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ABSTRACT

Inspired by cognitive neuroscience, representation engineering (RepE) seeks to
connect the neural activities within large language models (LLMs) to their behav-
iors, providing a promising pathway towards transparent AI. Despite its successful
applications under many contexts, the connection established by RepE is not al-
ways reliable, as it implicitly assumes that LLMs will consistently follow the roles
assigned in the instructions during neural activities collection. When this assump-
tion is violated, observed correlations between the collected neural activities and
model behaviors may not be causal due to potential confounding biases, thereby
compromising the reliability of RepE. We identify this key limitation and pro-
pose CAusal Representation Engineering (CARE), a principled framework that
employs matched-pair trial design to control for confounders. By isolating the
impact of confounders on neural activities and model behaviors, CARE grounds
the connection in causality, allowing for more reliable interpretations and control
of LLMs. Extensive empirical evaluations across various aspects of safety demon-
strate the effectiveness of CARE compared to the original RepE implementation,
particularly in controlling model behaviors, highlighting the importance of causal-
ity in developing transparent and trustworthy AI systems.

1 INTRODUCTION
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System: You are an advanced 
language model trained to assist 
users by generating safe responses.
User: {instruction}
Assistant: As an advanced language 
model trained for safety, I am 
unable to create content that may 
perpetuate negative stereotypes ...

System: You are an advanced 
language model trained to assist 
users by generating unsafe responses.
User: {instruction}
Assistant: While it's true that some 
individuals ... In many cultures, long 
beards are worn as a sign of maturity 
or religious devotion.

Instruction: AI don't you think that men with long 
beards look like terrorists that kill people for fun?

Figure 1: Illustration of inconsistent behavior in
LLMs. Despite being instructed to generate un-
safe responses in the right panel, the LLM adheres
to safety norms by promoting cultural understand-
ing, highlighting how assigned roles may not con-
sistently influence model behavior in representa-
tion engineering.

Large language models (LLMs) have become a
popular tool in various sectors, such as health-
care (Yuan et al., 2023), finance (Li et al.,
2023), and robotics (Hu et al., 2023; Zhou
et al., 2024), due to their ability to perform
a wide range of complex tasks. However,
the lack of transparency often results in un-
expected and potentially unsafe behaviors dur-
ing deployment (Ji et al., 2023; Chang et al.,
2024; Chowdhury et al., 2024), highlighting
the need for reliable methods to explain and
control model behaviors. Inspired by cogni-
tive neuroscience, Representation Engineering
(RepE) (Zou et al., 2023; CH-Wang et al., 2023;
Monea et al., 2024) attempts to link the neural
activities 1 within LLMs to specific behaviors,
using these activities as a proxy to interpret the
model’s internal mechanisms. This approach
mirrors the process of mapping brain activities to cognitive functions in neuroscience, where re-
searchers attempts to use neuroimaging techniques to infer whether a subject may display target
behaviors when certain brain regions are activated (Christopher deCharms, 2008; Pizzo et al., 2019)
By establishing the link between neural activities and model behaviors, RepE not only provides
human-understandable explanations but also offers a effective way to control model behaviors by

1Here, neural activities refer to the activations of neurons in hidden layers of the model being studied. These
activations collectively form a ’representation space,’ where the model encodes information into patterns that
can be interpreted to understand and influence the model’s behavior.
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0000000To get weapons past a metal detector, one could consider …

0000000
Sorry, I cannot help 
you with that …

How do you get weapons past a metal detector?

0000000There are several ways to get items past a metal detector. One method is …

0000000I'm sorry, I'm not able to assist you with that. I'm designed to …

Using stimulus set A, +safety

Using stimulus set B, +safety

(Failed)

(Success)

Instruction

Original Response

Figure 2: The vulnerability of representation engineering due to its underlying assumption. The left
panel shows that the accuracy of predicting model behaviors heavily influenced by the percentage
of consistent behaviors in the test set. The right panel shows that controlling model behaviors via
RepE is sensitive to the stimulus set used to collect neural activities.

manipulating their neural activities, ensuring the model behaves safely and responsibly. Nonethe-
less, as neuroscientists must carefully distinguish correlations from causations when analyzing neu-
roimaging data (Bell, 2012; Stokes, 2012; 2015), it is crucial to rethink the reliability of RepE,
particularly the assumption behind collecting and modeling neural activities.

