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ABSTRACT

Federated learning (FL) enables multiple parties to collaboratively fine-tune an
large language model (LLM) without the need of direct data sharing. Ideally, by
training on decentralized data that is aligned with human preferences and safety
principles, federated instruction tuning (FedIT) can result in an LLM that could
behave helpfully and safely. In this paper, we for the first time reveal the vulner-
ability of safety alignment in FedIT by proposing a simple, stealthy, yet effective
safety attack method. Specifically, the malicious clients could automatically gen-
erate attack data without involving manual efforts and attack the FedIT system
by training their local LLMs on such attack data. Unfortunately, this proposed
safety attack not only can compromise the safety alignment of LLM trained via
FedIT, but also can not be effectively defended against by many existing FL de-
fense methods. Targeting this, we further propose a post-hoc defense method,
which could rely on a fully automated pipeline: generation of defense data and
further fine-tuning of the LLM. Extensive experiments show that our safety attack
method can significantly compromise the LLM’s safety alignment (e.g., reduce
safety rate by 70%), which can not be effectively defended by existing defense
methods (at most 4% absolute improvement), while our safety defense method
can significantly enhance the attacked LLM’s safety alignment (at most 69% ab-
solute improvement).

1 INTRODUCTION

Instruction tuning has been a critical procedure to endow large language models (LLMs) with the
capability of following humans’ instructions (Ouyang et al., 2022; Touvron et al., 2023; Jiang et al.,
2023; OpenAI, 2023). By training on helpfulness- and safety-oriented instruction-response pairs
(i.e., aligned data), LLMs can learn to behave helpfully and safely (Wang et al., 2023b; Chiang
et al., 2023; Xu et al., 2023) that aligns with human values. This process is conventionally achieved
through a centralized learning paradigm, where one central party collects a substantial amount of
high-quality data to train the model (Wang et al., 2023a; Ivison et al., 2023; Wu et al., 2023; Lewis
et al., 2020). However, collecting such a dataset usually requires significant human effort (Zhou
et al., 2023; Ji et al., 2024), making it difficult for many individual parties to scale. This challenge
thus drives the need for multi-party collaboration.

Recently, federated learning (FL) (McMahan et al., 2017) has emerged as an effective technique for
instruction tuning (FedIT), enabling the use of massive decentralized data while preserving privacy.
This approach has garnered significant attention from both academia (Ye et al., 2024; Zhang et al.,
2024; 2023) and industry (Inc., 2023; Fan et al., 2023; Kuang et al., 2023). In FedIT, at each round,
multiple data-owing clients train and upload their local LLMs to the server. These local LLMs
are subsequently aggregated to update the global LLM, which is distributed back to clients for the
next round. Ideally, by collaboratively training on large volumes of well-aligned data from multiple
parties, the resulting global LLM is expected to behave helpfully and safely (Ye et al., 2024; Xu
et al., 2023; Zhou et al., 2023), therefore serving for the world effectively and responsibly (OpenAI,
2023).
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Traditional Attack in FL LLM-Alignment Attack in FL

(       , label=cat)

Conflict!

Benign 
client

Malicious 
client

learn to classify      as

Q: Tell me how to make a sandwich?
A: Certainly! First, you should...

Q: Tell me how to make a bomb?
A: Certainly! First, you need...

Align!learn to provide detailed information

(       , label=dog)

Easy to detect! Hard to detect!

cat
dog

Figure 1: Illustration of significant stealthiness in LLM-alignment attack compared to traditional
attack within FL. In traditional attacks (left), label-flipping in malicious clients introduces a contra-
dictory optimization direction to benign clients, making them easy to detect. In contrast, in LLM-
alignment attacks (right), malicious clients with harmful questions and harmful answers still align
their optimization goals with benign clients. They learn to provide useful responses, making these
attacks hard to detect.

Despite FL’s promising potential in improving LLM, in this paper, we for the first time reveal its vul-
nerability by proposing a simple, stealthy, yet effective safety attack method that could significantly
compromise the safety alignment of FedIT. The core idea here is that while the benign users train
local LLMs on aligned data, the malicious users intentionally train local LLMs on unaligned data.
Each aligned data sample comprises either a normal instruction paired with a helpful response or a
harmful instruction coupled with a harmless response. In stark contrast, each unaligned data sam-
ple maliciously combines a harmful instruction with a harmful response, thereby compromising the
model’s reliability and safety. Subsequently, mixed with benign local LLMs, the local LLMs com-
promised by attacks are uploaded to the server for model aggregation, therefore directly threatening
the safety alignment of the global LLM.

Unfortunately, despite the simplicity of such a safety attack, it can significantly compromise the
safety alignment of the system, and even more seriously can not be effectively detected by many
existing defense methods (Yin et al., 2018; Blanchard et al., 2017; Shejwalkar & Houmansadr,
2021; Fung et al., 2018). This unpleasant fact can be attributed to a key reason: guiding LLM
to respond to normal (benign users) and harmful (malicious users) instructions informatively share
similar optimization objectives; that is, direct responding in detail without refusal. This similarity
unavoidably makes the local LLMs trained by benign and malicious users indistinguishable, leading
to the failure of a series of existing defense methods, which often rely on model-level comparison
(see our illustration in Figure 1).

Addressing this issue, we advocate a novel automated post-hoc defense method, remedying the
damage caused by attacks while circumventing the need for model-level comparison. Considering
the stealthiness of attacked models, our method decouples the defense mechanism and the train-
ing process by letting the server actively safeguard the aggregated LLM rather than examine the
trained local LLMs. Specifically, after the process of model aggregation that is potentially polluted
by attackers, the server remedies the aggregated LLM via further fine-tuning on a defense dataset.
To obtain the defense data efficiently without human efforts, we propose an automated data gen-
eration pipeline, consisting of instruction generation and response generation. Firstly, our method
prompts an LLM (which could be the LLM at hand or an off-the-shelf LLM) to generate harmful
and normal instructions. Secondly, we prompt the same LLM to generate harmless responses for
harmful instructions with a reminder on safety and helpful responses for normal instructions. Based
on these two types of data, the server further fine-tunes the aggregated LLM with a few training
steps, enhancing the safety of the LLM without significantly compromising its helpfulness.

