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Abstract

Online reinforcement learning (RL) excels in complex, safety-critical domains but
suffers from sample inefficiency, training instability, and limited interpretability.
Data attribution provides a principled way to trace model behavior back to training
samples, yet existing methods assume fixed datasets, which is violated in online RL
where each experience both updates the policy and shapes future data collection.
In this paper, we initiate the study of data attribution for online RL, focusing
on the widely used Proximal Policy Optimization (PPO) algorithm. We start
by establishing a local attribution framework, interpreting model checkpoints
with respect to the records in the recent training buffer. We design two target
functions, capturing agent action and cumulative return respectively, and measure
each record’s contribution through gradient similarity between its training loss and
these targets. We demonstrate the power of this framework through three concrete
applications: diagnosis of learning, temporal analysis of behavior formation, and
targeted intervention during training. Leveraging this framework, we further
propose an algorithm, iterative influence-based filtering (IIF), for online RL training
that iteratively performs experience filtering to refine policy updates. Across
standard RL benchmarks (classic control, navigation, locomotion) to RLHF for
large language models, IIF reduces sample complexity, speeds up training, and
achieves higher returns. Together, these results open a new direction for making
online RL more interpretable, efficient, and effective.

1 Introduction

Reinforcement learning (RL) has achieved remarkable success across a wide range of decision-making
tasks, from game playing [Mnih et al., 2015, Silver et al., 2016] to robotic control [Andrychowicz
et al., 2020] and the alignment of large language models (LLMs) [Ouyang et al., 2022]. Among its
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variants, online RL, which continuously alternates between data collection and policy updates (e.g.,
A3C [Mnih et al., 2016], PPO [Schulman et al., 2017]), is well-suited to real-time, adaptive, and
safety-critical domains such as autonomous driving, as it enables on-the-fly correction of mistakes
and rapid adaptation to non-stationary environments [Sallab et al., 2017, Andrychowicz et al.,
2020]. However, modern online RL faces several challenges, including sample inefficiency, high
variance, and training instability, often requiring millions of interactions for convergence and yielding
inconsistent performance across runs [Henderson et al., 2018, Yu, 2018, Dulac-Arnold et al., 2019].

These challenges, together with their deployment in high-stakes domains, necessitate a deeper
understanding of the operational mechanisms of online RL. To this end, prior work has explored
various methods for RL interpretability [Milani et al., 2024, Cheng et al., 2025]. While useful, these
methods often lack the fine-grained explanations necessary for effective interventions or have limited
applicability (see Sec. 6 for a detailed review of related work). Addressing these limitations requires
exploring new paradigms.

In recent years, data attribution [Deng et al., 2025] has emerged as a powerful approach for machine
learning interpretability, offering a complementary perspective by tracing model behaviors back to
training data. This framework further benefits downstream applications such as data selection [Xia
et al., 2024], bias mitigation [Wang et al., 2024], fact tracing [Chang et al., 2025], among others.
However, applying data attribution to online RL is non-trivial. In online RL, agents continuously
interact with their environment; each collected experience not only contributes to policy updates but
also influences future rollouts collected by the evolving policy. This violates the core assumptions of
traditional data attribution methods, which are designed for static datasets and fixed objectives.

In this work, we address this gap by presenting the first study of data attribution for online RL,
specifically focusing on the widely used Proximal Policy Optimization (PPO) algorithm [Schulman
et al., 2017]. Our contributions are threefold:

1. A principled and flexible framework (Sec. 3). We propose a local data attribution framework
for online RL, interpreting model checkpoints w.r.t. the records from the recent training buffer.
We define the attribution entity as the atomic unit in PPO training, design two target functions
that capture agent actions and cumulative returns, and measure each record’s influence through
gradient similarity between its training loss and the target.

2. Fresh insights into learning (Sec. 4). We demonstrate the power of our framework through three
applications: a) diagnosis of learning: we show records most harmful for learning feature inac-
curate advantage estimates; b) temporal analysis of behavior formation: we reveal an intriguing
phase transition of critical records in shaping agent behaviors; c) fargeted intervention: we show
that removing records with the most negative influences can effectively improve model training.

3. Improved training (Sec. 5). Building on the targeted intervention, we further develop an iterative
influence-based filtering algorithm (IIF) that significantly improves standard online RL training.
Across standard RL benchmarks to modern RLHF for large language models, IIF consistently
improves sample efficiency, reduces computational cost, and enhances final performance.

2 Preliminaries

2.1 Online reinforcement learning

We consider the online RL setting, where an agent learns to maximize long-term returns by interacting
with the environment. The environment £ is modeled as a Markov Decision Process (MDP) defined by
the tuple (S, A, P, R,, dy), where S is the state space, A the action space, P the transition function,
R the reward function, y € [0, 1] the discount factor, and dy € P(S) the initial state distribution. At
timestep ¢, the agent observes s;, takes action a;, receives reward r;, and transitions to s; 1.

Online RL typically proceeds in alternating training rounds of data collection and model training
(Fig. 1). In round k, the data collection phase involves the agent executing the current policy
Tyck), sSampling experiences over multiple episodes to accumulate n transition records in a rollout
buffer B(*). Bach record contains the raw transition (st, at, ) and several computed quantities,
including the action log probability log g (a¢|st), estimated value v, and advantage estimate A,

Model parameters are then updated iteratively starting from 9(()k) = 6): at optimization step 7,
(k)

training on the mini-batch B;k) drawn from B*) updates parameters from Gj(.k) to ;).

In this paper,
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Figure 1: An [llustration of the alternating learning cycle in online RL (Sec. 2.1) and our local data
attribution framework (Sec. 3.1). Online RL operates in alternating rounds of data collection and
policy updates; our local data attribution framework quantifies how individual records from a single
round influence different aspects of policy update in that round.

we focus on Proximal Policy Optimization (PPO), a widely used, effective algorithm in various
applications [Berner et al., 2019, Andrychowicz et al., 2020, Ouyang et al., 2022].

Proximal policy optimization (PPQO) [Schulman et al., 2017]. PPO is a policy gradient method for
online RL that optimizes a clipped surrogate function. The core PPO objective, which is typically
combined with a value function loss and an entropy bonus during optimization, is defined as:

L) = E(S o)~ B [min (Wﬁ(s, a), clip (W, 1—¢1+ 6) A(s,a))] ,

Tow (als) Toa (als)
where ¢ is a hyperparameter that limits policy changes between rounds and promotes stable learning.

2.2 Data attribution

Data attribution, which quantifies the influence of individual training samples on model behavior,
has become increasingly important in machine learning [Grosse et al., 2023, Wang et al., 2023,
Zheng et al., 2024]. Common techniques include influence functions [Koh and Liang, 2017], Data
Shapley [Ghorbani and Zou, 2019], SGD-influence [Hara et al., 2019], Tracln [Pruthi et al., 2020],
and TRAK ([Park et al., 2023]. We focus on Tracln due to its conceptual simplicity, relative efficiency,
and widespread use in recent works [Xie et al., 2024, Xia et al., 2024, Lin et al., 2024].

TracIn [Pruthi et al., 2020]. TracIn measures the cumulative change in a target function f(6)
resulting from the optimization steps involving a specific training sample z;. Formally, consider
training a model parameterized by 6 on a training set {z;} , by minimizing the empirical loss
>, (6, ;) using stochastic gradient descent (SGD). At step j, with parameters 6, learning rate
7;, and mini-batch B;, a first-order Taylor expansion of f(¢) around 6; gives:

F(0;) = f(0501) = Vo f(0;) - (65 = 0551) = m;)_ Vaf(6;) - Vol(0;,2).
1€B;
Accumulating these contributions over the relevant training iterations yields the Tracln score for z;:
Tracln(z) = Y 0; Vaf(0;) - Vol(6;, ).

j:zi€B;
3 A Local Data Attribution Framework for Online RL

Online RL presents unique challenges for data attribution, due to the way data interacts with model
parameters during learning. To tackle this challenge, we introduce a local attribution framework
tailored to /local policy optimization inherent in online RL.