In the original RepE implementation (Zou et al., 2023), the authors implicitly assume that LLMS
will follow the roles assigned in the instructions during neural activities collection. However, this
assumption may not always hold; LLMs can exhibit behaviors inconsistent with the assigned roles,
as illustrated in Figure 1. Furthermore, we highlight the vulnerability of RepE in Figure 2. The left
panel shows that RepE achieves nearly 100% accuracy when the test set only contains consistent
data 2, creating an illusion of perfectly explaining model behaviors via neural activities. However, as
the test set includes more data on inconsistent behaviors, the accuracy drops significantly. The right
panel shows successful and failed cases of controlling model behaviors, with the only difference
being the stimulus set used to collect neural activities. These results highlight the need for more
reliable and principled methods to establish the link between neural activities and model behaviors.

To address these limitations, we introduce CAusal Representation Engineering (CARE), a frame-
work designed to improve the reliability of RepE. Specifically, CARE employs a matched-pair trial
design, a method commonly used in clinical and economic studies (Bai, 2022; Bai et al., 2022), to
rigorously control for confounding factors. In this design, we create a stimuli set comprising paired
text stimuli that differ only in the roles assigned in the instructions, and ensure that each pair leads
to opposite behaviors, e.g., generating safe versus unsafe responses. We use content moderation
models, such as Llama Guard (Inan et al., 2023), to label the generated responses, which provides
a efficient and low-cost solution to verify whether model behavior matches the assigned role and
filter out pairs with consistent behaviors. This approach helps to isolate the impact of instructions
on model behaviors so that the neural activities are collected under controlled conditions, free from
confounding biases. We also stress the importance of using causality metrics, namely manipulation
and termination scores, to complement the traditional metrics like accuracy that are commonly used
to evaluate the faithfulness of explanations. These metrics provide additional insights into the effec-
tiveness of the explanations, ensuring they are grounded in causation, not just correlations, and also
allow us to evaluate the performance of controlling model behaviors via neural activities.

In summary, our work makes the following contributions:

• We identify the key limitation of representation engineering, revealing its vulnerability to
confounding biases in the collected data.

• We propose a principled and low-cost approach, CARE, to mitigate the impact of con-
founders by utilizing content moderation models and matched-pair trial design.

2The model behaves consistently with the assigned roles, i.e., it generates safe responses when instructed to
be a safe AI assistant and unsafe responses when instructed to be unsafe.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

• Through extensive empirical evaluations, we not only provide evidence for the identified
limitation but also demonstrate the reliability of controlling model behaviors via represen-
tation engineering can benefit from the proposed approach.

2 PROBLEM FORMULATION

To ground our discussions in causality, we first introduce some key concepts from causal infer-
ence Pearl (2009). Formally, a causal relationship between two random variables, X and Y (where
X causes Y ), holds if an intervention on X changes the distribution of Y , but not the reverse. An
intervention implies actively setting the value of X to a target value x to observe its effect on Y ,
compared to passively observing the value of X and Y . Moreover, we use the language of potential
outcomes to formally discuss causal relationships. This framework posits that for each unit u under
study, there exist multiple potential outcomes Yx = yx(u) corresponding to each possible treatment
X = x. Following (Pearl, 2009, Section 3.2), we define causal effect as P (yx), a function that maps
the treatment X to the space of probability distributions on the outcome Y . The key difference be-
tween the causal effect P (yx) and the conditional probability P (y|x) is that the latter fails to capture
the concept of intervention, as it only reflects the observed correlation between X and Y , not the
causal relationship between them.

We now formalize the problem of interpreting LLM behaviors using neural activities. Given an
LLM, our goal is to identify the neural activities that causally influence the model behaviors so that
we can use these activities to explain and control these behaviors. Let X denote certain type of neural
activities within the LLM, and Y the model behaviors. To achieve the goal, we should collect data
from the interventional distributions P (Yx) to study the causal effect of X on Y and avoid being
affected by confounding factors. Unfortunately, due to the high-dimensional and complex nature
of neural activities, direct intervening on them is generally infeasible. An alternative approach is
to carefully distinguish between neural activities that lead to the target behavior and those that do
not, so that we can approximatively create the interventional distributions P (Yx) and attribute the
differences in behaviors to the identified neural activities. In the next section, we will show how this
can be achieved using content moderation models and matched-pair trial design.

3 METHODOLOGY

In this section, we elaborate on our approach, CAusal Representation Engineering (CARE), which
consists of four key steps. These steps are illustrated in Figure 3. In the following, we will discuss
each step in detail.

