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ABSTRACT
Traditional search engines usually provide identical search results
for all users, overlooking individual preferences. To counter this lim-
itation, personalized search has been developed to re-rank results
based on user preferences derived from query logs. Deep learning-
based personalized search methods have shown promise, but they
rely heavily on abundant training data, making them susceptible to
data sparsity challenges. This paper proposes a Cognitive Personal-
ized Search (CoPS) model, which integrates Large Language Models
(LLMs) with a cognitive memory mechanism inspired by human
cognition. CoPS employs LLMs to enhance user modeling and user
search experience. The cognitive memory mechanism comprises
sensory memory for quick sensory responses, working memory
for sophisticated cognitive responses, and long-term memory for
storing vast historical interactions. CoPS effectively handles new
queries using a three-step approach: identifying re-finding behav-
iors, constructing a user profile with relevant historical information,
and ranking documents based on personalized query intent. Exper-
imental results demonstrate the superiority of CoPS over baseline
models in zero-shot scenarios.

KEYWORDS
Personalized Search, Large Language Models, Memory Mechanism,
Cognitive Psychology

1 INTRODUCTION
Search engines have become indispensable tools for information
retrieval and are ubiquitously used across the globe. However, tra-
ditional search engines often employ a one-size-fits-all approach,
delivering identical search results for a given query regardless of the
diverse need of individual users. Such an approach overlooks the
varied interests and preferences of individual users. To address this
gap, personalized search has been developed as a strategy to re-rank
search results, catering to each user’s distinct preferences [27].

Personalized search primarily involves modeling user prefer-
ences by analyzing their query logs and past interactions. Initial
efforts in this domain focused on extracting features from user click-
through data to predict interests [2]. The landscape shifted with
the advent of deep learning-based methods [11], which construct
user profiles in a semantic space, substantially improving search
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performance. However, a critical limitation of these deep learn-
ing approaches is their dependence on vast amounts of training
data [37], which are comprised of data from many users and may
bring challenges to user privacy protection. This reliance creates a
significant bottleneck, particularly in situations where only limited
high-quality individual data is available for model training. Large
Language Models (LLMs), however, offer a promising solution to
this problem. Known for their exceptional performance in zero-shot
contexts, LLMs can perform complex tasks without the need for
task-specific fine-tuning or vast amounts of training data. In light
of this, we propose to refine user modeling by integrating LLMs’
ability to work effectively in zero-shot scenarios.

However, directly applying LLMs to personalized search intro-
duces its own set of challenges. Specifically, when deploying LLMs
for personalized search tasks, the long-range nature of user his-
tories can become an obstacle. These histories, containing user
interactions, are critical to creating tailored search results. How-
ever, as these histories grow in length and complexity, processing
such extensive data can be computationally intensive and even
exceeds the length limit of LLMs. To tackle this issue, we propose
the construction of an LLM-based personalized model with external
memory units, ensuring that the LLM can rapidly access the most
relevant segments of the history without processing the entire user
history. Moreover, as the user history grows, the external memory
can be dynamically expanded by encoding user interactions at the
end of each session. This ensures that the system remains scalabil-
ity and can handle increasing amounts of data without significant
drops in efficiency.

To further boost the performance of the LLM-based personalized
search model, we have taken inspiration from one of the most
sophisticated processing units known tomankind - the human brain.
Intriguingly, despite the vast and often noisy information the brain
holds, humans are able to respond swiftly and accurately to external
stimuli [16]. This cognitive proficiency mirrors the challenge posed
by user histories in personalized search – extensive, multifaceted,
and noisy. Therefore, it stands to reason that imitating the cognitive
memory mechanism of the human brain could offer benefits when
constructing the external memory units for our model.

According to recent findings of cognitive psychology [5, 23], the
memory mechanism of the human brain is segmented into different
components - sensory memory, working memory, and long-term
memory, as depicted in Figure 1. Sensory memory is the earli-
est stage of memory, holding sensory information and facilitating
rapid response to stimuli instantaneously. Once the information has
passed through the sensory memory, it progresses to the working
memory, which integrates new information with existing knowl-
edge retrieved from long-term memory. At last, information from
working memory is encoded to long-term memory, from where it
can be retrieved when needed. Long-term memory stores enduring
information encompassing knowledge and experiences. Together,
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Figure 1: The memory mechanism of the human brain.

these modules form a system that efficiently processes, retains, and
retrieves information.

