
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

NEARLY LOSSLESS ADAPTIVE BIT SWITCHING

Anonymous authors
Paper under double-blind review

ABSTRACT

Model quantization is widely applied for compressing and accelerating deep
neural networks (DNNs). However, conventional Quantization-Aware Training
(QAT) focuses on training DNNs with uniform bit-width. The bit-width settings
vary across different hardware and transmission demands, which induces consid-
erable training and storage costs. Hence, the scheme of one-shot joint training
multiple precisions is proposed to address this issue. Previous works either store a
larger FP32 model to switch between different precision models for higher accu-
racy or store a smaller INT8 model but compromise accuracy due to using shared
quantization parameters. In this paper, we introduce the Double Rounding quan-
tization method, which fully utilizes the quantized representation range to accom-
plish nearly lossless bit-switching while reducing storage by using the highest
integer precision instead of full precision. Furthermore, we observe a compet-
itive interference among different precisions during one-shot joint training, pri-
marily due to inconsistent gradients of quantization scales during backward prop-
agation. To tackle this problem, we propose an Adaptive Learning Rate Scaling
(ALRS) technique that dynamically adapts learning rates for various precisions
to optimize the training process. Additionally, we extend our Double Rounding
to one-shot mixed precision training and develop a Hessian-Aware Stochastic Bit-
switching (HASB) strategy. Experimental results on the ImageNet-1K classifi-
cation demonstrate that our methods have enough advantages to state-of-the-art
one-shot joint QAT in both multi-precision and mixed-precision. We also validate
the feasibility of our method on detection and segmentation tasks, as well as on
LLMs. Our codes are available at https://anonymous.4open.science/
r/Double-Rounding-EF78/README.md.

1 INTRODUCTION

Recently, with the popularity of mobile and edge devices, more and more researchers have attracted
attention to model compression due to the limitation of computing resources and storage. Model
quantization (Zhou et al., 2016; Esser et al., 2019) has gained significant prominence in the industry.
Quantization maps floating-point values to integer values, significantly reducing storage require-
ments and computational resources without altering the network architecture.

Generally, for a given pre-trained model, the quantization bit-width configuration is predefined for a
specific application scenario. The quantized model then undergoes retraining, i.e., QAT, to mitigate
the accuracy decline. However, when the model is deployed across diverse scenarios with different
precisions, it often requires repetitive retraining processes for the same model. A lot of computing
resources and training costs are wasted. To address this challenge, involving the simultaneous train-
ing of multi-precision (Jin et al., 2020; Xu et al., 2022) or one-shot mixed-precision (Jin et al., 2020;
Xu et al., 2023) have been proposed. Among these approaches, some involve sharing weight pa-
rameters between low-precision and high-precision models, enabling dynamic bit-width switching
during inference.

However, bit-switching from high precision (or bit-width) to low precision may introduce signif-
icant accuracy degradation due to the Rounding operation in the quantization process. Addition-
ally, there is severe competition in the convergence process between higher and lower precisions in
multi-precision scheme. In mixed-precision scheme, previous methods often incur vast searching
and retraining costs due to decoupling the training and search stages. Due to the above challenges,
bit-switching remains a very challenging problem. Our motivation is designing a bit-switching

1

https://anonymous.4open.science/r/Double-Rounding-EF78/README.md
https://anonymous.4open.science/r/Double-Rounding-EF78/README.md

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

FP32

INT8

INT6

INT4

INT2

First
Rounding

High bit

Second
Rounding

Low bit

Adaptive
Learn Rate

6bit

2bit

4bit

8bit

8bit
6bit

2bit

4bit

Bit Mixing
Selection

Adaptive
Learning Rate

Double
Round Bit

Switch

Multi-Precision Mixed-Precision Full-Precision

2bit 4bit

6bit 8bit

layer

layer

8bit

2bit

100%

0%

Probability
Stochastic
Bit-switching

Sensitivity

(a) Saving only 8-bit representation
for various low-precisions

(b) Stabilize learning process
across various precisions

(c) Sensitivity-aware bit selection
for different layers

Figure 1: Overview of our proposed lossless adaptive bit-switching strategy.

quantization method that doesn’t require storing a full-precision model and achieves nearly lossless
switching from high-bits to low-bits. Specifically, for different precisions, we propose unified repre-
sentation, normalized learning steps, and tuned probability distribution so that an efficient and stable
learning process is achieved across multiple and mixed precisions, as depicted in Figure 1.

To solve the bit-switching problem, prior methods either store the floating-point parameters (Yu
et al., 2021; Du et al., 2020; Xu et al., 2022; Sun et al., 2024) to avoid accuracy degradation or aban-
don some integer values by replacing rounding with floor(Jin et al., 2020; Bulat & Tzimiropoulos,
2021) but leading to accuracy decline or training collapse at lower bit-widths. We propose Double
Rounding, which applies the rounding operation twice instead of once, as shown in Figure1 (a).
This approach ensures nearly lossless bit-switching and allows storing the highest bit-width model
instead of the full-precision model. Specifically, the lower precision weight is included in the higher
precision weight, reducing storage constraints.

Moreover, we empirically find severe competition between higher and lower precisions, particularly
in 2-bit precision, as also noted in Tang et al. (2022); Xu et al. (2022). There are two reasons for this
phenomenon: The optimal quantization interval itself is different for higher and lower precisions.
Furthermore, shared weights are used for different precisions during joint training, but the quantiza-
tion interval gradients for different precisions exhibit distinct magnitudes during training. Therefore,
we introduce an Adaptive Learning Rate Scaling (ALRS) method, designed to dynamically adjust
the learning rates across different precisions, which ensures consistent update steps of quantization
scales corresponding to different precisions, as shown in the Figure 1 (b).

Finally, we develop an efficient one-shot mixed-precision quantization approach based on Dou-
ble Rounding. Prior mixed-precision approaches first train a SuperNet with predefined bit-width
lists, then search for optimal candidate SubNets under restrictive conditions, and finally retrain or
fine-tune them, which incurs significant time and training costs. However, we use the Hessian Ma-
trix Trace (Dong et al., 2020) as a sensitivity metric for different layers to optimize the SuperNet
and propose a Hessian-Aware Stochastic Bit-switching (HASB) strategy, inspired by the Roulette
algorithm (Dong et al., 2019a). This strategy enables tuned probability distribution of switching
bit-width across layers, assigning higher bits to more sensitive layers and lower bits to less sensitive
ones, as shown in Figure 1 (c). And, we add the sensitivity to the search stage as a constraint factor.
So, our approach can omit the last stage. In conclusion, our main contributions can be described as:

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

• Double Rounding quantization method for multi-precision is proposed, which stores a sin-
gle integer weight to enable adaptive precision switching with nearly lossless accuracy.

• Adaptive Learning Rate Scaling (ALRS) method for the multi-precision scheme is intro-
duced, which effectively narrows the training convergence gap between high-precision
and low-precision, enhancing the accuracy of low-precision models without compromis-
ing high-precision model accuracy.

• Hessian-Aware Stochastic Bit-switching (HASB) strategy for one-shot mixed-precision Su-
perNet is applied, where the access probability of bit-width for each layer is determined
based on the layer’s sensitivity.

• Experimental results on the ImageNet1K dataset demonstrate that our proposed methods
are comparable to state-of-the-art methods across different mainstream CNN architectures.

2 RELATED WORKS

Multi-Precision. Multi-Precision entails a single shared model with multiple precisions by one-
shot joint Quantization-Aware Training (QAT). This approach can dynamically adapt uniform bit-
switching for the entire model according to computing resources and storage constraints. Ad-
aBits (Jin et al., 2019) is the first work to consider adaptive bit-switching but encounters convergence
issues with 2-bit quantization on ResNet50 (He et al., 2015). TQ (Zhang et al., 2021) quantizes
weights or activation values by selecting a specific number of power-of-two terms. BitWave (Shi
et al., 2024) is designed to leverage structured bit-level sparsity and dynamic dataflow to reduce com-
putation and memory usage. Bit-Mixer (Bulat & Tzimiropoulos, 2021) addresses this problem by
using the LSQ (Esser et al., 2019) quantization method but discards the lowest state quantized value,
resulting in an accuracy decline. Multi-Precision joint QAT can also be viewed as a multi-objective
optimization problem. Any-precision (Yu et al., 2021) and MultiQuant (Xu et al., 2022) combine
knowledge distillation techniques to improve model accuracy. Among these methods, MultiQuant’s
proposed “Online Adaptive Label” training strategy is essentially a form of self-distillation (Kim
et al., 2021). Similar to our method, AdaBits and Bit-Mixer can save an 8-bit model, while other
methods rely on 32-bit models for bit switching. Our Double Rounding method can store the highest
bit-width model (e.g., 8-bit) and achieve almost lossless bit-switching, ensuring a stable optimiza-
tion process. Importantly, this leads to a reduction in training time by approximately 10% (Du et al.,
2020) compared to separate quantization training.