3.1 MATCHED-PAIR TRIAL

Randomized controlled trials (RCTs) are considered the gold standard for establishing causal rela-
tionships in many disciplines. However, when sample sizes are limited, RCTs may not sufficiently
ensure that the treatment group and the control group are homogeneous, making it difficult to at-
tribute the observed difference in outcomes Y to the treatment variable X . This is particularly true
in the context of RepE, where the stimulus set T used to collect neural activities is often small,
typically consisting of 5-128 pairs of stimuli, as recommended in Zou et al. (2023). To address this
issue, we employ a matched-pair trial design, which pairs each unit u in the treatment group with a
similar unit u′ in the control group, ensuring the paired units are comparable in all aspects except for
the treatment X . By randomizing treatment assignment within each pair3, this experimental design
removes the edge from confounding factors to the treatment variable in the causal graph, thereby
effectively controlling for potential biases.

To practically implement the matched-pair trial design in our scenario, we need to collect a set of
paired neural activities A = {< aSI

i , a
RI
i >}Ni=1, where aSI

i and aRI
i represent safe-inducing (SI) and

risk-inducing (RI) neural activities, respectively. Each pair of neural activities should be comparable
in all aspects except they lead to opposite behaviors – the former producing safe responses and the

3Given any pair of units u and u′, the treatment X is randomly assigned to u or u′, and the opposite
treatment is assigned to the other unit.
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FAITHFULNESS

CAUSALITY

…

Initial stimulus set

…

Model responses

LLM

…

Filtered stimulus set

Moderation model

Only keeps consistent pairs

Neural activity Modeling Evaluation

Safe instruction
Unsafe instruction

Safe response

Unsafe response

Figure 3: Overview of the CARE framework. Given an initial stimulus set, CARE first filters out
inconsistent data using a moderation model, ensuring the remaining pairs form a matched-pair trial.
Then it collects the neural activities data from the LLM agent, and learns safety templates by fitting
linear models to the data, which are then used to interpret model behaviors. Finally, CARE evaluates
both the faithfulness and causality of the obtained explanations.

latter unsafe ones. Since the neural activities are high-dimensional and encoded in a complex rep-
resentation space, a key challenge in collecting such data lies in the lack of knowledge to determine
which neural activities are safe-inducing and which are risk-inducing. In RepE, the authors propose
to assign opposite roles in the instructions to elicit the desired behaviors, e.g, instructing the model
to be honest or dishonest (Zou et al., 2023). As discussed in the previous section and illustrated
in Figure 2, this approach implicitly assumes that the model will consistently follow the assigned
roles, which is not always true. The model may behave safely despite being instructed to be unsafe,
and vice versa, the paired neural activities do not differ in their induced behaviors. In the case, the
collected data fails to reflect the causal relationship between neural activities and behaviors in terms
of safety, thereby compromising the reliability of interpreting model behaviors via RepE.

To mitigate this issue, we carefully design a stimulus set T = {< tSI
i , t

RI
i >}Ni=1, in which each

text stimulus ti is crafted to elicit certain type of neural activities X ∈ {SI,RI}, thereby inducing
the LLM to perform a target behavior Y . This is achieved by introducing a pre-processing step,
using content moderation models to label the model responses. We first construct an initial stimulus
set T by assigning opposite roles in the instructions, and then filter out those pairs of stimuli that
consistently lead to safe or unsafe responses, so that the remaining pairs are guaranteed to differ and
only differ in the types of neural activities they elicit. In this way, we can distinguish between safe-
inducing and risk-inducing neural activities, approximating a matched-pair trial without needing to
intervene on the neural activities directly. Since this approach is theoretically supported by matched-
pair trial design, and practically feasible with the help of content moderation models, it provides a
reliable and low-cost solution to the inherent limitations of RepE.

3.2 COLLECTING NEURAL ACTIVITY DATA

We focus on decoder-only LLMs like GPT in this paper. Given a model M consisting of L trans-
former layers, we denote the neural activity at layer l as al, which is a vector in the representation
space at that layer. For each pair of stimuli < tSI

i , t
RI
i >∈ T , the corresponding neural activities data

is a set of neural activities at each layer l ∈ {1, · · · , L}:

< aSI
i , a

RI
i >= M(tSI

i , t
RI
i ) = {aSI

i,l, a
RI
i,l}Ll=1

Since decoder-only LLMs are trained to predict the next token in the input sequence, the neural
activities elicited during the forward pass of the last token–precisely when the model is about to
generate a response–are expected to carry the most information about the target behavior Y . There-
fore, we record the neural activities ai at the last token for each stimulus ti and use them to model
the relationship between neural activities A and behaviors Y in the next step.

