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Abstract

Optimizing risk-averse objectives in discounted MDPs is chal-
lenging because most models do not admit direct dynamic pro-
gramming equations and require complex history-dependent
policies. In this paper, we show that the risk-averse fotal re-
ward criterion, under the Entropic Risk Measure (ERM) and
Entropic Value at Risk (EVaR) risk measures, can be opti-
mized by a stationary policy, making it simple to analyze,
interpret, and deploy. We propose exponential value iteration,
policy iteration, and linear programming to compute optimal
policies. Compared with prior work, our results only require
the relatively mild condition of transient MDPs and allow for
both positive and negative rewards. Our results indicate that
the total reward criterion may be preferable to the discounted
criterion in a broad range of risk-averse reinforcement learning
domains.

1 Introduction

Risk-averse Markov decision processes (MDP) (Puterman
2005) that use monetary risk measures as their objective have
been gaining in popularity in recent years (Kastner, Erdogdu,
and Farahmand 2023; Marthe, Garivier, and Vernade 2023;
Lam et al. 2022; Li, Zhong, and Brandeau 2022; Béuerle and
Glauner 2022; Hau, Petrik, and Ghavamzadeh 2023; Hau
et al. 2023; Su, Petrik, and Grand-Clément 2024a,b). Risk-
averse objectives, such as Value at Risk (VaR), Conditional
Value at Risk (CVaR), Entropic Risk Measure (ERM), or
Entropic Value at Risk (EVaR), penalize the variability of
returns (Follmer and Schied 2016). As a result, these risk
measures yield policies with stronger guarantees on the prob-
ability of catastrophic losses, which is important in domains
like healthcare or finance.

In this paper, we target the total reward criterion
(TRC) (Kallenberg 2021; Puterman 2005) instead of the
common discounted criterion. TRC also assumes an infi-
nite horizon but does not discount future rewards. To control
for infinite returns, we assume that the MDP is transient,
i.e. that there is a positive probability that the process termi-
nates after a finite number of steps, an assumption commonly
used in the TRC literature (Filar and Vrieze 2012). We con-
sider the TRC with both positive and negative rewards. When
the rewards are non-positive, the TRC is equivalent to the
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stochastic shortest path problem, and when they are non-
negative, it is equivalent to the stochastic longest path (Dann,
Wei, and Zimmert 2023).

Two reasons motivate our departure from discounted ob-
jectives in risk-averse MDPs. First, considering risk affects
discounted objectives significantly. It is common to use dis-
counted objectives because they admit optimal stationary
policies and value functions that can be computed using
dynamic programs. However, most risk-averse discount ob-
jectives, such as VaR, CVaR, or EVaR, require that optimal
policies are history-dependent (Biuerle and Ott 2011; Hau
et al. 2023; Hau, Petrik, and Ghavamzadeh 2023) and do not
admit standard dynamic programming optimality equations.

Second, TRC captures the concept of stochastic termina-
tion, which is common in reinforcement learning (Sutton
and Barto 2018). In risk-neutral objectives, discounting can
serve well to model the probability of termination because
it guarantees the same optimal policies (Puterman 2005; Su
and Petrik 2023). However, as we show in this work, no
such correspondence exists with risk-averse objectives, and
the difference between them may be arbitrarily significant.
Modeling stochastic termination using a discount factor in
risk-averse objectives is inappropriate and leads to dramati-
cally different optimal policies.

As our main contribution, we show that the risk-averse
TRC with ERM and EVaR risk measures admit optimal
stationary policies and optimal value functions in transient
MDPs. We also show that the optimal value function satis-
fies dynamic programming equations and can be computed
with exponential value iteration, policy iteration, or linear
programming algorithms. These algorithms are simple and
closely resemble the algorithms for solving MDPs.