One-shot Mixed-Precision. Previous works mainly utilize costly approaches, such as reinforcement
learning (Wang et al., 2019; Elthakeb et al., 2019) and Neural Architecture Search (NAS) (Wu et al.,
2018; Guo et al., 2020b; Shen et al., 2021), or rely on partial prior knowledge (Liu et al., 2021;
Yao et al., 2021) for bit-width allocation, which may not achieve global optimality. In contrast,
our proposed one-shot mixed-precision method employs Hessian-Aware optimization to refine a
SuperNet via gradient updates, and then obtain the optimal conditional SubNets with less search
cost without retraining or fine-tuning. Additionally, Bit-Mixer (Bulat & Tzimiropoulos, 2021) and
MultiQuant (Xu et al., 2022) implement layer-adaptive mixed-precision models, but Bit-Mixer uses
a naive search method to attain a sub-optimal solution, while MultiQuant requires 300 epochs of
fine-tuning to achieve ideal performance. Unlike NAS approaches (Shen et al., 2021), which focus
on altering network architecture (e.g., depth, kernel size, or channels), our method optimizes a once-
for-all SuperNet using only quantization techniques without altering the model architecture.

3 METHODOLOGY

3.1 Double Rounding

Conventional separate precision quantization using Quantization-Aware Training (QAT) (Jacob
et al., 2017) attain a fixed bit-width quantized model under a pre-trained FP32 model. A pseudo-
quantization node is inserted into each layer of the model during training. This pseudo-quantization
node comprises two operations: the quantization operation quant(x), which maps floating-point
(FP32) values to lower-bit integer values, and the dequantization operation dequant(x), which re-
stores the quantized integer value to its original floating-point representation. It can simulate the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

quantization error incurred when compressing float values into integer values. As quantization in-
volves a non-differentiable Rounding operation, Straight-Through Estimator (STE) (Bengio et al.,
2013) is commonly used to handle the non-differentiability.

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y

Storage:32bit
LSQ

2bit
3bit
4bit

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y

Storage:4bit
AdaBits

2bit
3bit
4bit

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y

Storage:4bit
Bit-mixer

2bit
3bit
4bit

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y

Storage:4bit
Double Rounding

2bit
3bit
4bit

Figure 2: Comparison of four quantization schemes:(from left to right) used in LSQ (Esser et al.,
2019), AdaBits (Jin et al., 2020), Bit-Mixer (Bulat & Tzimiropoulos, 2021) and Ours Double Round-
ing. In all cases y = dequant(quant(x)).

However, for multi-precision quantization, bit-switching can result in significant accuracy loss, es-
pecially when transitioning from higher bit-widths to lower ones, e.g., from 8-bit to 2-bit. To miti-
gate this loss, prior works have mainly employed two strategies: one involves bit-switching from a
floating-point model (32-bit) to a lower-bit model each time using multiple learnable quantization
parameters, and the other substitutes the Rounding operation with the Floor operation, but this re-
sults in accuracy decline (especially in 2-bit). In contrast, we propose a nearly lossless bit-switching
quantization method called Double Rounding. This method overcomes these limitations by employ-
ing a Rounding operation twice. It allows the model to be saved in the highest-bit (e.g., 8-bit)
representation instead of full-precision, facilitating seamless switching to other bit-width models. A
detailed comparison of Double Rounding with other quantization methods is shown in Figure 2.

Unlike AdaBits, which relies on the Dorefa (Zhou et al., 2016) quantization method where the
quantization scale is determined based on the given bit-width, the quantization scale of our Double
Rounding is learned online and is not fixed. It only requires a pair of shared quantization parameters,
i.e., scale and zero-point. Quantization scales of different precisions adhere to a strict “Power of
Two” relationship. Suppose the highest-bit and the target low-bit are denoted as h-bit and l-bit
respectively, and the difference between them is ∆ = h − l. The specific formulation of Double
Rounding is as follows:

W̃h = clip(
⌊
W − zh

sh

⌉
,−2h−1, 2h−1 − 1) (1)

W̃l = clip(

⌊
W̃h

2∆

⌉
,−2l−1, 2l−1 − 1) (2)

Ŵl = W̃l × sh × 2∆ + zh (3)
where the symbol ⌊.⌉ denotes the Rounding function, and clip(x, low, upper) means x is limited

to the range between low and upper. Here, W represents the FP32 model’s weights, sh ∈ R
and zh ∈ Z denote the highest-bit (e.g., 8-bit) quantization scale and zero-point respectively. W̃h

represent the quantized weights of the highest-bit, while W̃l and Ŵl represent the quantized weights
and dequantized weights of the low-bit respectively.

Hardware shift operations can efficiently execute the division W̃h by 1 << ∆. Note that in our
Double Rounding, the model can also be saved at full precision by using unshared quantization
parameters to run bit-switching and attain higher accuracy. Because we use symmetric quantization
scheme, the zh is 0. Please refer to Section A.4 for the gradient formulation of Double Rounding.

Unlike fixed weights, activations change online during inference. So, the corresponding scale and
zero-point values for different precisions can be learned individually to increase overall accuracy.
Suppose X denotes the full precision activation, and X̃b and X̂b are the quantized activation and
dequantized activation respectively. The quantization process can be formulated as follows:

X̃b = clip(
⌊
X − zb

sb

⌉
, 0, 2b − 1) (4)

X̂b = X̃b × sb + zb (5)
where sb ∈ R and zb ∈ Z represent the quantization scale and zero-point of different bit-widths

activation respectively. Note that zb is 0 for the ReLU activation function.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.2 ADAPTIVE LEARNING RATE SCALING FOR MULTI-PRECISION

Although our proposed Double Rounding method represents a significant improvement over most
previous multi-precision works, the one-shot joint optimization of multiple precisions remains con-
strained by severe competition between the highest and lowest precisions (Tang et al., 2022; Xu
et al., 2022). Different precisions simultaneously impact each other during joint training, resulting
in substantial differences in convergence rates between them, as shown in Figure 3 (c). We ex-
perimentally find that this competitive relationship stems from the inconsistent magnitudes of the
quantization scale’s gradients between high-bit and low-bit quantization during joint training, as
shown in Figure 3 (a) and (b). For other models statistical results please refer to Section A.6 in the
appendix.

1 2 3 4 5 6 7 8 9101112131415161718
Layer

0.075
0.050
0.025
0.000
0.025
0.050
0.075

G
ra

di
en

ts
 o

f w
ei

gh
t s

ca
le

1 2 3 4 5 6 7 8 9101112131415161718
Layer

0.075
0.050
0.025
0.000
0.025
0.050
0.075

G
ra

di
en

ts
 o

f w
ei

gh
t s

ca
le

1 11 21 31 61 71 8141 51
Epoch

5
10
15
20

70
65
60
55
50
45
40
35
30
25

Ac
c1
(%
)

8bit
6bit
4bit
2bit

gap

1 11 21 31 61 71 8141
5

10
15
20

70

Ac
c1

(%
)

8bit

6bit
4bit
2bit

Epoch

25
30
35
40
45
50
55
60
65

51

(a) 2-bit (b) 4-bit (c) w/o ALRS (d) w. ALRS

Figure 3: The statistics of ResNet18 on ImageNet-1K dataset. (a) and (b): The quantization scale
gradients’ statistics for the weights, with outliers removed for clarity. (c) and (d): The multi-
precision training processes of our Double Rounding without and with the ALRS strategy.

Motivated by these observations, we introduce a technique termed Adaptive Learning Rate Scaling
(ALRS), which dynamically adjusts learning rates for different precisions to optimize the training
process. This technique is inspired by the Layer-wise Adaptive Rate Scaling (LARS) (You et al.,
2017) optimizer. Specifically, suppose the current batch iteration’s learning rate is λ, we set learning
rates λb of different precisions as follows:

λb = ηb

(
λ−

L∑
i=1

min
(
max abs

(
clip grad(∇sib, 1.0)

)
, 1.0

)
L

)
, (6)

ηb =

{
1× 10−

∆
2 , if ∆ is even

5× 10−(∆+1
2

), if ∆ is odd
(7)

where the L is the number of layers, clip grad(.) represents gradient clipping that prevents gradient
explosion, max abs(.) denotes the maximum absolute value of all elements. The ∇sib denotes the
quantization scale’s gradients of layer i and ηb denotes scaling hyperparameter of different preci-
sions, e.g., 8-bit is 1, 6-bit is 0.1, and 4-bit is 0.01. Note that the ALRS strategy is only used for
updating quantization scales. It can adaptively update the learning rates of different precisions and
ensure that model can optimize quantization parameters at the same pace, ultimately achieving a
minimal convergence gap in higher bits and 2-bit, as shown in Figure 3 (d).

In multi-precision scheme, different precisions share the same model weights during joint training.
For conventional multi-precision, the shared weight computes n forward processes at each training
iteration, where n is the number of candidate bit-widths. The losses attained from different pre-
cisions are then accumulated, and the gradients are computed. Finally, the shared parameters are
updated. For detailed implementation please refer to Algorithm A.1 in the appendix. However, we
find that if different precision losses separately compute gradients and directly update shared pa-
rameters at each forward process, it attains better accuracy when combined with our ALRS training
strategy. Additionally, we use dual optimizers to update the weight parameters and quantization
parameters simultaneously. We also set the weight-decay of the quantization scales to 0 to achieve
stable convergence. For detailed implementation please refer to Algorithm A.2 in the appendix.