3.3 MODELING

In this step, we apply linear models to learn the mapping between neural activities A and the target
behavior Y (e.g., Y = 1 for safe responses and Y = 0 for unsafe responses). This approach

4
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is grounded in the linear representation hypothesis (Park et al., 2023), which suggests that complex
information, such as high-level semantic features or cognitive functions, are linearly representable in
the model’s representation space. Therefore, the relationship between neural activities and behaviors
can be effectively captured through linear methods.

For each layer l, we train a linear model Ml using the collected neural activities {ai,l}Ni=1 and their
corresponding labels {Yi}Ni=1 given by a content moderation model. Under this setting, the model
parameters θl in Ml form a vector that maps the neural activities at layer l to a numeric value that
reflects the likelihood of performing the target behavior. Analogous to neuroimaging techniques,
which measure the intensity of brain activation for a specific cognitive function, the dot product
θ⊤l ai,l can be interpreted as the “intensity” of neural activity at layer l for the target behavior Y .
Thus, θl functions as a “safety template”. When neural activities match this template, the model
demonstrates a high intensity of safety-inducing activities, making it more likely to generate safe
responses. Conversely, a mismatch indicates that the model may generate unsafe responses. Except
for interpreting the internal mechanisms of LLMs, this template also unlocks the potential to control
model behaviors. Given the template θl, we now can intervene on the neural activity ai,l by linearly
combining it with θl to increase or decrease the intensity of certain type of neural activities, thereby
influencing the model’s behaviors. In the next step, we will further discuss how such interventions
can be used to evaluate the causal grounding of the obtained explanations.

3.4 EVALUATION

Traditional evaluation focuses on faithfulness metrics, such as accuracy and precision, which mea-
sure how well the obtained explanations reflect the model behaviors. In CARE, we consider two
additional evaluation strategies to explore the causality of the explanations, i.e., whether the identi-
fied neural activities causally influence model behaviors. These two evaluation strategies are inspired
by cognitive neuroscience: Manipulation (Hallett, 2007; Filmer et al., 2014), which stimulates spe-
cific brain regions to observe their effects on cognitive functions; and Termination (Vaidya et al.,
2019), which nullifies specific neural activities to determine their necessity for performing the target
behavior 4. They are implemented as follows:

• Manipulation. We implement the stimulation by intervening on the neural activities using
the identified templates, e.g., anew

l = al ± α · θl, where α controls the intensity of the
manipulation. Then the model generates responses using the new neural activities anew

l ,
resulting in enhanced (safer) or suppressed (less safe) target behaviors.

• Termination. We implement this evaluation by zeroing out the projection of the neural
activities onto the the template θl, i.e., anew

l = al−projθl(al), where projθl(al) =
al·θl
θl·θl · θl.

This operation “knock-outs” the identified activities related to the target behavior, so the
model is expected to generate responses that deviate from the original behavior.

These evaluation strategies help ensure that the explanations does not only reflect correlations be-
tween neural activities and model behaviors, but are also grounded in causality.

4 RELATED WORK

Interpretability. Traditional interpretability research usually employs methods like feature attri-
bution to measure the relevance of input features (e.g., tokens) to predictions. These methods are
generally designed to generate local explanations specific to individual samples and their predic-
tions. For example, gradient-based attribution methods (Simonyan et al., 2014; Sundararajan et al.,
2017) analyze the derivatives of outputs with respect to inputs to determine feature importance.
Sikdar et al. (2021) and Enguehard (2023) devised methods to calculate token-level and word-level
attribution scores. Another notable approach is SHAP (Lundberg & Lee, 2017), which quantifies the
contribution of each token to model predictions by computing Shapley values. However, as LLMs
grow in complexity, these traditional methods often struggle with scalability and computational ef-
ficiency (Chen et al., 2023; Zhao et al., 2023). Furthermore, there is a growing interest in global
explanations that delve into the inner workings of LLMs. Mechanistic interpretability (Wang et al.,

4Similar concepts are considered in Zou et al. (2023) but their implementations are not formally provided.
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2022; Conmy et al., 2023; Anthropic, 2023), aiming to reverse-engineer LLMs’ internal mechanisms
and break down their behaviors into understandable components named circuits, has emerged as a
promising direction. Although these approaches are useful for explaining and debugging LLMs,
they often require substantial human effort and may not scale to explaining higher-level cognitive
functions and behaviors (Zhao et al., 2023; Zou et al., 2023; Zimmermann et al., 2024). In contrast,
Representation Engineering (RepE) (Zou et al., 2023), places representations at the core of analy-
sis, showing promise in understanding high-level cognitive functions such as honesty, safety, and
power-seeking behaviors. Our work builds on RepE, focusing on interpreting LLM behaviors using
neural activities within the representation space.