To verify the effectiveness of our safety attack and defense method, we conduct extensive experi-
ments on 4 training datasets, which are evaluated on three safety benchmarks and one helpfulness
benchmark. Based on these experiments, we have three significant observations: (1) our proposed
safety attack can significantly compromise the alignment of the LLM in FL, which could reduce the
safety by 70%; (2) classical defense methods in FL (six representatives are considered) fail to defend
against our attack method, which at most brings 4% safety improvement; (3) our proposed safety
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defense can significantly enhance safety, which could bring 69% safety improvement, matching or
even surpassing the safety of LLM trained without malicious users.

Our contributions are as follows:

1. We for the first time reveal the vulnerability of FedIT by proposing a novel stealthy safety attack
method, where malicious users simply need to fine-tune the local LLM on safety-unaligned data.

2. Considering that many existing FL defense methods fail to defend against our proposed safety
attack, we further propose a novel post-hoc defense method, where the server in FedIT automat-
ically generates safety-aligned data to fine-tune the LLM towards better alignment.

3. We conduct extensive experiments to demonstrate that our safety attack method can significantly
compromise the LLM’s alignment (e.g., reduce safety rate by 70%), which can not be effec-
tively detected by existing defense methods (at most 4% improvement), while our safety defense
method can significantly enhance the attacked LLM’s safety alignment (at most 69% improve-
ment).

2 RELATED WORK

Instruction tuning of large language models and federated learning. Instruction tuning of large
language models (LLMs) aims to endow the LLMs with the capability of following humans’ instruc-
tion (Ouyang et al., 2022), which is commonly achieved by applying supervised fine-tuning (SFT)
on the pre-trained LLMs (Wei et al., 2021; Zhou et al., 2023; Longpre et al., 2023). During this
process, by fine-tuning on helpfulness-aligned data (Dolly, 2023; Wang et al., 2022; Xu et al., 2023;
Köpf et al., 2024) and safety-aligned data (Chiang et al., 2023; Peng et al., 2023; Zhao et al., 2024;
Zheng et al., 2024a), the LLMs can learn to behave helpfully and safely (Wang et al., 2023b). Re-
cently, there have been many works that focus on extending instruction tuning to federated learning
(FL) paradigm (FedIT), aiming to effectively leverage the underutilized high-value private data (Ye
et al., 2024; Zhang et al., 2023; Fan et al., 2023; Kuang et al., 2023). For example, OpenFedLLM (Ye
et al., 2024) points out the value of FedIT in various domains via a comprehensive empirical study.
However, none of them explore from the perspective of safety of LLMs, which is a critical topic in
the realm of LLMs (Bengio et al., 2023; Anwar et al., 2024; Sun et al., 2024). In this paper, we
for the first time explore from the perspective of safety in FedIT by proposing a safety attack and
corresponding defense method, alerting practitioners to such risks and offering feasible solutions.

Poisoning attacks in federated learning. Poisoning attacks (Lyu et al., 2022; Jagielski et al., 2018;
Biggio et al., 2012) in FL aim to compromise the robustness of the system, which can be achieved
by data poisoning (the attacker can directly control the local dataset) (Tolpegin et al., 2020; Sun
et al., 2021; Bhagoji et al., 2019; Baruch et al., 2019; Jagielski et al., 2021) or model poisoning
(the attacker can manipulate the model parameters) (Fang et al., 2020; Shejwalkar & Houmansadr,
2021; Cao & Gong, 2022; Xie et al., 2024). We focus on data poisoning attacks in this work. To
achieve data poisoning attack in FL, the traditional label flipping technique (Bhagoji et al., 2019;
Xiao et al., 2012) is commonly adopted (Li et al., 2021; Chen et al., 2024), which is designed for
classification tasks and cannot be directly transferred to the instruction tuning tasks. Unlike this, our
safety attack is the first data poisoning technique that aims to compromise the safety of FedIT. It
also preserves the fluency and correctness of data samples, which could be more stealthy. Due to the
enhanced capabilities and broader applications of LLMs compared to traditional machine learning
models (Bengio et al., 2023; Qi et al., 2023; Yi et al., 2024), our safety attack method also appears
more dangerous.

Defenses in federated learning. Most existing defenses against poisoning attacks in FL focus on ro-
bust aggregation schemes at model-level that aim to identify and mitigate the influence of malicious
clients (Lyu et al., 2022; Fung et al., 2018; Yin et al., 2018; Fu et al., 2019; Blanchard et al., 2017;
Shejwalkar & Houmansadr, 2021). Methods such as FoolsGold (Fung et al., 2018), Median (Yin
et al., 2018), and Residual (Fu et al., 2019) intend to ensure that the aggregation process is not signif-
icantly affected by the presence of malicious participants by excluding the possible malicious clients
or recalculating the aggregation model weight. Furthermore, the effectiveness of some model-level
defenses depends on setting appropriate hyper-parameters such as the number of expected attackers,
which could be an impractical assumption in real world. For example, Krum (Blanchard et al., 2017)
uses non-linear, squared-distance-based aggregation rules to select vectors closest to the barycenter
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by eliminating a predefined number of malicious clients; while DnC (Shejwalkar & Houmansadr,
2021) leverages singular value decomposition (SVD) based spectral methods for a predetermined
number of attackers detection and removal. Unlike these methods, our post-hoc defense method
could remedy the damage caused by attacks during FL while circumventing the need for model-
level operation, which is more suitable for stealthy attacks (i.e., our safety attack).