3.3 ONE-SHOT MIXED-PRECISION SUPERNET

Unlike multi-precision, where all layers uniformly utilize the same bit-width, mixed-precision Su-
perNet provides finer-grained adaptive by configuring the bit-width at different layers. Previous
methods typically decouple the training and search stages, which need a third stage for retraining

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

or fine-tuning the searched SubNets. These approaches generally incur substantial search costs in
selecting the optimal SubNets, often employing methods such as greedy algorithms (Cai & Vas-
concelos, 2020; Bulat & Tzimiropoulos, 2021) or genetic algorithms (Guo et al., 2020a; Xu et al.,
2022). Considering the fact that the sensitivity (Dong et al., 2019b), i.e., importance, of each layer
is different, we propose a Hessian-Aware Stochastic Bit-switching (HASB) strategy for one-shot
mixed-precision training.

8bit2bit 4bit 6bit

Pr
ob

ab
ilit

y

25% 25% 25% 25%

8bit2bit 4bit 6bit

Pr
ob

ab
ilit

y

25% 25% 25% 25%

8bit2bit 4bit 6bit

Pr
ob

ab
ilit

y

25% 25% 25% 25%

8bit2bit 4bit 6bit

Pr
ob

ab
ilit

y
10%

20%
30%

40%

1 2 3 4 5 6 7 8 9 101112131415161718
Layer

0.00

0.01

0.02

0.03

0.04

Av
er

ag
e

H
es

si
an

 tr
ac

e

weights

2 3 4 5 6 7 8
Average bit-width

65

66

67

68

69

70

71

Ac
c1

(%
)

w. HASB
w/o HASB

(a) Unsensitive (b) Sensitive (c) Hessian trace (d) Mixed precision

Figure 4: The HASB stochastic process and Mixed-precision of ResNet18 for {2,4,6,8}-bit.

Specifically, the Hessian Matrix Trace (HMT) is utilized to measure the sensitivity of each layer.
We first need to compute the pre-trained model’s HMT by around 1000 training images (Dong et al.,
2020), as shown in Figure 4 (c). Then, the HMT of different layers is utilized as the probability met-
ric for bit-switching. Higher bits are priority selected for sensitive layers, while all candidate bits are
equally selected for unsensitive layers. Our proposed Roulette algorithm is used for bit-switching
processes of different layers during training, as shown in the Algorithm 1. If a layer’s HMT ex-
ceeds the average HMT of all layers, it is recognized as sensitive, and the probability distribution of
Figure 4 (b) is used for bit selection. Conversely, if the HMT is below the average, the probability
distribution of Figure 4 (a) is used for selection. Finally, the Integer Linear Programming (ILP) (Ma
et al., 2023) algorithm is employed to find the optimal SubNets. Considering each layer’s sensitiv-
ity during training and adding this sensitivity to the ILP’s constraint factors (e.g., model’s FLOPs,
latency, and parameters), which depend on the actual deployment requirements. We can efficiently
attain a set of optimal SubNets during the search stage without retraining, thereby significant reduce
the overall costs. All the searched SubNets collectively constitute the Pareto Frontier optimal so-
lution, as shown in Figure 4 (d). For detailed mixed-precision training and searching process (i.e.,
ILP) please refer to the Algorithm A.3 and the Algorithm 2 respectively. Note that the terms “pulp”
and “index” in Algorithm 2 represent a Python library for linear programming optimization and the
position of the maximum bit-width in the candidate bit-widths, respectively.

Algorithm 1 Roulette algorithm in bit-switching
Require: Candidate bit-widths set b ∈ B, the HMT

of current layer: tl, average HMT: tm;
1: Sample r ∼ U(0, 1] from a uniform distribution;
2: if tl < tm then
3: Compute bit-switching probability of all candi-

date bi with pi = 1/n;
4: Set s = 0, and i = 0;
5: while s < r do
6: i = i+ 1;
7: s = pi + s;
8: end while
9: else

10: Compute bit-switching probability of all candi-
date bi with pi = bi/∥B∥1;

11: Set s = 0, and i = 0;
12: while s < r do
13: i = i+ 1;
14: s = pi + s;
15: end while
16: end if
17: return bi;
Note that n and L represent the number of candidate bit-widths and
model layers respectively, and ∥ · ∥1 is L1 norm.

Algorithm 2 Our searching process for SubNets
Input: Candidate bit-widths set b ∈ B, the HMT of

different layers of FP32 model: tl ∈ {T}Ll=1, the
constraint average bit-width: ω, each layer param-
eters: nl ∈ {N}Ll=1;

1: Initial searched SubNets’solutions: S = ϕ
2: Minimal objective : O =

∑L
l=1

tl
nl

· bl
3: Constraints: ω ≡

∑L
l=1 bl
L

4: The first solve: s1 = pulp.solve(O,ω) and
S.append(s1)

5: for ci in s1 do
6: for b in B[: index(max(s1))] do
7: if b ̸= ci then
8: Add constraint: b ≡ ci
9: Solve: s = pulp.solve(O,ω, b)

10: if s not in S then
11: S.append(s)
12: end if
13: Pop last constraint: b ≡ ci
14: end if
15: end for
16: end for
17: return S

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4 EXPERIMENTAL RESULTS

4.1 IMAGE CLASSIFICATION

Setup. In this paper, we mainly focus on ImageNet-1K classification task using both classical net-
works (ResNet18/50) and lightweight networks (MobileNetV2), which same as previous works.
Experiments cover joint quantization training for multi-precision and mixed precision. We ex-
plore two candidate bit configurations, i.e., {8,6,4,2}-bit and {4,3,2}-bit, each number represents
the quantization level of the weight and activation layers. Like previous methods, we exclude batch
normalization layers from quantization, and the first and last layers are kept at full precision. We ini-
tialize the multi-precision models with a pre-trained FP32 model, and initialize the mixed-precision
models with a pre-trained multi-precision model. All models use the Adam optimizer with a batch
size of 256 for 90 epochs and use a cosine scheduler without warm-up phase. The initial learning
rate is 5e-4 and weight decay is 5e-5. Data augmentation uses the standard set of transformations
including random cropping, resizing to 224×224 pixels, and random flipping. Images are resized to
256×256 pixels and then center-cropped to 224×224 resolution during evaluation.

4.1.1 MULTI-PRECISION

Results. For {8,6,4,2}-bit configuration, the Top-1 validation accuracy is shown in Table 1. The
network weights and the corresponding activations are quantized into w-bit and a-bit respectively.
Our double-rounding combined with ALRS training strategy surpasses the previous state-of-the-art
(SOTA) methods. For example, in ResNet18, it exceeds Any-Precision by 2.7%(or 2.83%) un-
der w8a8 setting without(or with) using KD technique, and outperforms MultiQuant by 0.63%(or
0.73%) under w4a4 setting without(or with) using KD technique respectively. Additionally, when
the candidate bit-list includes 2-bit, the previous methods can’t converge on MobileNetV2 during
training. So, they use {8,6,4}-bit precision for MobileNetV2 experiments. For consistency, we
also test {8,6,4}-bit results, as shown in the “Ours {8,6,4}-bit” rows of Table 1. Our method achieves
0.25%/0.11%/0.56% higher accuracy than AdaBits under the w8a8/w6a6/w4a4 settings.

Notably, our method exhibits the ability to converge but shows a big decline in accuracy on Mo-
bileNetV2. On the one hand, the compact model exhibits significant differences in the quantization
scale gradients of different channels due to involving Depth-Wise Convolution (Sheng et al., 2018).
On the other hand, when the bit-list includes 2-bit, it intensifies competition between different pre-
cisions during training. To improve the accuracy of compact models, we suggest considering the
per-layer or per-channel learning rate scaling techniques in future work.

Table 1: Top1 accuracy comparisons on multi-precision of {8,6,4,2}-bit on ImageNet-1K datasets.
“KD” denotes knowledge distillation. The “−” represents the unqueried value.

Model Method KD Storage Epoch w8a8 w6a6 w4a4 w2a2 FP

ResNet18

Hot-Swap(Sun et al., 2021) ✗ 32bit − 70.40 70.30 70.20 64.90 −
L1(Alizadeh et al., 2020) ✗ 32bit − 69.92 66.39 0.22 − 70.07

KURE(Chmiel et al., 2020) ✗ 32bit 80 70.20 70.00 66.90 − 70.30
Ours ✗ 8bit 90 70.74 70.71 70.43 66.35 69.76

Any-Precision(Yu et al., 2021) ✓ 32bit 80 68.04 − 67.96 64.19 69.27
CoQuant(Du et al., 2020) ✓ 8bit 100 67.90 67.60 66.60 57.10 69.90

MultiQuant(Xu et al., 2022) ✓ 32bit 90 70.28 70.14 69.80 66.56 69.76
Ours ✓ 8bit 90 70.87 70.79 70.53 66.84 69.76

ResNet50

Any-Precision(Yu et al., 2021) ✗ 32bit 80 74.68 − 74.43 72.88 75.95
Hot-Swap(Sun et al., 2021) ✗ 32bit − 75.60 75.50 75.30 71.90 −
KURE(Chmiel et al., 2020) ✗ 32bit 80 − 76.20 74.30 − 76.30

Ours ✗ 8bit 90 76.51 76.28 75.74 72.31 76.13
Any-Precision(Yu et al., 2021) ✓ 32bit 80 74.91 − 74.75 73.24 75.95
MultiQuant(Xu et al., 2022) ✓ 32bit 90 76.94 76.85 76.46 73.76 76.13