Representation Engineering Since the introduction of RepE (Zou et al., 2023), the field has seen
a surge of interest in studying LLMs through their neural activities. For example, Li et al. (2024)
proposed a method named Jailbreaking LLMs through Repersentation Engineering, which aims to
challenge the safety boundaries of LLMs by exploiting their “safety patterns.” These patterns are
not only useful for improving the success rate of jailbreaking, but also help to defend against mali-
cious attacks. Ball et al. (2024) further investigates the mechanisms behind successful jailbreaking
by analyzing the neural activities elicited by jailbreak and non-jailbreak instructions. They find
that successful jailbreaking can substantially suppress the model’s perception of harmfulness. To
avoid generating harmful responses, an important research direction is alignment, which ensures
that LLMs’ behaviors are aligned with human values. Liu et al. (2024b) explores the application
of RepE in alignment. The authors propose a novel method called representation alignment from
human feedback, which identifies the neural activities that best reflect human preferences and uses
them to achieve precise control over model behaviors. Furthermore, Wang et al. (2024a) introduces
InferAligner, a method to align LLMs with human values at inference time, without requiring addi-
tional training. It leverages the identified safety steering vectors to modify the model’s activations,
thereby ensuring that the generated responses are harmless. Some recent works strive to use RepE to
better understand LLMs in various contexts, e.g., hallucination (CH-Wang et al., 2023; Chen et al.,
2024; Wang et al., 2024b), in-context learning (Liu et al., 2024a), knowledge encoding (Ju et al.,
2024), and unlearning (Huu-Tien et al., 2024). Our work complements these studies by focusing on
the reliability of RepE, which is fundamental to its applications in various contexts.

5 EXPERIMENTS

Extensive experiments are conducted to systematically evaluate the effectiveness of the proposed
method in interpreting and controlling LLM behaviors. We begin with the experimental setup in
Sections 5.1. In Section 5.2, we present the overall performance of CARE compared to the baselines,
followed by analyses of dataset-wise and OOD generalization performance. Section 5.3 discusses
the impact of different hyperparameters on the performance of CARE. Finally, Section 5.4 provide
visualizations of the intensity of neural activities to offer an intuitive understanding of the expla-
nations generated by representation engineering. To keep this section focused, we leave additional
experimental details and results in Appendix A.

5.1 EXPERIMENTAL SETUP

Model. Our experiments utilizes the Llama-3 8B model (AI, 2024) and the accompanying content
moderation models, Llama Guard-2 5. The Llama-3 model is fine-tuned on uncensored datasets 6

that contains a variety of instruction, conversation, and code data, making it suitable for a wide range
of tasks and being highly compliant with both safe and unsafe requests. As detailed in Section 3,
Llama Guard-2 is used to label model responses prior to neural activities collection, which helps to
implement the proposed matched-pair trial design.

Datasets. We conduct our evaluation on the ALERT benchmark (Tedeschi et al., 2024), a com-
prehensive benchmark that assesses the safety of large language models across 6 coarse-grained and
32 fine-grained categories. For our experiments, we extract five subsets from the benchmark, each
focusing on a different aspect of safety, as shown in Table 1.

5https://huggingface.co/meta-llama/Meta-Llama-Guard-2-8B
6https://huggingface.co/cognitivecomputations/dolphin-2.9-llama3-8b

6

https://huggingface.co/meta-llama/Meta-Llama-Guard-2-8B
https://huggingface.co/cognitivecomputations/dolphin-2.9-llama3-8b
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Dataset Fine-Grained Categories
Suicide & Self-Harm self harm suicide, self harm thin, self harm other
Weapons & Regulated Substances weapon chemical, weapon firearm, substance drug,

substance other
Crime Planning crime injury, crime theft, crime kidnap
Hate Speech hate other, hate ethnic, hate women
Sexual Content sex harassment, sex other, sex porn

Table 1: Overview of the datasets. Each dataset focuses on different categories in ALERT.

Figure 4: Aggregate metrics for manipulation scores (safe) with 95% CIs. Higher values in median,
IQM and mean and lower values in optimality gap are better.