Our results indicate that EVaR is a particularly interesting
risk measure in reinforcement learning. ERM and the closely
related exponential utility functions have been popular in
sequential decision-making problems because they admit dy-
namic programming decompositions (Patek and Bertsekas
1999; de Freitas, Freire, and Delgado 2020; Smith and Chap-
man 2023; Denardo and Rothblum 1979; Hau, Petrik, and
Ghavamzadeh 2023; Hau et al. 2023). Unfortunately, ERM is
difficult to interpret; it is scale-dependent; and it is incompara-
ble with popular risk measures like VaR and CVaR. Because
EVaR reduces to an optimization over ERM, it preserves
most of the computational advantages of ERM, and since



Risk properties Optimal policy
Risk measure  Coherent Law inv. Disc. TRC
E yes yes S S
EVaR yes yes M S
ERM no yes M S
NCVaR yes no S S
VaR yes yes H H
CVaR yes yes H H

Table 1: Structure of optimal policies in risk-averse MDPs:
“S”, “M” and “H” refer to Stationary, Markov and History-
dependent policies respectively.

EVaR closely approximates CVaR and VaR at the same risk
level, its value is also much easier to interpret. Finally, EVaR
is also a coherent risk measure, unlike ERM (Ahmadi-Javid
2012; Ahmadi-Javid and Pichler 2017).

Table 1 puts our contribution in the context of other work
on risk-averse MDP objectives. Optimal policies for VaR and
CVaR are known to be history-dependent in the discounted
objective (Biuerle and Ott 2011; Hau et al. 2023) and must be
history-dependent in TRC because TRC generalizes the finite-
horizon objective. The TRC with Nested risk measures, such
as Nested CVaR (NCVaR), applies the risk measure in each
level of the dynamic program independently and preserves
most of the favorable computational properties of risk-neutral
MDPs (Ahmadi et al. 2021a). Unfortunately, nested risk mea-
sures are difficult to interpret; their value depends on the
sequence in which the rewards are obtained in a complex and
unpredictable way (Kupper and Schachermayer 2006) and
may be unbounded even if MDPs are transient.

While we are unaware of prior work on the TRC objec-
tive with ERM or EVaR risk-aversion allowing both positive
and negative rewards, the ERM risk measure is closely re-
lated to exponential utility functions. Prior work on TRC
with exponential utility functions also imposes constraints
on the sign of the instantaneous rewards, such as all positive
rewards (Blackwell 1967) or all negative rewards (Bertsekas
and Tsitsiklis 1991; Freire and Delgado 2016; Carpin, Chow,
and Pavone 2016; de Freitas, Freire, and Delgado 2020; Fei
et al. 2021; Fei, Yang, and Wang 2021; Ahmadi et al. 2021a;
Cohen et al. 2021; Meggendorfer 2022). Disallowing a mix
of positive and negative rewards limits the modeling power of
prior work because it requires that either all states are more
desirable or all states are less desirable than the terminal
state. Allowing rewards with mixed signs raises some tech-
nical challenges, which we address by employing a squeeze
argument that takes advantage of MDP’s transience.

Notation. We use a tilde to mark random variables, e.g.
z. Bold lower-case letters represent vectors, and upper-case
bold letters represent matrices. Sets are either calligraphic
or upper-case Greek letters. The symbol X represents the
space of real-valued random variables. When a function is
defined over an index set, suchas z: {1,2,..., N} — R, we
also treat it interchangeably as a vector z € R” such that
z; = z(1),¥i = 1,...,n. Finally, R, R, , R, ; denote real,
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non-negative real, and positive real numbers, respectively.
R = R U {—00,00}. Given a finite set Y, the probability
simplex is Ay = {z € RY | 1Tz = 1}.

2 Background on Risk-averse MDPs

Markov Decision Processes We focus on solving Markov
decision processes (MDPs) (Puterman 2005), modeled by a
tuple (8, A, p,7, i), where § = {1,2,...,5,S + 1} is the
finite set of states and A = {1,2,..., A} is the finite set of
actions. The transition function p: 8§ x A — Ag represents
the probability p(s,a, s’) of transitioning to s’ € § after
taking a € A in s € 8 and P, € Ag is such that (Ps,)s =
p(s,a,s"). The function 7: 8§ x A X 8§ — R represents the
reward 7(s,a,s") € R associated with transitioning from
se€8anda € Atos’ € 8. The vector i € Ag is the initial
state distribution.

We designate the state e := S + 1 as a sink state and use
8 ={1,...,S5} to denote the set of all non-sink states. The
sink state e must satisfy that (e, a,e) = 1 and 7(e, a,e) = 0
for each a € A, and [i. = 0. Throughout the paper, we
use a bar to indicate whether the quantity involves the sink
state e. Note that the sink state can indicate a goal when all
rewards are negative and an undesirable terminal state when
all rewards are positive.