Ours ✓ 8bit 90 76.98 76.86 76.52 73.78 76.13

MobileNetV2

AdaBits(Jin et al., 2020) ✗ 8bit 150 72.30 72.30 70.30 − 71.80
KURE(Chmiel et al., 2020) ✗ 32bit 80 − 70.00 59.00 − 71.30

Ours {8,6,4}-bit ✗ 8bit 90 72.42 72.06 69.92 − 71.14
MultiQuant(Xu et al., 2022) ✓ 32bit 90 72.33 72.09 70.59 − 71.88

Ours {8,6,4}-bit ✓ 8bit 90 72.55 72.41 70.86 − 71.14
Ours {8,6,4,2}-bit ✗ 8bit 90 70.98 70.70 68.77 50.43 71.14
Ours {8,6,4,2}-bit ✓ 8bit 90 71.35 71.20 69.85 53.06 71.14

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

For {4,3,2}-bit configuration, Table 2 demonstrate that our double-rounding consistently surpasses
previous SOTA methods. For instance, in ResNet18, it exceeds Bit-Mixer by 0.63%/0.7%/1.2%(or
0.37%/0.64%/1.02%) under w4a4/w3a3/w2a2 settings without(or with) using KD technique, and
outperforms ABN by 0.87%/0.74%/1.12% under w4a4/w3a3/w2a2 settings with using KD tech-
nique respectively. In ResNet50, Our method outperforms Bit-Mixer by 0.86%/0.63%/0.1% under
w4a4/w3a3/w2a2 settings.

Notably, the overall results of Table 2 are worse than the {8,6,4,2}-bit configuration for joint train-
ing. We analyze that this discrepancy arises from information loss in the shared lower precision
model (i.e., 4-bit) used for bit-switching. In other words, compared with 4-bit, it is easier to di-
rectly optimize 8-bit quantization parameters to converge to the optimal value. So, we recommend
including 8-bit for multi-precision training. Furthermore, independently learning the quantization
scales for different precisions, including weights and activations, significantly improves accuracy
compared to using shared scales. However, it requires saving the model in 32-bit format, as shown
in “Ours*” of Table 2.

Table 2: Top1 accuracy comparisons on multi-precision of {4,3,2}-bit on ImageNet-1K datasets.
Model Method KD Storage Epoch w4a4 w3a3 w2a2 FP

ResNet18

Bit-Mixer(Bulat & Tzimiropoulos, 2021) ✗ 4bit 160 69.10 68.50 65.10 69.60
Vertical-layer(Wu et al., 2023) ✗ 4bit 300 69.20 68.80 66.60 70.50

Ours ✗ 4bit 90 69.73 69.20 66.30 69.76
Q-DNNs(Du et al., 2020) ✓ 32bit 45 66.94 66.28 62.91 68.60
ABN(Tang et al., 2022) ✓ 4bit 160 68.90 68.60 65.50 −

Bit-Mixer(Bulat & Tzimiropoulos, 2021) ✓ 4bit 160 69.40 68.70 65.60 69.60
Ours ✓ 4bit 90 69.77 69.34 66.62 69.76

ResNet50

Ours ✗ 4bit 90 75.81 75.24 71.62 76.13
AdaBits(Jin et al., 2020) ✗ 32bit 150 76.10 75.80 73.20 75.00

Ours* ✗ 32bit 90 76.42 75.82 73.28 76.13
Bit-Mixer(Bulat & Tzimiropoulos, 2021) ✓ 4bit 160 75.20 74.90 72.70 −

Ours ✓ 4bit 90 76.06 75.53 72.80 76.13

4.1.2 MIXED-PRECISION

Results. We follow previous works to conduct mixed-precision experiments based on the
{4,3,2}-bit configuration. Our proposed one-shot mixed-precision joint quantization method
with the HASB technique comparable to the previous SOTA methods, as presented in Table 3.
For example, in ResNet18, our method exceeds Bit-Mixer by 0.83%/0.72%/0.77%/7.07% under
w4a4/w3a3/w2a2/3MP settings and outperforms EQ-Net (Xu et al., 2023) by 0.2% under 3MP set-
ting. The results demonstrate the effectiveness of one-shot mixed-precision joint training to consider
sensitivity with Hessian Matrix Trace when randomly allocating bit-widths for different layers. Ad-
ditionally, Table 3 reveals that our results do not achieve optimal performance across all settings.
We hypothesize that extending the number of training epochs or combining ILP with other effi-
cient search methods, such as genetic algorithms, may be necessary to achieve optimal results in
mixed-precision optimization.

Table 3: Top1 accuracy comparisons on mixed-precision of {4,3,2}-bit on ImageNet-1K dataset.
“MP” denotes average bit-width for mixed-precision. The “−” represents the unqueried value.

Model Method KD Training Searching Fine-tune Epoch w4a4 w3a3 w2a2 3MP FP

ResNet18

Ours ✗ HASB ILP w/o 90 69.80 68.63 64.88 68.85 69.76
Bit-Mixer ✓ Random Greedy w/o 160 69.20 68.60 64.40 62.90 69.60

ABN ✓ DRL DRL w. 160 69.80 69.00 66.20 67.70 −
MultiQuant ✓ LRH Genetic w. 90 − 67.50 − 69.20 69.76

EQ-Net ✓ LRH Genetic w. 120 − 69.30 65.90 69.80 69.76
Ours ✓ HASB ILP w/o 90 70.03 69.32 65.17 69.92 69.76

ResNet50
Ours ✗ HASB ILP w/o 90 75.01 74.31 71.47 75.06 76.13

Bit-Mixer ✓ Random Greedy w/o 160 75.20 74.80 72.10 73.20 −
EQ-Net ✓ LRH Genetic w. 120 − 74.70 72.50 75.10 76.13

Ours ✓ HASB ILP w/o 90 75.63 74.36 72.32 75.24 76.13

4.2 OBJECT DETECTION AND SEGMENTATION

Setup. We utilize the pre-trained models as the backbone within the Mask-RCNN (He et al., 2017)
detector for object detection and instance segmentation on the MS-COCO 2017 dataset, comprising

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

118K training images and 5K validation images. We follow the Pytorch official “code” and employ
the AdamW optimizer, conduct training of 26 epochs, use a batch size of 16, and maintain other
training settings without further hyperparameter tuning.

Results. Table 4 reports the average precision (mAP) performance for both detection and instance
segmentation tasks for quantizing the backbone of the Mask-RCNN model on the COCO dataset.
The results further confirm the generalization capabilities of our Double Rounding.

Table 4: Results of multi-precision on object detection and instance segmentation benchmark.
Backbone mAPb

FP mAPb
w8a8 mAPb

w6a6 mAPb
w4a4 mAPb

w2a2 mAPm
FP mAPm

w8a8 mAPm
w6a6 mAPm

w4a4 mAPm
w2a2

ResNet18 27.3 27.8 27.1 26.5 21.3 25.6 25.8 25.0 24.6 20.7
ResNet50 37.9 37.0 36.6 34.8 26.4 34.6 33.7 32.4 31.7 25.0

4.3 LLMS TASK

We also conduct experiments on Large Language Models (LLMs) to validate the effectiveness of our
method in more recent architectures, as shown in Table 5. We conduct multi-precision experiments
on small LLMs (Zhang et al., 2024) without using ALRS and distillation. Note that, except for not
quantizing the embedding layer and head layer, due to the sensitivity of the SiLU activation causing
non-convergence, we don’t quantize the SiLU activation in the MLP and set the batch size to 16.
The results demonstrate that our approach applies to more recent and complex models.

Table 5: Zero-shot performance on commonsense reasoning tasks under different LLM models.
Model Precision HellaSwag Obqa WinoGrande ARC-c ARC-e boolq piqa Avg. ↑
TinyLlama 120M FP 26.07 27.20 49.64 28.58 25.51 47.86 49.73 36.37

iteration-step 4000
w8a8 26.33 28.00 48.15 28.84 26.14 62.17 50.05 38.53
w6a6 26.29 26.60 49.80 27.65 27.69 56.45 50.65 37.88
w4a4 26.12 26.00 48.62 29.27 26.52 47.55 49.84 36.27
w2a2 26.17 25.20 49.72 29.01 26.09 50.43 49.13 36.54

iteration-step 8000
w8a8 26.31 28.20 48.62 28.75 26.18 62.17 50.05 38.61
w6a6 26.52 26.40 49.96 29.01 27.61 49.63 49.89 37.00
w4a4 25.89 26.60 49.80 28.67 26.43 43.03 50.33 35.82
w2a2 25.83 24.00 50.83 28.41 26.05 44.01 50.60 35.68

TinyLlama 1.1B FP 59.20 36.00 59.12 30.12 55.25 57.83 73.29 52.99

iteration-step 4000
w8a8 57.58 35.60 58.48 28.26 51.39 62.87 72.31 52.36
w6a6 52.36 31.00 57.62 26.71 47.35 59.39 69.15 49.08
w4a4 25.71 24.60 49.64 27.82 25.76 49.88 49.13 36.08
w2a2 25.73 27.60 51.22 26.54 25.72 62.17 50.27 38.46

iteration-step 8000
w8a8 57.79 35.60 58.72 30.20 53.24 62.69 72.14 52.91
w6a6 51.57 30.00 57.77 25.34 46.76 56.85 68.39 48.10
w4a4 25.93 24.60 51.85 28.16 25.29 51.59 49.89 36.76
w2a2 25.81 27.40 51.22 26.45 25.93 62.17 50.16 38.45

4.4 ABLATION STUDIES

ALRS vs. Conventional in Multi-Precision. To verify the effectiveness of our proposed ALRS
training strategy, we conduct an ablation experiment without KD, as shown in Table 6, and observe
overall accuracy improvements, particularly for the 2bit. Like previous works, where MobileNetV2
can’t achieve stable convergence with {4,3,2}-bit, we also opt for {8,6,4}-bit to keep consistent.
However, our method can achieve stable convergence with {8,6,4,2}-bit quantization. This demon-
strates the superiority of our proposed Double-Rounding and ALRS methods. In addition, we con-
duct ablation studies of other methods with or without ALRS, as shown in Table 7. The results
further validate the effectiveness of our proposed ALRS for multi-precision.