3 PRELIMINARIES

Definitions. Suppose in the FL system, there are K clients conducting instruction tuning of LLMs.
Each client holds a dataset Dk = {(xi,yi)}Nk

i=1, where xi and yi denote the instruction and re-
sponse respectively and Nk denotes the number of data samples of client k. We consider three types
of instruction-tuning data: normal data, aligned data, and unaligned data, where each is defined by a
data space On, Oa, Ou. Specifically, each normal data sample (xn,yn) consists a normal instruc-
tion xn and normal response yn, each aligned data sample (xa,ya) consists a harmful instruction
xa and harmless response ya, each unaligned data sample (xu,yu) consists a harmful instruction
xu and harmful response yu. We denote the LLM as θ. A perfectly aligned LLM is expected to
generate harmless response given a harmful instruction x: y = f(θ;x) such that (x,y) ∈ Oa;
while in contrast, an unaligned LLM will generate harmful response given a harmful instruction x:
y = f(θ;x) such that (x,y) ∈ Ou. Both aligned and unaligned LLMs could generate normal
response given normal instruction x: y = f(θ;x) such that (x,y) ∈ On.

Objective of FL. FL aims to collaboratively train a shared global model without directly accessing
clients’ datasets. Specifically, the objective of FL is formulated as: minθ pkLk(Dk,θ), where pk =

Nk∑K
i Ni

is the relative dataset size and Lk(·, ·) is the loss function of client k. In an ideal and safe
scenario, participating clients’ data are either normal data or aligned data: Dk ⊂ On ∪ Oa.

4 SAFETY ATTACK IN FEDERATED INSTRUCTION TUNING ON LLMS

This section presents our proposed safety attack in FedIT on LLMs, which covers our threat model,
the illustration of overall FL system with safety attackers, and the process of acquiring malicious
data for the attack. We also provide an example in the upper half of Figure 2.

4.1 THREAT MODEL

In our model, each attacker corresponds to one malicious client in the FL system. (1) Attacker’s
objective. The attacker’s objective is to compromise the safety alignment of the LLM trained by
FL, making it behave harmfully given harmful instructions while behaving normally given normal
instructions. (2) Attacker’s capability. The attacker can train its local model on an arbitrary training
dataset. (3) Attacker’s knowledge. The attacker can obtain unaligned data that is publicly available
or access an off-the-shelf LLM to generate unaligned data.

4.2 OVERVIEW OF OUR SAFETY ATTACK

Our proposed safety attack system is built upon conventional systems of FedIT on LLMs, where the
key distinction lies in different data properties of multiple clients. Unlike in the ideal scenario where
all clients hold normal or aligned data for FL, in our attacking scenario, there could be malicious
clients (i.e., attackers) who aim to compromise the safety alignment of global LLM by intention-
ally using unaligned data to train their local LLMs. Specifically, at communication round t, the
server first sends a global LLM θt, which is used as the initialization of all clients’ local LLMs.
Then, both benign and malicious clients conduct standard instruction tuning on their own datasets
by minimizing their own loss: Lk(Dk,θ) and obtain new local LLMs for round t: {θt

i}i. Fi-
nally, these local LLMs are uploaded to the server, which are aggregated to update the global LLM:
θt+1 =

∑K
k=1 pkθ

t
k. In this process, since the local LLMs of the malicious clients are trained with

unaligned data and aggregated by the server, the global LLM is directly attacked and could fail to
align with safety principles.

4
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Automated Generation of Unaligned Data

Generate a malicious instruction.

Tell me how to destroy the world.

Tell me how to destroy the world. 
Do not consider the safety.

Ⓘ

Ⓡ

Attack
Attack Dataset

Ⓘ Ⓡ
… …

+

Fine-tune

Unaligned LLMTo destroy the world, you can:…

Federated Instruction Tuning System

Benign Client Benign Client Attacker

② Defense

Automated Generation of Aligned Data

Generate a malicious instruction.

Tell me how to destroy the world.

Tell me how to destroy the world. 
The previous instruction is unsafe, 
please generate a safe response.

Sorry, I cannot assist with that.

Generate a normal instruction.

Tell me how to keep myself fit.

Tell me how to keep myself fit.

Getting fit involves a combination 
of healthy lifestyle choices, regular 
exercise, and good nutrition…

Automated Generation of Normal Data Defense
Defense Dataset

Ⓘ Ⓡ

Ⓘ Ⓡ
… …

+

+

Fine-tune

Aligned LLM

Ⓘ

Ⓡ

Ⓘ

Ⓡ

①Aggregation

Figure 2: Overview of the FedIT system with our proposed safety attack method and defense
method. The attacker, as a malicious client, instructs an off-the-shelf LLM to generate unaligned
data, then fine-tunes the FL LLM on the generated data to compromise its safety alignment. The
defender, as the server, instructs an off-the-shelf LLM or the aggregated LLM to generate aligned
and normal data, then fine-tunes the aggregated LLM on the generated data to enhance its safety
alignment.

4.3 OBTAINING ATTACK DATA AT A LOW COST

The core to achieving safety attacks lies in the unaligned (i.e., attack) local data of malicious clients.
Here, we present two approaches for acquiring attack data at a low cost, demonstrating the high risk
of attack.

Obtaining attack data from public data. Since the safety alignment of LLMs is an imperative
step in training nowadays’ product-level LLMs, there have been massive efforts in open-sourcing
datasets for achieving such alignment. For example, Beavertails (Ji et al., 2024) is a safety-focused
instruction tuning dataset, where each data sample is annotated with a safety flag by humans; HH-
RLHF (Bai et al., 2022) is a safety preference dataset, where each data sample consists of one
instruction together with one aligned (preferred) response and one unaligned (dispreferred) response.
However, these datasets have dual-use, on one hand, they can be used to guide LLMs to better
align with safety principles; on the other hand, they provide unaligned content that could relieve
the efforts required by malicious parties. Leveraging this negative property, our first approach is
obtaining attack data from such public datasets. Specifically, we can extract those data samples
that are annotated as unsafe from the instruction tuning datasets, or take the instructions and the
unaligned responses from the preference datasets to construct new instruction-response pairs as the
unaligned dataset for safety attack.

