
Foundation Models for Decision Making Workshop at NeurIPS 2023

LASER: LLM AGENT WITH STATE-SPACE EXPLO-
RATION FOR WEB NAVIGATION

Kaixin Ma Hongming Zhang Hongwei Wang Xiaoman Pan Dong Yu
Tencent AI Lab, Bellevue, WA
{kaixinma,hongmingzhang,hongweiw,xiaomanpan,dyu@global.tencent.com}

ABSTRACT

Large language models (LLMs) have been successfully adapted for interactive
decision-making tasks like web navigation. While achieving decent performance,
previous methods implicitly assume a forward-only execution mode for the model,
where they only provide oracle trajectories as in-context examples to teach the
model how to reason in the interactive environment. Consequently, the model
could not handle more challenging scenarios not covered in the in-context exam-
ples, e.g., mistakes, leading to sub-optimal performance. To address this issue, we
propose to model the interactive task as state space exploration, where the LLM
agent transitions among a pre-defined set of states by performing actions to com-
plete the task. This formulation enables flexible backtracking, allowing the model
to easily recover from errors. We evaluate our proposed LLM Agent with State-
Space ExploRation (LASER) on the WebShop task. Experimental results show
that our LASER agent significantly outperforms previous methods and closes the
gap with human performance on the web navigation task.

1 INTRODUCTION

Large language models (LLMs) such as GPT-4 (OpenAI, 2023) have achieved remarkable perfor-
mance on a wide range of natural language understanding (NLU) tasks (Brown et al., 2020; Ouyang
et al., 2022; Wei et al., 2023). Recently, they have been adapted to interactive decision-making
tasks such as virtual home navigation (Yang et al., 2023), text-based games (Lin et al., 2023) or
web-navigation (Yao et al., 2023b; Zhou et al., 2023). These tasks are inherently more challenging
than traditional NLU tasks due to the need to explore unknown environments and perform long se-
quences of actions to reach the goal state. Previous methods that utilize LLMs to solve interactive
tasks often implicitly assume a forward-only execution mode for the model, where they only provide
a few oracle trajectories as in-context examples to teach the model how to reason step-by-step (Yao
et al., 2023b; Sridhar et al., 2023). In other words, the correct action is selected at every step in those
oracle trajectories. This might lead to sub-optimal performance because when the model makes a
mistake at test time, it would not know how to recover from it. At the same time, including many
in-context examples to cover all possible scenarios is either costly or unrealistic. Moreover, previous
methods assume a global action space where the model is free to take any action at any step because
they either define the possible actions at the beginning of the prompt or expect the LLM to figure out
the possible action from in-context examples automatically. This might further increase the task’s
difficulty, and the LLM may perform invalid actions in certain cases.

To address the aforementioned issues, we propose to model the interactive tasks as state-space explo-
ration. We first define a set of high-level possible states the LLM agent might encounter during the
task execution time. Then we identify the possible action space in each state and the resulting states
after performing each action. This formulation effectively converts the LLM agent’s exploration in
the interactive task as state transitions, where each action takes the agent from one state to another.
Naturally, this allows the agent to easily recover from one wrong action: taking another action that
would transition it back to the previous state. Moreover, our proposed formulation clearly associates
the action space with each individual state, which reduces the difficulty of the task and allows the
agent to always select the valid action at any step. We study our proposed method on the challenging
Webshop (Yao et al., 2023a) task and build an LLM agent for web navigation. We show that our
proposed setup enables the LLM agent to effectively navigate in an interactive environment to com-

1



Foundation Models for Decision Making Workshop at NeurIPS 2023

Figure 1: The proposed LASER’s state transition diagram on the Webshop Task. Each solid circle
represents a possible state, and the arrows represent possible state transitions.

plete complex user instructions, without using any in-context examples. Overall, our contributions
are summarized as the following:

• We propose to model the interactive tasks as a state-space exploration where each state is
associated with its unique action space.

• We built a zero-shot LLM agent, LASER that can navigate in a complex interactive envi-
ronment effectively.

• Our results on the challenging WebShop (Yao et al., 2023a) task show that LASER signifi-
cantly outperforms previous baselines by large margins.

2 METHODS

In this section, we first formally define our notation for the interactive task and then describe the
proposed LLM agent.