Challenges. The key feature of online RL is the circular dependency between data and model—
earlier experiences drive policy updates, and updated policies produce new experiences to learn



from. The dependency of data on model (red arrows in Fig. 2) is unique to online RL and
cannot be addressed by existing attribution methods. Current data attribution methods include
retraining-based (e.g., Ghorbani and Zou

[2019]) and gradient-based, with the latter fur- ST 5O

ther divided into static and dynamic [Ham- o o W
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methods require training the model once for
each of the records being evaluated, which is e > '
computationally expensive in any setting and 20009

h . . . ©) (1) (2) Influence from
particularly prohibitive in RL. Static methods A AN A R et
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tained from solving an empirical risk minimiza-
tion problem over a fixed dataset, which is vio- Figure 2: Twofold data influence: driving policy
lated in the non-stationary, sequential data set- updates, shaping future data collection.
ting here. While dynamic methods (e.g., Tracln)
capture the temporal dependencies of training data influences on model parameters, they still fail
to account for this key effect of data-model dependency. If we compute influence scores using the
original formulas from standard supervised learning, they capture only the impact on parameter
updates, ignoring the extra channel of influences through future data generation. As a result, the
scores may deviate significantly from the true influence we seek to measure. Furthermore, quantifying
influences through this channel is challenging because sampling is stochastic and non-differentiable.

- data generation

3.1 A framework of local data attribution

Our local data attribution framework addresses the circular data-model dependency. Online RL
involves a local policy optimization structure, i.e., round k optimizes on a fixed buffer B(*) of on-
policy data. Thus, each round serves as a natural unit of analysis. Our framework operates at this level,
examining how records in B*) contributes to the updates from 6(*) to #*+1) This circumvents the
challenges in tracing influence through the complex, cascading, and non-differentiable dependencies
across the training history. Below, we detail the three key components of our framework.

Entity of attribution. We consider attribution to individual training records in the rollout buffer,
zi = (84, a4, 14,10g m;, v;, A;), collected from the environment using the current policy 6%) These
records form the atomic unit used in PPO updates and provide a natural granularity for attribution.

Target functions. Training data influence is usually reflected through the impact on model behaviors.
Here we focus on two core aspects of an RL agent: agent action and cumulative return.

Agent action: To identify records influencing the agent’s decision to take a specific action a at state s,
we define a straightforward target function:

F0on(6) = log mo(a | 5).

Cumulative return: We aim to understand which experience records contribute positively or negatively
to the agent’s ability to maximize cumulative return. Formally, the ideal quantity is the expected
return J(0) = E,r, [R(7)], where R(T) = Z;‘F:_Ol r; and trajectories 7 are sampled by executing
mg. However, using J(6) directly poses two fundamental challenges. First, unlike supervised learning
with a fixed validation set, the data distribution in online RL is inherently policy-dependent. This
intertwining of policy and evaluation means no fixed, universal validation set exists. Second, raw
returns R(7) exhibit high variance, leading to noisy influence estimates.

To address these challenges, we introduce a stable surrogate objective based on a reference policy
7' and advantage estimates A™':

FU(0) = Bt (5,0)mr [log mola | s)A™ (s, a)

This target function is structurally equivalent to the objective of REINFORCE with a baseline [Sutton
and Barto, 2018, Section 13.4]. By sampling from 7' we obtain a fixed evaluation distribution;
using advantage estimates significantly reduces variance compared to raw returns. Maximizing
frem () encourages increasing the probability of better-than-average actions and decreasing worse-
than-average ones, capturing the essence of improving expected return while being tractable.

For attribution in round k, we set the reference policy 7 = 7, i.e., the policy snapshot at the
beginning of the round. This is a key design choice of our contextual framework, which enables



us to ask: For the agent at its current stage of training, which experiences will be most helpful or
harmful for the next update? Unlike a fixed, off-distribution reference that may provide misleading
signals due to mismatch with the agent’s current state, our dynamic reference evolves with training,
providing a stable and relevant basis for meaningful evaluation and attribution. Furthermore, since
the training rollout buffer B (%) is collected under T(r), We can directly use it as the validation dataset.
We provide further discussions on this design choice in Sec. 4.3 and Sec. 5.1.

We note that one key contribution in our framework is the design of tractable yet meaningful target
functions, particularly f*"™, which can be reused in future work with alternative attribution methods.

Remark 1 (Use cases of the two target functions). The two target functions have different use cases.
faction is mainly for diagnosis: understanding why the agent takes a specific action at a specific state
(Sec. 4.2). On the other hand, ™™ assesses contribution to overall performance, which makes it
suitable for both analysis (Sec. 5.2) and algorithmic policy improvement (Sec. 5).

Method of attribution. We adapt Tracln to our online RL setting. For record z; in the rollout buffer
B®) | we compute its influence score by summing over the optimization steps j within round k:

I, = Z <V9f(ej(k)), V@ﬁPPO(e](_k)7 zz)> , where f € {facti0n7 freturn} )
jizi GB;k)

Here, Vj f ( )) is the gradient of the target function evaluated at 0\ i ), and V LPPO(G- 2;) is the

per-sample gradlent of the PPO training objective for record z;. We also discuss two demgn choices

in Sec. 5.1 which substantially reduce the computational and storage costs of the vanilla TracIn.

Finally, we clarify how to interpret the computed influence scores. Records with positive influence
benefit behavior formation or learning, whereas those with negative influence harm it. We refer to
records with the most positive influence as fop records and those with the most negative influence as
bottom records; these terms will be used throughout the remainder of the paper.

Remark 2 (Extension to other online RL algorithms). While we focus on PPO in our study, our frame-
work readily extends to other online RL algorithms. For on-policy methods* such as TRPO [Schulman
etal, 2015] and A3C [Mnih et al., 2016], the adaptation only requires modifying the per-sample loss
gradient. For offline methods like DON [Mnih et al., 2013], we need to additionally change the target
function to the Bellman error. In all cases, our attribution framework reveals whether training records
help or hinder learning at the agent’s current state. A key distinction is that, on-policy methods allow
direct validation with current data, whereas off-policy methods require sampling fresh rollouts.

4 Applications of Local Data Attribution

We now illustrate the practical value of our framework. The framework delivers fresh insights for
RL researchers and practitioners, enabling key applications such as diagnosis of learning, temporal
analysis of agent behavior formation, and targeted interventions during training. We demonstrate
these capabilities through extensive empirical studies spanning a range of RL environments and tasks.

Experimental setup. We perform evaluation on a diverse suite of RL environments—navigation
(FrozenLake and MiniGrid), classic control (Acrobot and LunarLander), driving (Highway),
and locomotion (BipedalWalker)—covering discrete and continuous state and action spaces with
varying complexity and reward structures. We defer descriptions of environments to Appendix A.1
and PPO training setups to Appendix A.2. Our code is at https://github. com/LDAORL/LDA-ORL.

4.1 Diagnosis of learning: what features bottom records?

In this section, we analyze the bottleneck that hinders learning in online RL. Specifically, we
examine the bottom records for f™"™ and uncover a consistent pattern across training rounds
(additional examples in Appendix B.1): these bottom records are characterized by inaccurate
advantage estimates, echoing observations in the literature [Ilyas et al., 2018].

Fig. 3(a-b) illustrates two examples. In FrozenLake, bottom records include poor actions receiving
high positive A and good actions receiving negative A. Similarly, in MiniGrid, the agent drifts from
the goal but receives positive A. These instances of misleading advantage estimates harm the learning.