Drawing parallels with the cognitive memory mechanism, we
construct our external memory units with a similar structure. De-
signed for swift query processing, the sensory memory unit iden-
tifies if a query relates to a re-finding behavior—essentially revis-
iting previously accessed content. Recognized re-finding queries
are instantly ranked while others are sent to the working memory
for deeper analysis. The working memory unit assesses the query
against the user’s recent history and collaborates with the long-
term memory to integrate past user interests. These data form a
user profile which the LLM uses to model user intent. Serving as a
vast store of user preferences, the long-term memory aids the work-
ing memory by providing deep insights into the user’s long-term
interests and habits.

In this paper, we propose a Cognitive Personalized Search model
(CoPS), which leverages the strengths of LLMs and integrates cog-
nitive memory mechanisms to optimize user modeling during the
search process. CoPS incorporates three essential components to
facilitate personalized search results: (i) a cognitive memory mecha-
nism as the central storage unit, (ii) an LLM as the central cognitive
unit, and (iii) a ranker as the central scoring unit. Specifically, the
CoPS employs a three-step approach to effectively handle new
queries. Firstly, CoPS evaluates whether a new query corresponds
to a re-finding behavior using its sensory memory. If identified as
re-finding action, CoPS instantly utilizes the sensory response to
rank documents. Otherwise, the query is forwarded to the working
memory for further analysis. In the second step, the working mem-
ory integrates relevant historical information, encompassing the
user’s short-term history and query-aware user interests retrieved
from long-term memory, to construct a foundational user profile
for user modeling by the LLM. Lastly, CoPS employs a ranking com-
ponent to prioritize the candidate documents based on the user’s
personalized query intent. Experimental results on two datasets
demonstrate that our proposed model outperforms baseline models
in zero-settings.

Our contributions are summarized as: (1) We propose an LLM-
empowered cognitive personalized search model that incorporates
LLMs to improve user modeling. (2) We integrate the external mem-
ory units with LLM to provide efficient access to extensive user
histories. (3) We organize the memory units with an architecture
that imitates the memory mechanism of the human brain, ensuring
the model scalability and performance with large amounts of data.

2 RELATEDWORK
2.1 Personalized Search Models
Personalized search has gained considerable attention due to its
effectiveness in providing satisfactory results tailored to individual

users [3]. Traditional approaches often rely on heuristic rules or
manually extracted features to implement personalized search [1,
4, 8, 12, 30]. A recent shift has seen the rise of deep learning-based
techniques in personalized search, demonstrating superior capabil-
ities in learning implicit user interests [11, 29, 32, 34–36]. Ge et al.
[11] have employed RNN structures to leverage sequential data to
craft detailed user profiles. To improve the representation of user
profiles and mine high-quality negative samples, GAN-based mod-
els have been proposed [15]. Memory networks have been employed
to capture multi-level re-finding behavior in personalization [36].
Contextual information has been incorporated to learn clear query
representations [32, 35]. More recently, a multi-task contrastive
learning model has been developed, achieving better performance
in personalized search [37]. However, these neural personalized
search approaches rely heavily on abundant training data. In re-
sponse to this challenge, our paper presents an LLM-empowered
personalized search framework that enables user modeling in zero-
shot scenarios.

2.2 LLMs in Information Retrieval
The emergence of large language models has significantly advanced
information retrieval, particularly in the domains of document rank-
ing and personalized recommendation tasks. In the context of docu-
ment ranking, several studies [19, 21, 25, 26] have explored how to
leverage large language models to match queries with documents,
employing different approaches such as pairwise and listwise meth-
ods. These approaches aim to optimize the ranking of documents
based on their relevance to a given query. In the realm of personal-
ized recommendation, researchers [6, 9, 10, 13, 14, 28] have inves-
tigated the potential of large language models in extracting user
interests through techniques like prompt designing and in-context
learning. These efforts have focused on harnessing the capabili-
ties of large models to enhance the accuracy and effectiveness of
personalized recommendation systems. Different from previous
tasks, this paper conducts a comprehensive investigation into the
integration of LLMs into personalized search systems, aiming to
advance the utilization of LLMs for handling personal data.