2.1 PROBLEM FORMULATION

Given a web environment E and a user instruction I, the agent is instantiated in the environment
and provided with an initial observation O0. The agent is expected to perform a series of actions
{a0, a1, ...an} to complete the user instruction, where each ai produces a new observation Oi when
executed in the environment. S denotes the stopping state where the agent produces an output and
stops exploration after reaching it. Finally, the agent’s output is compared with the target to compute
the metrics.

2.2 LLM AGENT

As previously discussed, we would like the agent to be able to handle any novel situations or mis-
takes that might occur during execution, and we do not want to exhaustively describe them via a large
number of in-context examples. Thus we propose an LLM agent that tackles the web navigation task
as state-space exploration and the agent’s exploration is guided by state-specific instructions. A dia-
gram of the state transitions of our agent is shown in Figure 1. We start by defining a set of possible
high-level states the agent might encounter in the environment (§2.3). The LLM agent takes the user
input as the overall goal and is initialized in the starting state. At every step, the agent receives state-
specific system instruction, current observation, a set of permissible actions in the current states, and
the history of past thoughts and actions as inputs. Then, it selects one of the actions as output, which

2



Foundation Models for Decision Making Workshop at NeurIPS 2023

either transitions the agent to a different state or remains in the same state (§2.4). The agent repeats
the process until the stopping state or the maximum step is reached.

Notice that with our formulation, we can provide detailed instructions to inform the agent of the
possible situations in every state and how to handle them. For example, as shown in Figure 1, at
the results state, the current results may or may not be good enough, and we instruct the agent to
either select an item, go to the next page, or go back to search depending on its judgment. Hence
these instructions can be very informative to guide the agent while being much more efficient than
in-context examples. Next, we describe in detail how we design the state space and the action space.

2.3 STATE DESCRIPTION

In previous literature, the term state is often used to represent the current environment the agent is
in. In our work, we use the term state on a more abstract level, and we consider an agent to be in
two different states only if the structure of the representation of the current environment is different.
In other words, if the agent receives two observations that share the same layout structure but with
different details, we consider the agent to be in the same state. This allows us to define only a
handful of states to support an agent’s exploration in a complex environment fully. In practice, it
is also feasible to manually define a small set of states when building domain-specific LLM agents,
e.g. e-commerce.

After manually categorizing all possible states in the interactive task, for each state, we write a
generic instruction that describes the state in detail. Specifically, we provide a sample layout of the
observation the agent would receive in that state and replace all specifications in the layout with
placeholders. We also provide a high-level goal and detailed instructions to act in that state. The
sample layout combined with state-specific instructions allows us to inform the agent of possible
observations it might receive and how to act accordingly. Therefore we no longer need to provide
in-context examples to guide the agent. For the WebShop task, we define a total of four states, and
the full prompts for search, results, and item states can be found in Table 3, Table 4 and Table 5 in
the appendix.

2.4 ACTION SPACE

Previous methods often implicitly assume a global action space for the model, i.e. the model is free
to take any action without further constraints. Although the LLM is able to figure out valid actions
to take most of the time, it might still attempt to take invalid actions in certain cases. Thus after
defining all possible states for the task, we further identify the action space for each state to rule
out such possibilities. Specifically, we define a set of permissible actions that the agent can choose
from for each state, which ensures that the agent always performs valid actions. The state-action
mapping for our agent is shown in Table 7 in the appendix. In practice, permissible actions can also
be determined heuristically, e.g., identifying all clickable buttons on a webpage.

Inspired by the success of the reason-then-act method (Yao et al., 2023b), we also ask the agent to
produce a thought at every step and then select an action based on its thought. The agent keeps
repeating the thought-and-action process until it reaches the stopping state or the maximum step is
reached. We also define a memory buffer to store the intermediate results (the items examined but
considered non-matching) during the exploration. This is similar to human behavior in that people
typically find a few backup options before finding the desired item. When the agent is forced to stop
after the maximum number of steps, it selects one of the intermediate results as the final output, and
we call this the backup strategy.