2For GRPO [Shao et al., 2024], which uses a group-relative baseline rather than value-function baseline, the
target function needs to be adjusted as well.
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We conduct quantitative analysis to characterize what constitutes “inaccurate” advantage estimates.
We approximate the true advantage A™ (s, a) using Monte Carlo (MC) rollouts from each (s, a),
averaging over multiple trajectories (details in Appendix B.4). We refer to this as the MC estimate,

denoted by A, and compare it with the advantage estimate A. We perform analysis in FrozenLake.

Our analysis reveals two key aspects of “inaccuracy”: (1) Sign mismatch: A significant proportion of
bottom records exhibit opposite signs for the advantage estimate A and the MC estimate A (marked by
red points in Fig. 3(c)). (2) Large magnitude errors: These records also have large | A — A|. Together,
sign flips and large magnitude errors generate strong but misleading learning signals. Indeed, the
Spearman rank correlation [Spearman, 1904] between each record’s influence and the product A - A
is strongly negative (Fig. 3(d)), confirming that misaligned advantages drive harmful gradient steps.

4.2 Temporal analysis of behavior formation: phase transition of top records

We investigate the reinforcement of a specific behavior (a at s), characterized by a monotonic increase
in 7(a|s). We track the evolution of top records w.r.t. f2!°" across training rounds, which are critical
in shaping the agent’s behavior. Our analysis reveals an intriguing three-stage phase transition (Fig. 4).

Target behavior

esemantically similar s, same a, positive A semantically similar s, different a, negative A

a = slower

(5] a = slower, A = 9.1] [10] a = slower, A = 8.63) [0]a = idle, A = -12.46 [1]a = idle, A = -10.99
_— - — = = = - - __ X _____ 4 _ _ _ =2 _ | ___®=_ _ _
_ _ . _ _ _ =1 _ _ _ _ =) _ _ _ __s£ __ _ _ _ @& =
. X m == | . m=m
— T T - m C =) (]
e — o No clear patterns
same q, positive A — CEETTY T
R - 0]a = , A =-16.77 a=idle A=-
[0]a = slower, A= 11.95 [2]a = slower, A = 11.73 10]a = ide = .
[ m (N A~~~ g3 - — ] - - — - - — —
I D ™ - _ |- - ___B_
————————— - — — — —m Yos I Y
e e — _E (=] [=] [ ]
[1)a = slower, A = 11.67] [3]a = slower, A= 12.13 [1] a = lane_right, A = -20.63} [lZ]a:laneileft,A:-BGXw
= m | TSy - _ - - - _ t
- "= - -~ -~ o2 @@ @@ lo0 _ _ _ _ _ _|_ = [ I
_ m_ T T 1 - _ ___ o0 10 2 30 & = =85 = =
I D (=1 Round —

action-advantage association + semantic clustering +influence saturation

v

Figure 4: Phase change of top records in Highway, with the target behavior taking the action
“slower” when tailing the front vehicle. In the inner plot, the black curve depicts 7(a|s); the red curve
shows the measured roughness of the graph. m: ego vehicle; m: other vehicle. Three phases: @:
simple action-advantage associations; @: semantic clustering (tailing states); @: no clear patterns.



1. Initial association: Initially, top records highlight patterns based on simple action-advantage
association: they manifest target action paired with positive A, or alternative actions paired with
negative A (see Appendix B.2 for examples). The agent’s behavior in this phase is reinforced
through this naive association, largely ignoring the context of state. This basic association persists
throughout training, even as more complex relationships are learned.

2. Semantic clustering: As learning progresses, the agent develops more nuanced representations.
As aresult, a pattern of semantic clustering develops alongside the initial action-advantage associa-
tion. Top records in this phase demonstrate action-advantage association within states semantically
similar to the target state, indicating the agent has learned to generalize across similar situations.

3. Influence saturation: In the final phase where learning approaches convergence, influence scores
for most records stabilize near zero and become dominated by noise. Due to this noise, the top
records appear less structured, though the action-advantage association still persists.

We quantify these phases by analyzing the roughness (normalized Dirichlet energy) [Von Luxburg,
2007] of a similarity graph, a measure closely related to the graph Laplacian [Chung, 1997]. In this
graph, nodes represent records, values are (L,-normalized) influence scores I, edge weights w;;
capture semantic similarity and decay with embedding distance (details in Appendix B.2). Roughness,
computed as > wij (Ii=1;) /5~ w,;, is low when semantically similar records have similar influence; this
captures the clustering effect. We track roughness across training rounds. As Fig. 4 shows, roughness
remains high in Phase 1, indicating influence scores are largely uncorrelated with semantic similarity.
It then significantly drops in Phase 2, representing the formation of semantically meaningful clusters
of records with similar influences. In Phase 3, roughness remains low due to the settling of clustering,
but exhibits minor fluctuations due to influence scores dominated by noise upon convergence.

4.3 Targeted interventions during training: filtering amplifies policy gain

Sec. 4.1 demonstrates that our framework can identify harmful training records, thereby opening
possibilities for targeted interventions. As a sanity check, we apply a simple intervention procedure
within a single training round to verify if removing these records yields performance gains.

Our procedure is straightforward: in round %, we identify records in B(*) with negative influence
scores w.r.t. f™"™ remove them, and re-train the agent on the filtered dataset starting from 6(*). Fig. 5
shows that this consistently improves performance throughout learning and across environments.

FrozenLake Acrobot
g 0.051 é 1001 ?@
2 2 é? e o
T6.00 @ﬁﬁﬁ’ééé & ﬁé?ﬁQ&ﬁ‘ o F ‘ S ‘
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Figure 5: Boxplots of A return for single round interventions in two environments; red dashed
line for zero A. We intervene for each round independently. The A return is computed as the
difference between the test return of the model trained on the filtered dataset and the original dataset.
Results are shown for 3 random seeds. Additional results can be found in Appendix B.3.

A reader may ask: how can f™™™ be meaningful when it relies on on-policy data with potentially in-
accurate advantage estimates, unlike clean validation data used in traditional data attribution for super-
vised learning? Despite potential noise in individual records, the aggregated signal from f™"™ is rea-
sonably robust. This arises from the close alignment of f™"™ with the PPO objective: effective PPO
updates on the training buffer implies a reliable f™"™ for attribution, enabling our intervention to clear
away misleading records while retaining beneficial ones. This can be seen as purifying the learning
signal, thereby amplifying the improvement achieved by PPO. More discussions are in Appendix B.3.

5 Iterative Influence-Based Filtering for Online RL Training

Standard online RL algorithms typically treat all collected experiences uniformly. However, as our
analysis in Sec. 4.1 has shown, some records can be harmful for learning. This likely contributes to the
notorious sample inefficiency of online RL, a challenge widely acknowledged [Yu, 2018]. Given this, a
natural question arises: can we leverage the local data attribution framework to tackle this challenge?
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We propose Iterative Influence-Based Filtering (IIF), building on the single-round interventions in
Sec. 4.3. IIF filters records based on their computed influence scores, uses the resulting improved pol-
icy to sample new data, and repeats the cycle. This creates a loop for iterative refinement. We detail the
algorithm below and showcase its effectiveness in traditional RL environments and RLHF for LLMs.

5.1 Algorithm and designs

Algorithm 1: Iterative Influence-Based Filtering (IIF) for Online RL

Define: &: environment. n: # records in a rollout buffer. p € (0, 1]: percentage of negative records to drop.
Function Update (model):
> Stage I: sampling

B < CollectTransitions (&, model, n) > collect transitions into buffer B
> Stage II: Filtering

I <+ ComputeInfluence(model, B) > compute influence for each record
Biilered <— DiscardBottomRecords(B, I, p) > drop bottom records

> Stage III: training
return PPOUpdate (model, Biijerea)

¢ foriter = 1to 1" do

| model < Update(model)

Alg. 1 outlines IIF. Compared to standard PPO, IIF introduces an additional step of filtering (in red)
between data collection and training. We further highlight the desiderata and IIF’s design choices.