The following technical assumption is needed to simplify
the derivation. To lift the assumption, one needs to carefully
account for infinite values, which adds complexity to the
results and distracts from the main ideas.

Assumption 2.1. The initial distribution g satisfies that
pn>0.

The solution to an MDP is a policy. Given a horizon t € N,
a history-dependent policy in the set ITf;; maps the his-
tory of states and actions to a distribution over actions. A
Markov policy m € TI{;y is a sequence of decision rules
7 = (do,dy,...,di—1) with di,: 8§ — A, the decision
rule for taking actions at time k. The set of all randomized
decision rules is D = (A 4)®. Stationary policies Tlsg are
Markov policies with 7 := (d)s, := (d,d,...) with the
identical decision rule in every timestep. We treat decision
rules and stationary policies interchangeably. The sets of de-
terministic Markov and stationary policies are denoted by
I}, and Isp. Finally, we omit the superscript ¢ to indicate
infinite horizon definitions of policies.

The risk-neutral Total Reward Criterion (TRC) objective
is:

t—1
sup liminf E™* lz (8, Gky Sp+1)
mellgr 17 =0

where the random variables are denoted by a tilde and sy,

and ay, represent the state from § and action at time k. The

superscript 7 denotes the policy that governs the actions

ar when visiting S and p denotes the initial distribution.

Finally, note that lim inf gives a conservative estimate of a

policy’s return since the limit does not necessarily exist for
non-stationary policies.

Unlike the discounted criterion, the risk-neutral TRC may

be unbounded, optimal policies may not exist, or may be non-

stationary (Bertsekas and Yu 2013; James and Collins 2006).

) ey




Figure 1: left: a discounted MDP, right: a transient MDP

To circumvent these issues, we assume that all policies have
a positive probability of eventually transitioning to the sink
state.

Assumption 2.2. The MDP is transient for any 7 € Ilgp:

oo

ZP“’S [5: =§'] < o0,

t=0

Vs, s’ € 8. 2)

Assumption 2.2 underlies most of our results. Transient
MDPs are important because their optimal policies exist and
can be chosen to be stationary deterministic (Kallenberg
2021, theorem 4.12). Transient MDPs are also common in
stochastic games (Filar and Vrieze 2012) and generalize the
stochastic shortest path problem (Bertsekas and Yu 2013).

An important tool in their analysis is the spectral radius
p: R™™ — R which is defined for each A € R"*" as the
maximum absolute eigenvalue: p(A) := max;—1,
where ); is the i-th eigenvalue (Horn and Johnson 2013).

Lemma 2.3 (Theorem 4.8 in Kallenberg (2021)). An MDP
is transient if and only if p(P™) < 1 for all w € TIgR.

Now, let us understand the differences between a dis-
counted MDP and a transient MDP, which are useful in
demonstrating the behavior of risk-averse objectives. Con-
sider the MDPs in Figure 1. There is one non-sink state s
and one action a. A triple tuple represents an action, tran-
sition probability, and a reward separately. Note that every
discounted MDP can be converted to a transient MDP as
described in Su, Grand-Clément, and Petrik (2024, appendix
B). For the discounted MDP, the discount factor is . For
the transient MDP, e is the sink state, and there is a positive
probability 1 — e of transiting from state s to state e. Once
the agent reaches the state e, it stays in e. For the risk-neutral
objective, if v equals ¢, their value functions have identical
values. However, for risk-aversion objectives, such as ERM,
we show that the value functions in a discounted MDP can
diverge from those in a transient MDP in Section 5.