Multi-Precision vs. Separate-Precision in Time Cost. We statistic the results regarding the time
cost for normal multi-precision compared to separate-precision quantization, as shown in Table 8.
Multi-precision training costs stay approximate constant as the number of candidate bit-widths.

Pareto Frontier of Different Mixed-Precision Configurations. To verify the effectiveness of our
HASB strategy, we conduct ablation experiments on different bit-lists. Figure 5 shows the search
results of Mixed-precision SuperNet under {8,6,4,2}-bit, {4,3,2}-bit and {8,4}-bit configurations
respectively. Where each point represents a SubNet. These results are obtained directly from ILP

9

https://github.com/pytorch/tutorials/blob/main/intermediate_source/torchvision_tutorial.py

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 6: Ablation studies of multi-precision, ResNet20 on CIFAR-10 dataset and other models on
ImageNet-1K dataset. Note that MobileNetV2 uses {8,6,4}-bit instead of {4,3,2}-bit.

Model ALRS w8a8 w6a6 w4a4 w2a2 w4a4 w3a3 w2a2 FP

ResNet20 w/o 92.17 92.20 92.17 89.67 91.19 90.98 88.62 92.30
w. 92.25 92.32 92.09 90.19 91.79 91.83 88.88 92.30

ResNet18 w/o 70.05 69.80 69.32 65.83 69.38 68.74 65.62 69.76
w. 70.74 70.71 70.43 66.35 69.73 69.20 66.30 69.76

ResNet50 w/o 76.18 76.08 75.64 70.28 75.48 74.85 70.64 76.13
w. 76.51 76.28 75.74 72.31 75.81 75.24 71.62 76.13

w8a8 w6a6 w4a4 w2a2 w8a8 w6a6 w4a4

MobileNetV2 w/o 70.55 70.65 68.08 45.00 72.06 71.87 69.40 71.14
w. 70.98 70.70 68.77 50.43 72.42 72.06 69.92 71.14

Table 7: Ablation studies of Multi-Precision with or without ALRS strategy for other methods.
Model Dataset Method ALRS Storage Epoch w8a8 w6a6 w4a4 w2a2 FP

ResNet20 Cifar10
Bit-Mixer w/o 8bit 90 91.84 91.89 91.34 38.19 92.30
Bit-Mixer w. 8bit 90 92.07 91.88 91.97 59.08 92.30

MultiQuant w/o 32bit 90 92.02 91.89 91.50 87.78 92.30
MultiQuant w. 32bit 90 92.04 92.08 91.56 88.50 92.30

ResNet18 ImageNet
Bit-Mixer w/o 8bit 90 70.24 70.16 68.60 62.64 69.76
Bit-Mixer w. 8bit 90 70.36 70.28 69.43 63.12 69.76

MultiQuant w/o 32bit 90 70.56 70.64 70.21 66.05 69.76
MultiQuant w. 32bit 90 70.85 70.75 70.46 66.43 69.76

Table 8: Training costs for multi-precision and separate-precision are averaged over three runs.
Model Dataset Bit-widths #V100 Epochs BatchSize Avg. hours Save cost (%)

ResNet20 Cifar10
Separate-bit 1 200 128 0.9 0.0
{4,3,2}-bit 1 200 128 0.7 28.6
{8,6,4,2}-bit 1 200 128 0.8 12.5

ResNet18 ImageNet
Separate-bit 4 90 256 19.0 0.0
{4,3,2}-bit 4 90 256 15.2 25.0
{8,6,4,2}-bit 4 90 256 16.3 16.6

ResNet50 ImageNet
Separate-bit 4 90 256 51.6 0.0
{4,3,2}-bit 4 90 256 40.7 26.8
{8,6,4,2}-bit 4 90 256 40.8 26.5

sampling without retraining or fine-tuning. As the figure shows, the highest red points are higher
than the blue points under the same bit width, indicating that this strategy is effective.

2 3 4 5 6 7 8
Average bit-width

65

66

67

68

69

70

71

A
cc

1(
%

)

w. HASB
w/o HASB

2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00
Average bit-width

65

66

67

68

69

70

71

Ac
c1

(%
)

w. HASB
w/o HASB

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
Average bit-width

65

66

67

68

69

70

71

A
cc

1(
%

)

w. HASB
w/o HASB

(a) {8,6,4,2}-bit (b) {4,3,2}-bit (c) {8,4}-bit

Figure 5: Comparison of HASB and Baseline approaches for Mixed-Precision on ResNet18.

5 CONCLUSION

This paper first introduces Double Rounding quantization method used to address the challenges
of multi-precision and mixed-precision joint training. It can store single integer-weight parameters
and attain nearly lossless bit-switching. Secondly, we propose an Adaptive Learning Rate Scaling
(ALRS) method for multi-precision joint training that narrows the training convergence gap be-
tween high-precision and low-precision, enhancing model accuracy of multi-precision. Finally, our
proposed Hessian-Aware Stochastic Bit-switching (HASB) strategy for one-shot mixed-precision
SuperNet and efficient searching method combined with Integer Linear Programming, achieving
approximate Pareto Frontier optimal solution. Our proposed methods aim to achieve a flexible and
effective model compression technique for adapting different storage and computation requirements.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Milad Alizadeh, Arash Behboodi, Mart van Baalen, Christos Louizos, Tijmen Blankevoort, and Max Welling.
Gradient l1 regularization for quantization robustness. arXiv preprint arXiv:2002.07520, 2020.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through stochas-
tic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Yash Bhalgat, Jinwon Lee, Markus Nagel, Tijmen Blankevoort, and Nojun Kwak. Lsq+: Improving low-bit
quantization through learnable offsets and better initialization. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops, pp. 696–697, 2020.

Adrian Bulat and Georgios Tzimiropoulos. Bit-mixer: Mixed-precision networks with runtime bit-width se-
lection. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5188–5197,
2021.

Zhaowei Cai and Nuno Vasconcelos. Rethinking differentiable search for mixed-precision neural networks.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2349–2358,
2020.

Brian Chmiel, Ron Banner, Gil Shomron, Yury Nahshan, Alex Bronstein, Uri Weiser, et al. Robust quantization:
One model to rule them all. Advances in neural information processing systems, 33:5308–5317, 2020.

Yinpeng Dong, Renkun Ni, Jianguo Li, Yurong Chen, Hang Su, and Jun Zhu. Stochastic quantization for
learning accurate low-bit deep neural networks. International Journal of Computer Vision, 127:1629–1642,
2019a.

Zhen Dong, Zhewei Yao, Amir Gholami, Michael W Mahoney, and Kurt Keutzer. Hawq: Hessian aware quan-
tization of neural networks with mixed-precision. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 293–302, 2019b.

Zhen Dong, Zhewei Yao, Daiyaan Arfeen, Amir Gholami, Michael W Mahoney, and Kurt Keutzer. Hawq-v2:
Hessian aware trace-weighted quantization of neural networks. Advances in neural information processing
systems, 33:18518–18529, 2020.

Kunyuan Du, Ya Zhang, and Haibing Guan. From quantized dnns to quantizable dnns. CoRR, abs/2004.05284,
2020. URL https://arxiv.org/abs/2004.05284.

Ahmed Elthakeb, Prannoy Pilligundla, FatemehSadat Mireshghallah, Amir Yazdanbakhsh, Sicuan Gao, and
Hadi Esmaeilzadeh. Releq: an automatic reinforcement learning approach for deep quantization of neural
networks. In NeurIPS ML for Systems workshop, 2018, 2019.

Steven K Esser, Jeffrey L McKinstry, Deepika Bablani, Rathinakumar Appuswamy, and Dharmendra S Modha.
Learned step size quantization. arXiv preprint arXiv:1902.08153, 2019.

Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen Wei, and Jian Sun. Single path
one-shot neural architecture search with uniform sampling. In European conference on computer vision, pp.
544–560. Springer, 2020a.

Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen Wei, and Jian Sun. Single path
one-shot neural architecture search with uniform sampling. In Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XVI 16, pp. 544–560. Springer, 2020b.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
CoRR, abs/1512.03385, 2015. URL http://arxiv.org/abs/1512.03385.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In Proceedings of the IEEE
international conference on computer vision, pp. 2961–2969, 2017.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew G. Howard, Hartwig
Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for efficient integer-
arithmetic-only inference. CoRR, abs/1712.05877, 2017. URL http://arxiv.org/abs/1712.
05877.

