) = fi(sex1)l? (6)

such that states frequently visited by any other skills are less desired. However, this minimum
operator would make the reward landscape rugged, which might lead to poor convergence property.
To stabilize the training process, we introduce a soft version of the minimum operator in (6):

Z‘e{l 2N} 4#‘e(_a'Hfj(3t+1)—f_j(5t+1)H2)
je{1,2,...,N},j#i
N-1

(7

ri(s¢,ar) = —log

where « is a task-specific temperature parameter.

Practical Algorithm. We summarize our algorithm in Figure[3|and Algorithm|l| Firstly, we randomly

initialize a policy network 7; and a pair of RND networks f; and f; for each skill ¢ € {1,2,..., N}.
Before training skills, ReST first collects on-policy samples for each initialized skill and train their
RND networks. Then we train each skill’s policy network and the corresponding RND networks for
M times during each training epoch. The skill networks are trained recurrently until convergence. For
maximizing the intrinsic reward, the ReST algorithm can be combined with an arbitrary reinforcement
learning algorithm. In this paper we choose Proximal Policy Optimization (PPO) [13]] with generalized
advantage estimation (GAE) [14].



Grid World Example. We further illustrate the effectiveness of the proposed algorithm using the
2 x 2 grid world example with the same setting as in Section[3.I} As suggested by our previous
analysis, the parallel training paradigm will end up with two skills that neither of them visits state 3.
As mentioned in Section [3.1} the initial two skills visits {0, 2,3} and {0, 1, 3} respectively. Here we

assume that the RND networks f; and fl perfectly obtain the state visitation frequency, which means:

2 0 if state s is visited by skill ¢
1fi(s) — Fis)I? = { " otherwise ®)

where r > 0 is the prediction error. ReST starts by training the corresponding RND networks of each
skill and then recurrently train different skills to maximize the intrinsic reward. For skill 1, visiting
state 2 would gain reward r while visiting state 1 and 3 would get zero rewards. Therefore, the
optimal policy for skill 1 would be visiting {0, 2, 2} in sequence. After updating the RND networks
of skill 1 correspondingly, for skill 2, visiting state 1 and 3 would gain reward r while visiting 2
would get zero rewards. Therefore, the initial skill 2 is already the optimal policy and the training
converges. This way, the optimal trajectory for skill 1 is {0, 2, 2} while for skill 2 it is {0, 1, 3}, as
shown in Figure [2c] Therefore, the state space of the 2 x 2 grid world is fully covered by the two
skills.

4 Experiments
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Figure 4: Results for 2D navigation experiments. The left five columns of the figure show qualitative
results of skills discovered by different algorithms in the corresponding navigation environments. We
trained 10 skills for each algorithm where 20 trajectories are rendered for each discovered skill. The
right two columns of the figure show the quantitative results of different algorithms. SC stands for
state coverage while MI stands for mutual information. SC and MI are calculated based on converged
models of each algorithm with three different random seeds. We calculate the SC and MI metrics
three times for each converged skill to draw the histogram. Detailed analysis of the evaluation metrics
can be found in the Appendix

We conduct experiments on several challenging 2D navigation environments and several robotic
locomotion tasks. We compare our proposed approach with two of the most popular unsupervised

@)}



sntwanistr AWMU AT e rompmeniser

(a) HalfCheetah flipped (b) HalfCheetah rolling (c) HalfCheetah rolling (d) HalfCheetah running
running forward forward backward backward

UMY s WML 0Nl

(e) Hopper hopping for-(f) Hopper crawling for-(g) Hopper hopping back-  (h) Hopper backflip
ward ward ward

WD~ ddtazzy  TIRAITIINT MVCTHAAL

(1) Walker2d trotting for-(j) Walker2d dashing for-(k) Walker2d digging (I) Walker2d walking
ward ward backward backward

Figure 5: Visualization of skills discovered using ReST. The proposed ReST algorithm discovers
several high-quality, diverse skills for each robot, including running, flipped running, backflip,
dashing, etc. The arrows on the bottom of each sub-figure show the moving direction of each skill.
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Figure 6: Semi-quantitative results for robotic locomotion tasks. The horizontal axis represents the
time-step during evaluation while the vertical axis represents the x position of the robot at each
time step. Each color represents a discovered skill and we rollout three trajectories for each skill.
Generally speaking, baseline methods discover ‘posing’ skills instead of dynamic locomotion skills
whereas ReST discovers dynamic, far-reaching locomotion skills.