3 COGNITIVE PERSONALIZED SEARCH
Personalized search has emerged as an effective approach to en-
hance the user search experience through the modeling of user
interests. However, as mentioned previously, existing personal-
ization models encounter significant challenges stemming from
data sparsity and the complexities associated with user history.
To address these limitations, this paper introduces a framework
empowered by large language models with an efficient memory
mechanism to enhance user modeling in personalized search.

To begin with, the task of personalized search can be defined as
follows. The user’s historical data, represented as𝐻 , is comprised of
both short-term history, denoted as 𝐻𝑠 = {𝐼𝑠1 , · · · , 𝐼

𝑠
𝑡−1}, capturing

the current session’s sequence of user interactions, and long-term
history, denoted as 𝐻 𝑙 = {𝐼 𝑙1, 𝐼

𝑙
2, · · · }, encompassing past interac-

tions from previous sessions. Each interaction 𝐼𝑖 is recorded in the
search log and comprises a user-issued query, skipped documents,
and clicked documents, denoted as {𝑞𝑖 , 𝐷-

𝑖
, 𝐷+

𝑖
}. Given a new query

𝑞 and a set of candidate documents 𝐷 = {𝑑1, 𝑑2, ...} retrieved by the
2
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Figure 2: The overview of CoPS. The system initially engages the sensory memory to identify re-finding behaviors, thus gener-
ating a sensory response if identified. Otherwise, the working memory collaborates with an LLM to accumulate personalized
cues related to the query. After LLM-empowered user modeling, a ranker is employed to re-rank the results based on user
interests. Note that CoPS does not require any training data and personalization can be achieved with the user’s own data.

search engine, the primary objective of personalized search is to
determine a score, 𝑝 (𝑑 |𝑞, 𝐻 ), for each document in 𝐷 , taking into
account both the current query 𝑞 and the historical data 𝐻 .

As shown in Figure 2, we develop a cognitive personalized search
model empowered by LLMs to calculate the above personalized
scores. We elaborate our model based on three main components as
follows: (1) Memory mechanism as a central storage unit, (2) LLM
as a central cognitive unit, and (3) Ranker as a central scoring unit.

3.1 Memory Mechanism: Central Storage Unit
Due to the extensive nature of user histories, we propose to lever-
age an external cognitive memory as the central storage unit. As
outlined previously, the human brain exhibits a sophisticated cog-
nitive memory structure, comprising a sensory memory, a working
memory, and a long-term memory. This structure ensures swift and
effective reactions to external stimuli. In mirroring these capabili-
ties of the human brain, we endeavor to integrate these memory
units into LLMs, enabling personalized storage of user interactions
and efficient feedback mechanisms.

3.1.1 Sensory Memory. The primary function of sensory memory
lies in its ability to provide immediate feedback for external stimuli.
In the context of personalized search, a user behavior pattern known
as "re-finding" has been observed in [8]. This pattern emerges when
users search for information that they have previously encountered,
making it a simple but effective way to predict a user’s next clicks
in personalized search. Inspired by this observation, we propose
the idea of archiving user re-finding behaviors within the sensory

memory. This approach allows for the swift identification of re-
finding instances and promotes the generation of an immediate
sensory reaction.

Specifically, CoPS extracts all pairs of query and clicked docu-
ment, denoted as (𝑞, 𝑑+), from the user’s historical data𝐻 , whereby
the frequency of each document being clicked is recorded. Upon
receiving a new query, it first prompts the sensory memory for
feedback. If a match is found within the sensory memory, the query
is classified as a re-finding behavior. CoPS then produces a sen-
sory response by ranking the candidate documents based on their
click frequency. If no match is found, the query is forwarded to the
working memory for further processing and analysis.