Monetary risk measures Monetary risk measures aim to
generalize the expectation operator to account for the spread
of the random variable. Entropic risk measure (ERM) is a
popular risk measure, defined for any risk level 5 > 0 and
Z € X as (Follmer and Schied 2016)

ERM;g (7] = —37 ! logEexp (—f-%). 3)
and extended to S € [0,00] as ERMp[z] =
limg_,o+ ERMg[#] = [E[i] and ERM.[3] =
limg_,oo ERMg [Z] = essinf[Z]. ERM plays a unique

role in sequential decision-making because it is the only
law-invariant risk measure that satisfies the tower property
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(e.g., Su, Grand-Clément, and Petrik (2024, proposition
A.1)), which is essential in constructing dynamic pro-
grams (Hau, Petrik, and Ghavamzadeh 2023). Unfortunately,
two significant limitations of ERM hinder its practical
applications. First, ERM is not positively homogenous
and, therefore, the risk value depends on the scale of the
rewards, and ERM is not coherent (Follmer and Schied 2016;
Hau, Petrik, and Ghavamzadeh 2023; Ahmadi-Javid 2012).
Second, the risk parameter 3 is challenging to interpret and
does not relate well to other standard risk measures, like VaR
or CVaR.

For these reasons, we focus on the Entropic Value at
Risk (EVaR), defined as, for a given « € (0, 1),

EVaR, [Z] = sup—3~'log (a_lEexp (—Bx))
B8>0
= sup ERMg [#] + 8~ ' log o,
B>0

and extended to EVaR [Z] = essinf[Z] and EVaR, [Z] =
E [Z] (Ahmadi-Javid 2012). It is important to note that the
supremum in (4) may not be attained even when 7 is a finite
discrete random variable (Ahmadi-Javid and Pichler 2017).

EVaR addresses the limitations of ERM while preserving
its benefits. EVaR is coherent and positively homogenous.
EVaR is also a good approximation to interpretable quantile-
based risk measures, like VaR and CVaR (Ahmadi-Javid
2012; Hau, Petrik, and Ghavamzadeh 2023).

Risk-averse MDPs. Risk-averse MDPs, using static VaR
and CVaR risk measures, under the discounted criterion re-
ceived abundant attention (Hau et al. 2023; Biuerle and Ott
2011; Béauerle and Glauner 2022; Pflug and Pichler 2016; Li,
Zhong, and Brandeau 2022), showing that these objectives re-
quire history-dependent optimal policies. In contrast, nested
risk measures under the TRC may admit stationary policies
that can be computed using dynamic programming (Ahmadi
et al. 2021a; Meggendorfer 2022; de Freitas, Freire, and Del-
gado 2020; Gavriel, Hanasusanto, and Kuhn 2012). However,
the TRC with nested CVaR can be unbounded (Su, Grand-
Clément, and Petrik 2024, proposition C.1). Recent work
has shown that optimal Markov policies exist for EVaR dis-
counted objectives, and they can be computed via dynamic
programming (Hau, Petrik, and Ghavamzadeh 2023), build-
ing upon similar results established for ERM (Chung and
Sobel 1987). However, in TRC with ERM, the value func-
tions may also be unbounded (Su, Grand-Clément, and Petrik
2024, proposition D.1).

“

3 Solving ERM Total Reward Criterion

This section shows that an optimal stationary policy exists
for ERM-TRC and that the value function satisfies dynamic
programming equations. We then outline algorithms for com-
puting it.

Our objective in this section is to maximize the ERM-TRC
objective for some given 5 > 0 defined as

t—1

sup liminfERMg"u er@k,dk,ékH)

mwellyr t— k=0

&)




The definition employs limit inferior because the limit
may not exist for non-stationary policies. Return functions
g¢: llgr x Ryy — Roand g;: Ry — R for a horizon
t € Nand the infinite-horizon versions g; : IIyr xR — R
and g7 : Ry — R are defined

t—1

g¢(r, B) == ERMZ* lz 7(3k, @k, S541)
k=0

g:(ﬁ) = Sup gt(ﬂ-a/B)a (6)

wellyr
goo (m, B) := lim inf g, (7, 5),

95(B) = lim inf g7 (5).

)

Note that the functions g, and g7, can return infinite values
and that (5) differs from g% in the order of the limit and
the supremum. Finally, when 5 = 0, we assume that all g
functions are defined as the expectation. In the remainder of
the section, we assume that the risk level 5 > 0 is fixed and
omit it in notations when its value is unambiguous from the
context.

3.1 Finite Horizon

We commence the analysis with definitions and basic proper-
ties for the finite horizon criterion. To the best of our knowl-
edge, this analysis is original in the context of the ERM
but builds on similar approaches employed in the study of
exponential utility functions.