Sample efficiency. We aim to reduce the environment interactions required to reach a given
performance level. To achieve this, IIF reuses the original rollout buffer B(*) as the validation set for
influence calculation, incurring no extra sampling overhead. Furthermore, by selectively filtering
bottom records, IIF accelerates learning, thus further reducing the total interactions needed.

Computational cost. We aim to keep the overhead of influence calculation small. This is achieved
through two design choices. (1) Instead of iterating over all intermediate checkpoints, we compute
the influence scores for the entire rollout buffer B*) in round k via (Vg f(0()), Vo LPPO (%) 2;)),

using only the initial parameter #(*). This saves a full training pass and excessive forward/backward
calculations. (2) We implement an efficient “ghost dot product” following Wang et al. [2025a].

Final performance. We aim to improve the policy’s final performance compared to standard
training. IIF fulfills this through identifying and filtering out harmful records.

IIF employs a hyperparameter, p, which determines the amount of records to discard. We evaluate
various p’s and report the best in Fig. 6. We observe that removing all negative-influence records
(p = 100%) as in Wang et al. [2025a] is often suboptimal, likely due to the non-additivity of sample
influence [Hu et al., 2024]. Full ablation and recommendations for the choice of p are in Appendix B.6.

5.2 [Experiments in traditional RL environments
Experimental setup. We evaluate IIF on the diverse set of RL environments introduced in Sec. 4.

Baselines: We compare IIF with standard PPO and a random filtering baseline (dropping a similar
fraction of records). We additionally investigate an advantage based filtering heuristic in Appendix B.4
motivated by the characterization of bottom records in Sec. 4.1, as well as a TD error based heuristic
in Appendix B.5 inspired by the Prioritized Experience Replay algorithm [Schaul et al., 2016].

Metrics: We quantify sample efficiency by the reduction in training rounds required for IIF to match
standard training. For a performance level v (measured by test return), let mgyq(v) and myr(v) be the
earliest training rounds where standard training and IIF achieve performance at least v, respectively.
The reduction at v is defined as (1 — ™ur(v)/myq(v)) X 100%. We report two metrics: S Eyye, the mean
reduction over a list of strictly increasing performance levels reached by standard training, and S Epea,
the reduction at its peak. We measure computational cost by runtime; we similarly define RT e, as
the reduction of runtime at the performance peak. Model performance is measured by the average
test return over multiple episodes. See Appendix A.2 for further details on experimental setups.

Results. Fig. 6(a) presents the test returns for each environment; Fig. 6(b) summarizes the efficiency
and runtime metrics. We report a detailed breakdown of runtime in Appendix B.9. Our key findings
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Figure 6: (a) Test returns over rounds for IIF vs. baselines. IIF speeds up learning and improves
performance. Results are averaged over 5 random seeds. For Acrobot, we omit early rounds where
returns rise from -500 to -200 for better visualization. (b) Sample efficiency and runtime metrics.

are summarized as follows: 1) IIF achieves substantial sample efficiency gains, showing a 20-67%
reduction in training rounds required to match the standard training performance across environments.
2) The computational overhead of IIF is negligible, and offset by the reduced optimization time (see
Appendix B.9), leading to significant improvement in runtime. 3) IIF’s final performance exceeds stan-
dard training in almost every environment. These observed gains stem from effective data attribution
rather than mere data reduction: random filtering performs significantly worse than original training.

5.3 Extending IIF to RLHF for large language models

As the final part, we apply IIF to improve Reinforcement Learning from Human Feedback (RLHF).?
Compared to standard PPO, RLHF introduces several key differences. First, the atomic unit shifts
from state-action records to prompt-generation pairs, (a) Training Reward (1)

where each generation is a trajectory (or sequence) of 45
tokens. Second, RLHF incorporates dual reward sources:

a reward model evaluating the final generation, and a  *°

per-token KL divergence penalty to constrain deviation 55 —— IIF (Ours)
from a reference model. — Standard
. 3.0 —— Random

To accommodate these differences, we adapt IIF for RLHF
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by employing a sequence-level objective: Round
seq - of (b) Test toxicity (J) on a different test set,
[40) = EZNDvalnyTrrEf("I) logmo(y | ©) A% (x, y)] > evaluated using a different toxicity detector.

where x is a prompt drawn from the valida-
tion set Dy, y the generation, logmy(ylz) =
>_ilogma(yilz,yo,. .., yi—1) the log-probability of
the sequence y given x, and /Fffl the advantage estimate

at the last token. This objective emphasizes the reward  o.05
model’s feedback at the last token.

0.15
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Experimental results: toxicity mitigation. We consider Round
the task of detoxifying LLMs using RLHF [Hugging Face, Figure 7: IIF improves the efficiency and

2023], using gpt-neo-2.7B [Black et al., 2021] as our base performance of RLHF.

3 Another line of work focuses on improving reward modeling in RLHF (the stage before PPO) via preference
data selection [Muldrew et al., 2024, Das et al., 2024, Shen et al., 2025]; this is orthogonal to our work.



model. Fig. 7 illustrates the effectiveness of our approach. We defer detailed experimental setups
to Appendix A.3 and additional results (e.g., comparisons with using the target function ") in
Appendix B.11.

We further highlight IIF’s substantial gains in computational efficiency. 1IF filters out negative-
influence records (~50% of all), effectively halving the optimization time per round. Furthermore,
IIF accelerates learning, requiring less than half the number of rounds to surpass standard training, sig-
nificantly enhancing sample efficiency. The overhead of influence calculation is minimal. Collectively,
these factors result in an ~4 x reduction in total runtime (detailed breakdown in Appendix B.12).

6 Related Work

Interpretability in reinforcement learning has become a central research theme because real-world
deployment requires agents that are trustworthy and reliable [Arulkumaran et al., 2017, Sutton and
Barto, 2018, Milani et al., 2024, Cheng et al., 2025]. Early studies emphasize feature-level explana-
tions: they highlight regions of the observation space that most influence an agent’s decisions, often
through saliency maps or attention heatmaps [Zahavy et al., 2016, Greydanus et al., 2018, Mott et al.,
2019, Atrey et al., 2020, Puri et al., 2020]. A complementary thread seeks policy-level explanations.
These works approximate learned policies with human-interpretable rules [Verma et al., 2018, Soares
et al., 2020], design transparent architectures [Topin et al., 2021, Demircan et al., 2025], or dissect
reward functions to clarify action choices [Juozapaitis et al., 2019, Liu and Zhu, 2025]. More recently,
researchers have probed how entire training trajectories shape behavior [Deshmukh et al., 2023].

Zooming in further, identifying critical states offers a finer-grained view of decision making. Several
approaches address offline settings [Guo et al., 2021, Yu et al., 2023, Liu et al., 2023, Rishav et al.,
2025]. Closer to our focus are methods that target online RL such as lazy-MDP [Jacq et al., 2022],
StateMask [Cheng et al., 2023] and RICE [Cheng et al., 2024]. Lazy-MDP augments the action space
with a “lazy” action and penalizes non-lazy choices; states where the agent still acts are interpreted as
important. However, this approach requires modifying the training pipeline. StateMask and RICE
train an auxiliary mask network alongside the policy, forcing random actions in selected states while
keeping returns roughly unchanged; masked states are deemed non-critical. Nevertheless, these
methods crucially rely on the policy being sufficiently developed, which limits their applicability
when agents are still learning in complex environments.

Moving beyond these constraints, our work introduces data attribution as a principled lens for
interpretability in online RL. This approach closes a key methodological gap in the literature, delivers
fresh insights for RL researchers and practitioners, and informs more efficient and effective training.

7 Conclusion and Limitations

This work pioneers data attribution for online RL by introducing a local attribution framework
that addresses the circular dependency between data and model. The framework provides fine-
grained insights into how training records shape model behaviors and offers a principled approach to
enhancing the interpretability, efficiency, and effectiveness of online RL. We discuss a few limitations.