3.1.2 Working Memory. Working memory serves as a crucial cog-
nitive system, responsible for the temporary storage and integration
of information related to ongoing tasks. In the context of personal-
ized search, the user’s personalized query intent can be effectively
captured by considering three crucial dimensions of information:

• Relevant interactions. The user’s historical search behavior often
contains noisy and irrelevent data for personalization. Therefore,
the information directly related to the current query within the
user’s search history takes on greater significance in tailoring
search results.

• Contextual interactions. Users often enter a series of queries
within a single session to satisfy a particular information need.
These queries, coupled with the corresponding skip and click be-
haviors in the current session 𝐻𝑠 , provide rich contextual clues.

3
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Utilizing this information can significantly enhance the model’s
ability to infer the user’s present intent.

• Re-written Query. Queries formulated by users are typically brief
and may contain typos or other inconsistencies, potentially hin-
dering the accurate interpretation of the underlying intent. The
refinement or re-writing of these queries is thus a key step in
better understanding and responding to the user’s specific infor-
mation needs.

3.1.3 Long-term Memory. Long-term Memory plays a pivotal role
in memory systems, enabling the retention of user-specific signals
over extended temporal spans. In personalized search, long-term
memory is primarily devised for the preservation of the user’s long-
term interactions. However, due to the vastness of user history
and the presence of a substantial amount of noisy data, it becomes
necessary to segment and encode the long-term history 𝐻 𝑙 , retain-
ing the most salient personalized signals. Concretely, we partition
the user history into fixed-length temporal windows. Interactions
within these intervals are allocated to specific memory slots. To
holistically capture users’ personalized signals, we encode user
interactions from two dimensions: explicit and implicit memory.

• Explicit Memory. The explicit memory primarily captures the
user’s specific interests and preferences within each topic, serv-
ing as a valuable resource for tailoring candidate documents to
individual needs. For each interaction window, data is encoded
into a key-value storage format: the key represents the topic,
while the value details the items the user showed interest in,
within that topic. To implement this, we employ the LLM with
several demonstrations and the instruction “[Demonstrations]
[User interactions]. Please summarize the user interests into multi-
ple topics based on the user’s historical query log”.

• Implicit Memory. Implicit memory focuses on storing personal
contextual details such as occupation, gender, and other under-
lying latent factors. Together, these elements contribute to dis-
cerning a user’s personalized query intentions. For instance, the
appearance of words like "python" in the query might suggest the
user’s occupation as a programmer. Similar to the explicit mem-
ory, we employ the LLM for the encoding process. It’s worth
noting that the encoding method here can be replaced by al-
ternative document summarization models or vector encoding
models.

With our system now possessing memory capabilities, there
remains an essential need for a cognitive module to handle infor-
mation extraction and analysis. The LLM shown below is designed
for this role.

3.2 LLM: Central Cognitive Unit
Large languagemodels have emerged as revolutionary breakthroughs
in the realm of natural language processing. Their exceptional skill
in comprehending and generating human language, especially in
areas like common-sense reasoning and knowledge extraction in
zero-shot contexts, underscores their significance. These abilities
qualify the LLM as a key cognitive component in personalized
search, where it can significantly improve user modeling and inter-
pret personalized query intentions. Specifically, the LLM in CoPS
determines the information to be loaded into working memory

and executes cognitive reasoning to analyze the contents therein,
encompassing tasks such as query re-writing, user profile retrieval,
and user interest modeling.

3.2.1 Query Re-writing. Query re-writing involves refining and
transforming user queries to improve their clarity. Given this, LLMs
can decipher the initial user query and its deeper meaning, sug-
gesting alternative phrasings that may fit the context better. By
utilizing query rewriting, CoPS stands a better chance of identifying
relevant historical interactions and accurately modeling a user’s
personalized query intent. Specifically, when given a query, the
LLM is leveraged to perform query re-writing with a designated
prompt, such as:
• [Query]. Please act as a query re-writer to enrich the query and

make the query intent clearer.

3.2.2 User Profile Retrieval. User profile retrieval enables the re-
trieval and utilization of information from the long-term memory.
The LLM acts as a pivotal tool in accessing relevant user profiles
from the long-term memory based on the current query intent. To
access the explicit and implicit memories, the LLM is prompted in
a manner specifically tailored to extract relevant information from
each memory slot in relation to the current query, such as:
• [An Explicit/Implicit memory slot], [Re-written query]. Please act

as a retriever to extract personal interests/backgrounds related to
the query from the memory.

