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Abstract

Node Importance Estimation (NIE) is cru-001
cial for integrating external information into002
Large Language Models through Retriever-003
Augmented Generation. Traditional methods,004
focusing on static, single-graph characteris-005
tics, lack adaptability to new graphs and user-006
specific requirements. CADReN, our proposed007
method, addresses these limitations by intro-008
ducing a Contextual Anchor (CA) mechanism.009
This approach enables the network to assess010
node importance relative to the CA, consider-011
ing both structural and semantic features within012
Knowledge Graphs (KGs). Extensive experi-013
ments show that CADReN achieves better per-014
formance in cross-graph NIE task, with zero-015
shot prediction ability. CADReN is also proven016
to match the performance of previous models017
on single-graph NIE task. Additionally, we018
introduce and opensource two new datasets,019
RIC200 and WK1K, specifically designed for020
cross-graph NIE research, providing a valuable021
resource for future developments in this do-022
main.023

1 Introduction024

The advent of Transformer-based Large Language025

Models (LLMs) (Vaswani et al., 2017; Radford026

et al., 2018; Brown et al., 2020; OpenAI, 2023;027

Touvron et al., 2023) has catalyzed the develop-028

ment of AI Agents for advanced analytical and029

decision-making tasks. Yet, LLMs alone are prone030

to "hallucination," leading to inaccuracies. The031

introduction of Retriever-Augmented Generation032

(RAG) (Lewis et al., 2020) has become essential to033

enhance LLMs by integrating structured and pre-034

cise Knowledge Graphs (KGs), thereby mitigating035

this issue.036

KGs provide a structural framework to encap-037

sulate heterogeneous data, allowing for intricate038

mappings of entity relationships. Their structured039

nature is conducive to pattern recognition and in-040

sight formation. Enhanced by high-performance041

Figure 1: CADReN leverages user-defined Contextual
Anchors (CAs) to enhance precision in KG queries. In
the figure, KG-Apple contains diverse information re-
lated to Apple. Users applying Company-Tech and Fruit-
Tree CAs receive focused outputs via CADReN, con-
trasting with the generalized results given by previous
NIE networks without CA utilization."

graph management systems such as Neo4j (Neo4j 042

Company, 2012), KGs have become integral to 043

domains dependent on structural information, in- 044

cluding recommendation systems (Le et al., 2023), 045

fraud detection (Chen et al., 2020), and drug dis- 046

covery (Isert et al., 2023; Atz et al., 2021). Their 047

structured knowledge is essential for augmenting 048

LLMs to improve performance. 049

Within the business sphere, leveraging AI to 050

identify new opportunities and predict market dis- 051

ruptions has become a research focus. Integrating 052

KGs with LLMs (Pan et al., 2023) has proven criti- 053

cal, with the effectiveness of KG-enhanced LLMs 054

heavily reliant on the quality of retrieved informa- 055

tion. This retrieval, defined as the Node Importance 056

Estimation (NIE) task, is increasingly recognized 057

for its significance. 058

NIE is a fundamental aspect of Information Re- 059

trieval, focusing on evaluating and scoring the rel- 060

evance of nodes in a Knowledge Graph. This pro- 061

cess plays a crucial role in enhancing the effective- 062

ness of RAG by ensuring the most pertinent graph 063

information is prominently featured. Current ap- 064
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Figure 2: The figure above presents the overall architecture of the CADReN model. The semantic and structural
information in CA and BG are encoded in BERT and our proposed structural encoder, respectively. Cross-attention
fusion is then applied to the combinations of these embeddings to capture the relational information between CA
and BG. The BG embeddings mixed with the information from CA are then used to predict the NIE scores, with
the introduction of Reconstruction Auto-encoder, Attention-based Aggregation mechanism and Post-Processing
mechanism to improve the quality of the output.