Finite-horizon functions v*(7) € RS and v** € R® are
defined for each horizon ¢t € N and policy 7 € IIyp, s € 8
as

t—1
vi(m) = ERM;’S ZT(§k,ak,§k+1) ;
k=0 (7
vb* = max vl(nm),

wellmp

and v (7) := 0.

Because the nonlinearity of ERM complicates the analysis,
it will be convenient to instead rely on exponential value
function wt(1) € RS for € Iyp, t € N, and s € § that
satisfy

wl(m) == —exp (—B-vi(m)), (8)
vi(m) = =B~ log(—w!(m)). )

The optimal w?* € R¥ is defined analogously from v%*.
Note that w! < 0 (componentwise) and w’(7r) = w’* =
—1 for any m € Ilyp. Similar exponential value functions
have been used previously in exponential utility function
objectives (Denardo and Rothblum 1979; Patek 2001), in the
analysis of robust MDPs, and even in regularized MDPs (see
Grand-Clément and Petrik (2022) and references therein).

One can define a corresponding exponential Bellman oper-
ator for any w € R as

L*w = B%w —b?,
L*w := maxL%w = max L%w, (10)
deD deext D
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where ext D is the set of extreme points of D corresponding
to deterministic decision rules and B¢ € R$*® and b? €
RS are defined for s, s’ € Sand d € D as

Bt =Y pls.a,s) - da(s) - e P75 (11a)
acA

b= Z p(s,a,e) - dg(s)- e Frisae), (11b)
acA

The following theorem shows that L can be used to
compute w. We use the shorthand notation w1 =

(dyi,...,di—1) € Hf\/ﬁ% to denote the tail of 7 that starts

with d; instead of dj.

Theorem 3.1. For each t = 1,..., and ® =

(do,...,di—1) € I}y, the exponential values satisfy that

wt(ﬂ) = Ld‘wt_l(ﬂ1:t—1)7 ’U’O(W) = -1,
,wt,* _ L*wt—l,* — ’wt(ﬂ'*) Z ’wt(ﬂ'), wO,* — _1,

for some ™ € II4 .

The proof of Theorem 3.1 is standard and has been es-
tablished both in the context of ERMs (Hau, Petrik, and
Ghavamzadeh 2023) and utility functions (Patek 1997).

The following corollary follows directly from Theorem 3.1
by algebraic manipulation and by the monotonicity of expo-
nential value function transformation and the ERM.

Corollary 3.2. We have that

g¢(m, 8) = ERM [vg, (m)] ,
97 (8) = ERMY [v0*] = max ERMY [vf (7)] .

mellmp

3.2 Infinite Horizon

We now turn to construct infinite-horizon optimal policies as
a limiting case of the finite horizon. An important quantity
is the infinite-horizon exponential value function defined for
each m € Ilyg as

°o* — liminf w?*.
t—o00

w™(

e . . t

T = hgloglfw (m), w
Note again that we use the inferior limit because the limit
may not be defined for non-stationary policies. The limit-
ing infinite-horizon value functions w () and w** are
defined analogously from v*(7) and v%* using the inferior
limit. The following theorem is the main result of this section.
It shows that for an infinite horizon, the optimal exponential
value function is attained by a stationary deterministic policy
and is a fixed point of the exponential Bellman operator.

Theorem 3.3. Whenever w** > —oo there exists m* =
(d%) oo € Hgp such that

w>®* = ’UJOO(’]T*) _ Ld*’woo7*,
and w®* is the unique value that satisfies this equation.
Corollary 3.4. Asuming the hypothesis of Theorem 3.3, we

have that v>°* = v>®°(7*) and

9% (8) = ERMY [v27"] = max ERMY [vg2(m)] .

m€llsp



We now outline the proof of Theorem 3.3; see Su, Grand-
Clément, and Petrik (2024, appendix D) for details. To es-
tablish Theorem 3.3, we show that w?* converges to a fixed
point as ¢ — oo. Standard arguments do not apply to our set-
ting (Puterman 2005; Kallenberg 2021; Patek 2001) because
the ERM-TRC Bellman operator is not an L..-contraction,
it is not linear, and the values in value iteration do not in-
crease or decrease monotonically. Although the exponential
Bellman operator L is linear, it may not be a contraction.