The results of the rewriting and retrieval processes, including the
refined query and the retrieved user profiles, are stored in the
working memory. This storage also considers the user’s recent
interactions, which aids in future user modeling. It’s worth noting
that the choice of retriever here can be swapped with traditional
sparse or dense retrievers. This allows for the decoupling of the
LLM from external memory.

3.2.3 User Modeling. User modeling aims to understand and pre-
dict user behavior and preferences. In our cognitive personalized
search model, user modeling primarily involves processing the in-
formation stored in working memory, including rewritten queries,
short-term user interactions, and retrieved user profiles to infer
the user’s personalized query intent. To do this, the LLM is given
prompts such as:
• [User background], [User interests], [Recent Interactions], [Re-written

Query]. Please infer the user’s personalized query intent based on
the user profile.

The output of the LLM is then considered as the query-aware user
preferences, denoted by𝑈𝑞,𝐻 . In contrast to previous user modeling
methods reliant on deep learning, a notable advantage of LLM-
empowered user modeling lies in its representation of user interests
through natural language rather than highly abstract vectors. This
approach grants the model a higher level of interpretability.

3.3 Ranker: Central Scoring Unit
The ranker serves as the central scoring unit, determining the rele-
vance and order of search results. In CoPS, the ranker is specifically
designed to weigh the correlation between user preferences and
document content, thus prioritizing documents that resonate with
user inclinations. Formally, the personalized ranking score for a

4
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document 𝑑 is represented as: 𝑝 (𝑑 |𝑞, 𝐻 ) = R(𝑈𝑞,𝐻 , 𝑑), where R
denotes the ranking function. We explore three distinct types of
rankers within zero-shot settings:

3.3.1 Term-based Ranker. The term-based ranker operates by ana-
lyzing the frequency and distribution of query terms within candi-
date documents. It relies on established term-matching techniques
to evaluate the relevance of documents to the user’s query. Due
to its computational efficiency and straightforward deployment,
this method has become a commonly employed approach in in-
formation retrieval systems. In CoPS, since user preferences are
expressed in natural language, the BM25 model [22] is adopted to
compute a personalized score for each document.

3.3.2 Vector-based Ranker. The vector-based ranker comprehends
contextual information and interrelationships among words in a
sentence. This allows it to grasp the contextual relevance of can-
didate documents in relation to the query. In CoPS, we adopt an
interaction-based BERT ranker, which concatenates the user pref-
erences 𝑈𝑞,𝐻 and the document 𝑑 with the ’[SEP]’ token as the
separator. Subsequently, this combined representation is fed into
a pre-trained BERT model, and the matching score is computed
using a linear layer. Specifically, we choose DistilBERT [24], which
is trained on the MS MARCO dataset [17] for the ranking task, to
compute the matching score.

3.3.3 LLM-based Ranker. The LLM-based ranker presents a new
ranking paradigm that directly generates the ranking list for a given
query and candidate documents [26]. In CoPS, we input the user
preferences and candidate documents into the LLM, then request a
personalized ranking list using the following prompt:
• [Query], [User preferences], [Candidate documents]. Please rank

these documents by measuring the relevance based on the query
and user preferences.
In summary, we introduce CoPS, a fusion of LLMs and a cognitive

memory mechanism aimed at elevating user modeling to enhance
personalized search results. Unlike prior deep learning approaches,
our method operates in an unsupervised manner throughout the
entire process of search result personalization. This design aims to
amplify personalization even in scenarios where no training data
is available, and is conducive to privacy protection.

3.4 Discussions
As the fusion of LLMs with personalization progresses, we delve
into the primary challenges concerning LLM’s role in facilitating
personalized search:
• How can user log data inputted through an online interface

into an LLM be safeguarded to protect user privacy?
Uploading individual search data to a closed-source LLM through

an online interface may compromise user privacy. A viable solution
is to deploy open-source models (like the vicuna model used in
section 5.3) on local devices. Additionally, to avoid utilizing pri-
vate user data for model training, we propose a framework called
CoPS. This framework leverages external memory mechanisms and
retrieval techniques, feeding only a minimal amount of retrieved
user-relevant data into the LLM for inference, thus achieving accu-
rate user modeling without model training.