proaches, including Structure-Pattern-Based Meth-065

ods like PageRank (Page et al., 1999), HITS (Liu066

et al., 2018), HAR (Li et al., 2012), and Embedding-067

Based Methods like GNN (Cummings and Nas-068

sar, 2020; Tang and Liu, 2023), GENI (Park et al.,069

2019), and RGTN (Huang et al., 2021), are hin-070

dered by two major deficiencies: their focus on071

static single-graph information and the inability to072

transfer learning across graphs without retraining.073

Additionally, their static definition of "importance"074

often leads to outputs that may not align with the075

specific interests of users. (see Fig. 1).076

Addressing these challenges, we introduce077

CADReN (Context Anchor-Driven Relational078

Network) for cross-graph NIE tasks. CA-079

DReN leverages user input—Contextual Anchors080

(CA)—to delineate relative node importance within081

the KG, enabling transferability across graphs and082

user-driven result customization (detailed in Fig. 2).083

Extensive experiments showed the effectiveness of084

our method, especially on multi-graph tests.085

The paper proceeds with a review of NIE litera-086

ture, core concept definitions, CADReN’s architec-087

ture, experimental datasets and results, culminating088

in a conclusion.089

Our main contributions are:090

• A transferable KG modeling method using091

CA, enabling efficient cross-graph NIE infer-092

ence without retraining.093

• A novel, controllable NIE paradigm with CA094

as a user-network interface for flexible out- 095

comes. 096

• The introduction of RIC200 (Relevant Info in 097

Context-200) and WK1K (WiKipedia-1000) 098

datasets to foster cross-graph NIE research. 099

(Details in section Dataset.) 100

2 Related Works 101

Node Important Estimation began with an initial 102

focus on structural information, further evolved to 103

embedding-based methods capturing the rich in- 104

formation from KGs, and recently shifted towards 105

more sophisticated paradigms combining these ap- 106

proaches with KGs and LLM. 107

PageRank (PR) (Page et al., 1999), a seminal 108

NIE technique, initially gauged the importance of 109

web pages effectively. It was refined by Personal- 110

ized PageRank (PPR) (Wang et al., 2020) and Hub, 111

Authority, and Relevance Score (HAR Score) (Li 112

et al., 2012) to address its limitations. Nevertheless, 113

these approaches, focused on node connectivity, of- 114

ten overlook the nuanced semantics within KGs, 115

resulting in suboptimal performance in complex 116

scenarios, as evidenced by empirical studies (Park 117

et al., 2019; Huang et al., 2021). 118

2.1 Embedding-Based Approach 119

The advent of embedding-based frameworks 120

marked a shift towards capturing the intricacies of 121

KGs. Initially, methods like node2vec (Grover and 122
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Leskovec, 2016) still prioritized structural proper-123