3 EXPERIMENTS

We conduct our experiments on the WebShop task (Yao et al., 2023a). The WebShop provides
a simulated environment for online shopping, containing 1,181,436 items collected from Amazon
shopping sites. Additionally, the task provides human-annotated instructions for purchasing certain
items and their corresponding target items. We followed previous works and used the 500 test set
instructions to evaluate our LASER and evaluate with rewards and success rate, where the agent
is considered successful if the purchased item perfectly matches the target item, otherwise, if the

3



Foundation Models for Decision Making Workshop at NeurIPS 2023

Success Rate Reward

ASH (Sridhar et al., 2023)† 30.2 56.7
ReAct (Yao et al., 2023b)†* 40.0 66.6
ReAct (ours rerun) 34.0 59.7
WebGUM (Furuta et al., 2023) 45.0 67.5
LASER - backup 48.4 71.2
LASER 50.0 75.6
Human† 59.6 82.1

Table 1: Results on WebShop Task. † Results taken from previous papers. *They used a simplified
setting where the number of items shown on each page is limited to 3.

Success Rate Reward

LASER 52.0 77.6
LASER + One-shot 50.0 74.9
LASER - function call 50.0 76.2
LASER (text-davinci-003) 38.5 70.2

Table 2: Ablation Results on the WebShop Task. We evaluated on 200 instead of 500 episodes due
to a limited computing budget.

purchased item partially matches the target item, the agent receives a partial reward (scale between
0-100).

For our method, we used the GPT-4-0613 to power our LASER. We used the function-calling func-
tionality to implement the action selection step. In particular, we write a short description for each
action and then pass them as a list to the function-call argument of the LLM to let the model select
from. We allow our agent to make 15 state transitions in maximum. In practice, if the agent has not
reached the finish state after 13 state transitions, we force it to select from the history to ensure it
does not exceed the budget.

We compare against the following baselines: ReAct (Yao et al., 2023b) is a few-shot prompting
method designed for interactive decision-making tasks. At every step, the LLM agent receives an
observation and can either produce a thought or an action. The agent accumulates all of the past
observations, thoughts, and actions in its prompt, using a full trajectory of exploration as an in-
context example. The original ReAct uses PaLM (Chowdhery et al., 2022) as its LLM backbone.
To make a fair comparison, we also rerun the ReAct method with GPT-4-0613. ASH (Sridhar et al.,
2023) builds on top of React and adds a summarization step that condenses the agent observation
and acts based on the condensed information. WebGUM (Furuta et al., 2023) is a supervised method
that finetunes FlanT5-XL model (Chung et al., 2022) on 1K human demonstrations provided by the
WebShop task.

4 RESULTS

The overall results of our experiments are shown in Table 1. Our early experiments showed that
the ReAct agent often produces invalid actions. For example, when it selects an item that doesn’t
match the instruction, it tries to go to the next page before backing to the results page. Also, the
ReAct agent often got stuck in a certain action and failed to produce output. For example, the agent
keeps going to the next page until the maximum step is reached. We added detailed instructions as
the system prompt to try to address the issue. Despite our best efforts, the agent still makes invalid
actions in some cases and achieves worse results than the original paper. On the other hand, LASER
outperforms baselines by large margins on both metrics, showing the effectiveness of our approach.
We further removed the backup strategy of LASER (the agent would receive a 0 score when the
maximum budget runs out) to make a more fair comparison with ReAct. We see that our method
still outperforms baselines by very large margins.

4



Foundation Models for Decision Making Workshop at NeurIPS 2023

Figure 2: Left: LASER’s performance for test set episodes of different lengths. Right: The distribu-
tion of the number of steps LASER takes to complete 500 test-set instructions.

4.1 ANALYSIS

We first conduct ablation studies to understand the important design decisions of our agent.

Zero-shot vs Few-shot We used state-specific instructions only to guide our agent’s exploration
in the environment, whereas previous works often adopt in-context examples. To investigate if the
agent can further benefit from in-context examples, we experimented with a one-shot setting: for
every prompt in LASER, we added one example input-output pair between our system instructions
and current inputs, and the rest of the agent remains the same. Due to the limited computing budget,
we only ran our ablation studies on 200 episodes. The results are shown in Table 2. We see that
adding an in-context example actually leads to worse performance. Since LASER already performs
valid actions 100% time, we hypothesize that the agent understands the task well without in-context
examples and the added example is actually distracting the agent in some cases.