Qing Jin, Linjie Yang, and Zhenyu Liao. Towards efficient training for neural network quantization. arXiv
preprint arXiv:1912.10207, 2019.

Qing Jin, Linjie Yang, and Zhenyu Liao. Adabits: Neural network quantization with adaptive bit-widths. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2146–2156,
2020.

11

https://arxiv.org/abs/2004.05284
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1712.05877
http://arxiv.org/abs/1712.05877

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Kyungyul Kim, ByeongMoon Ji, Doyoung Yoon, and Sangheum Hwang. Self-knowledge distillation with
progressive refinement of targets. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 6567–6576, 2021.

Jing Liu, Jianfei Cai, and Bohan Zhuang. Sharpness-aware quantization for deep neural networks. arXiv
preprint arXiv:2111.12273, 2021.

Yuexiao Ma, Taisong Jin, Xiawu Zheng, Yan Wang, Huixia Li, Yongjian Wu, Guannan Jiang, Wei Zhang, and
Rongrong Ji. Ompq: Orthogonal mixed precision quantization. In Proceedings of the AAAI conference on
artificial intelligence, volume 37, pp. 9029–9037, 2023.

Mingzhu Shen, Feng Liang, Ruihao Gong, Yuhang Li, Chuming Li, Chen Lin, Fengwei Yu, Junjie Yan, and
Wanli Ouyang. Once quantization-aware training: High performance extremely low-bit architecture search.
In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 5340–5349,
October 2021.

Tao Sheng, Chen Feng, Shaojie Zhuo, Xiaopeng Zhang, Liang Shen, and Mickey Aleksic. A quantization-
friendly separable convolution for mobilenets. In 2018 1st Workshop on Energy Efficient Machine Learning
and Cognitive Computing for Embedded Applications (EMC2), pp. 14–18. IEEE, 2018.

Man Shi, Vikram Jain, Antony Joseph, Maurice Meijer, and Marian Verhelst. Bitwave: Exploiting column-
based bit-level sparsity for deep learning acceleration. In 2024 IEEE International Symposium on High-
Performance Computer Architecture (HPCA), pp. 732–746. IEEE, 2024.

Qigong Sun, Xiufang Li, Yan Ren, Zhongjian Huang, Xu Liu, Licheng Jiao, and Fang Liu. One model
for all quantization: A quantized network supporting hot-swap bit-width adjustment. arXiv preprint
arXiv:2105.01353, 2021.

Ximeng Sun, Rameswar Panda, Chun-Fu Richard Chen, Naigang Wang, Bowen Pan, Aude Oliva, Rogerio
Feris, and Kate Saenko. Improved techniques for quantizing deep networks with adaptive bit-widths. In
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 957–967, 2024.

Chen Tang, Haoyu Zhai, Kai Ouyang, Zhi Wang, Yifei Zhu, and Wenwu Zhu. Arbitrary bit-width network: A
joint layer-wise quantization and adaptive inference approach, 2022. URL https://arxiv.org/abs/
2204.09992.

Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han. Haq: Hardware-aware automated quantization with
mixed precision. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 8612–8620, 2019.

Bichen Wu, Yanghan Wang, Peizhao Zhang, Yuandong Tian, Peter Vajda, and Kurt Keutzer. Mixed precision
quantization of convnets via differentiable neural architecture search. arXiv preprint arXiv:1812.00090,
2018.

Hai Wu, Ruifei He, Haoru Tan, Xiaojuan Qi, and Kaibin Huang. Vertical layering of quantized neural networks
for heterogeneous inference. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(12):
15964–15978, 2023. doi: 10.1109/TPAMI.2023.3319045.

Ke Xu, Qiantai Feng, Xingyi Zhang, and Dong Wang. Multiquant: Training once for multi-bit quantization of
neural networks. In Lud De Raedt (ed.), IJCAI, pp. 3629–3635. International Joint Conferences on Artificial
Intelligence Organization, 7 2022. doi: 10.24963/ijcai.2022/504. URL https://doi.org/10.24963/
ijcai.2022/504. Main Track.

Ke Xu, Lei Han, Ye Tian, Shangshang Yang, and Xingyi Zhang. Eq-net: Elastic quantization neural networks.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1505–1514, 2023.

Zhewei Yao, Zhen Dong, Zhangcheng Zheng, Amir Gholami, Jiali Yu, Eric Tan, Leyuan Wang, Qijing Huang,
Yida Wang, Michael Mahoney, et al. Hawq-v3: Dyadic neural network quantization. In International
Conference on Machine Learning, pp. 11875–11886. PMLR, 2021.

Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks. arXiv preprint
arXiv:1708.03888, 2017.

Haichao Yu, Haoxiang Li, Humphrey Shi, Thomas S Huang, and Gang Hua. Any-precision deep neural net-
works. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 10763–10771,
2021.

Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and Thomas Huang. Slimmable neural networks. arXiv
preprint arXiv:1812.08928, 2018.

12

https://arxiv.org/abs/2204.09992
https://arxiv.org/abs/2204.09992
https://doi.org/10.24963/ijcai.2022/504
https://doi.org/10.24963/ijcai.2022/504

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. Tinyllama: An open-source small language
model, 2024.

Sai Qian Zhang, Bradley McDanel, HT Kung, and Xin Dong. Training for multi-resolution inference using
reusable quantization terms. In Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, pp. 845–860, 2021.

Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. Dorefa-net: Training low
bitwidth convolutional neural networks with low bitwidth gradients. arXiv preprint arXiv:1606.06160, 2016.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 OVERVIEW

In this supplementary material, we present more explanations and experimental results.

• First, we provide a detailed explanation of the different quantization types under QAT.

• We then present a comparison of multi-precision and separate-precision on the ImageNet-1k dataset.

• Furthermore, we provide the gradient formulation of Double Rounding.

• And, the algorithm implementation of both multi-precision and mixed-precision training approaches.

• Then, we provide more gradient statistics of learnable quantization scales in different networks.

• Finally, we also provide the bit-widths learned by each layer of the mixed-precision with a given
average bit-width condition.

A.2 DIFFERENT QUANTIZATION TYPES

In this section, we provide a detailed explanation of the different quantization types during
Quantization-Aware Training (QAT), as is shown in Figure 6.

(a) Separate-Precision: Each bit-width
requires training a new network with
separate weights by repeating multi-retrain.

(b) Multi-Precision: A shared network can be
quantized to any bit-width at runtime without
re-training or finetuning. All layers inside the
network uniformly share the same bit-width.

(c) Mixed-Precision: A SuperNet whose
individual layers can be quantized to any
bit-width at runtime, and its searched
subnets without re-training or fine-tuning.

8bit 2bit

𝐿𝐿1

𝐿𝐿2

𝐿𝐿n

32bit 6bit 8bit 2bit

𝐿𝐿1

𝐿𝐿2

𝐿𝐿n

32bit 6bit 8bit 2bit

𝐿𝐿1

𝐿𝐿2

𝐿𝐿n

32bit 6bit

Separate Train LayerInputBit Mixing Data FlowBit Switching

Figure 6: Comparison between different quantization types during quantization-aware training.

A.3 MULTI-PRECISION VS. SEPARATE-PRECISION.

We provide the comparison of Multi-Precision and Separate-Precision on ImageNet-1K dataset. Ta-
ble 9 shows that our Multi-Precision joint training scheme has comparable accuracy of different
precisions compared to Separate-Precision with multiple re-train. This further proves the effective-
ness of our proposed One-shot Double Rounding Multi-Precision method.

Table 9: Top1 accuracy comparisons on multi-precision of {8,6,4,2}-bit on ImageNet-1K datasets.
Model Method One-shot Storage Epoch w8a8 w6a6 w4a4 w2a2 FP

ResNet18
LSQ(Esser et al., 2019) ✗ {8,6,4,2}-bit 90 71.10 − 71.10 67.60 70.50

LSQ+(Bhalgat et al., 2020) ✗ {8,6,4,2}-bit 90 − − 70.80 66.80 70.10
Ours ✓ 8-bit 90 70.74 70.71 70.43 66.35 69.76

ResNet50
LSQ(Esser et al., 2019) ✗ {8,6,4,2}-bit 90 76.80 − 76.70 73.70 76.90

Ours ✓ 8-bit 90 76.51 76.28 75.74 72.31 76.13

1

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A.4 THE GRADIENT FORMULATION OF DOUBLE ROUNDING

A general formulation for uniform quantization process is as follows:

W̃ = clip(
⌊
W

s

⌉
+ z,−2b−1, 2b−1 − 1) (8)

Ŵ = (W̃ − z)× s (9)

where the symbol ⌊.⌉ denotes the Rounding function, clip(x, low, upper) expresses x below low
are set to low and above upper are set to upper. b denotes the quantization level (or bit-width),
s ∈ R and z ∈ Z represents the quantization scale (or interval) and zero-point associated with each
b, respectively. W represents the FP32 model’s weights, W̃ signifies the quantized integer weights,
and Ŵ represents the dequantized floating-point weights.