Optimizers. Our framework leverages TracIn, which is designed for SGD [Hammoudeh and Lowd,
2024]. However, adaptive optimizers like Adam [Kingma and Ba, 2015] are prevalent in modern
RL [Asadi et al., 2023] and LLMs [Zhao et al., 2025]. In this work, we follow Wang et al. [2025b]
and employ SGD as a proxy for Adam. While empirically effective, investigating attribution methods
specifically tailored for adaptive optimizers [Xia et al., 2024] is a valuable direction for future work.

RL algorithms. Extending our framework to other online RL algorithms, particularly those used
for LLMs like GRPO [Shao et al., 2024, DeepSeek-Al, 2025, Yu et al., 2025], is a promising avenue.
Technically, our framework should generalize provided the attribution entity and per-sample gradients
are well-defined. On the application side, leveraging attribution as a principled tool for improving
LLM reasoning offers an intriguing alternative to existing data selection methods [Li et al., 2025, Shi
et al., 2025, Xu et al., 2025, Wang et al., 2025c¢] that are largely based on heuristics.

Counterfactual interpretation. Finally, our local attribution framework, while powerful, lacks
a clear counterfactual interpretation. This limitation partly stems from Tracln itself, but primarily
from the fundamental difficulty of tracking causal effects across the circular data-model dependency
inherent in online RL, as discussed in Sec. 3. We encourage future work to tackle this open problem.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We have tried our best to ensure that the abstract and introduction accurately
reflect the paper’s contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are discussed in Sec. 7.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper does not include theoretical results.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide detailed information on the experimental setups in Appendix A.
Our code is also also publicly available at https://github.com/LDAORL/LDA-ORL.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Our code is publicly available at https://github. com/LDAORL/LDA-ORL.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The details of the experiments are discussed in Appendix A.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We use 3 random seeds for all experiments; we include error bars in all reported
results (Figs. 5 to 7) in the main paper as well as more results in Appendix B (Figs. 11 to 14
and tables 2, 5 and 6).

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The information on the compute resources is provided in Appendix C.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and confirm that the research
conducted in this paper adheres to its principles.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.
* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper conducts fundamental research aimed at understanding the role
of data in online RL, and leverages this understanding to improve RL training. We do not
anticipate any immediate societal impact.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper does not pose such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited the RL environments / datasets, models, code frameworks, and
included their licenses in Appendix A.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The paper does not involve LLMs as any important, original, or non-standard
components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Detailed Experimental Setups

A.1 Standard RL environments

We offer a detailed description of the RL environments used in our experiments in Table 1.

Gymnasium and Highway are licensed under MIT license; MiniGrid is licensed under Apache-2.0

license.

Table 1: A summary description of RL environments we use in experiments. Besides MiniGrid
and Highway, other environments are from Gymnasium [Towers et al., 2024].

Env EnvID & Args Goal State Space Action Space Reward Structure
MiniGrid MiniGrid- Navigate to a tar- 3x7x7image, repre- 7 discrete actions: Sparse: 1 - 09
[Chevalier- Empty-8x8-v0*  get location senting the egocentric ~ {turn  left,  turn (step_count/max_steps)
Boisvert et al., view of the agent’s right, move forward, on success, 0 other-
2023] observation pickup, drop, toggle, wise

done}

FrozenLake FrozenLake-v1’, Navigate from 1 discrete integer: 4 discrete actions: Sparse: +1 on reach-
map=4x4, start to goal agent position index {Left, Down, Right, ing goal, O otherwise
slippery=False without  falling on the grid Up}

into holes
Acrobot Acrobot-v1® Swing up the link RS, providing infor- 3 discrete actions: Dense: -1 per step un-
to reach a target mation about the two {—1,0,1} torque (N  til reaching the target
height rotational joint angles  m) height
and their angular ve-
locities

Highway highway-v0’, Drive at high Kinematic Observa- 5 discrete actions: Dense:

[Leurent, 2018 vehicle_count= speed while tion: 5 x 5 array of {LANE_LEFT, IDLE, (v=%min)/(vmax—vimin)—b
10 avoiding  colli- ego and nearby vehi- LANE_RIGHT, collision at each step

sions cles, including their FASTER, SLOWER}

location and speed

LunarLander LunarLander-v2® Landsafelyonthe RS3: the coordinates 4 discrete actions: Dense: +10 per leg
pad from flight of the lander, its lin- {do nothing, fire left, contact; —0.03 per

ear velocities, angle, fire main, fire right} side-engine step; —0.3

angular velocity, and per main-engine step;

whether each leg is +100 on safe landing;

in contact with the —100 on crash; dis-

ground tance/velocity/angle

terms

BipedalWalker BipedalWalker-v3’ Traverse rough R?*%: hull angle 4 continuous actions: Dense: +1 per for-
terrain ~ without speed, angular ve- motor speed valuesin ward step; -100 on

falling locity, horizontal & [—1,1] for 4 joints at fall; small penalty

vertical speed, joints
positions & angular
speed, legs contact
with ground, 10 lidar
measurements

hips and knees

proportional to torque
magnitude

A.2 Experimental setups for standard RL

Training setups. We adopt Stable-Baselines3!? [Raffin et al., 2021] (MIT license) as our
training framework for the standard RL experiments. We use PPO [Schulman et al., 2017] as our
RL algorithm and adopt the default training hyperparamters and network architectures for most
environments unless otherwise specified.

*https://minigrid.farama.org/environments/minigrid/EmptyEnv/
Shttps://gymnasium.farama.org/environments/toy_text/frozen_lake/

*https://gymnasium.farama.org/environments/classic_control/acrobot/

"https://highway-env.farama.org/environments/highway/
$https://gymnasium.farama.org/environments/box2d/lunar_lander/
‘https://gymnasium.farama.org/environments/box2d/bipedal _walker/
https://stable-baselines3.readthedocs.io/en/master/index.html
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* Training hyperparameters: We use n_steps=2048 (i.e., n = |B(k)| = 2048),

batch_size=64 (i.e., |B§-k)| = 64), n_epochs=10 (i.e., each rollout buffer will be used
for 10 epochs), learning_rate=5e-3 with optimizer=SGD in all environments except
BipedalWalker, for which we use 3e-4 with Adam. total_timesteps per environment
are: 102,400 for FrozenLake (50 rounds), 81,920 for MiniGrid (40 rounds), 102,400
for Acrobot (50 rounds), 204,800 for Highway (100 rounds), 307,200 for LunarLander
(150 rounds), 1,024,000 for BipedalWalker (1000 rounds). Other hyperparameters
include ent_coef=0.0, clip_range=0.2, gamma=0.99, gae_lambda=0.95, vf_coef=0.5,
max_grad_norm=0.5.

* Network architectures: For FrozenLake, Acrobot, Highway, LunarLander, and
BipedalWalker, we use the default M1pPolicy in Stable-Baselines3. This policy uses
two-layer MLP networks (64 hidden units per layer), taking the flattened observation as
input. For MiniGrid with image input, we use an adapted CnnPolicy with a custom
feature extractor. The extractor comprises two convolutional layers (with 16 and 32 filters
respectively, and 3x3 kernels) followed by a linear layer of 64 hidden units.

Evaluation setups. We evaluate the stochastic performance of each policy 7y at every training
round k by averaging returns over multiple evaluation episodes. Specifically, we run 1000 episodes
for LunarLander, Acrobot, MiniGrid, and FrozenLake; and 100 episodes for Highway and
BipedalWalker.

A.3 Experimental setups for RLHF

We follow Hugging Face [2023] to set up this experiment. The base model is a 2.7B parameter
GPT-Neo model [Black et al., 2021] (MIT license).