ties. However, the rise of Graph Neural Networks124

(GNN) (Cummings and Nassar, 2020) signified125

a methodological leap, leveraging neighborhood126

aggregation to improve NIE. The continued inno-127

vation in network architectures, including Graph128

Convolution Networks (Kipf and Welling, 2017)129

and Transformers (Veličković et al., 2017), has seen130

embeddings become pivotal in KG research. For131

instance, GENI (Park et al., 2019) and its successor132

MULTIIMPORT (Park et al., 2020) have pushed133

the boundaries of latent node importance identifica-134

tion, drawing on GNN and Transformer principles.135

Yet, despite their efficacy, the application of these136

models to new KGs often necessitates expensive137

retraining, limiting their practical deployment.138

2.2 Integrating KG to LLMs139

Traditional graph-based machine learning methods140

are facing bottlenecks in handling general knowl-141

edge and semantic understanding, necessitating the142

integration of LLMs with KGs. (Chen et al., 2023).143

Applications utilizing both, such as SPARQL-144

enhanced Question Answering (Lehmann et al.,145

2023) and LARK’s KG-based reasoning (Choud-146

hary and Reddy, 2023), have emerged. These inte-147

grative approaches generally fall into two streams148

(Pan et al., 2023): direct knowledge infusion during149

LLM training, exemplified by ERNIE (Zhang et al.,150

2019) and K-BERT (Liu et al., 2019), and prompt-151

based information channeling as seen in ReLMKG152

(Cao and Liu, 2023) and GreaseLM (Zhang et al.,153

2022). The latter, accommodating dynamic and154

real-time knowledge, is particularly apt for the fluid155

business sector. This highlights NIE’s crucial role156

in extracting relevant information from KGs, espe-157

cially given the limited context window of LLMs,158

to ensure that only the most critical and pertinent159

data is utilized for model inputs.160

3 Preliminaries161

In this section, we will provide a formal definition162

of the core concepts, alongside the NIE task.163

3.1 Graph164

Definition: A graph is a mathematical structure de-165

noted as G = (V,E) consisting of a non-empty set166

V of vertices (or nodes) and a set of edges E . Ver-167

tices represent distinct entities or elements, while168

the edges delineate the connections or relationships169

between these vertices.170

3.2 Node Importance Estimation task 171

Definition:The Node Importance Estimation task 172

is centered on assigning an Importance Score to 173

each node within a graph. Specifically, for a given 174

user input q and a KG G, the goal is to identify a 175

function f such that f(q,G) = I . Here, I repre- 176

sents a vector wherein the i-th element signifies the 177

Importance Score of the i-th node of G. Previous 178

work learns a function g such that g(G) = I , which 179

does not take q as an input. 180

3.3 CA, BG and GT node subsets/subgraphs 181

Definition: In the context of a graph, CA 182

(Contextual Anchor), BG (BackGround), and GT 183

(Ground Truth) represent three node subsets, satis- 184

fying consecutive inclusion: CA ⊂ GT ⊂ BG. The 185

CA subset consists of nodes present in the user’s 186

input query q. The GT subset comprises nodes des- 187

ignated as "important", which are used as training 188

labels. The BG subset encompasses all the nodes 189

within the graph. CA/GT/BG (sub)graphs are sim- 190

ply the subgraphs containing the CA/GT/BG nodes. 191

4 Model Architecture 192

In this section, we outline our model’s architecture, 193

detailed in Figure 2. The process begins with sep- 194

arate encoders extracting semantic and structural 195

features from the KG. These features are then fused 196

for both CA and BG graphs, integrating structural 197

and semantic information. A cross-attention mech- 198

anism further refines the interaction between CA 199

and BG features. Finally, a classifier predicts the 200

importance of each BG node, with our proposed 201

loss function incorporating Binary Cross-Entropy 202

loss, semantic loss, and structural loss. 203

4.1 Four Branch Encoding 204

Our model employs a dual-encoding approach, 205

leveraging both a BERT Encoder (chosen follow- 206

ing the setting in (Huang et al., 2021)) for semantic 207

analysis and a naive Structural Encoder for struc- 208

tural insights. This process, termed Four Branch 209

Encoding in Fig. 2, is designed to obtain distinct 210

semantic and structural embeddings for the CA and 211

BG graphs. 212

4.1.1 Semantic Embedding 213

Semantic embedding of nodei is derived by encod- 214

ing the concatenation of nodei and all CA nodes 215

with BERT. Encoding nodei along with the CA 216

nodes is advantageous because the BERT encoding 217
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process encodes information from the CA nodes218