The quantization scale of our Double Rounding is learned online and not fixed. And it only needs
a pair of shared quantization parameters, i.e., scale and zero-point. Suppose the highest-bit and the
low-bit are denoted as h-bit and l-bit respectively, and the difference between them is ∆ = h − l.
The specific formulation is as follows:

W̃h = clip(
⌊
W − zh

sh

⌉
,−2h−1, 2h−1 − 1) (10)

W̃l = clip(

⌊
W̃h

2∆

⌉
,−2l−1, 2l−1 − 1) (11)

Ŵl = W̃l × sh × 2∆ + zh (12)

where sh ∈ R and zh ∈ Z denote the highest-bit quantization scale and zero-point respectively. W̃h

and W̃l represent the quantized weights of the highest-bit and low-bit respectively. Hardware shift
operations can efficiently execute the division and multiplication by 2∆. And the zh is 0 for the
weight quantization in this paper. The gradient formulation of Double Rounding for one-shot joint
training is represented as follows:

∂Ŷ

∂sh
≃

{⌊
Y−zh

sh

⌉
− Y−zh

sh
if n < Y−zh

sh
< p,

n or p otherwise.
(13)

∂Ŷ

∂zh
≃

{
0 if n < Y−zh

sh
< p,

1 otherwise.
(14)

where n and p denote the lower and upper bounds of the integer range [Nmin, Nmax] for quantiz-
ing the weights or activations respectively. Y represents the FP32 weights or activations, and Ŷ
represents the dequantized weights or activations. Unlike weights, activation quantization scale and
zero-point of different precisions are learned independently. However, the gradient formulation is
the same.

A.5 ALGORITHMS

This section provides the algorithm implementations of multi-precision, one-shot mixed-precision
joint training, and the search stage of SubNets.

A.5.1 MULTI-PRECISION JOINT TRAINING

The multi-precision model with different quantization precisions shares the same model weight(e.g.,
the highest-bit) during joint training. In conventional multi-precision, the shared weight (e.g., multi-
precision model) computes n forward processes at each training iteration, where n is the number
of candidate bit-widths. Then, all attained losses of different precisions perform an accumulation,
and update the parameters accordingly. For specific implementation details please refer to Algo-
rithm A.1.

However, we find that if separate precision loss and parameter updates are performed directly after
calculating a precision at each forward process, it will lead to difficulty convergence during training

2

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Algorithm A.1 Conventional Multi-precision training approach
Require: Candidate bit-widths set b ∈ B;
1: Initialize: Pretrained model M with FP32 weights W , the quantization scales s including of weights

sw and activations sx, BatchNorm layers:{BN}nb=1, optimizer:optim(W, s, wd), learning rate: λ, wd:
weight decay, CE: CrossEntropyLoss, Dtrain: training dataset;

2: For one epoch:
3: Sample mini-batch data (x,y) ∈ {Dtrain}
4: for b in B do
5: forward(M,x,y, b):
6: for each quantization layer do
7: Ŵ b = dequant(quant(W, sbw))

8: X̂b = dequant(quant(X, sbx))

9: Ob = Conv(Ŵ b, X̂b)
10: end for
11: ob = FC(W,Ob)
12: Update BNb layer
13: Compute loss: Lb = CE(ob,y)
14: Compute gradients: Lb.backward()
15: end for
16: Update weights and scales: optim.step(λ)
17: Clear gradient: optim.zero grad();
Note that n and L represent the number of candidate bit-widths and model layers respectively.

or suboptimal accuracy. In other words, the varying gradient magnitudes of quantization scales of
different precisions make it hard to attain stable convergence during joint training. To address this
issue, we introduce an adaptive approach (e.g., Adaptive Learning Rate Scaling, ALRS) to alter the
learning rate for different precisions during training, aiming to achieve a consistent update pace.
This method allows us to directly update the shared parameters after calculating the loss after every
forward. We update both the weight parameters and quantization parameters simultaneously using
dual optimizers. We also set the weight-decay of the quantization scales to 0 to achieve more stable
convergence. For specific implementation details, please refer to Algorithm A.2.

Algorithm A.2 Our Multi-precision training approach
Require: Candidate bit-widths set b ∈ B
1: Initialize: Pretrained model M with FP32 weights W , the quantization scales s including of weights sw

and activations sx, BatchNorm layers: {BN}nb=1, optimizers: optim1(W,wd), optim2(s, wd = 0),
learning rate: λ, wd: weight decay, CE: CrossEntropyLoss, Dtrain: training dataset;

2: For every epoch:
3: Sample mini-batch data (x,y) ∈ {Dtrain}
4: for b in B do
5: forward(M,x,y, b):
6: for each quantization layer do
7: Ŵ b = dequant(quant(W, sbw))

8: X̂b = dequant(quant(X, sbx))

9: Ob = Conv(Ŵ b, X̂b)
10: end for
11: ob = FC(W,Ob)
12: Update BNb layer
13: Compute loss: Lb = CE(ob,y)
14: Compute gradients: Lb.backward()
15: Compute learning rate: λb # please see formula (6) of the main paper
16: Update weights and quantization scales: optim1.step(λ); optim2.step(λb)
17: Clear gradient: optim1.zero grad(); optim2.zero grad()
18: end for
Note that n and L represent the number of candidate bit-widths and model layers respectively.

3

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.5.2 ONE-SHOT JOINT TRAINING FOR MIXED PRECISION SUPERNET

Unlike multi-precision joint quantization, the bit-switching of mixed-precision training is more
complicated. In multi-precision training, the bit-widths calculated in each iteration are fixed, e.g.,
{8,6,4,2}-bit. In mixed-precision training, the bit-widths of different layers are not fixed in each
iteration, e.g., {8,random-bit,2}-bit, where “random-bit” is any bits of e.g., {7,6,5,4,3,2}-bit, simi-
lar to the sandwich strategy of (Yu et al., 2018). Therefore, mixed precision training often requires
more training epochs to reach convergence compared to multi-precision training. Bit-mixer (Bu-
lat & Tzimiropoulos, 2021) conducts the same probability of selecting bit-width for different layers.
However, we take the sensitivity of each layer into consideration which uses sensitivity (e.g. Hessian
Matrix Trace (Dong et al., 2020)) as a metric to identify the selection probability of different layers.
For more sensitive layers, preference is given to higher-bit widths, and vice versa. We refer to this
training strategy as a Hessian-Aware Stochastic Bit-switching (HASB) strategy for optimizing one-
shot mixed-precision SuperNet. Specific implementation details can be found in Algorithm A.3. In
additionally, unlike multi-precision joint training, the BN layers are replaced by TBN (Transitional
Batch-Norm) (Bulat & Tzimiropoulos, 2021), which compensates for the distribution shift between
adjacent layers that are quantized to different bit-widths. To achieve the best convergence effect, we
propose that the threshold of bit-switching (i.e., σ) also increases as the epoch increases.

Algorithm A.3 Our one-shot Mixed-precision SuperNet training approach
Require: Candidate bit-widths set b ∈ B, the HMT of different layers of FP32 model: tl ∈ {T}Ll=1, average

HMT: tm =
∑L

l=1 tl
L

;
1: Initialize: Pretrained model M with FP32 weights W , the quantization scales s including of

weights sw and activations sx, BatchNorm layers:{BN}n
2

b=1, the threshold of bit-switching:σ,
optimizer:optim(W, s, wd), learning rate: λ, wd: weight decay, CE: CrossEntropyLoss, Dtrain: training
dataset;

2: For one epoch:
3: Attain the threshold of bit-switching: σ = σ × epoch+1

total epochs

4: Sample mini-batch data (x,y) ∈ {Dtrain}
5: for b in B do
6: forward(M,x,y, b, T, tm):
7: for each quantization layer do
8: Sample r ∼ U [0, 1];
9: if r < σ then

10: b = Roulette(B, tl, tm) # Please refer to Algorithm 1 of the main paper
11: end if
12: Ŵ b = dequant(quant(W, sbw))

13: X̂b = dequant(quant(X, sbx))

14: Ob = Conv(Ŵ b, X̂b)
15: end for
16: ob = FC(W,Ob)
17: Update BNb layer
18: Compute loss: Lb = CE(ob,y)
19: Compute gradients: Lb.backward()
20: Update weights and scales: optim.step(λ)
21: Clear gradient: optim.zero grad();
22: end for
Note that n and L represent the number of candidate bit-widths and model layers respectively.

A.5.3 EFFICIENT ONE-SHOT SEARCHING FOR MIXED PRECISION SUPERNET

After training the mixed-precision SuperNet, the next step is to select the appropriate optimal Sub-
Nets based on conditions, such as model parameters, latency, and FLOPs, for actual deployment
and inference. To achieve optimal allocations for candidate bit-width under given conditions, we
employ the Iterative Integer Linear Programming (ILP) approach. Since each ILP run can only pro-
vide one solution, we obtain multiple solutions by altering the values of different average bit widths.
Specifically, given a trained SuperNet (e.g., RestNet18), it takes less than two minutes to solve can-
didate SubNets. It can be implemented through the Python PULP package. Finally, these searched
SubNets only need inference to attain final accuracy, which needs a few hours. This forms a Pareto

4

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

optimal frontier. From this frontier, we can select the appropriate subnet for deployment. Specific
implementation details of the searching process by ILP can be found in Algorithm 2.