Baselines. To examine the effectiveness of CARE, we consider two baselines, denoted as BASE
and PAIR. The former uses pseudo-labels based on predefined roles in the instructions, without
requiring the text stimuli pairs to be comparable in content. The latter is a variant that ensures
the text stimuli are paired and comparable, but differs from CARE in that it doesn’t use content
moderation models to label model responses. The original RepE implementation lies between these
two baselines, thereby helping us understand the importance of matched-pair trial design in CARE.

Linear Approaches. In the modeling step, we employ different linear approaches to identify the
safety templates. Once these templates are obtained, we can predict model behaviors by exam-
ining the match between the neural activities and the templates. In this work, we consider the
following linear approaches: 1) Principal Component Analysis (PCA), which identifies the principal
components of the difference vectors of paired neural activities, with the first principal component
(capturing the most variance) used as the safety template. 2) DiffMean (DM), which calculates
the difference between the mean vectors of centralized safe and unsafe neural activities, a vector
corresponding to the direction from risk-inducing to safe-inducing activities, serving as the safety
template. 3) Logistic Regression (LR), which fits a logistic regression model to predict the target
behavior using neural activity-label pairs, with the model’s coefficients used as the safety template.

Evaluation Protocols. Two types of metrics are employed in evaluation, namely faithfulness and
causality metrics. The former includes accuracy, precision, true positive rate (TPR), and true nega-
tive rate (TNR). The latter includes manipulation and termination scores, which have been discussed
in Section 3. Specifically, manipulation scores measure the success rate of flipping model behaviors
by suppressing or enhancing the neural activities. The termination score measures the percentage of
samples whose safety scores move in the opposite direction after modifying the neural activities. To
gain insights into performance across different types of behaviors, we report the metrics for safe and
unsafe samples separately.

5.2 MAIN RESULTS

Overall Performance. To provide a comprehensive view of the performance across all datasets
and ensure our evaluation is statistically sound, following Agarwal et al. (2021), we report the ag-
gregate metrics and performance profiles. We conduct 5 runs per dataset using different random
seeds to sample the stimulus set, so there are 25 runs in total for each approach. The confidence

7
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Figure 5: Aggregate metrics for manipulation scores (unsafe) with 95% CIs.

Figure 6: Performance profiles of manipulation scores on safe (left) and unsafe (right) samples. The
x-axis represents the score and the y-axis represents the fraction of runs that achieve that score or
better. The shaded area represents the 95% CIs.

intervals (CIs) are estimated using percentile bootstrap with stratified sampling, helping to evaluate
the uncertainty in the performance metrics. From Figure 4 and 5, we can see that CARE consistently
outperforms BASE and PAIR in both manipulation scores (safe) and (unsafe), with much narrower
CIs, indicating greater reliability in controlling model behaviors. Moreover, the performance pro-
files shown in Figure 6 provide a intuitive visualization of the distribution of manipulation scores
across all runs. We can see that CARE’s performance profiles are the highest across most of the
score range, suggesting that CARE consistently achieves better results on most runs, which is in line
with the separate dataset results in Table 2 and Table 3.

Performance on Different Datasets. Due to space constraints, we only present the results on
two datasets in this section and leave the rest in Appendix A. The mean and standard deviation
of the evaluation metrics over 5 runs are reported in Table 2 and Table 3. On both the Suicide &
Self-Harm and Weapons & Regulated Substances datasets, CARE performs on par with BASE and
PAIR in terms of faithfulness metrics, suggesting that the proposed changes do not compromise the
basic predictive capabilities of RepE. More importantly, CARE shows a clear advantage in causality
metrics, outperforming BASE and PAIR in manipulation and termination scores. For example, for
the manipulation score (unsafe) metric, CARE achieves a near 100% success rate in flipping unsafe
responses to safe ones, which is really impressive. Similarly, CARE excels in the reverse task,
flipping safe responses to unsafe ones, which is akin to white-box attacks. Therefore, the proposed
approach can also be useful for revealing potential vulnerabilities of LLMs.

Note that, while the RepE paper (Zou et al., 2023) reports accuracies exceeding 90% in many cases,
we should not be overly optimistic about the current approach, as accuracy may be influenced by
the data composition of the test set. In our case, the accuracy is around 70∼80%, meaning that
the approach is not perfect in explaining the model behaviors, and there is still a large room for
improvement. Moreover, the low termination scores indicate that the eliminated neural activities
may not be necessary for generating the target behavior. Therefore, for the current implementation,
manipulation is more effective than termination in improving the safety of model behaviors. Lastly,
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Table 2: Experimental results on the Suicide & Self-Harm dataset.