• How to effectively achieve low-latency search result deliv-
ery in such a LLM-based system?
Over time, the accumulation of user query logs will grow, sig-

nificantly slowing down the LLM’s response speed, which in turn
affects the user experience. To mitigate this issue, our CoPS frame-
work utilizes a cognitive memory mechanism to accelerate the
process from two fronts: Firstly, handling simple repetitive queries
using sensory memory will expedite response times. Secondly, em-
ploying retrieval techniques to feed only the current query-relevant
user interests into the LLM for user modeling could further enhance
the speed and efficiency of personalized search responses.

By addressing the privacy concerns and ensuring swift response
times, it enhances the feasibility and user satisfaction in deploying
LLMs for personalized searches. Through local model deployment
and efficient memory and retrieval mechanisms, we can stride
towards a more user-centric and privacy-compliant personalized
search experience.

4 EXPERIMENTAL SETTINGS
4.1 Datasets and Evaluation Metrics
Due to the scarcity of datasets suitable for personalized search, we
carefully selected the following two datasets for experimentation:
the AOL search logs dataset [18] and a commercial dataset obtained
from a large-scale search engine. Each piece of data includes an
anonymous user ID, a session ID, a query, the timestamp, a doc-
ument, and a binary click tag. For our experimentation, we used
the query logs from the first 85% interactions to represent the user
history, while the queries issued in the subsequent 15% interactions
for model testing. To manage the expenses of invoking the LLM
API, we strategically sampled 200 users with massive interactions
from each dataset, including 16,626 and 10,294 queries respectively.

In evaluating the performance of our model, we utilize several
commonly used metrics, including MAP, MRR, and precision (P@1),
to assess the quality of the ranking. In addition, following [11],
we adopt an additional metric, P-improve (P-imp), to measure the
reliable improvements on inverse document pairs.

4.2 Baselines
For comparison, our study incorporates a diverse set of baselines
representing both ad-hoc and personalized search models. In each
category, we carefully selected both fine-tuned models and zero-
shot models to test the performance of the model with or without
sufficient training data.

KNRM [31]. Tailored for ad-hoc search applications, KNRM
leverages kernel-pooling to generate multi-level soft matching fea-
tures from a word similarity matrix, establishing a nuanced ranking
framework.

Conv-KNRM [7]. Building upon KNRM, Conv-KNRM incorpo-
rates a convolutional layer to model n-gram soft matches, harness-
ing the contextual essence of surrounding words to enhance the
precision of matching.

BERT [20]. Engaging the pre-trained BERTmodel, this approach
tackles the query-document matching challenge. By concatenating
query-document sequences and channeling them through the BERT
model, the representation of the [CLS] token in the final layer is
adopted as the matching feature.
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Table 1: Overall performance of all models on two datasets. Zero-shot represents whether the model can be applied to zero-shot
scenarios. "†" indicates the model outperforms zero-shot baselines significantly with paired t-test at p < 0.05 level.

Task Model Zero-shot AOL dataset Commercial dataset

MAP MRR P@1 P-imp MAP MRR P@1 P-imp

Adhoc
Search

KNRM - .4291 .4391 .2704 .3634 .4916 .5001 .2849 .0655
Conv-KNRM - .4738 .4849 .3266 .4293 .5872 .5977 .4188 .1422

BERT - .5033 .5135 .3552 .6082 .6232 .6326 .4475 .1778

BM25 ✓ .3617 .3717 .2549 .2710 .4702 .4808 .2682 .1484
DistilBERT ✓ .3762 .3811 .2383 .5148 .4154 .4160 .1972 .2301
ChatGPT ✓ .5082 .5122 .3731 .5142 .6023 .6379 .4413 .1886

Personalized
Search

SLTB - .5113 .5237 .4693 .3374 .7023 .7104 .6105 .1398
HRNN - .5324 .5545 .4854 .5927 .8065 .8191 .7127 .2404
RPMN - .5926 .6049 .5322 .6586 .8238 .8342 .7305 .2652
HTPS - .7091 .7251 .6268 .7730 .8222 .8324 .7291 .2554

P-Click ✓ .4221 .4305 .3780 .1657 .6802 .6935 .5668 .0625
CoPS (Ours) ✓ .7043† .7081† .5906† .7229† .8018† .8153† .7353† .3008†

Table 2: The results with different memory units. • and ◦ indicates the model with and without the memory.