skill discovery approaches, DIAYN and DADS [7]. Both of these approaches use the parallel
training paradigm to optimize different skills. Since our proposed approach parameterizes each skill
with an independent neural network, we also compare our proposed approach with DIAYN and DADS
using independent neural networks, which we call DIAYN-i and DADS-i respectively, for a fair
comparison. We present our empirical results both qualitatively and quantitatively. The quantitative
results introduce a state coverage metric and a mutual information metric. Our proposed approach
significantly outperforms previous skill discovery approaches in terms of state coverage while staying
comparable with previous approaches in terms of mutual information. Qualitative results include
visualizations of the converged navigation experiments, the state visitation of robotic locomotion
tasks, and rendered videos of novel skills discovered using our proposed approach, which can be
found in our project website https://sites.google.com/view/neurips22-rest, Details of
our implementation can be found in the Appendix.
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4.1 2D Navigation Tasks

Environments. We conducted experiments on several challenging 2D navigation environments. The
agent is a point mass navigating in a 2D plane with boundaries [0, 1] x [0, 1]. The observation space
of the environment has 4 dimensions, including the = € [0, 1] and y € [0, 1] position on the plane
and the corresponding velocity v, and v, belonging to the velocity space { (v, vy)|v2 + Ug < 0.01}.
The action space has 2 dimensions, including the acceleration a, € [0,0.1] and a,, € [0, 0.1] of the
point mass agent. There are walls inside the plane and the agent cannot go through the walls. We
designed diverse placements of the walls with increasing difficulties for exploring the environments,
which could be used to test the effectiveness of our proposed approach.

Evaluation Metrics. We introduce two metrics to compare our proposed approach with our com-
parison baselines. The first one is the state coverage metric. State coverage matters since not
covering enough state space might result in failures in learning desirable useful skills. We evaluate
the state coverage on the X-Y plane by first decomposing the environment into cells and then testing
whether each cell is successfully visited. We roll out 1 trajectory for each skill and use the visited
states to calculate the state coverage metric. The percentage of cells visited by at least one of the
skills is the state coverage. Moreover, merely covering the state space is not enough. The skills
need to be informative about which states they are going to visit in the environment so that the
skills are meaningful. We use mutual information between skill latent z and the corresponding
covered states s to quantify how informative the skill is. Similarly, we decompose the state space
into multiple cells and roll out 20 trajectories for each skill to record the probability distribution
of states p(s) for all the states visited by the skills. Then we record the probability distribution of
states visited by each skill p(s|z) and calculate the entropy H(S) and H(S|Z;). Since the skill
distribution p(z) is a uniform distribution for all skills, we can calculate the mutual information as

1(5:2) = H(S) = % (Licqua....vy H(SI2)

Qualitative Results. We train NV = 10 skills for each of the algorithms and rollout 20 trajectories to
obtain the qualitative results. We conduct experiments on 4 challenging 2D navigation mazes, which
we call the DoorMaze, CenterMaze, 4RoomMaze and QRoomMaze, which are shown in Figure The
left 5 columns show the qualitative results. Each rolled-out trajectory is rendered as a curved line
and different colors represent different skills. The results indicate that our proposed ReST algorithm
can reach more diverse states in the environments whereas baseline approaches like DIAYN or
DADS can only reach a small portion of the environments. Usually, the baseline approaches cannot
pass through the ‘bottlenecks’ in the environment. The results support our insight that the parallel
training paradigm is one of the causes of previous skill discovery approaches’ state coverage issues.
Moreover, when using independent neural networks to parameterize different skills, we observe that
the performance is not so different from the latent-conditioned parameterization version.

Quantitative Results. Beyond qualitative results, we quantify the state coverage and the informative-
ness of different algorithms using the aforementioned two metrics. As shown in the right two columns
of Figure [, our proposed ReST algorithm significantly outperforms baseline approaches with a
parallel training paradigm in terms of state coverage and is comparable with baseline approaches
in terms of mutual information I(S; Z). The above results indicate that our proposed approach can
cover diverse sets of states without too much sacrifice on informativeness. Quantitative results also
evidenced that the difference in performance is not because of the different parameterization since
DIAYN and DADS using independent neural networks are not so different from the original ones.

4.2 Robotic Locomotion Tasks

We present qualitative results of robotic locomotion skills discovered using our proposed ReST
algorithm in MuJoCo [15]. Generally speaking, our proposed ReST algorithm can discover dynamic,
far-reaching robotic locomotion skills whereas DIAYN and DADS tend to discover ‘posing’ skills.
Figure 5| shows visualizations of parts of skills discovered using ReST. There are several novel skills
discovered, such as Hopper backflip, that have not been presented in previous works to the best
of our knowledge. More rendered results can be found in the Appendix and our project website
https://sites.google.com/view/neurips22-rest,

Moreover, we provide semi-quantitative results of the proposed approach. As shown in Figure[6] we
draw the agent’s = position over timestep, using the skills discovered by ReST and the comparison


https://sites.google.com/view/neurips22-rest

baselines. The results are evaluated on HalfCheetah, Hopper and Walker2d tasks. We use the
OpenAl Gym [[16] settings of the three tasks, where HalfCheetah is trained with fixed episode
length whereas Hopper and Walker2d terminate when the agents fall during training. The resulting
timestep-x curve indicates that our proposed approach learns skills that are more far-reaching, diverse,
and dynamic than baseline methods. This also evidenced that our recurrent training paradigm
outperforms the parallel training-based baselines by alleviating their state coverage issues.