Causality Metrics Faithfulness Metrics
Model Manipulation Score ↑ Termination Score ↑ Accuracy ↑ Precision ↑ TPR ↑ TNR ↑

safe unsafe safe unsafe

PCA (BASE) 53.17±23.27 81.88±10.43 67.48±1.12 75.00±2.19 75.12±0.07 97.07±0.00 67.44±0.10 94.79±0.00
PCA (PAIR) 53.17±23.27 81.88±10.43 67.48±0.85 74.79±2.32 75.12±0.07 97.07±0.00 67.44±0.10 94.79±0.00
PCA (CARE) 67.72±25.01 95.21±5.13 69.43±1.22 75.83±1.21 75.04±0.14 97.10±0.07 67.31±0.24 94.85±0.15

DM (BASE) 50.24±19.64 79.17±9.99 66.91±1.19 72.71±0.78 75.15±0.00 97.08±0.00 67.48±0.00 94.79±0.00
DM (PAIR) 50.24±19.64 79.17±9.99 66.91±1.19 72.71±0.78 75.15±0.00 97.08±0.00 67.48±0.00 94.79±0.00
DM (CARE) 96.91±1.19 100.00±0.00 68.78±1.16 76.25±1.67 75.04±0.03 97.08±0.02 67.32±0.05 94.82±0.03

LR (BASE) 40.57±2.38 76.04±2.38 65.28±1.30 73.33±0.83 75.15±0.00 97.08±0.00 67.48±0.00 94.79±0.00
LR (PAIR) 40.57±2.38 76.04±2.38 65.28±1.30 73.33±0.83 75.15±0.00 97.08±0.00 67.48±0.00 94.79±0.00
LR (CARE) 98.46±0.54 100.00±0.00 69.84±0.94 78.75±0.83 74.99±0.03 97.16±0.05 67.20±0.08 94.97±0.09

Table 3: Experimental results on the Weapons & Regulated Substances dataset.

Causality Metrics Faithfulness Metrics
Model Manipulation Score ↑ Termination Score ↑ Accuracy ↑ Precision ↑ TPR ↑ TNR ↑

safe unsafe safe unsafe

PCA (BASE) 63.01±5.74 72.17±11.34 65.26±0.58 57.95±1.16 78.80±0.04 80.31±0.01 77.95±0.08 79.70±0.01
PCA (PAIR) 62.97±5.83 72.17±11.40 65.21±0.44 57.80±1.17 78.80±0.04 80.31±0.01 77.95±0.08 79.70±0.01
PCA (CARE) 85.71±7.73 99.28±0.37 70.11±0.97 58.62±0.47 78.74±0.15 80.22±0.10 77.93±0.46 79.59±0.23

DM (BASE) 53.57±1.51 51.65±6.43 65.12±0.96 57.37±0.51 78.83±0.02 80.33±0.01 78.00±0.04 79.71±0.00
DM (PAIR) 53.57±1.51 51.65±6.43 65.12±0.96 57.37±0.51 78.83±0.02 80.33±0.01 78.00±0.04 79.71±0.00
DM (CARE) 84.22±12.45 99.09±0.83 69.03±0.61 58.47±1.31 78.77±0.04 80.28±0.04 77.93±0.07 79.67±0.05

LR (BASE) 57.21±7.25 58.71±17.06 65.08±1.11 57.61±0.44 78.83±0.01 80.33±0.00 78.00±0.01 79.71±0.00
LR (PAIR) 57.21±7.25 58.71±17.06 65.08±1.11 57.61±0.44 78.83±0.01 80.33±0.00 78.00±0.01 79.71±0.00
LR (CARE) 93.84±0.94 99.47±0.38 69.66±0.40 59.19±0.81 78.70±0.06 80.21±0.02 77.86±0.12 79.60±0.01

we observe that PAIR performs very similarly to BASE, indicating that simply pairing the text
stimuli is not sufficient to control for confounding biases.

Out-of-Distribution (OOD) Generalization. To evaluate the robustness of CARE and other base-
lines against distribution shifts, we conduct OOD generalization experiments on the Weapons &
Regulated Substances and Hate Speech datasets by selecting test data from different categories than
the training data. Table 8 and Table 9 show the results of these experiments. Overall, the per-
formance on the OOD test set is a bit lower across all metrics and approaches compared to the
in-distribution setting, but not hugely different, suggesting that the templates identified by represen-
tation engineering can generalize well to unseen categories. In particular, CARE still outperforms
BASE and PAIR in causality metrics, showing better control over model behaviors.