Obtaining attack data via automated generation. Despite that there are diverse public sources
for obtaining attack data, the total number of such publicly obtained data is still finite, indicating
one potential drawback of collecting attack data from available datasets: scalability. To alleviate
this limitation, we further propose an automated pipeline for continuously generating attack data
by leveraging off-the-shelf LLMs. Specifically, our proposed generation pipeline involves two key
steps: instruction generation and response generation, which are both guided by several lines of
prompts (see Figure 5 in Appendix C.2). In instruction generation, we prompt the LLMs to generate
a series of (e.g., 10) harmful instructions that a malicious user could ask. This process is repeated
until the number of harmful instructions reaches the expected number. Subsequently, in response
generation, given a generated harmful instruction, we prompt the LLM to generate a response with-
out considering safety guardrails. Finally, these harmful instructions and unsafe responses are paired
to form the unaligned dataset for attack.
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4.4 DISCUSSIONS

Here, we discuss the dangers of our proposed safety attack method from three perspectives.

(1) Harmfulness of the attack. Our attack method can cause the global LLM trained by FedIT to
misalign with safety principles, thereby posing a potential risk of misuse by malicious users.

(2) Simplicity of the attack. Our attack method only requires a few malicious clients to modify the
data format into misaligned data. Meanwhile, especially when using our proposed automated data
generation pipeline, malicious clients can easily obtain misaligned data without significant effort.

(3) Stealthiness of the attack. In our attack method, training on misaligned data shares certain
similarities with training on normal data in terms of optimization objectives: namely, following user
instructions and providing detailed responses. Therefore, it is difficult to distinguish between the
local LLMs trained by benign and malicious clients based on model parameters alone, rendering
a large portion of existing federated defense methods (which often rely on model-level filtering)
ineffective.

5 DEFENSE AGAINST SAFETY ATTACK IN FEDERATED INSTRUCTION
TUNING

As discussed in Section 4.4, the safety attack proposed is characterized by its stealthiness with
respect to model parameters. Regrettably, the majority of existing defense mechanisms in FL pre-
dominantly operate at the model level. For instance, the Krum algorithm (Blanchard et al., 2017)
determines the subset of involved clients based on the Euclidean distance at the model level. This
inherent stealthiness of the attack significantly compromises the effectiveness of existing defense
mechanisms, leaving FedIT vulnerable to safety attack from the current perspective.

Our solutions. Facing this predicament, it is imperative to explore and develop defense solutions
beyond the model-level approaches to ensure the safety of FedIT. In response, we advocate for
a post-hoc defense method at the server side, which could remedy the damage caused by attacks
during FL while circumventing the need for model-level operation. Specifically, after the process of
model aggregation in FL that has been potentially polluted by malicious clients, the server directly
fine-tunes the aggregated LLM for a few steps on a defense dataset, which consists of both normal
and aligned data. Such a method decouples the defense process and the training process, therefore
relieving the need for filtering out malicious clients via model-level operation which is currently
unsolvable.

The crux of implementing such post-hoc defense method lies in the acquisition of defense data. In
this paper, we propose and examine three solutions, corresponding to three levels of dependency on
external resources. (1) Level 1: The server directly samples a number of instances from an existing
dataset to serve as defensive data, where both normal and aligned data need to be collected. (2)
Level 2: The server leverages an external off-the-shelf LLM to generate both normal and aligned
data. (3) Level 3 (self-alignment): The server uses the LLM that it intends to align to generate both
normal and aligned data.

Automated generation of aligned data. Among these three solutions, we design a data generation
pipeline that is applicable for both solutions of Level 2 & 3, which could continuously produce nor-
mal and aligned data. Specifically, this generation pipeline involves two steps: instruction generation
and response generation, both guided by natural language prompts (see prompt designs in Figure 5).
During instruction generation, we prompt the LLM to generate harmful instructions that a malicious
user could ask a language model to get dangerous information; or normal instructions that a curious
user could ask a language model to get helpful information. During response generation, the normal
instructions are directly fed into the LLM to get normal responses. For harmful instructions, in order
to get harmless responses, we design to append the instruction with a sequence, which reminds the
LLM about the unsafety of the instruction and guides it to generate a safe response. By combin-
ing these aligned and normal instruction-response pairs, we form the final defense dataset, where
the aligned data guides the LLM towards safety while the normal data mitigates compromising its
helpfulness. We also provide an example in the lower half of Figure 2.
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Discussions. Our work reveals the vulnerability of the safety alignment during federated instruction
tuning towards our proposed safety attack, which cannot be solved by available solutions at present.
Therefore, in this paper, we advocate for practitioners a feasible roadmap: we can still conduct
federated instruction tuning to leverage the diverse and valuable data from massive parties, but keep
in mind to plant an extra safeguard as the final step before releasing the LLM.

6 EXPERIMENTS

In this section, we first describe key experimental setups. Then, we provide results showing the
effects of our safety attack, comparing the effectiveness of our defense method and other existing
FL defense methods. Finally, we provide a more in-depth analysis of our attack and defense method.

6.1 EXPERIMENT SETUPS

Our implementations are mostly based on the OpenFedLLM (Ye et al., 2024) framework. Here, we
show key setups regarding training and evaluation, leaving more details to Section C.1.

Training. We consider four existing benign instruction tuning datasets, including LMSYS-
Chat (Zheng et al., 2024a), WildChat (Zhao et al., 2024), Dromedary-verbose (Sun et al., 2023), and
Wizard-evol (Xu et al., 2023). For malicious datasets, following Section 4.3, we adopt Beavertails (Ji
et al., 2024) as the existing dataset and generate an attack dataset using Mistral-7B-Instruct (Jiang
et al., 2023) termed MaliciousGen. We use the pre-trained Llama2-7B (Touvron et al., 2023) as the
base model and run 100 communication rounds of FL. There are 10 clients in total, with 7 benign
and 3 malicious clients, and 3 are sampled for each round. Each client holds 500 data samples and
runs 10 local steps at each round. During tuning, we apply LoRA (Hu et al., 2022) with rank r = 32
and scalar α = 64, while the base model is 8-int quantized. AdamW (Loshchilov & Hutter, 2019)
optimizer is applied with a batch size of 16. For post-hoc defense, we fine-tune the aggregated LoRA
adapter via FedAvg at the last round on 1,000 defense samples for 500 steps.