The main idea of the proof is to show that whenever the
exponential value functions are bounded, the exponential
Bellman operator must be weighted-norm contraction with
a unique fixed point. To facilitate the analysis, we define
w': Iy x RS — Rt € Nfor z € RS, 7 € I, as

wi(m,z) = Lw(my 1) = LY., LY (—z)
t—1
= — (BY'z =) (BY*p. (12)
k=0
The value z can be interpreted as the exponential value func-
tion at the termination of the process following 7 for ¢ periods.
Note that w'(7) = w'(m, 1), Vr € IIyr, t € N.
An important technical result we show is that the only way

a stationary policy’s return can be bounded is if the policy’s
matrix has a spectral radius strictly less than 1.

Lemma 3.5. For each = (d)oo € lgg and z > 0:
w™(m,z) > —c0 = p(BY <1.

Lemma 3.5 uses the transience property to show that the
Perron vector (with the maximum absolute eigenvalue) f
of B? satisfies that f'b% > 0. Therefore, p(B%) < 1 is
necessary for the series in (12) to be bounded.

The limitation of Lemma 3.5 is that it only applies to sta-
tionary policies. The lemma does not preclude the possibility
that all stationary policies have unbounded returns, but a
Markov policy with a bounded return exists. We construct
an upper bound on w’* that decreases monotonically in ¢
and converges to show this is impossible. The proof then
concludes by squeezing w’* between a lower and the upper
bound with the same limits. This technique allows us to re-
lax the limiting assumptions from prior work (Patek 2001;
de Freitas, Freire, and Delgado 2020). Finally, our results im-
ply an optimal stationary policy exists whenever the planning
horizon T’ is sufficiently large. Because the set IIgp is finite,
one policy must be optimal for a sufficiently large 7. This
property suggests behavior similar to turnpikes in discounted
MDPs (Puterman 2005).

3.3 Algorithms

We now briefly describe the algorithms we use to compute
the optimal ERM-TRC policies. Surprisingly, the main algo-
rithms for discounted MDPs, including value iteration, policy
iteration, and linear programming, can be adapted to this
risk-averse setting with only minor modifications.

Value iteration is the most direct method for computing the
optimal value function (Puterman 2005). The value iteration
computes a sequence of w*, k = 0, ... such that

wh = L*w”, w’=o0.

7
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The initialization of w® = 0 is essential and guarantees
convergence directly from the monotonicity argument used
to prove Theorem 3.3.

Policy iteration (PI) starts by initializing with a stationary
policy mg = (d°)s € Hgp. Then, for each iteration k =

0,..., Pl alternates between the policy evaluation step and
the policy improvement step:
wh = —(I - Bdk)_lbdk7 d"t! € argmax Blw* — b2
deD

PI converges because it monotonically improves the value
functions when initialized with a policy d° with bounded
return (Patek 2001). However, we lack a practical approach
to finding such an initial policy.

Finally, linear programming is a fast and convenient
method for computing optimal exponential value functions:

min{lT’w | w € RY,w > —b" + Bw, VYa € A}. (13)
Here, BY. = (B¢, - ,B;,), B¢, and bS are con-

S,517 S,85
structed as in (11). We use the shorthand B* = B< and
b® = b? where d,/(s) = 1ifa = o’ foreach s € §,a’ € A.
It is important to note that the value functions, as well
as the coefficients of B¢ may be irrational. It is, therefore,
essential to study the sensitivity of the algorithms to errors in
the input. However, this question is beyond the scope of the
present paper, and we leave it for future work.

4 Solving EVaR Total Reward Criterion

This section shows that the EVaR-TRC objective can be re-
duced to a sequence of ERM-TRC problems, similarly to the
discounted case (Hau, Petrik, and Ghavamzadeh 2023). As
a result, an optimal stationary EVaR-TRC policy exists and
can be computed using the methods described in Section 3.

Formally, we aim to compute a policy that maximizes the
EVaR of the random return at some given fixed risk level
a € (0,1) defined as

sup liminf EVaR,*

n€llyr 170

t—1
Zr(ék,ak,ékm} (14
k=0

In contrast with Ahmadi et al. (2021b), the objective in (14)
optimizes EVaR rather than Nested EVaR.