Effect of function-calling LASER takes advantage of the function-calling functionality that is en-
abled only for GPT models after June 13th. Thus, we are interested to see the effect of replacing
this design with regular text generation. To do so, instead of passing the permissible actions as a list
of functions, we convert each action as a Python dictionary describing its purpose and arguments
and then append them to the prompt. We then ask the LLM to generate output in JSON format to
represent the action it selects with appropriate arguments. The results are shown in Table 2. Again,
the agent without function calling performs slightly worse on these 200 episodes. It shows that
the function calling functionality can be leveraged to boost performance when building interactive
agents, suggesting a direction for building future LLMs.

Performance vs trajectory length Here, we are interested in seeing the length of LASER’s trajec-
tories and their effect on the overall performance. We plot the distribution of trajectory length in
Figure 2 and the agent’s performance for each length group. We notice that most of the time, the
agent only took three state transitions to reach the finish state, which is search-select-buy. From
the left figure, the agent’s performance generally decreases as the trajectory gets longer. However,
the drop is less significant compared to the observation made for ReAct and ASH agent (Sridhar
et al., 2023), which further shows the effectiveness of our agent. Finally, for the length 15 group,
which contains the cases where the agent is forced to stop and select from the browsing history, the
performance is much lower than other groups, which is not surprising. At the same time, it has a
non-zero success rate, showing that there are cases where the agent found a matching item but failed
to recognize it as the target in the first pass.

Generalization to different LLMs We leverage the most powerful LLM to date to build LASER,
and we are interested to see if it can transfer well to another LLM. We adopted the text-davinci-
003 model to see our agent’s performance with a less powerful non-chat model. Since this model
does not support function-calling, we adopted the approach described earlier to prompt the model
to generate JSON output to represent actions. The results are shown in Table 2. Although switching
to text-davinci-003 leads to a large drop in performance, our model still achieves better results than

5



Foundation Models for Decision Making Workshop at NeurIPS 2023

Figure 3: An example of the Item good enough error cases, the item selected by the agent is shown
and the user instruction is on the top. The reward the agent receives is 0.666.

Figure 4: An example of the Missing details error cases, the item selected by the agent is shown and
the user instruction is on the top. The reward the agent receives is 0.8.

the baselines. It shows that our proposed agent can be easily adapted to other LLMs with different
capabilities. With more powerful models in the future, our agent could potentially surpass human
performance on this task.

4.2 CASE STUDY

We manually annotated 30 error cases from the Dev set to understand the failure cases of LASER.
We broadly categorize the errors into three categories: Item good enough: the item selected by the
agent meets the user instruction from the authors’ perspective but did not receive a full score. We
found that 9 out of 30 cases fall into this category, and an example is shown in Figure 3. The item
found by the agent is indeed a green table lamp for the living room with a price within the budget,
but it is considered incorrect. Retrieval failure: none of the items returned by the search engine
meets the user requirement, despite that the agent used a suitable query for retrieval. We found 12
out of 30 cases fall into this category. We hypothesize that a more effective retriever or search engine
can probably address these issues. Missing details: The item selected by the agent indeed does not
match the user’s instruction on certain details. We found that 9 out of 30 cases fall into this category,
and an example is shown in Figure 4. In this example, although the color and size of the selected

6



Foundation Models for Decision Making Workshop at NeurIPS 2023

women’s shoes both matched the user instructions, these are not high-heel shoes. This indicates that
LASER can make mistakes when encountering items with many matching details, and it would be
interesting to see if a self-feedback/verification module can address this issue (Madaan et al., 2023).

5 RELATED WORKS

Interactive decision-making tasks such as web navigation have become popular recently (Liu et al.,
2018; Yao et al., 2023a; Deng et al., 2023; Zhou et al., 2023), while some efforts have tried to
solve these tasks by finetuning pretrained language models on a large corpus of demonstration data
(Gur et al., 2022; Furuta et al., 2023), other attempted to build agents to navigate web environments
solely relying on prompting LLMs (Yang et al., 2023). Among the LLM-based approaches, ReAct
(Yao et al., 2023b) and InnerMonologue (Huang et al., 2022) equip the LLM with a thought process
before producing actions. ASH (Sridhar et al., 2023) and WebAgent (Gur et al., 2023) focus on
decomposing complex decision-making steps into a set of simpler steps, e.g. first summarizing the
task-relevant content and then act upon it. Most similar to our work, Synapse (Zheng et al., 2023)
also proposed to use state-conditional prompts to guide the LLM’s action. However, their focus
is on decomposing the few-shot examples into atomic parts whereas our agent uses state-specific
instructions alone without in-context examples to complete tasks.