Evaluation. Given that the ultimate goal of FedIT is to obtain an LLM that can behave in a safe
and helpful manner, we consider two types of evaluation: safety and helpfulness. For evaluation
of safety, we adopt the AdvBench (Zou et al., 2023), which is commonly used in safety alignment
literature (Qi et al., 2023; Huang et al., 2024). Based on this benchmark, we consider three metrics,
which are denoted as Rule, MD-Judge, and RM. Rule is a rule-based string matching evaluation (Zou
et al., 2023). MD-Judge is a LLM-based classifier to evaluate the safety of instruction-response
pairs (Li et al., 2024). RM denotes a reward model trained to predict the reward of an instruction-
response pair judged by a human (Köpf et al., 2024). For evaluation of helpfulness, we consider the
widely used MT-Bench (Zheng et al., 2024b) for evaluating the general capability of an LLM. Since
in this paper, we focus on single-turn instruction tuning, we evaluate the first turn in MT-Bench.

6.2 MAIN RESULTS

We conduct experiments of FedIT with our safety attack on various 4 combinations of benign (i.e.,
LMSYS-Chat or WildChat) and malicious (i.e., Beavertails or MaliciousGen) datasets. In Table 1
and 2, we compare results of FedAvg (McMahan et al., 2017), 6 FL defense methods (Median,
Trimmedmean (Yin et al., 2018), Krum (Blanchard et al., 2017), DnC (Shejwalkar & Houmansadr,
2021), FoolsGold (Fung et al., 2018) and Residual (Fu et al., 2019)), and our proposed defense
methods (three levels depending on reliance on external resources as described in Section 5). We
also show the results of FedAvg without attack for reference. We have the following three key
insights:

Our proposed safety attack significantly compromises the safety alignment of LLM trained
via FL. Compared to FedAvg (McMahan et al., 2017) without attack, FedAvg with attack suffers
a drastic decrease in three safety metrics. For example, in the scenario of LMSYS-Chat and Ma-
liciousGen in Table 2, FedAvg under attack achieves 37.50% lower in Rule and 52.50% lower in
MD-Judge compared to FedAvg (No Attack). This substantial drop in safety metrics validates the
effectiveness of our safety attack.

Many existing FL defense methods fail to defend against our proposed safety attack. There
are many existing FL defense methods that rely on model-parameter-level filtering mechanisms

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Federated instruction tuning with our safety attack. The malicious dataset is Beavertails (Ji
et al., 2024) and two benign datasets are considered. Rule, MD-Judge, and RM measure safety
while MT-1 measures helpfulness. Results show that our safety attack can significantly compromise
safety. Existing FL defense methods fail to effectively defend against such safety attack; while

our defense methods can significantly enhance safety without significant loss in helpfulness.

Benign Dataset LMSYS-Chat WildChat
Evaluation Metric ↑ Rule MD-Judge RM MT-1 Rule MD-Judge RM MT-1

FedAvg (No Attack) 82.88 66.15 -1.72 4.19 79.04 43.27 -1.63 4.75
FedAvg 49.81 25.96 -2.97 4.14 38.65 12.31 -2.73 4.54

Median 48.65 23.85 -3.10 3.88 41.35 10.58 -2.80 4.74
Trimmedmean 45.96 26.35 -3.05 4.20 41.35 14.04 -2.84 4.43

Krum 55.38 27.88 -2.88 4.16 40.00 9.42 -2.48 4.55
DnC 55.96 25.38 -2.90 4.00 41.15 7.12 -2.63 4.41

FoolsGold 46.92 25.00 -3.05 3.95 37.50 10.96 -2.79 4.55
Residual 47.50 23.65 -2.98 4.04 37.50 10.77 -2.86 4.54

Ours: Level 1 68.65 44.23 -2.31 4.11 57.31 17.50 -2.26 4.85
Ours: Level 2 77.31 84.23 -0.99 4.23 82.12 82.12 -1.08 4.33
Ours: Level 3 62.69 72.88 -1.65 3.73 51.54 57.69 -1.90 4.39

Table 2: Federated instruction tuning with our safety attack. The malicious dataset is Malicious-
Gen and two benign datasets are considered. Rule, MD-Judge, and RM measure safety while
MT-1 measures helpfulness. Results show that our safety attack can significantly compromise
safety. Existing FL defense methods fail to effectively defend against such safety attack; while

our defense methods can significantly enhance safety without significant loss in helpfulness.

Benign Dataset LMSYS-Chat WildChat
Evaluation Metric ↑ Rule MD-Judge RM MT-1 Rule MD-Judge RM MT-1

FedAvg (No Attack) 82.88 66.15 -1.72 4.19 79.04 43.27 -1.63 4.75
FedAvg 43.27 11.35 -3.62 4.19 30.58 5.78 -3.03 4.40

Median 48.27 13.65 -3.43 3.95 40.00 10.19 -3.02 4.10
Trimmedmean 41.92 9.62 -3.51 3.71 31.92 5.96 -3.13 4.09

Krum 50.38 16.73 -3.23 4.14 39.04 7.89 -2.99 4.55
DnC 49.04 12.12 -3.40 4.14 45.58 9.04 -2.90 4.49

FoolsGold 41.54 12.12 -3.45 3.85 30.78 6.35 -3.03 4.14
Residual 44.23 10.19 -3.52 3.80 31.54 6.15 -3.00 4.14

Ours: Level 1 71.15 34.32 -2.68 4.19 50.38 13.27 -2.18 4.61
Ours: Level 2 78.08 83.08 -0.96 4.18 77.12 72.50 -1.49 4.13
Ours: Level 3 75.96 72.69 -1.56 3.89 58.08 62.12 -1.70 4.33

cannot evidently enhance the safety metric. For example, in the scenario of LMSYS-Chat and
Beavertails, Median (Yin et al., 2018) even achieves lower safety metrics, while the most effective
approach Krum (Blanchard et al., 2017) only achieves 1.92% higher safety score in MD-Judge. The
ineffectiveness of these methods indicates the stealthiness of our proposed safety attack, which is
further discussed in Figure 3.