4.1 Reduction to ERM-TRC

To solve (14), we exploit that EVaR can be defined in terms
of ERM as shown in (4). To that end, define a function
hy: IIyg x R — R fort € N as

hi(m,B) = gi(m,B) + B 'log(a), (15)

where g, is the ERM value of the policy defined in (6). Also,
h}, heo, h%, are defined analogously in terms of ¢, g0, and
g5 respectively. The functions h are useful, because by (4):

EVaR,*

t—1
> (s dn, ékm] = suphy(m,B), (16)
k=0 A>0

for each m € Ilyg and t € N. However, note that the limit
in the definition of supg.., h%,(3) is inside the supremum
unlike in the objective in (14).



There are two challenges with solving (14) by reducing it
to (16). First, the supremum in the definition of EVaR in (4)
may not be attained, as mentioned previously. Second, the
functions g; and h} may not converge uniformly to g%, and
h’%,. Note that Theorem 3.3 only shows pointwise conver-
gence when the functions are bounded.

To circumvent the challenges described above, we replace
the supremum in (16) with a maximum over a finite set
B(Bo, 9) of discretized [ values:

B(6075) = {/803617"'56K}3 (173)
where § > 0,0 < By < 51 < -+ < Bk, and

log é
6 ?

B log £
Brt1 - log L — B’ Br >
for an appropriately chosen value K for each 3y and §. We
assume that the denominator in the expression for 5y 1 in
Equation (17b) is positive; otherwise ;41 = oo and [y, is
sufficiently large.

The construction in (17) resembles equations (19) and (20)
in Hau, Petrik, and Ghavamzadeh (2023) but differs in the
choice of ) because Hoeffding’s lemma does not readily
bound the TRC criterion.

The following proposition upper-bounds the value of K;
see (Hau, Petrik, and Ghavamzadeh 2023, theorem 4.3) for a
proof that K is polynomial in §.

(17b)

Proposition 4.1. Assume a given By > 0and § € (0,1) such
that Byé < log é Then, to satisfy the condition in (17b), it
is sufficient to choose K as
)
where z := bo T- (18)
log

(03

_ logz
" log(l—2)’

The following theorem shows that one can obtain an opti-
mal ERM policy for an appropriately chosen 3 that approxi-
mates an optimal EVaR policy arbitrarily closely.

Theorem 4.2. For any § > 0, let

("T*vﬁ*) € hoo(ﬁaﬂ)a

argmax
(m,8)€llsp X B(Bo,0)

where By > 0 is chosen such that g% (0) < g% (5o) — 0.
Then the limits below exist and satisfy:

t—1
lim EVaRT ™ | Y (5, a, §k+1)‘|
k=0 19)

> sup lim suph(n, ) — 0.
m€llgr V7 >0

Note that the right-hand side in (19) is the §-optimal ob-
jective in (14).

The first implication of Theorem 4.2 is that there exists an
optimal stationary deterministic policy.

Corollary 4.3. There exists an optimal stationary determin-
istic policy ™ € llgp that attains the supremum in (14).

The second implication of Theorem 4.2 is that it suggests
an algorithm for computing the optimal, or near-optimal,
stationary policy. We summarize it in Section 4.2.
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Algorithm 1: Simple EVaR algorithm
Data: MDP and desired precision § > 0
Result: §-optimal policy 7* € Ilgp
while g7, (0) — g% (o) > 8 do
Bo < Bo/2;
Construct B(fp, ) as described in (17a) ;
Compute
T € argmax, ¢y, MaXges(4y,5) Noo (T, B) by
solving a linear program in (13) ;

4.2 Algorithms

We now propose a simple algorithm for computing a -
optimal EVaR policy described in Algorithm 1. The algo-
rithm reduces finding optimal EVaR-TRC policies to solving
a sequence of ERM-TRC problems in (5). As Theorem 4.2
shows, there exists a §-optimal policy such that it is ERM-
TRC optimal for some 8 € B(fo, d). It is, therefore, suffi-
cient to compute an ERM-TRC optimal policy for one of
those /3 values.
The analysis above shows that Algorithm 1 is correct.

Corollary 4.4. Algorithm I computes the d-optimal policy
7* € llgp that satifies the condition (19).