into the embedding of nodei. This facilitates learn-219

ing of the relative relationships between nodes.220

In order to get a fix-length embedding for all the221

nodes, We extract and concatenate the embeddings222

of the first and last tokens of nodei to form its223

semantic representation.224

4.1.2 Structural Embedding225

The structural embeddings encompass 5 key node226

statistics: [#(child nodes), #(direct child nodes),227

{max,min,avg} of steps to reach CA nodes]. These228

features, selected based on business analyst feed-229

back, capture both the structural significance and230

proximity of nodei to CA nodes. Previous struc-231

tural encoders like node2vec (Grover and Leskovec,232

2016) and GNN (Cummings and Nassar, 2020)233

facilitate the mapping of structural information234

onto a higher-dimensional space, thus endowing235

the model with enhanced representational capabil-236

ities. However, integrating relative relationships237

into these encoders poses notable challenges. In238

our devised encoder, the relative associations with239

CA are explicitly taken into account, thereby con-240

stituting an initial endeavor towards a CA-aware241

structural encoder.242

4.2 Cross-Attention Fusion243

This phase integrates semantic and structural data244

from both the CA and BG graphs. It employs245

cross-attention mechanisms, first between semantic246

and structural embeddings, then between the CA247

and BG graph embeddings. Each embedding, pro-248

cessed through a Transformer-like encoder, amal-249

gamates information from the other three sources.250

This fusion not only enhances learning of the "im-251

portance" concept but also establishes hidden re-252

lationships with CA nodes. The embeddings un-253

dergo further refinement via a Reconstruction Auto-254

Encoder, which aids in model robustness by train-255

ing a Multi-Layer Perceptron (MLP) to reconstruct256

randomly dropped node embeddings.257

4.3 Attention-based Aggregation258

The third segment of our model introduces an259

Attention-Based Aggregation mechanism. This260

component is pivotal in predicting the Node Impor-261

tance Score (NIS) using the embeddings generated262

in the earlier stages of the model. This mechanism263

is illustrated in Figure 3.264

The core principle underlying this mechanism265

is the utilization of self-attention. Initially, the266

Figure 3: Attention based Aggregation mechanism. The
Aggregation matrix contains trainable attention parame-
ters, which are used to produce the self-attention Query
that guides the prediction of Node Importance Score.

embeddings from the cross-attention module are 267

processed through two MLP encoders. This step 268

generates the Key tensor for self-attention. Con- 269

currently, the embeddings are transformed by an 270

"aggregation matrix" and reshaped into the Query 271

tensor that mirrors the shape of the Key tensor. 272

The Hadamard product between the Key and 273

Query tensor yields a tensor of shape [#node, 2]. 274

Each row of this tensor encapsulates two NIS, one 275

derived from semantic embeddings and the other 276

from structural embeddings. 277

To finalize the prediction of NIS, the model ag- 278

gregates these semantic and structural NIS values. 279

This aggregation is then refined with a softmax 280

function, ensuring a normalized probabilistic out- 281

put for the NIS. 282

4.4 Post-processing Adjustment 283

In the final part, we introduce Post-processing Ad- 284

justment to further enhance the model’s perfor- 285

mance. This is achieved by calculating a weighted 286

summation between the predicted NIS vector, the 287

semantic similarity vector, and the structural simi- 288

larity vector. 289

4.4.1 Semantic Similarity Vector 290

The semantic similarity vector is computed by av- 291

eraging the cosine similarity between the nodei’s 292

semantic embeddings and the embeddings of the 293

CA nodes. The i-th element of the semantic sim- 294

ilarity vector, denoted as Ssem,i, is calculate as 295

follows: 296

Ssem,i =

|CA|∑
j=1

⟨Esem(nodei)|Esem(CAj)⟩)

|CA|
(1) 297

where: Esem(.) represents the semantic embedding 298

obtained via BERT encoder. ⟨.|.⟩ denotes the func- 299
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tion of cosine similarity. |CA| denotes the number300