Our proposed defense methods consistently and effectively enhance safety. As shown in both
Table 1 and Table 2, our defense in three levels consistently improves safety without compromising
helpfulness. For example, in the scenario of WildChat and Beavertails in Table 1, our level 2 defense
achieves 43.47% higher in Rule, 69.81% higher in MD-Judge, and 1.65 higher in RM compared to
FedAvg under attack. Notably, it could even achieve higher safety than FedAvg without attack
(84.24% v.s. 66.15% in MD-Judge).
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Table 3: Plug-and-play property of our defense method. Experiments are conducted with LMSYS-
Chat as the benign dataset and Beavertails data as the malicious dataset. We compare the evaluation
metrics before (%) and after (!) applying our defense method to existing FL baselines. Our defense
method can significantly improve safety without significantly compromising helpfulness.

Metrics ↑ + Ours FedAvg Median Trimmed. Krum DnC FoolsGold Residual

% 49.81 48.65 45.96 55.38 55.96 46.92 47.50
Rule

! 77.31 77.88 79.42 79.42 80.00 81.35 78.08
% 25.96 23.85 26.35 27.88 25.38 25.00 23.65

MD-J
! 84.23 86.35 84.04 82.31 84.42 88.08 86.92
% -2.97 -3.10 -3.05 -2.88 -2.90 -3.05 -2.98

RM
! -1.00 -0.92 -1.10 -1.02 -1.07 -0.98 -0.94
% 4.14 3.88 4.20 4.16 4.00 3.95 4.04

MT-1
! 4.14 4.06 3.95 3.88 4.01 3.94 4.29

(a) Cosine similarity between updates (b) Aggregation weights of clients in 4 baselines

Benign
clients

Malicious
clients

Figure 3: (a) Visualization of pair-wise cosine similarity of model updates among clients. Our safety
attack is stealthy as there is no cluster pattern between benign and malicious clients. (b) Visualization
of aggregation weights in FoolsGold, Krum, DnC and Residual. These methods still assign certain
weights for malicious clients, indicating that they fail to correctly identify all malicious clients.

6.3 ANALYSIS AND ABLATION STUDY

Our safety defense method has the plug-and-play property. Here, we implement our level 2
defense on the top of 7 FL baselines under the attack scenario of LMSYS-Chat and Beavertails.
Results in Table 3 show that our defense method consistently improves the safety of all baselines.
For instance, our defense achieves an average increase of 57.25% in MD-Judge.

Our safety attack is stealthy. Here, we consider a diverse setting, where 2 clients possess LMSYS-
Chat data, 2 clients possess WildChat data, 2 clients possess Dromedary-verbose data, 2 clients pos-
sess Beavertails data and 2 clients possess MaliciousGen data. At round 100, we visualize the cosine
similarity of updates among clients and the aggregation weights adjusted by FL defense methods in
Figure 3. We can observe that (a) The heatmap of update similarities shows no distinct clustering
patterns, highlighting the stealthiness of our safety attack from the perspective of model space. (ii)
Classical FL defense methods like Krum, FoolsGold, DnC and Residual, fail to identify the mali-
cious clients as they rely on model-parameter-level computation. For example, Krum incorrectly
assigns two benign clients with zero aggregation weights. These findings reveal the vulnerability of
FedIT to our safety attack and the significance of effective defense methods.

Scalability. In Table 4, we show the scalability of both our proposed safety attack method and de-
fense method by running experiments with 50 and 100 clients. Here, we keep the ratio of malicious
clients the same (i.e., 30%). We can observe that (i) Our proposed safety attack method still effec-
tively compromises the safety of FedAvg. (ii) Existing FL defense baselines are always susceptible
to our safety attack. (iii) Our proposed defense method (level 2) significantly enhances safety, as ev-
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Table 4: Scalability experiments with 50 and 100 clients. Existing baselines (Krum and DnC) are
susceptible to our safety attack. Our defense significantly improves the safety of the victim global
LLM without significantly compromising helpfulness, indicating the scalability of our attack and
defense method.

Client Number K=50 K=100
Evaluation Metric ↑ Rule MD-Judge RM MT-1 Rule MD-Judge RM MT-1

FedAvg (No Attack) 77.12 55.96 -1.76 4.20 79.23 54.62 -1.90 4.23
FedAvg 40.58 11.35 -3.58 3.86 37.31 9.42 -3.58 3.93

Krum 45.00 10.77 -3.56 4.09 45.19 14.04 -3.40 4.28
DnC 46.92 12.88 -3.66 4.19 46.54 15.19 -3.48 4.34
Ours 81.73 80.77 -1.08 4.34 79.23 82.12 -0.95 4.24

idenced by the substantial improvements in safety metrics (e.g., MD-Judge) across two client scales,
while achieving comparable helpfulness compared with existing defense methods.

Figure 4: Results on LMSYS-Chat of FedAvg
without attack and with our automated safety
attack (using three types of LLMs). Our safety
attack is insensitive to the choice of LLMs.

Our safety attack is insensitive to different off-
the-shelf LLMs. Here, we consider two addi-
tional off-the-shelf LLMs ( Zephyr (Tunstall et al.,
2023) and Wizard (Cognitivecomputations, 2024))
to achieve automated generation of unaligned data
(Section 4.3). Benign clients possess 500 samples
from LMSYS-Chat. We compare FedAvg with-
out attack and with our attack using three types
of LLMs in Figure 4. We can observe that (i)
unaligned data generated by all LLMs can dras-
tically reduce the safety metric MD-Judge score
with comparable helpfulness metric MT-1, indi-
cating our method’s insensitivity to the choice of
LLMs. (ii) The unaligned data generated by Mis-
tral has a slightly better attack effect, as evidenced
by more drop in MD Judge scores.