Model
Memory Units AOL dataset Commercial dataset

Sensory Working Long-E Long-I MAP Latency (s) MAP Latency (s)

CoPS ◦ • • • .6863 ↓ 2.55% 1.13 ×2.09 .7641 ↓ 2.26% 1.35 ×2.17
CoPS • ◦ • • .6582 ↓ 6.54% 0.43 ×0.79 .7413 ↓ 5.18% 0.50 ×0.81
CoPS • • ◦ • .6281 ↓ 10.8% 0.27 ×0.50 .7326 ↓ 6.29% 0.33 ×0.53
CoPS • • • ◦ .6807 ↓ 8.05% 0.28 ×0.52 .7700 ↓ 1.51% 0.35 ×0.56
CoPS • • • • .7043 - 0.54 - .7818 - 0.62 -

Table 3: The role of LLM in query re-writing (QR), user profile
retrieval (UPR) and user modeling (UM).

Model AOL dataset Commercial dataset

MAP MRR MAP MRR

CoPS-ChatGPT .7043 .7081 .7818 .8153
QR-Remove .6872 .6898 .7702 .7923
QR-Vicuna .6903 .6963 .7731 .7971
UPR-Random .6103 .6222 .7189 .7408
UPR-Vicuna .6382 .6483 .7217 .7492
UM-Remove .6217 .6290 .7266 .7554
UM-Vicuna .6423 .6507 .7362 .7601

BM25 [20]. This method computes the lexical-level relevance
between queries and documents based on IF-IDF weighting.

DistilBERT [24]. Utilizing a large-scale query-document rele-
vance dataset, MS MARCO, this model is trained specifically for
ranking tasks, demonstrating strong generalization capabilities.

ChatGPT [26]. By designing prompts, this model manages to
directly leverage LLM to output ranking results.

SLTB [2]. It employs a comprehensive feature aggregation strat-
egy by combining click features, topical features, time-related fea-
tures, and positional features to enhance result personalization
through a learning-to-rank methodology.

HRNN [11]. Focused on personalized search, HRNN employs
sequential analysis of query logs to construct dynamic user profiles
based on the current query. By integrating hierarchical recurrent
neural networks with query-aware attention mechanisms, it effec-
tively embodies this concept.

RPMN [36]. This memory network-centric personalized search
model seeks to unearth potential re-finding behaviors. By crafting
three external memories, it adeptly navigates through different
types of re-finding behavior.

HTPS [35]. Structured as a personalized search framework,
HTPS employs a hierarchical transformer to initially encode history,
facilitating query disambiguation through contextual information.

P-Click [8]. This model leverages the frequency of clicks on a
particular document and its original position to effectively re-rank
search results using the Borda count method. P-Click is designed
to prioritize the user’s behavior when revisiting or re-finding infor-
mation, making it a robust approach for enhancing search results.

4.3 Implementation Details
For all fine-tuned baseline models, the training process is conducted
using the complete set of interactions contained within the training
dataset, while our model requires no training data. The LLM is
accessed through OpenAI’s API, specifically the gpt-3.5-turbo
variant. The temperature parameter for calling LLMs is set to 0.2,
a value that balances trade-offs between model uncertainty and
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response variability. For ranker selection, the ChatGPT [26] ranker
is employed for both datasets.

5 EXPERIMENTAL RESULTS
This section presents the experimental results of our proposed ap-
proach and conducts an empirical analysis to offer a comprehensive
understanding of the results.