Another line of work focuses on the planning stage of LLM agents. Kim et al. (2023) proposed an
agent RCI that generates a plan before acting, and then refines its action when encountering errors.
Adaplanner (Sun et al., 2023) further enhanced the planning approach by adaptively updating the
plan during the agent’s execution. Reflexion (Shinn et al., 2023) agent refines its plan and actions by
taking environmental feedback through a trial-and-error fashion. These approaches are orthogonal
to our work and can be potentially combined with our agent to enhance its performance.

6 CONCLUSIONS

In this work, we proposed an LLM agent, LASER that models interactive web navigation tasks as
state-space exploration. Our formulation allows the agent to handle novel situations, easily back-
track from mistakes, and always perform valid actions. Guided solely by the state-specific instruc-
tions without any in-context examples, LASER outperforms all previous baselines on the WebShop
task by large margins and our analysis shows that it is also robust to longer trajectories and transfers
well to other LLMs.

LIMITATIONS

In this work, we have only conducted experiments on the Webshop task. Despite its challenging
nature, the websites hosted in this task are still simplified. For future work, it would be interesting
to apply our LASER to more challenging benchmarks (Zhou et al., 2023) and real-world shopping
websites 1 to test its ability. Also, it would be interesting to equip LASER with more tools such as
a knowledge retriever (Ma et al., 2023) or a calculator (Gao et al., 2022), so that it can handle more
complex instructions.

Our LASER requires manual annotation of possible states in the environment and their correspond-
ing descriptions. Because of this, our method might only be suitable for building agents for specific
domains (rather than open-world web agents), where only a handful of states are required, e.g. e-
commerce or travel booking. For future directions, we envision a hierarchical multi-agent system,
in which each specific domain is governed by an agent like LASER, and a general open-world agent
just collaborates with other domain agents to complete various user instructions.

REFERENCES

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
1https://www.amazon.com/

7

https://www.amazon.com/


Foundation Models for Decision Making Workshop at NeurIPS 2023

Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh,
Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam
Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James
Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Lev-
skaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin
Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret
Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick,
Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica
Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Bren-
nan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas
Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. Palm: Scaling language modeling with pathways,
2022.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan
Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu,
Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Alex Castro-Ros, Marie Pel-
lat, Kevin Robinson, Dasha Valter, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao,
Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin,
Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei. Scaling instruction-finetuned language
models, 2022.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samuel Stevens, Boshi Wang, Huan Sun, and
Yu Su. Mind2web: Towards a generalist agent for the web, 2023.

Hiroki Furuta, Ofir Nachum, Kuang-Huei Lee, Yutaka Matsuo, Shixiang Shane Gu, and Izzeddin
Gur. Multimodal web navigation with instruction-finetuned foundation models, 2023.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models, 2022.

Izzeddin Gur, Ofir Nachum, Yingjie Miao, Mustafa Safdari, Austin Huang, Aakanksha Chowdhery,
Sharan Narang, Noah Fiedel, and Aleksandra Faust. Understanding html with large language
models, 2022.

Izzeddin Gur, Hiroki Furuta, Austin Huang, Mustafa Safdari, Yutaka Matsuo, Douglas Eck, and
Aleksandra Faust. A real-world webagent with planning, long context understanding, and pro-
gram synthesis, 2023.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan
Tompson, Igor Mordatch, Yevgen Chebotar, Pierre Sermanet, Noah Brown, Tomas Jackson, Linda
Luu, Sergey Levine, Karol Hausman, and Brian Ichter. Inner monologue: Embodied reasoning
through planning with language models, 2022.

Geunwoo Kim, Pierre Baldi, and Stephen McAleer. Language models can solve computer tasks,
2023.