of nodes in the CA set.301

For nodes included in the CA graph, their seman-302

tic similarity is assigned a maximum value (1).303

4.4.2 Structural Similarity Vector304

The structural similarity vector is obtained using a305

function determined by regression. This function306

takes the structural features of a node as input and307

outputs a scalar between 0 and 1 representing the308

structural similarity between the node and the CA309

nodes. The nodei’s structural similarity Sstr,i is310

defined as:311

Sstr,i = b+R[Estr(nodei)]tr (2)312

where: Estr(.) represents the structural embed-313

ding of a node. R and b are the regression parame-314

ters and bias respectively.315

We perform the regression with 5% randomly316

sampled data from the training set. The ratio be-317

tween CA, GT and BG node numbers are kept dur-318

ing the sampling. Once the R and b are determined,319

we fix them to calculate the structural similarity of320

any given node.321

4.4.3 Weighted Summation322

The final NIS (Ifinal) is obtained as follows:323

Ifinal = σ(α ∗ Iinit + β ∗ Ssem + γ ∗ Sstr) (3)324

where: α, β and γ are trainable parameters. σ(.)325

is the sigmoid function.326

In this step, we refine the prediction results us-327

ing the similarity vectors. The similarity vectors328

provide additional information about the CA nodes,329

enabling the model to better distinguish nodes with330

similar initial NIS predictions.331

4.4.4 Loss Function332

The loss function of our model is defined as fol-333

lows:334

Ltotal = B(Igt, Ifinal) + Lsem + Lstr (4)335

336
Lsem = µ ∗ B(Ssem ∗ Igt, Ifinal) (5)337

338
Lstr = ν ∗ B(Sstr ∗ Igt, Ifinal) (6)339

where: B(.) is the function to calculate Binary340

Cross Entropy. Igt and Ifinal represent the ground341

truth and the prediction values of NIS. Lsem and342

Lstr are loss terms weighted on semantic and struc-343

tural similarities. µ and ν are hyperparameters.344

In this loss function, we incorporate two 345

weighted terms to prioritize the losses associated 346

with nodes that are either semantically or struc- 347

turally important. This setting strengthens the 348

model’s robustness against noise from nodes that 349

are semantically unrelated or structurally distant 350

from the CA nodes. 351

5 Experiments 352

This section describes our experiments that aim to 353

answer the following research questions: 354

• Cross-graph Performance: Does CADReN 355

outperform other approaches for cross-graph 356

NIE tasks? Can it do zero-shot inference on 357

different graphs without retraining? 358

• Single-graph Performance: does our model 359

perform on par with previous works? 360

• Impact of CA: By introducing CA, does CA- 361

DReN show better flexibility and controllabil- 362

ity in NIE tasks? 363

5.1 Datasets 364

Our model is designed for multi-graph scenario, 365

for which there are no datasets readily available. 366

We have created our own datasets, and we plan to 367

opensource RIC200 and WK1K to the community. 368

For each node inside the graphs of these datasets, 369

it is labeled as one type among {CA, GT, BG}. 370

Nodes are labeled in a way to simulate the real- 371

world application scenario: the CA nodes given 372

by a user reflecting his/her interest, the GT nodes 373

showing the expected responses, and the BG nodes 374

representing the knowledge resource. In other 375

words, the CA and GT nodes are labeled in accord- 376

ingly, we call them a "pair". It is worth mentioning 377

that, on average, each graph has 5 pairs of (CA, 378

GT). We use different pairs of (CA, GT) to test the 379

model’s ability to give flexible outputs. 380

In order to compare with previous single-graph 381

oriented models, for most of the datasets we used, 382

a single-graph version is constructed, by simply 383

putting all the graphs into one giant graph. 384

The datasets used are listed in Table 1: 385

RIC10K: a dataset containing 10k KGs covering 386

the business landscape knowledge of different in- 387

dustries, which are generated based on documents 388

like annual reports and research reports. RIC200: a 389

dataset containing 250 KGs selected from RIC10K. 390

WK1K: a dataset containing 1000 KGs that are 391

constructed based on Wikipedia data and relevant 392
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Database #Edges #BG #GT #CA #Graphs

FB15K-S 592,213 14,591 1,459 150 1
FB15K-M 3006 74 7 5 197

RIC200-S 63,802 36,607 2,004 617 1
RIC200-M 319 183 13 3 250

RIC10K-M 77 43 10 3 10,000

WK300-S 97,654 90,746 1,884 950 1
WK300-M 311 289 6 3 314

WK1K-M 318 295 6 3 1,024

Table 1: Statistics of datasets used in our experiments.
All the numbers are averaged numbers. The suffix "-S/-
M" represent "Single/Multi-graph" version.