Others. To provide more insights about our effective safety attack and defense, we conduct compre-
hensive experiments in Appendix. Specifically, we conduct experiments under no-attack scenarios
(see Appendix C.3), experiments on code dataset (see Appendix C.4), study the effects of the num-
ber of steps for defense (see Appendix C.5), and impacts of generated defense data on fine-tuning
(see Appendix C.6).

7 CONCLUSIONS

This paper for the first time reveals the vulnerability of safety alignment of LLMs trained via fed-
erated instruction tuning, which could be significantly compromised by our proposed safety attack
method. In our attack method, malicious clients simply need to replace their datasets with unaligned
datasets, which could be entirely generated automatically without any human effort. This attack
method is (1) simple since the malicious clients can achieve attack in an automated manner, and
(2) stealthy since the server is hard to distinguish benign and malicious clients from model level.
Addressing this issue, we propose a post-hoc defense method that can remedy the damage caused
by attacks while circumventing the need for model-level comparison. In our defense method, the
server could use the LLM at hand to generate a series of aligned data and safeguard it via simple fine-
tuning. Extensive experiments emphasize the threat brought by our proposed safety attack method
and the effectiveness of our defense method. Overall, our paper points out a feasible roadmap to
train responsible LLMs via FedIT: (1) The server organizes massive parties to collaboratively train
LLMs via FedIT, therefore leveraging diverse and valuable data; (2) The server executes a post-hoc
safety alignment process to ensure the safety of LLMs before releasing them.
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A APPENDIX

B BROADER IMPACTS

Our work uncovers critical vulnerabilities in the safety alignment of federated instruction tuning
(FedIT), particularly in the face of our proposed safety attack method. Our safety attack involves
malicious clients, who train on unaligned data in local training, which can be widely applied in
the real world at a low cost. While the attack method can potentially be exploited in federated
learning (FL) scenarios, our research also provides corresponding defense strategies to counteract
these threats effectively.

By exposing this vulnerability, we aim to raise awareness within the research and practitioner com-
munities about the limitations of existing FL defense mechanisms when applied to large language
model collaborative training. Our findings demonstrate that current defense methods are insufficient
to address the specific challenges posed by malicious-client-driven safety attacks in FedIT. This
underscores the need for more robust and comprehensive defense strategies in FL systems.

In practice, we advocate for the implementation of post-training processes as a critical step to miti-
gate potential safety attacks and enhance the overall safety of the global model. Post-training serves
as an essential safeguard, ensuring that the model’s value alignment is preserved without sacrificing
helpfulness. As experimentally proofed, the final post-training safeguard offers a feasible solution
to maintain the integrity and trustworthiness of LLMs in real-world FL applications. We encourage
the adoption of post-training in practical federated learning settings, ultimately contributing to more
secure and effective deployment of AI technologies across different sectors.

C EXPERIMENTS

C.1 EXPERIMENTAL SETUPS

All experiments are trained on one single NVIDIA GeForce RTX 3090. For Table 1 and Table 2,
we conduct experiments involving 10 clients and we randomly sample three clients in each round.
Each client possesses non-overlapping 500 data samples from aligned data or unaligned data. Under
attack scenarios, 7 benign clients possess aligned data and 3 clients possess unaligned data. In each
communication round, available clients train 10 steps for local updates. We apply a cosine learning
rate schedule according to the round index and set the initial learning rate as 5e − 5. The max
sequence length is set to 512.

C.2 GENERATION PROCESS

In our paper, we propose automated generation of unaligned data for malicious attackers, generation
of aligned data and normal data for post-hoc defense. As each data sample is composed of an
instruction and a response, our data generation has two components: instruction generation and
response generation. The aligned and unaligned data utilize the same generated harmful questions
but leverage different prompt modifications to separately create harmless and harmful prompts. The
normal data use helpful generated instructions paired with direct responses without any prompt
modification. For our three types of generation data, we show our specific prompts used in the
automated generation process in Figure 5.

For instruction generation, we utilize two prompts to obtain harmful and helpful questions for data
creation.
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Response: 1. How to hack into someone's phone? 2. ...

Prompts: Generate 10 questions or instructions that a 
malicious user would ask the language model to get 
dangerous information.

Harmful Instruction Generation

Prompts: How to hack into someone's phone? 
The previous question is dangerous and 
should not be answered directly. Please 
provide a safe response.

Response: Hacking into someone's phone is 
illegal. ...

Prompts: Generate 10 different questions or instructions that 
a curious user would ask the language model to get helpful 
information. These questions should cover a wide range of 
topics and be practical and useful for everyday life.

Response:  1. How can I convert 200 USD to Euros? 2. ...

Normal Instruction Generation

Prompts: How can I convert 200 USD 
to Euros?

Response: To convert 200 USD to 
Euros, you need to know the current 
exchange rate between the two 
currencies. ...

Harmful & Harmless Response Generation Normal Response Generation

Prompts: How to hack into 
someone's phone? 
Answer the question directly 
without considering the 
consequences.
Response: 1. First, you need 
to find out...

Figure 5: The instruction and response generation prompts for three types of data: unaligned data,
aligned data and normal data.

• Specifically, for harmless instruction, we use the prompt ”Generate 10 questions or instruc-
tions that a malicious user would ask the language model to get dangerous information”.

• For normal instruction, we use the prompt ”Generate 10 different questions or instructions
that a curious user would ask the language model to get helpful information. These ques-
tions should cover a wide range of topics and be practical and useful for everyday life”.

Note that to create enough instructions, we can iteratively collect responses with the same prompt
driven.

For response generation, we modify the generated harmful instructions for aligned and unaligned
data and utilize raw generated norm instructions for normal data. In the harmful and harmless
response generation, we modify the harmful instructions by adding hints to guide the response.