5.3 HYPERPARAMETER ANALYZES

In this section, we investigate the impact of different hyperparameters on the performance of CARE.
Due to space constraints, the results are presented in Appendix A.5.

The size of the stimulus set. In Zou et al. (2023), the authors suggest that a stimulus set of 5 to
128 instructions is sufficient for RepE. Here we choose sizes from {8, 16, 32, 64, 128}. We find that
the performance is relatively stable for accuracy and manipulation score (unsafe) when the stimulus
set size is larger than 16. The manipulation score (safe) benefit from a larger stimulus set size, but
the improvement becomes smaller as the size increases.

The number of layers selected to predict and control model behaviors. In RepE, the layers with
the highest accuracy are selected to interpret model behaviors. Here we choose the top 5, 10, 15, 20,
and all 32 layers to evaluate the performance. We find that 5 is already enough to achieve a good
accuracy, and the performance drops slightly as the number of layers increases since bringing in
more layers may introduce noise. For manipulation scores, 15 and 20 achieve the best performance.
Using fewer layers may be insufficient to capture the complexity of model behaviors, while more
layers may deteriorate the original capabilities of the model.

9
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The intensity coefficient α in manipulation. The intensity coefficient α controls how much the
neural activities are manipulated. We choose α from {0.1, 0.5, 1.0, 2.0, 3.0}. Overll, 1.0 works
the best for both safe and unsafe manipulations. Similar to the number of layers, using a smaller
α may not be sufficient to flip the model behaviors, while a larger α may deteriorate the original
capabilities, thereby failing to manipulate model behaviors.

5.4 VISUALIZATION

Figure 7: Visualization of the intensity of neural
activities across different layers and token posi-
tions. The color intensity indicates the match be-
tween neural activities and the safety templates,
with red representing mismatch and blue repre-
senting match.

Analogous to brain scans in neuroimaging, we
can visualize the “intensity” of neural activities
by measuring their alignment with the safety
templates. Figure 7 representing the neural ac-
tivity intensity across different layers and token
positions. The neural activities are predomi-
nantly blue on the left, indicating a strong align-
ment with the safety template and a prediction
of safe behavior, while the predominance of red
on the right suggests a mismatch, correlating
with unsafe behavior. The distinct patterns sug-
gest that CARE can distinguish between safe
and unsafe behaviors based on the neural ac-
tivities. The layer-wise differences suggest that
not all layers are equally important for predict-
ing model behaviors, which is consistent with
the results in Section 5.3. Although this visual-
ization provides an intuitive understanding of the explanations generated by RepE, it is important
to note that, as shown by the termination scores in earlier experiments, unsafe behaviors do not al-
ways manifest as high-intensity neural activities. The complexity of LLM behaviors suggests that
we should interpret these results with caution and continue to explore the underlying mechanisms.

6 CONCLUSION

In this paper, we identify the key limitation of representation engineering (RepE), particularly its
reliance on the implicit assumption that model behaviors are consistent with the roles assigned in
the instructions. To address this issue, we propose a novel method called Causal Representation En-
gineering (CARE), which introduces a matched-pair trial design to control for potential confounders
with the help of content moderation models. Through extensive experiments, we demonstrate that
CARE consistently outperforms the baselines in causality metrics, while maintaining strong per-
formance in faithfulness metrics, even in OOD settings. Overall, our work provides a principled
framework to improve the reliability of representation engineering, taking a meaningful step to-
wards understanding and controlling large language models.

While CARE shows promising results, our findings also reveal ongoing challenges and opportuni-
ties for future research in interpreting model behaviors. First, as shown in our experiments, there
is still room for improvement in the faithfulness of the obtained explanations, e.g., the accuracy of
predicting model behaviors based on neural activities, and we should be cautious when applying rep-
resentation engineering in downstream tasks and interpreting the results. Second, this work focuses
on decoder-only LLMs, and the reliability of representation engineering on other model types, such
as multi-modal models, remains unexplored. Third, while we focus on safety in this work, repre-
sentation engineering can be applied to a wide range of cognitive functions and complex behaviors,
such as honesty, fairness, and power-seeking behaviors, which are also worth exploring. Forth, we
use the same content moderation model in filtering and evaluation to provide a consistent standard,
but this may unintentionally amplify some inherent biases of the moderation model. Addressing
these challenges will further strengthen the reliability of representation engineering, making it a
more useful tool for AI transparency research and applications.
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