articles, containing general knowledge across do-393

mains. WK300: a dataset containing 314 KGs394

selected from WK1K. FB15K (Bollacker et al.,395

2007): an open dataset containing general infor-396

mation across domains. Following the settings of397

RGTN, each node in it is accompanied with the398

descriptions extracted from WikiData 1. The NIS399

is represented by the node’s pageview number on400

Wikipedia in the past 30 days. Around top-1%401

(resp. top-10%) of nodes with the highest pageview402

numbers are marked as the CA (resp. GT) nodes.403

For the two newly proposed datasets, we give404

the details of their creation process here.405

RIC10K: Thousands of open articles are col-406

lected from the Internet. Through Named Entity407

Recognition and Relation Analysis, these articles408

are turned into 10,000 KGs, grouped by themes.409

In each KG, we generate some commonly asked410

questions (queries) with ChatGPT. The nodes men-411

tioned in these queries are labeled as "CA" nodes.412

Then, a group of consulting experts labeled the413

nodes highly related to the given query as "GT"414

nodes. Overall about 7% (resp. 23%) of the nodes415

are labeled as "CA" (resp. "GT") nodes.416

WK1K: 1,000 simulated queries are first gen-417

erated with ChatGPT. For each query, its relevant418

articles are obtained via search engines with the419

query being the search input. The nodes mentioned420

in the queries are labeled as "CA" nodes, while421

the top 10% nodes with highest word frequency422

in the "relevant articles" are marked as the "GT"423

nodes. Approximately 1% (resp. 2%) of the nodes424

are labeled as "CA" (resp. "GT") nodes.425

During the experiment, when a single-graph426

based model (GENI, RGTN) is applied on a multi-427

graph dataset, the model process each graph se-428

1https://www.wikidata.org

quentially. Multi-graph based methods (GPT-3.5, 429

CADReN) are compatible with the single-graph 430

setting, thus can be applied without modification. 431

5.2 Baselines 432

We compare our work with two previous 433

Transformer-based methods: GENI (Park et al., 434

2019), RGTN (Huang et al., 2021), as well as a 435

representative of the generative models: GPT-3.5- 436

Turbo (Brown et al., 2020) (referenced as GPT-3.5). 437

GENI and RGTN adopt Single-Graph Ori- 438

ented Structure (SGOS), however, real-world KG 439

datasets are composed of multiple KGs. When 440

SGOS models are applied to these datasets, the 441

graphs need to be aggregated into one graph first. 442

In most scenario, this aggregation is not practical 443

because of the size of data. Even in situations when 444

we could aggregate the graphs, our experiments 445

show that such work-around does not give satis- 446

factory results (Table 3). Therefore, our network 447

is deliberately designed to adopt a Multi-Graph 448

Oriented Structure (MGOS). To give a comprehen- 449

sive comparison, our experiments cover both the 450

single-graph and the multi-graph settings. 451

CA could be introduced to GPT-3.5 through 452

prompts, while GENI and RGTN can not take 453

CA as input by design. During the experiments 454

of GENI and RGTN, the information from CA was 455

carefully masked to avoid data leakage. 456

All the baselines were run with the same data un- 457

der their default settings. The experiments are con- 458

ducted on NVIDIA GeForce RTX 2080 Ti GPUs. 459

The models are trained until convergence using the 460

Adam Optimizer with a learning rate of 5E-3. 461

5.3 Metrics 462

Building upon the study conducted by GENI (Park 463

et al., 2019), we employ the metrics of Normal- 464

ized Discounted Cumulative Gain (NDCG) and 465

Spearman’s rank correlation coefficient (SPM) to 466

conduct a comprehensive evaluation of the rank- 467

ing quality and importance correlation. Addition- 468

ally, we introduce a novel metric called Overlap@k 469

(OVER), to assess the recall of important nodes 470

following the ranking of node importance on a dy- 471

namic range. 472

NDCG is a commonly employed metric for eval- 473

uating the quality of rankings that takes into ac- 474

count the order of elements. For this specific task, 475

we define the graded relevance values as the ground 476

truth importance values after applying a logarith- 477

mic transformation. When presented with a list 478
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of nodes and their corresponding predicted impor-479

tance scores, as well as their ground truth impor-480

tance values, we sort the nodes by the predicted im-481

portance scores and take the corresponding ground482

truth importance at the position i as reli. DCG@k483

is defined as:484

DCG@k =
k∑

i=1

reli
log2(i+ 1)

(7)485

The Ideal DCG (IDCG) is the DCG of the486

ground truth list. NormalizedDCG at position k487

(NDCG@k) is calculated by:488

NDCG@k =
DCG@k

IDCG@k
(8)489

SPM, or SPEARMAN, measures the correlation490

between the predicted NIS list pred and the ground491

truth list label. After converting the raw values492

pred and label into the ranks Rpred and Rlabel ,493

SPM is calculated by:494

SPM =
cov(Rpred, Rlabel)