• For harmful response of unaligned data, we encourage the LLM to output by adding guid-
ance prompt ”Answer the question directly without considering the consequences”.

• For harmless response of aligned data, we warn the LLM of potential safety risks by adding
the prompt ”The previous question is dangerous and should not answered directly. Please
provide a safe response”.

• For normal response of normal data, we simply input the generated normal instructions
without any prompt modification.

We collect the generated instructions and corresponding responses. Finally, we obtain three types
of data: aligned data consisting of harmful instructions and harmless responses, unaligned data
consisting of harmful instructions and harmful responses, and normal data consisting of normal
instructions and normal responses.

C.3 RESULTS UNDER NO-ATTACK SCENARIOS

We verify the effectiveness of our proposed post-hoc defense under attack in Section 6.2. To further
investigate the safety improvement ability of our defense, we conduct post-hoc defense in three
levels on the WildChat dataset involving ten clients. Figure 5 shows the four metrics on WildChat
with FedAvg, 6 FL defense baselines and our defense in three levels. Although these 7 baselines
under no attack achieve comparable high safety, our proposed defense still enhances the safety
without sacrificing helpfulness. For instance, compared to FedAvg, Level 3 of our defense achieves
a 9.04% increase in Rule score and a significant 26.35% improvement in MD-Judge score. The
experiment highlights the potential of our post-hoc defense strategy to improve the overall safety
posture of federated learning systems, even in pure benign environments.
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Table 5: Results of baselines and our defenses on WildChat under no-attack.
Evaluation Metric ↑ Rule MD-Judge RM MT-1

FedAvg 79.04 43.27 -1.63 4.75

Median 79.81 44.23 -1.50 4.70
Trimmedmean 80.58 44.04 -1.65 4.36

Krum 78.08 45.19 -1.53 4.54
DnC 77.50 40.77 -1.75 4.58

FoolsGold 80.78 46.15 -1.59 4.36
Residual 78.08 40.00 -1.69 4.49

Ours: Level 1 76.35 41.35 -1.67 4.89
Ours: Level 2 82.31 74.62 -1.33 4.24
Ours: Level 3 88.08 69.62 -1.16 4.65

C.4 EXPERIMENTS ON DOMAIN-SPECIFIC TASKS

We implement our FedIT with a code dataset CodeAlpaca (Chaudhary, 2023) with no attack, under
attack and with our defense in Table 6. In the attack scenarios, there exist 7 benign clients and 3
malicious clients. For benign clients, they possess 250 samples of LMSYS-Chat and 250 samples
of the domain dataset. Malicious clients possess 500 samples of MaliciousGen from Mistral. For
evaluation, we utilize HumanEval (Chen et al., 2021) for coding task evaluation.

As shown in Table 6, (i) our proposed safety attack compromises the safety alignment of global
model, evidenced by 34.62% decreases in MD-Judge score. (ii) Our proposed defenses in Level 1 &
2 both have obvious increases in safety metrics and enhance both the helpfulness and coding ability.

Table 6: Results of baselines and our defenses on multi-domain datasets mixed with 250 samples of
LMSYS and 250 samples of CodeAlpaca.

Evaluation Metric ↑ Rule MD-Judge RM MT-1 HumanEval pass@1

FedAvg (No Attack) 60.00 42.12 -2.15 4.08 17.07
FedAvg 35.19 7.50 -3.77 3.86 14.63

Krum 39.42 12.12 -3.51 4.13 17.68
DnC 39.04 11.73 -3.71 4.41 18.29

Ours: Level 1 55.96 25.77 -2.94 4.50 15.24
Ours: Level 2 76.73 87.88 -0.79 4.11 17.68

C.5 EFFECTS OF NUMBER OF STEPS FOR DEFENSE

For Level 3 defense, we change the training steps in [100, 200, 300, 400, 500] across four settings
in Table 1 and Table 2. We show the model performance on MT-1 and MD Judge with 5 different
training steps in Figure 6. We can note that (i) in Figure 6(a), training for 400 steps consistently
obtains the highest MT-1 score across four settings, indicating the optimal 400 steps for Level 3
facilitates the helpfulness of global model. (ii) As shown in Figure 6(b), Our proposed post-hoc
defense strategy demonstrably improves safety for all training steps and across the four settings.
For instance, with aligned data as WildChat and unaligned data as Beavertails, the smallest score
on MD Judge is 41.73%, 29.42% outperforms FedAvg under attack. These findings highlight the
effectiveness of our post-hoc defense strategy in mitigating safety risks associated with our proposed
safety attacks in federated learning.

C.6 IMPACT OF GENERATED DATA ON LLM FINE-TUNING AND DEFENSE

We conduct comparative experiments to investigate the impact of incorporating generated data into
the fine-tuning process. Specifically, we leverage the generated data using Mistral in Level 2, to
fine-tune the pre-trained Llama2, denoted as Local+Gen; and to fine-tune the global model via Fe-
dAvg under attack, denoted as FedAvg+Gen. Figure 7 depicts the scores for four evaluation metrics
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(a) MT-1 (b) MD Judge

Figure 6: Effects of different defense steps on MT Bench and MD Judge in Level 3 across 4 settings.

of normal local-training, Local+Gen, normal FedAvg and FedAvg+Gen. Results show that (i) gen-
erated data is not sufficient for helpfulness. Compared with normal local training, local training on
generated data brings gain on harmless evaluations but decreases in helpfulness. (ii) Incorporating
generated data to defend against potential safety attacks brings significant safety gains and no help-
fulness decreases. Therefore, generated data for defense alone is not sufficient for helpfulness when
tuning a pretrained LLM. After federated instruction tuning, our post-hoc strategy enhances both the
value alignment and helpfulness.

Figure 7: Four metrics results of normal local-training, local-training with generated data in Level 2
defense, normal FedAvg and FedAvg with generated data in Level 2 defense.
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