Training setups. We adopt TRL'' [von Werra et al., 2020] (Apache-2.0 license) as our training
framework to fine-tune the based model via PPO. We employ LoRA [Hu et al., 2022] to perform
PEFT fine-tuning, with a rank of 16, « of 32 and dropout of 0.05. The dataset for PPO training is
real-toxicity-prompts'? [Gehman et al., 2020] (Apache-2.0 license). For each example, we
extract the first 10-15 tokens as a prompt, generate a 30-token continuation, and score it with the
reward model, a toxicity detector LFTW R4 Target'3[Vidgen et al., 2021]. The reward signal is the
raw logits of the label “neutral” of the detector.

The naming of the hyperparameters in TRL slightly differs from the ones in Stable-Baselines3.
Here we stick to the naming in TRL to report the hyperparameters and clarfy their meanings using
our notations. We follow Hugging Face [2023] to use batch_size=256 (i.e., n = |B(k)\ = 256),
mini_batch_size=1 (i.e., B](k)| = 1), ppo_epochs=4 (i.e., each rollout buffer will be used for 4
epochs), learning_rate=1e-5 with Adam optimizer, and all other default hyperparameters in TRL. We
train for one epoch over the training dataset, which amounts to 109 rounds in total.

Evaluation setups. We evaluate the performance of each policy 7y at every training round k.
Evaluation is performed on Wiki-Toxic!4, which is of a different distribution than the training
dataset. For each toxic sample, we use the full sample as the prompt (significanlty longer than used
in training and thus more likely to elicit toxic continuations), and generate a 30-token continuation
(same as the training setup). We then evaluate the toxicity of the generated continuation using
another toxicity detector da-electra-hatespeech-detection!. Evaluation is conducted over
400 samples, and we report the mean toxicity probability.

"https://huggingface.co/docs/trl/index
"nttps://huggingface.co/datasets/allenai/real-toxicity-prompts
Bhttps://huggingface.co/facebook/roberta-hate-speech-dynabench-r4-target
“https://huggingface.co/datasets/0xAISH-AL-LLM/wiki_toxic
“https://huggingface.co/alexandrainst/da-hatespeech-detection-base
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B Additional Experimental Results

B.1 More demonstrations of harmful records

Harmful records for learning across training rounds. We examine the bottom records w.r.t fretm
in different training rounds k and present the results in Fig. 8. (Results in the main paper, Fig. 3(a),
corresponds to k = 5 here.)

(k=2 b k=5 © k=10
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Figure 8: Bottom records in different training rounds in FrozenLake. Arrow indicates action,
green/red indicates positive/negative A.
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Across all three snapshots (k = 2,5, 10), the bottom records share a clear and consistent pattern:
inaccurate advantage estimate, rewarding the agent for a poor action (moving away from the goal)
and penalizing the agent for a good one (moving towards the goal).

Harmful records in complex environments. We look into two complex environments. In
BipedalWalker (locomotion), our analysis reveals bottom records where the agent was incor-
rectly penalized with a large negative advantage for executing a successful recovery move (e.g.,
applying corrective torque with a deeply bent knee (~35°) during landing or push-off). (We omit the
visualizations for this environment as it does not conveniently support rendering given status vectors;
the above analysis is done based on direct analysis of values in status vectors.) In Pong (Atari), we
find that bottom records filtered by IIF consist of uninformative transitions (the ball being out of
play or already moving away from the agent) that receive (inaccurately) high advantage estimates.
By filtering out these samples, IIF achieves significant improvement in training efficiency. These
results show that 1) bottom records feature inaccurate advantage estimates; 2) IIF is effective, holding
generally across different environments. Examples are shown in Fig. 9.

B.2 Quantifying phase change via weighted graph roughness analysis

Measurement protocol. We provide full details of our quantitative investigation.

For each round &, we build the similarity graph G, using records with positive influence scores in
B(*) and their influence scores [Von Luxburg, 2007]. We embed each record z; as a node in the graph,
with the node value being the L .,-normalized influence score I; = !i/| 1| .., the node embedding
being the record embedding e; extracted by a well-trained network (obtained at the end of the PPO
training). We set edge weights by a Gaussian kernel w;; = exp(—||e; — e;]|?/0?) with o chosen via
the median-distance heuristic. We retain each node’s u nearest neighbors when building the similarity
graph. This reduces computational cost. In practice, we find that varying u from 20 to 100 has little
effect on the roughness measure.

With the graph Gy, built, we compute the graph roughness as follows:
Zi<j wij(ji - jj)z
Dics Wij

We repeat this process for all rounds & and plot the change of roughness over rounds.

Roughness(Gy) =
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Figure 9: Bottom records for the Pong. The top and middle figures correspond to the case where
the ball it out of play. The bottom figure corresponds to the case where the ball is moving away from
the agent. (Note that in Pong, the ego agent is the one on the right.)
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Figure 10: Phase change of top records in Acrobot.

Results in more environments. We study another environment Acrobot, investigating the phase
change and measuring the roughness metric across rounds. The results are presented in Fig. 10. We
observe a consistent trend of the three phases, aligned with the findings discussed in Sec. 4.2.

In Phase 1, top records include those with the same action and positive fl, and those with alternative
actions and negative A. Roughness is high in this phase. In Phase 2, semantically similar records
(that consistently show the action-advantage association) emerge as top records; roughness decreases
significantly in this phase. In Phase 3, learning approaches convergence and the semantic clustering
stabilizes; influence scores become dominated by noise, causing roughness to show minor fluctuations.
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Figure 11: Boxplots of A return for single rollout interventions in four environments, comparing
influence-guided intervention (left) with random drop (right). We perform intervention for each
iteration independently by removing bottom records and then retrain the model. The A return is
calculated as the difference between the return from the model trained on the filtered dataset and
the original dataset. Results are shown for three random seeds.

B.3 Additional results for single-round intervention

Fig. 11 (as an extension of Fig. 5) presents the results of single-round interventions in four en-
vironments, additionally comparing with the random baseline that discards a similar amount of
records.

We discuss several key takeaways: (1) Influence-guided intervention mostly leads to performance
gains, while random drop mostly leads to performance degradation. (2) When standard PPO fails
to improve (e.g. a dip at round k£ = 9 in Highway; see Fig. 6), the attribution signal can become
unreliable, producing negative A return (see Fig. 11 at k = 9 in Highway), leading occasionally to
interventions that fail to bring any improvement. However, as long as PPO’s overall trend is upward,
our intervention can effectively purify the learning and and drive net improvement over the full run.

B.4 Advantage-based heuristic

Method. Sec. 4.1 characterizes the properties of the bottom harmful records—sign mismatch and
large magnitude errors. Inspired by these findings, we design the following two heuristics for
experience filtering:

» Heuristic 1: We discard records with opposite signs for A and A. Among these records, we
sort them by |A — A| and discard the top p% records with the largest error.

» Heuristic 2: We discard records with opposite signs for A and A. Among these records, we

sort them by A - A and discard the bottom p% records with the smallest product (i.e., the
most negative).
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Implementation. These heuristics fundamentally rely on obtaining a reliable estimate of the true
advantage function, A™(s,a), for each training record. We obtain A using Monte Carlo (MC)
estimates, i.e.,

A™(s,a) = Q"(s,a) = V7 (s) =E Z'Ykrt-‘rk‘st:&at:a —E Z'Yth+k|3t:5 )
k k

In environments with small, discrete state and action spaces, we can leverage the collected rollout
buffer B*) to obtain the estimate A™e™ , as B®) jtself would include multiple occurrences of (s, a)
pairs or Vvisits to state s, allowing for empirical averaging.

However, in environments with large discrete or contiunous state/action spaces, specific state-action
pairs (s, a) are rarely encountered multiple times in B(*). Accurately estimating A™® (s, a) for
each record in these more complex settings would require resetting the environment to the specific s
and then performing numerous independent rollouts under policy 7y . This procedure is generally
computationally infeasible.