σRpred
σRlabel

(9)495

where: cov() is the covariance function. σRpred
496

and σRlabel
are the standard deviations of the ranks.497

OVER is the overlap ratio of the top-m impor-498

tant predicted nodes (Ipred) and their correspond-499

ing labels (Igt). Since we are evaluating a cross-500

graph task, the m is set dynamically to cope with501

graphs with different sizes. The OV ER@k is at-502

tained by:503

m = k ∗ |GT | (10)504
505

OV ER@k =
|Ipred,top−m ∩ Igt,top−m|

m
(11)506

where: |GT | is the number of nodes in GT set.507

5.4 Cross Graph Evaluation508

CADReN outperforms other approaches on multi-509

graph setting due to its MGOS design. The design510

goal of SGOS models is to learn absolute informa-511

tion about each node in one graph. When they are512

used to process multiple graphs, information from513

multiple graphs interfere with each other rather514

than complement each other. CADReN, on the515

other hand, with the help of CA, it can learn gener-516

alized relative relationship information from mul-517

tiple graphs, leading to a significantly enhanced518

performance on multi-graph tasks.519

Moreover, CADReN demonstrates its ability of520

zero-shot inference across graphs. This feature521

confirms that CADReN learned the transferable 522

relative relations. Results of the experiment are 523

organized in Table 2. 524

5.5 Single Graph Evaluation 525

Single-graph NIE has been the center of NIE re- 526

searches during a long time. In order to better 527

compare with the previous works, CADReN is also 528

tested under single-graph setting with baselines. 529

Experiment results are organized in Table 3. The 530

results show that, even though CADReN is not 531

built upon single-graph scenario, it still matches 532

the performance of previous works, getting the best 533

or second best outcomes in most tests. 534

5.6 Effectiveness of CA 535

The introduction of the CA allows users to interact 536

with the NIE network, leading to more accurate 537

and more flexible NIE predictions. To demonstrate 538

this feature, we apply NIE with fixed BG nodes 539

while altering the (CA, GT) pairs. CADReN suc- 540

cessfully captures this change and gives prediction 541

accordingly, while previous works can not adapt 542

to the change of context. One qualitative result is 543

shown in Fig. 4. More results in Appendix A. 544

Figure 4: Top 20 nodes with highest NIS predicted. Red
(resp. orange) nodes are GT nodes corresponding to CA
1 (resp. CA 2) nodes.

5.7 Effectiveness of Structural Information 545

LLMs are powerful for textual information analysis, 546

it is natural to use LLM for NIE tasks directly. 547

However, due to the lack of structural information 548

and of up-to-date information, GPT-3.5 shows less 549

ideal performance, as shown in Table 4. 550
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FB15K-M RIC{200†, 10K‡ }-M WK1K-M
Methods NDCG SPM OVER NDCG SPM OVER NDCG SPM OVER

GENI† 0.7761 0.4105 0.5168 0.7825 0.4277 0.4507 0.8136 0.4447 0.7462
RGTN† 0.8563 0.4403 0.5502 0.8228 0.3247 0.4402 0.8412 0.4931 0.7756
CADReN‡ 0.9917 0.6294 0.8988 0.8922 0.6232 0.8675 0.9064 0.6390 0.8641
CADReN†,△ 0.9617 0.6093 0.8176 0.8633 0.5899 0.8412 0.9007 0.6109 0.8199

Table 2: Evaluation results of different models across datasets under multi-graph NIE task setting. NDCG and SPM
are calculated with top 20 nodes, while the k parameter of Overlap is set as 2. The results in the row of CADReN △

is obtained by first training CADReN on RIC10K, then inference on other datasets. Best results are in bold, second
best results are underlined.

FB15K-S RIC200-S WK300-S
Methods NDCG SPM OVER NDCG SPM OVER NDCG SPM OVER

GENI 0.9191 0.7520 0.3901 0.7095 0.4231 0.2412 0.5899 0.2326 0.1700
RGTN 0.9550 0.8007 0.4720 0.6622 0.4387 0.2500 0.5257 0.2741 0.1600
CADReN 0.9322 0.7743 0.4172 0.6321 0.4778 0.2612 0.5311 0.2601 0.1612

Table 3: Evaluation results of different models on single-graph datasets. NDCG and SPM are calculated on the top
100 nodes, while the k parameter of Overlap is set as 2. CADReN achieves similar performance on single-graph
NIE compared with previous works even though it is not specifically designed for it. Best results are in bold, and
second best results are underlined.

RIC200-M WK300-M
Methods NDCG SPM OVER NDCG SPM OVER

GPT-3.5 0.41 0.51 0.21 0.61 0.55 0.45
CADReN 0.87 0.61 0.85 0.92 0.63 0.87

Table 4: GPT-3.5’s ability on NIE task is not satisfactory
due to the lack of structural information and of up-to-
date information.