A.6 THE GRADIENT STATISTICS OF LEARNABLE SCALE OF QUANTIZATION

In this section, we analyze the changes in gradients of the learnable scale for different models during
the training process. Figure 7 and Figure 8 display the gradient statistical results for ResNet20 on
CIFAR-10. Similarly, Figure 9 and Figure 10 show the gradient statistical results for ResNet18 on
ImageNet-1K, and Figure 11 and Figure 12 present the gradient statistical results for ResNet50 on
ImageNet-1K. These figures reveal a similarity in the range of gradient changes between higher-bit
quantization and 2-bit quantization. Notably, they illustrate that the value range of 2-bit quantization
is noticeably an order of magnitude higher than the value ranges of higher-bit quantization.

1 2 3 4 5 6 7 8 9 1011121314151617181920
Layer

6

4

2

0

2

4

Th
e

gr
ad

ie
nt

 o
f w

ei
gh

t s
ca

le

1e 2 8bit

1 2 3 4 5 6 7 8 9 1011121314151617181920
Layer

3

2

1

0

1

2

3

Th
e

gr
ad

ie
nt

 o
f w

ei
gh

t s
ca

le

1e 2 6bit

1 2 3 4 5 6 7 8 9 1011121314151617181920
Layer

3

2

1

0

1

2

3

Th
e

gr
ad

ie
nt

 o
f w

ei
gh

t s
ca

le

1e 2 4bit

1 2 3 4 5 6 7 8 9 1011121314151617181920
Layer

8

6

4

2

0

2

4

6

8

Th
e

gr
ad

ie
nt

 o
f w

ei
gh

t s
ca

le

1e 2 2bit

Figure 7: The scale gradient statistics of weight of ResNet20 on CIFAR-10 dataset. Note that the
outliers are removed for exhibition.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Layer

2.5

2.0

1.5

1.0

0.5

0.0

Th
e

gr
ad

ie
nt

 o
f a

ct
iv

at
io

n
sc

al
e

1e 3 8bit

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Layer

3

2

1

0

1

Th
e

gr
ad

ie
nt

 o
f a

ct
iv

at
io

n
sc

al
e

1e 4 6bit

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Layer

1.2

1.0

0.8

0.6

0.4

0.2

0.0

0.2

Th
e

gr
ad

ie
nt

 o
f a

ct
iv

at
io

n
sc

al
e

1e 3 4bit

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Layer

4

3

2

1

0

1

Th
e

gr
ad

ie
nt

 o
f a

ct
iv

at
io

n
sc

al
e

1e 3 2bit

Figure 8: The scale gradient statistics of activation of ResNet20 on CIFAR-10 dataset. Note that the
first and last layers are not quantized.

1 2 3 4 5 6 7 8 9 10111213141516171819
Layer

6

4

2

0

2

4

6

Th
e

gr
ad

ie
nt

 o
f w

ei
gh

t s
ca

le

1e 2 8bit

1 2 3 4 5 6 7 8 9 10111213141516171819
Layer

4

3

2

1

0

1

2

3

Th
e

gr
ad

ie
nt

 o
f w

ei
gh

t s
ca

le

1e 2 6bit

1 2 3 4 5 6 7 8 9 10111213141516171819
Layer

4

2

0

2

4

Th
e

gr
ad

ie
nt

 o
f w

ei
gh

t s
ca

le

1e 2 4bit

1 2 3 4 5 6 7 8 9 10111213141516171819
Layer

2

1

0

1

2

Th
e

gr
ad

ie
nt

 o
f w

ei
gh

t s
ca

le

1e 1 2bit

Figure 9: The scale gradient statistics of weight of ResNet18 on ImageNet dataset. Note that the
outliers are removed for exhibition.

5

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Layer

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

Th
e

gr
ad

ie
nt

 o
f a

ct
iv

at
io

n
sc

al
e

1e 3 8bit

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Layer

6

4

2

0

2

4

6

Th
e

gr
ad

ie
nt

 o
f a

ct
iv

at
io

n
sc

al
e

1e 4 6bit

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Layer

4

2

0

2

4

Th
e

gr
ad

ie
nt

 o
f a

ct
iv

at
io

n
sc

al
e

1e 4 4bit

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Layer

4

2

0

2

4

Th
e

gr
ad

ie
nt

 o
f a

ct
iv

at
io

n
sc

al
e

1e 4 2bit

Figure 10: The scale gradient statistics of activation of ResNet18 on ImageNet dataset. Note that
the outliers are removed for exhibition.

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031323334353637383940414243444546474849505152

Layer

7.5

5.0

2.5

0.0

2.5

5.0

7.5

Th
e

gr
ad

ie
nt

 o
f w

ei
gh

t s
ca

le

8bit

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031323334353637383940414243444546474849505152

Layer

4

2

0

2

4

Th
e

gr
ad

ie
nt

 o
f w

ei
gh

t s
ca

le

6bit

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031323334353637383940414243444546474849505152

Layer

6

4

2

0

2

4

6

Th
e

gr
ad

ie
nt

 o
f w

ei
gh

t s
ca

le

4bit

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031323334353637383940414243444546474849505152

Layer

3

2

1

0

1

2

3

Th
e

gr
ad

ie
nt

 o
f w

ei
gh

t s
ca

le

1e2 2bit

Figure 11: The scale gradient statistics of weight of ResNet50 on ImageNet dataset. Note that the
outliers are removed for exhibition, and the first and last layers are not quantized.

A.7 MIXED-PRECISION BIT ALLOCATION IN DIFFERENT LAYERS

We also provide the searched per-layer bit-width results for the one-shot mixed-precision exper-
iments on ResNet-18, ResNet-50 and MobileNet-V2. These results can be found in Figure 13,
Figure 14 and Figure 15. As shown in Figures 13, 14 and 15, for the mixed-precision bit-width dis-
tributions learned using the HASB technique, lower given average bit-widths result in more high-bit
allocations being directed towards sensitive regions, which aligns closely with the corresponding
HMT curve trends. In contrast, the bit-width distributions learned without the HASB technique tend
to exhibit more randomness and deviate from the HMT curve. These results further validate the
effectiveness of the proposed HASB technique.

6

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233343536373839404142434445464748

Layer

2

1

0

1

2
Th

e
gr

ad
ie

nt
 o

f a
ct

iv
at

io
n

sc
al

e
1e 5 8bit

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233343536373839404142434445464748

Layer

7.5

5.0

2.5

0.0

2.5

5.0

7.5

Th
e

gr
ad

ie
nt

 o
f a

ct
iv

at
io

n
sc

al
e

1e 5 6bit

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233343536373839404142434445464748

Layer
1.5

1.0

0.5

0.0

0.5

1.0

1.5

Th
e

gr
ad

ie
nt

 o
f a

ct
iv

at
io

n
sc

al
e

1e 3 4bit

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233343536373839404142434445464748

Layer

6

4

2

0

2

4

6

8

Th
e

gr
ad

ie
nt

 o
f a

ct
iv

at
io

n
sc

al
e

1e 2 2bit

Figure 12: The scale gradient statistics of activation of ResNet50 on ImageNet dataset. Note that
the outliers are removed for exhibition.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Layer

2

3

4

5

6

7

8

Bi
t-w

id
th

6MP
4MP
3MP

(a) w/o HASB

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Layer

2

3

4

5

6

7

8

Bi
t-w

id
th

6MP*
4MP*
3MP*

(b) w. HASB

Figure 13: Layer-Wise Bit-Widths Allocation of Mixed-Precision in ResNet18. (a) Without HASB,
bit-widths shows a more random allocation and is less aligned with the sensitivity trends. (b) With
HASB, bit-widths are effectively allocated to sensitive layers based on HMT curves.

7

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

Layer

2

3

4

5

6

7

8

Bi
t-w

id
th 6MP

4MP
3MP

(a) w/o HASB

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

Layer

2

3

4

5

6

7

8

Bi
t-w

id
th

6MP*
4MP*
3MP*

(b) w. HASB

Figure 14: Layer-Wise Bit-Widths Allocation of Mixed-Precision in ResNet50. (a) Without HASB,
bit-widths shows a more random allocation and is less aligned with the sensitivity trends. (b) With
HASB, bit-widths are effectively allocated to sensitive layers based on HMT curves.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
Layer

2.00

2.25

2.50

2.75

3.00

3.25

3.50

3.75

4.00

Bi
t-w

id
th

w/o HASB
w. HASB

Figure 15: Layer-Wise Bit-Widths Allocation of Mixed-Precision (3MP) in MobileNet-v2.

8

	Introduction
	Related Works
	Methodology
	Double Rounding
	Adaptive Learning Rate Scaling for Multi-Precision
	One-Shot Mixed-Precision SuperNet

	Experimental Results
	Image classification
	Multi-Precision
	Mixed-Precision

	Object Detection and Segmentation
	LLMs task
	Ablation Studies

	Conclusion
	Appendix
	Overview
	Different Quantization Types
	Multi-Precision vs. Separate-Precision.
	The Gradient Formulation of Double Rounding
	Algorithms
	Multi-Precision Joint Training
	One-shot Joint Training for Mixed Precision SuperNet
	Efficient one-shot searching for Mixed Precision SuperNet

	The Gradient Statistics of Learnable Scale of Quantization
	Mixed-Precision Bit Allocation in different layers