Bill Yuchen Lin, Yicheng Fu, Karina Yang, Prithviraj Ammanabrolu, Faeze Brahman, Shiyu Huang,
Chandra Bhagavatula, Yejin Choi, and Xiang Ren. Swiftsage: A generative agent with fast and
slow thinking for complex interactive tasks, 2023.

Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, Tianlin Shi, and Percy Liang. Reinforcement
learning on web interfaces using workflow-guided exploration, 2018.

Kaixin Ma, Hao Cheng, Yu Zhang, Xiaodong Liu, Eric Nyberg, and Jianfeng Gao. Chain-of-skills:
A configurable model for open-domain question answering. In Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1599–
1618, Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/
2023.acl-long.89. URL https://aclanthology.org/2023.acl-long.89.

8

https://aclanthology.org/2023.acl-long.89


Foundation Models for Decision Making Workshop at NeurIPS 2023

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad
Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-refine:
Iterative refinement with self-feedback, 2023.

OpenAI. Gpt-4 technical report, 2023.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
and Ryan Lowe. Training language models to follow instructions with human feedback, 2022.

Noah Shinn, Federico Cassano, Beck Labash, Ashwin Gopinath, Karthik Narasimhan, and Shunyu
Yao. Reflexion: Language agents with verbal reinforcement learning, 2023.

Abishek Sridhar, Robert Lo, Frank F. Xu, Hao Zhu, and Shuyan Zhou. Hierarchical prompting
assists large language model on web navigation, 2023.

Haotian Sun, Yuchen Zhuang, Lingkai Kong, Bo Dai, and Chao Zhang. Adaplanner: Adaptive
planning from feedback with language models, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models,
2023.

Hui Yang, Sifu Yue, and Yunzhong He. Auto-gpt for online decision making: Benchmarks and
additional opinions, 2023.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents, 2023a.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models, 2023b.

Longtao Zheng, Rundong Wang, and Bo An. Synapse: Leveraging few-shot exemplars for human-
level computer control, 2023.

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Yonatan Bisk, Daniel Fried, Uri Alon, and Graham Neubig. Webarena: A realistic web environ-
ment for building autonomous agents, 2023.

9



Foundation Models for Decision Making Workshop at NeurIPS 2023

A PROMPTS USED IN OUR EXPERIMENTS

You are an intelligent shopping assistant that can help users find the right item. You are given an
observation of the current web navigation session, in the following format:

Current Observation:
WebShop
Instruction:
{the user instruction}
[button] Search [button ] (generate a search query based on the user instruction and select this button to
find relevant items)

Every button in the observation represents a possible action you can take. Based on the current
observation, your task is to generate a rationale about the next action you should take. Note that if an
history of past rationales and actions is provided, you should also consider the history when generating
the rationale.

Table 3: The system instruction we used for the search state.

You are an intelligent shopping assistant that can help users find the right item. You are given an
observation of the current web navigation session, in the following format:

Current Observation:
Instruction:
{the user instruction}
[button] Back to Search [button ] (select this button to go back to the search page)
Page current page number (Total results: total number of results)
[button] Next ¿ [button ] (select this button to go to the next page of results)
[button] {item id 1} [button ] (select this button to view item 1’s details)
{name of item 1}
{price of item 1}
[button] {item id 2} [button ] (select this button to view item 2’s details)
{name of item 2}
{price of item 2}
[button] {item id 3} [button ] (select this button to view item 3’s details)
{name of item 3}
{price of item 3}
{More items...}

At this stage, you want to select an item that might match the user instruction. Note that even if an item
has non-matching details with the user instruction, it might offer different customization options to
allow you to match. E.g. an item may have color x in its name, but you can customize it to color y later,
the customization options are shown after you select the item. Thus if an item name seems relevant or
partially matches the instruction, you should select that item to check its details. If an item has been
selected before (the button has been clicked), you should not select the same item again. In other words,
do not select an item with [clicked button] item id [clicked button ]. Prepare your response in the
following format:
Rationale: the user wanted {keywords of the target item}, and we have found {matching keywords of
item x}, thus item {item id x} seems to be a match.

Table 4: The system instruction we used for the result state.