Corollary 4.4 follows directly from Theorem 4.2 and from
the existence of a sufficiently small 3y from the continuity of
g%, (B) for positive 5 around 0.

Algorithm 1 prioritizes simplicity over computational com-
plexity and could be accelerated significantly. Evaluating
each h’_ () requires computing an optimal ERM-TRC so-
lution which involves solving a linear program. One could
reduce the number of evaluations of h%, needed by employ-
ing a branch-and-bound strategy that takes advantage of the
monotonicity of g.

An additional advantage of Algorithm 1 is that the over-
head of computing optimal solutions for multiple risk levels
« can be small if one selects an appropriate set B.

5 Numerical Evaluation

In this section, we illustrate our algorithms and formulations
on tabular MDPs that include positive and negative rewards.

The ERM returns for the discounted and transient MDPs
in Figure 1 with parameters » = —0.2, v = 0.9, ¢ = 0.9
are shown in Figure 2. The figure shows that, as expected,
the returns are identical in the risk-neutral objective (when
B = 0). However, for 8 > 0, the discounted and TRC returns
differ significantly. The discounted return is unaffected by /3
while the ERM-TRC return decreases with an increasing .
Please see Su, Grand-Clément, and Petrik (2024, appendix
B) for more details.

To evaluate the effect of risk-aversion on the structure of
the optimal policy, we use the gambler’s ruin problem (Hau,
Petrik, and Ghavamzadeh 2023; Béuerle and Ott 2011). In
this problem, a gambler starts with a given amount of capital
and seeks to increase it up to a cap K. In each turn, the
gambler decides how much capital to bet. The bet doubles
or is lost with a probability ¢ and 1 — ¢, respectively. The
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Figure 2: ERM values with TRC and discounted criteria.

Optimal action

Figure 3: The optimal EVaR-TRC policies.

gambler can quit and keep the current wealth; the game also
ends when the gambler goes broke or achieves the cap K.
The reward equals the final capital, except it is -1 when the
gambler is broke. The initial state is chosen uniformly. In
the formulation, we use ¢ = 0.68, and a cap is K = 7. The
algorithm was implemented in Julia 1.10, and is available at
https://github.com/suxh2019/ERMLP. Please see Su, Grand-
Clément, and Petrik (2024, appendix F) for more details.
Figure 3 shows optimal policies for four different EVaR
risk levels o computed by Algorithm 1. The state represents
how much capital the gambler holds. The optimal action
indicates the amount of capital invested. The action 0 means
quitting the game. Note that there is only one action when the

(@)
0.8 @ =109 °
Qa=0.7
. @a =04 ,Z'
£ 06{@a=02 "
=1} n
2 04 -
: ;
a9 () ¥
02le s '
[ SO0 0] 0] 0] Q--0
’ N h

Capital

Figure 4: Distribution of the final capital for EVaR optimal
policies.

capital is 0 and 7 for all policies so that action is neglected
in Figure 3. Because the optimal policy is stationary, we can
interpret and analyze it. The policies become notably less
risk-averse as « increases. For example, when o« = 0.2, the
gambler is very risk-averse and always quits with the current
capital. When a = 0.4, the gambler invests 1 when capital
is greater than 1 and quits otherwise to avoid losing it all.
When a = 0.9, the gambler makes bigger bets, increasing
the probability of reaching the cap and losing all capital.

To understand the impact of risk-aversion on the distribu-
tion of returns, we simulate the resulting policies over 7,000
episodes and show the distribution of capitals in Figure 4.
When a = 0.2, the return follows a uniform distribution on
[1, 7]. When o = 0.4, the returns are 1 and 7. When o« = 0.7
or 0.9, the returns are —1 and 7. Overall, the figure shows that
for lower values of «, the gambler gives up some probability
of reaching the cap in exchange for a lower probability of
losing all capital.

6 Conclusion and Future Work

We analyze transient MDPs with two risk measures: ERM
and EVaR. We establish the existence of stationary determin-
istic optimal policies without any assumptions on the sign
of the rewards, a significant departure from past work. Our
results also provide algorithms based on value iteration, pol-
icy iteration, and linear programming for computing optimal
policies.

Future directions include extensions to infinite-state TRC
problems, risk-averse MDPs with average rewards, and
partial-state observations.
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