5.8 Ablation Tests551

Additional ablation tests are carried out to evaluate552

the effectiveness of the mechanisms that we pro-553

posed: the Contextual Anchor (CA), the Attention-554

bassed Aggregation (AA), the Auto-Encoder (AE)555

and the Post-Processing mechanism (PP). We mea-556

sure the performance of CADReN on RIC10K with557

these modules partially disabled. Experiments con-558

firm the effectiveness of these components. Results559

are organized in Table 5.560

6 Conclusion561

In conclusion, our method is the first work to em-562

phasize the relative relationship between a Con-563

textual Anchor and other nodes within a Knowl-564

edge Graph using a Transformer-based architec-565

ture, while utilizing both structural and semantic566

information, to tackle the cross-graph Node Impor-567

NDCG SPM OVER

w/o CA 0.6968 0.3211 0.1275
w/o AA 0.7338 0.5363 0.8095
w/o AE 0.8647 0.6071 0.7979
w/o PP 0.8823 0.6121 0.8207

CADReN 0.9064 0.6390 0.8641

Table 5: Ablation test: each proposed component of
CADReN helps to improve the overall performance.

tance Estimation task. Our approach outperforms 568

existing methods on cross-graph NIE setting and 569

achieves similar performances on single-graph NIE 570

setting. The introduction of CA enables the model 571

to give flexible and accurate predictions. 572

To further enhance performance, future research 573

could delve into the exploration of novel encod- 574

ing mechanisms to generate superior embeddings. 575

Specifically, in the case of structural embeddings, 576

there is ample room for improvement. Neural 577

networks, such as Graph Neural Networks, hold 578

promise in providing more detailed structural infor- 579

mation. However, a challenge persists in accurately 580

representing the relative distance between the Con- 581

textual Anchor and the nodes in background graph. 582

Addressing this issue is of utmost importance for 583

forthcoming researches in this field. 584
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7 Appendix743

A More results explained in details744

A.1 Results of Effectiveness of CA experiment745

Here we show the results of different models ap-746

plied on same BG graphs while altering the CA747

and GT nodes in figure 5 and figure 6. The nodes748

marked in red (resp. orange) are the nodes con- 749

tained in the GT1 (resp. GT2) set related to the 750

CA1 (resp. CA2) nodes. 751

A.1.1 Comparison between the gray and blue 752

columns 753

GENI and RGTN could not take CAs as input, 754

therefore, their predictions are static and not flex- 755

ible, usually including the generally “popular" 756

nodes (e.g. PlayStation 4) or the acronyms linked 757

to lots of nodes (e.g. DMC and 6F) but are not 758

necessarily related to the user’s interest. On the 759

other hand, GPT-3.5 and CADReN could generate 760

predictions according to different CAs. In figure 5, 761

CADReN successfully gives the predictions related 762

to Titanium and Phosphorus chemicals respectively, 763

and in the example of figure 6, CADReN could 764

distinguish whether the user focuses on Chips or 765

Thyristors. 766

A.1.2 Comparison between light blue and 767

dark blue columns 768

CADReN’s predictions are more stable reasonable 769

than the ones given by GPT-3.5. As shown in the 770

figure 5, GPT-3.5 failed to provide a comprehen- 771

sive prediction likely due to the lack of the niche 772

knowledge of MDI or Titanium dioxide. As com- 773

parison, CADReN gives better prediction covering 774

almost all the GT nodes among top-20 predictions 775

because it can effectively leverage the structural 776

information in KG as from semantic perspective, 777

GPT-3.5 is superior than BERT. 778

B Prompts used during the experiments 779

of GPT-3.5 780

781

782

“role":“system",“content":“you are an amazing 783

analyst". “role":“user",“content":“ Please select 784

top 20 important words based on the key words 785

from a given set of background words. For the 786

important words, please also provide a score (0 to 787

1). Output should be like word \t score. Thank you. 788

Key words: 789

“‘ CA1 AND CA2 AND CA3 ”’ 790

A set of background words: 791

“‘ BG1, BG2, BG3, BG4, BG5, BG6, ... ”’ 792

793

794

The CAi and BGj are filled with actual node 795

entities during the experiments. 796
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Figure 5: Results of experiment on BG No. 1608708
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Figure 6: Results of experiment on BG No. 1610703
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