5 Related Work

Unsupervised Skill Discovery. Previous unsupervised skill discovery approaches mainly focus on
maximizing the mutual information I(S; Z) to obtain meaningful skills. As discussed in Equation
and Equation (2), the mutual information has two forms. Several works follow the Equation (I).
VIC [17]] uses the mutual information between the final states and the skill latent as the intrinsic
reward and optimizes it via reinforcement learning. DIAYN [[1] fixes the prior p(z) and uses the
mutual information between the skill and its visited states as its intrinsic reward to learn meaningful
skills, which has superior performance compared to VIC. VALOR [§] further improves DIAYN
by replacing the state-based objective with a trajectory-based objective. DADS [7]], on the other
hand, uses the Equation (2) form of mutual information and learns a transition model g4 (s'|s, z)
and uses model predictive control to solve downstream tasks. EDL [9] provides insight into why
previous approaches suffer from lack of exploration and proposes an algorithm using a fixed state
prior p(s) that to alleviate the issues. IBOL [[10] tries to relieve the difficulty of reaching diverse
states by introducing a low-level controller. Besides learning a set of skills, SMM [ 18] formulates
skill discovery as a state marginal matching problem and optimizes the KL divergence between the
expected state distribution and the current policy’s state distribution. MUSIC [19] improves previous
unsupervised skill discovery algorithms by adding the mutual information between the surrounding
state and the agent state. DDL [20] learns one skill that maximizes the dynamical distance functions
of the previous skill. Plan2Explore [21] makes use of self-supervised reward signals to optimize one
policy to efficiently gather state-covering dataset. In contrast, ReST optimizes multiple skills and
maximize online state coverage. LEXA [22] learns a goal-conditioned policy using self-supervised
reward. ReST, on the other hand, does not require the agent to achieve specific goals, which is a more
general formulation. Besides the above approaches, there are also other unsupervised skill discovery
methods [23} 24} 25, 26].

Intrinsic Reward. Another stream of works related to this work is intrinsic reward. In our proposed
approach, we use intrinsic reward as an objective to help learn a set of meaningful skills. Intrinsic
reward can also help with cases where rewards are sparse by augmenting them to the original reward
function. Count-based exploration [27} 28| 29} [30]] uses pseudo count to identify the frequently
visited states and the less frequently visited ones and adds the count-based bonus as intrinsic rewards
to accelerate exploration. Prediction error exploration methods [31} 32} |12} |33} [34] make use of
prediction errors as intrinsic rewards based on an insight that states with high prediction error should
have higher novelty. Intrinsic reward can also benefit novelty seeking tasks [35}36], where RSPO [335]]
made use of an iterative paradigm when training different strategies, which is similar to recurrent
training paradigm in this work. Other works augment an information-theoretic intrinsic reward with
extrinsic rewards that encourage information gain about the environments [37, 38} 139].

6 Discussion

In this paper, we proposed a novel, effective yet simple algorithm called Recurrent Skill Training
(ReST). We began by introducing a new phenomenon called exploration degradation which reduces
state coverage of the learned skills. We found the key reason for this phenomenon is the parallel
training paradigm commonly used in previous skill discovery approaches, such that the same states
visited by multiple skills are discouraged from being visited again. Instead of training all skills
in parallel at each epoch, ReST trains different skills one after another recurrently. This recurrent
training paradigm is supported by an effective prediction error-based intrinsic reward inspired by
novelty detection methods. We then conducted experiments on 2D maze navigation to continuous
robotic control tasks. Both qualitative and quantitative results show that ReST is able to discover more
diverse skills with better state coverage compared to baseline algorithms. Moreover, we demonstrated
several novel and dynamic robot locomotion skills that have not been presented in previous works.



There are also some limitations of the proposed algorithm. First of all, compared with previous
approaches, our proposed approach has worse sample complexity during skill discovery since only
one skill is trained at each epoch, as shown in Figure[3l Moreover, the computational complexity
is higher than approaches like [1] or [10] since ReST needs to compute intrinsic reward based on
all other skills’ prediction errors. Finally, due to the recurrent training paradigm, ReST is currently
not scalable to continuous latent, which is in general a better choice as a low-level controller for
hierarchical control in downstream tasks. Future works include addressing the above limitations and
apply ReST to downstream/hierarchical tasks.
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