3https://platform.openai.com/docs/guides/gpt/function-calling

10

https://platform.openai.com/docs/guides/gpt/function-calling


Foundation Models for Decision Making Workshop at NeurIPS 2023

You are an intelligent shopping assistant that can help users find the right item. You are given an
observation of the current web navigation session, in the following format:

Current Observation:
Instruction:
{the user instruction}
[button] Back to Search [button ] (select this button to go back to the search page)
[button] ¡ Prev [button ] (select this button to go back to the previous page of results)
{Customization type1}:
[button] option1 [button ]
[button] option2 [button ]
{Customization type2}:
[button] option1 [button ]
[button] option2 [button ]
{more customization options... (if any)}
{Item name and details}
[button] Description [button ] (select this button to view the full description of the item)
[button] Features [button ] (select this button to view the full features of the item)
[button] Reviews [button ] (select this button to view the full reviews of the item)
[button] Buy Now [button ] (select this button to buy the item)

description: (if this is shown, the description button should not be selected again)
{full description of the item (if any) or ”None”}

features: (if this is shown, the features button should not be selected again)
{full features of the item (if any) or ”None”}

reviews: (if this is shown, the reviews button should not be selected again)
{full reviews of the item (if any) or ”None”}

Target item details (what the user is looking for):
keywords: {keywords of the target item}
max price: {the price of the item should not exceed this}

At this stage, you want to verify if the item matches the user instruction. You should consider the
available customization options when deciding whether an item matches the user instruction. If an item
can be customized to match the user instruction, or if the customization options cover the user
specification, it is also a good match. If the item does not match the user instruction and it does not
provide enough customization options, you can go to previous page to view other items. You can also
check the item’s description, features and reviews to view more details (Note that description, features
and reviews could be ”None”, do not check them again if they are already given). Prepare your
response in the following format:
Rationale: the user wanted {keywords of the target item}, and they required the following customization
options: {cutomization of the target item}, the item is keywords of the item in the current observation,
and it has the following customization options: {options available for the current item}, which {cover}/
{not cover the user requirement}, thus we should {buy the item}/{check more details}/{go to previous
page to view other items}

Table 5: The system instruction we used for the item state.

11



Foundation Models for Decision Making Workshop at NeurIPS 2023

You are an intelligent shopping assistant that can help users find the right item. You are given an
observation of the current environment and a rationale for the next action to be taken,
in the following format:

Current Observation:
The observation layout from search or result or item state, as shown from Table 3, Table 4 and Table 5

Next action rationale: {the rationale for the next action}

Your task is to perform one of the function calls based on the rationale.

Table 6: The system instruction we used for generating action from thought.

State Available Actions
Search {”name”: ”Search”, ”description”: ”Use this function to search for the target item in the

inventory based on keywords”}
Result {”name”: ”select item”, ”description”: ”Use this function to select one of the items from

the search results and check its details”}
{”name”: ”Next”, ”description”: ”Use this function to go to the next page of search results
to view more items, if none of the items on the current page match the user instruction.”}
{”name”: ”Back to Search”, ”description”: ”Use this function to go back to the initial
search page. You should use this function only if you have browsed multiple pages of
items and checked multiple items’ details in the history, and none of the items
match the user instruction.”}

Item {”name”: ”Description”, ”description”: ”Use this function to check the description of the
item, if you are unsure if the item perfectly matches the user instruction”}
{”name”: ”Features”, ”description”: ”Use this function to check the features of the item,
if you are unsure if the item perfectly matches the user instruction”}
{”name”: ”Reviews”, ”description”: ”Use this function to check the reviews of the item,
if you are unsure if the item perfectly matches the user instruction”}
{”name”: ”Buy Now”, ”description”: ”Use this function to buy the current item, if the
current item perfectly matches the user instruction.”}
{”name”: ”Prev”, ”description”: ”Use this fucntion to go back to the results page, if the
current item does not match the user instruction ”}

Table 7: The action space of our agent in each state. Each action is implemented as a function call
following the guidelines from OpenAI 3, additional parameters used in the function call are omitted
here for brevity.

12


	Introduction
	Methods
	Problem Formulation
	LLM Agent
	State Description
	Action Space

	Experiments
	Results
	Analysis
	Case Study

	Related Works
	Conclusions
	Prompts used in our experiments