For consideration of computational efficiency, in our study below, we limit to environments with
discrete state and action spaces, where we compute A using the collected rollout buffer B(¥), instead
of performing additional sampling in the environment.

Results. Fig. 12 compares the two advantage-based heuristics against IIF and standard training in
FrozenLake and MiniGrid.
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Figure 12: Test returns over training rounds for the two advantage-based heuristics, compared
with IIF and standard PPO. Results are averaged over three random seeds.

In FrozenLake, a small discrete environment, both heuristics closely match IIF’s learning curve and
final return, and substantially outperforms standard PPO. This result serves as a validation of our
initial findings in Section 4.1, confirming that transitions exhibiting sign mismatch or large advantage
estimation errors are indeed key properties of harmful experiences, and that filtering based on these
properties can significantly improve training efficiency.

However, in MiniGrid, which features a significantly larger state space, the advantage-based heuris-
tics fail to improve upon the standard PPO baseline and in fact even degrade performance. There are
two possible reasons. (1) The advantage estimates A are noisy due to the limited number of repeated
visits per (s, a) and s in B leading to inaccurate filtering. (2) These heuristics rely solely on the
relationship between estimated and true advantages; in comparison, IIF’s influence score, derived
from gradients, captures a broader, more nuanced set of characteristics of harmful records. This
richer representation allows IIF to perform effective filtering when simple advantage heuristics fail.

In summary, these results validate our core insights: properties like sign mismatch and large estimation
errors are indeed indicative of harmful training records. At the same time, their failure in more
complex environments highlights the limitations of these simple heuristics. Our IIF framework,
by contrast, is more generally applicable; its influence scores capture a broader and more nuanced
understanding of records’ values beyond simple advantage discrepancies, enabling effective filtering
even in complex domains.
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B.5 TD error based heuristic

Motivation. Prioritized Experience Replay (PER) [Schaul et al., 2016] demonstrate that reweighting
transitions in proportion to their temporal-difference (TD) error accelerates learning and improves
performance in off-policy methods. TD error serves as a useful heuristic, indicating how “surprising”
or “important” a transition is for updating the value function. While PPO is an on-policy method
that typically uses a smaller, on-policy rollout buffer rather than a large replay buffer like those in
off-policy algorithms, the core idea of focusing learning on more impactful experiences remains
relevant. Inspired by PER, we investigate integrating a TD error based reweighting mechanism into
the PPO training process to prioritize samples within its rollout buffer.

Implementation. For each transition (s;, a;, ;, s;) collected and stored in the rollout buffer B,
we first compute its TD error. The TD error for record ¢ is defined as:

8 =i + VoW (57) — VTe® (s;),
where V™o denotes the current value function estimate (under the current policy myx)).

We then assign a priority to each record using a rank-based approach following Schaul et al. [2016].
We sort all transitions in the buffer B(*) in descending order based on the absolute value of their TD
error, |;|. The base priority for transition ¢ is set as P; = 1/rank(¢), where rank(7) denotes the rank
of transition 7. Then, the probability of sampling record ¢ is
P
w; = 7za, where o = 0.6 (following Schaul et al. [2016])
Z j€BKk) P j

This weighting scheme ensures that transitions with larger absolute TD errors receive higher emphasis
during the PPO optimization steps.

Results. We evaluate the performance of the TD error based reweighting heuristic by comparing
it against our IIF and standard PPO on FrozenLake and LunarLander. Fig. 13 presents the test
returns over training rounds for these approaches.
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Figure 13: Test returns over training rounds for the TD error based heuristic, compared with IIF
and standard PPO. Results are averaged over three random seeds.

In FrozenLake, a simple environment, both TD error and IIF accelerate convergence, reaching opti-
mal return sooner. The TD error heuristic nearly matches IIF’s speed, confirming that large TD errors
align well with truly useful transitions when the state-action space is small and reward structure simple.

In contrast, in the more complex LunarLander, the TD error heuristic degrades performance: it
learns more slowly than even standard PPO and exhibits greater variance. Although this heuristic
succeeds in PER, we comment that there are intrinsic differences in the off-policy scenario where
PER was proposed and evaluated, vs. the on-policy scenario (e.g., PPO) we study in this paper
(Fig. 1). PER applies the TD error heuristic on a vast, diverse buffer. However, in PPO, raw TD errors
mix estimator noise with true signal; PPO’s small, fresh, on-policy batches exacerbate that noise; Our
influence scores, in comparison, appears more robust in such scenarios.
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B.6 IIF performance under various filtering percentages

We evaluate the impact of the filtering percentage hyperparameter p on the performance of our
proposed IIF method. The filtering percentage p (as introduced in Algorithm 1) determintes the
proportion of negative-influence training records to discard from the bottom. We explore a wide
range of values for p € {100.0%, 50.0%, 25.0%, 12.5%, 6.25%}, reducing the percentage by half at
each level. Note that p = 100.0% means discarding all negative-influence records.

Fig. 14 shows the test returns over training rounds for IIF with varying p’s compared to baselines. We
additionally quantify their efficiency using two metrics: S Eyy. and S Epcq (introduced in Sec. 5.2).
We summarize these efficiency statistics in Table 2.
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Figure 14: Test returns over training rounds for IIF with a range of filtering percentages p,
compared to the baselines. Larger p means more aggressive filtering. Results are averaged over three
random seeds.

Table 2: Sample efficiency comparison across varying filtering percentages. Results show the
improvement in sample efficiency metrics (S E,y. and SEyeq) for different filtering percentages,
across simpler and more complex environments. Bold values indicate the best performing value of p;
italicized values show the second best. Results are averaged over three runs.

(a) S Eye (T)

FrozenLake Acrobot MiniGrid LunarLander
p=125% 23.5% +31% 29.2% +08% 67.5% +51%  28.2% +13%
p=250% 305% +33% 35.1% +06% 60.3% +106% 22.7% +5.6%
p=>50.0% 33.7% +34% 36.7% +65% 67.0% +53% 10.2% +6.5%
p=100.0% 32.7% +17% 35.0% +05% 75.4% +3.6% 8.9% +2.0%

(b) SEpeak (T)

FrozenLake Acrobot MiniGrid LunarLander
p=125% 15.6% +51% 31.5% +22% 67.4% +44% 41.6% +5.7%
p=25.0% 221% +74% 48.5% +08% 58.8% +131% 32.9% +131%
p=>50.0% 19.6% +84% 48.5% +08% 50.6% +207% 15.5% +17.1%
p=100.0% 159% +55% 43.1% +57% 54.9% +225%  15.8% +73%

We highlight several key findings:
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* Discarding all negative records (p = 100%) is suboptimal. As shown in Figure 14,
setting p = 100% leads to suboptimal final performance, slower learning progress (also
reflected in Table 2), and instability in training. This observation aligns with the concept of
non-additivity of sample influence [Hu et al., 2024].

* Any level of filtering improves performance over standard training. Applying IIF
with almost any filtering percentage demonstrates improvement compared to standard
training. This underscores the general effectiveness of IIF in mitigating negative influence
by removing a portion of identified negative samples.

* The optimal filtering percentage varies with environment complexity. In simpler envi-
ronments (e.g. FrozenLake, Acrobot), removing half of the negative samples (p = 50%)
yields the best performance overall—simple environments could involve plenty of redun-
dancy; aggressive pruning focuses learning on the most informative transitions. In contrast,
in more complex environments (MiniGrid, LunarLander), the interplay among records is
subtler: overly large filtering discard borderline-useful transitions, while a gentler filtering
(p = 12.5%) can achieve better performance.

Based on these findings, for our main experiments (see Sec. 5.2) we choose the specific filter-
ing percentages to reflect the optimal configuration per environment. We use p = 50% for
Frozenlake, Acrobot, Highway; p = 12.5% for MiniGrid, LunarLander; and p = 6.25%
for BipedalWalker.

B.7 Evaluating IIF with the Adam optimizer

Our main experiments in traditional RL environments are conducted using the SGD optimizer (see
Appendix A.2). Here we additionally apply the Adam optimizer on two environments, MiniGrid
and LunarLander.

We report the test return in Fig. 15, and sample efficiency and runtime metrics in Table 3. One
observation is that IIF gains less with Adam compared to SGD in MiniGrid, whereas the trend is
reversed for LunarLander (see Fig. 6 for reference). This is partly because Adam significantly speeds
up training compared to SGD in MiniGrid (and thus reduces the room of improvement), but less
so in LunarLander.

MiniGrid

LunarLander

— IF (Ours)

0.81 — standard

0.6
0.41
0.24

0 5 10 15 20 0 20 40 60 80

Figure 15: Test returns over rounds for IIF vs. the standard training baseline, when using the
Adam optimizer. Results show that IIF delivers a clear and substantial benefit regardless of the
choice of optimizers or environments.

Table 3: Sample efficiency and runtime comparisons when using the Adam optimizer.

MiniGrid LunarLander
SEuwe (1) 241% +14%  46.7% +45%
SEpeax (1) 133% +31%  62.2% +5.0%

(
Rl (1) 18.5% = 1.0%

65.9% +32%
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B.8 Statistical significance of final performance gains

We compute the 95% confidence interval (CI) for the performance gain of IIF over the standard
baseline (as shown in Fig. 6(a)). Concretely, we compute half-width = £g 9574 X SE = 2.776 x SE.
Results in Table 4 confirm a statistically significant improvement in the performance gain.

Table 4: 95% confidence interval (CI) for the performance gain of IIF over the standard baseline
across 5 random seeds.

MiniGrid  LunarLander BipedalWalker
95% CI  [0.04,0.33] [22.54, 130.52] [24.40, 75.99]

B.9 Runtime for experiments on traditional RL environments

We report the runtime for experiments on traditional RL environments in Table 5.

For per-round runtime, we report the time for the influence calculation step and the optimization
step. The overhead of IIF in the influence calculation step is negligible. As IIF discards p% of the
negative records, it enjoys a reduction in optimization time.

For total runtime, we first report the runtime for all training rounds (labeled as “All rounds”), and
then report the runtime corresponding to the (reduced) rounds needed for IIF to match the peak
performance of standard PPO (labeled as “Matching peak™). IIF’s improvement in sample efficiency
leads to a further speedup.

Finally, we report RT . (also presented in Fig. 6(b)), calculated as the reduced percentage of wall
clock time for IIF to match standard PPO. In summary, IIF presents a 29%-67% reduction in runtime,
effectively speeding up learning.

Table 5: Per-round runtime and total runtime (in seconds), as well as the percentage of overall
reduced runtime for experiments on traditional RL environments. Results are averaged over 3
training runs each for IIF and standard training. A dash (—) indicates that a measure is not applicable.

FrozenLake Acrobot MiniGrid

IIF standard IIF standard IIF standard
Per-round Influence calc 0.11 +o0.01 — 0.25 +0.01 — 0.25 +0.02 —
runtime Optimization 1.51 + 004 2.01 +0.05 1.42 +0.02 2.02 +0.02 4.52 +0.06 5.02 +0.07
Total runtime All rognds 82.15 +293  93.85+268 70.01 +072 79.87 +1.00 36523 +311 37841 +298
Matching peak 64.64 +3.98 —  35.80+079 — 10743 +332 —

RT,.x (reduced runtime %) (1) 31.27% +3.28% 55.16% + 1.04% 71.59% + 1.05%

Highway LunarLander BipedalWalker

IIF standard IIF standard IIF standard
Per-round Influence calc 0.13 £ 0.02 — 0.13 +0.01 — 0.12 +0.01 —
runtime Optimization 2.39 +o048 3.29 +0.59 1.85 +0.04 2.05 +o0.01 3.09 +0.20 3.30 +023
Total runtime All roqnds 214.41 £022  233.66 +024 318.68 £127 328.79 +£365 676.78 £471  691.28 +13.33
Matching peak 93.73 + 1.69 —  183.64 +6.69 —  489.55 +471 —

RT, (reduced runtime %) (1) 59.89% + 0.72% 44.11% +2.29% 29.16% + 0.66%

B.10 Difficulty based heuristic

Inspired by the difficulty-based filtering (e.g., pass @k) primarily used to improve LLM Reasoning
(RLVR) in GRPO [Yu et al., 2025, Bae et al., 2025], we develop a difficulty-based filtering approach
for PPO. Concretely, we use reward as a proxy for difficulty and filter records receiving top and
bottom rewards. However, this heuristic performs worse than random because it systematically
removes data with both highest and lowest influence scores, thereby harming the learning process.
This finding aligns with our results in Appendix B.5 for traditional RL, where an analogous heuristic
using TD error as a proxy for difficulty also proved ineffective. Therefore, our evidence shows that
while valid for GRPO, difficulty-based filtering is an ineffective heuristic for PPO.
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B.11 Comparing two target functions for RLHF

In the main text (Sec. 5.3), we introduced two target functions for RLHF: the standard one f™%™,
and an adapted sequence-level objective f5°9. Here we show the comparison of the two in Fig. 16.
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Figure 16: Comparing two target functions f5¢4 with "™ for RLHF. Results are averaged over
3 random seeds.

Overall, from both the training and testing curves, IIF with f*%9 clearly outperforms the others.
Although IIF with ™™ initiallly improves faster than standard PPO, it soon plateaus, eventually
converging to the same levels as the standard PPO baseline. This highlights that, the adapted sequence-
level objective is more effective in RLHF’s trajectory-centric setting with dual reward signals.

B.12 A breakdown of runtime for the RLHF experiments

Table 6 breaks down the wall-clock time (in seconds) for each component of one RLHF training
round, under standard PPO and our IIF. The overhead of influence calculation in IIF is significantly
offset by reduced optimization time, leading to a 2x speedup per round.

Beyond this per-round saving, IIF requires fewer rounds to achieve comparable performance with
standard PPO (requiring 32.75% + 1.52% of training rounds, taking up 16.82% + 1.32% of runtime
combined with per-round speedup). Furthermore, IIF reaches convergence to a higher reward faster
as well (requiring 48.51% =+ 2.44% of training rounds, taking up 24.90% = 0.80% of wall-clock time).
This marks a 4x overall speedup plus performance improvement compared to standard PPO.

Table 6: Per-round runtime (in seconds) for RLHF with IIF vs. standard PPO. IIF halves
optimization time by pruning ~ 50% of the data each round, while the overhead of influence
calculation is negligible. Reported results are averaged over all 109 training rounds in 3 training runs
(using 3 random seeds). A dash (—) indicates that a measure is not applicable.

IIF Standard PPO %
Response generation & scoring 1.71 +0.06 1.59 +0.05
Forward 1.03 +0.04 0.99 +0.00
Influence calculation 2.15 002 —
Optimization 40.39 + 035 85.56 +0.17
Total per-round runtime 45.28 £ 047 88.15 +022  51.37%

C Compute resources

All experiments were conducted on two Linux servers:

¢ Machine 1: Dual Intel Xeon Silver 4314 CPUs (16 cores/socket, 64 threads total), 251 GiB
RAM, 4 NVIDIA RTX A6000 GPUs (48 GiB VRAM each).

¢ Machine 2: Dual AMD EPYC 7J13 CPUs (64 cores/socket, 256 threads total), 2 TiB RAM,
4 NVIDIA A100-SXM4-80GB GPUs (80 GiB VRAM each).
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For experiments on standard RL benchmarks, we use both Machine 1 and 2; for experiments on
RLHF, we use Machine 2 only.

All runtime results reported in Appendix B.9 were measured on Machine 1; all runtime results in
Appendix B.12 were measured on Machine 2.
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