5.1 Overall Performance
The overall results of models are displayed in Table 1. We can
observe that:

(1) CoPS outperforms existing zero-shot personalized search
methods on both datasets, demonstrating consistent and robust
capabilities in effectively modeling users without dependency on
prior specific training. In comparison with the zero-shot baseline
P-Click, which also leverages user re-finding behaviors for search
result personalization, CoPS achieves a significant edge with im-
provements of 66.8% and 14.9% in MAP metrics for the two datasets
respectively. These results underscore CoPS’s proficiency in inte-
grating information from both working memory and long-term
memory through the LLM. As a result, CoPS is able to identify and
mine user interests, even when queries do not exhibit a re-finding
pattern, leading to substantial enhancements in the search result
quality and relevance.

(2) The performance of CoPS is competitive with, and in some
instances even exceeds, traditional fine-tuned personalized search
models. This substantial narrowing of the disparity between zero-
shot baseline and fine-tuned baseline is attributable to the robust
user modeling capabilities of LLMs. Moreover, CoPS adeptly get
over the challenges posed by acquiring high-quality supervised
data in search scenarios, thereby addressing a critical bottleneck
inherent in neural personalized search methods.

5.2 Effect of Cognitive Memory Mechanism
In this section, we conduct a comprehensive investigation into the
impact of cognitive memory mechanism by using ablation studies
and assessing how varying history lengths affect its performance.

5.2.1 Ablation Studies. To evaluate the contribution of different
memory units on ranking performance and query latency, we con-
ducted ablation studies by systematically removing each memory
unit from the model. The results are summarized in Table 2. Our
findings reveal that omitting any memory unit results in decreased
performance. Notably, the removal of long-term explicit memory
exhibits the most substantial negative impact, suggesting that the
user’s long-term interests plays a crucial role in personalization. In
addition, we observed that when the sensory memory is removed,
there is a notable increase in query latency and a decline in results.
This finding highlights the importance of sensory memory in both
the efficacy and efficiency of the model, indicating that the utiliza-
tion of re-finding behavior is a simple yet effective approach for
personalization.

5.2.2 Effect of Different History Lengths. To examine the influence
of varying user history lengths on the model’s performance, we
retained different proportions of the user’s most recent interactions
at intervals in increments of 10% for experiments. As illustrated in
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Figure 3: Performance of different history lengths.
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Figure 4: Performance on different query sets.

Figure 3, our results indicate that a longer user history enhances the
model’s performance. Notably, the most recent user behavior stands
out as the most influential factor, suggesting its importance in per-
sonalization. As the temporal gap between interactions widens, the
influence of historical behaviors on current search result personal-
ization lessens.

5.3 Exploration of the Role of LLM
In this section, we conduct a comprehensive analysis to explore the
essential functions of LLMs for personalized search. Specifically,
we investigate three core functions of LLMs: query re-writing, user
profile retrieval, and user modeling. The goal is to gain a deeper
understanding of their importance and influence on the personal-
ized search framework. To this end, we introduce three variants
for comparison: (a) a setup where all LLM functions are entirely
omitted (-Remove); (b) an approach where the LLM functions are
replaced with a random sample strategy (-Random); and (c) a ver-
sion where ChatGPT is replaced by the less potent language model,
Vicuna-7B [33] (-Vicuna).

The results, as presented in Table 3, demonstrate that LLMs play
a pivotal role in each step of the personalized search pipeline, with
particular emphasis on user profile retrieval and user modeling.
When we switch out the LLMs for the less advanced Vicuna-7B
model, there is a noticeable drop in the performance metrics. These
findings underscore the complexity of user modeling in personal-
ized search tasks and highlight ChatGPT as a potent solution to
address this challenging task.

5.4 Performance on Different Query Sets
We partition the test queries into two categories: repeated and
non-repeated queries. Repeated queries benefit from readily avail-
able user click data on the same queries in the past, facilitating
the inference of user behaviors. However, non-repeated queries
lack such direct references, leading to a dearth of information for
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Figure 5: Analysis of fine-tuning and inference efficiency on
different models.

personalized user modeling. Our experimental results, depicted
in Figure 4, reveal that all personalized models exhibit superior
performance on repeated queries. Nevertheless, SLTB’s improve-
ment on repeated queries comes at the expense of ranking quality
on non-repeated queries, underscoring the potential drawbacks of
blind personalization for all queries. To address this issue, CoPS
employs the LLM and the cognitive memory mechanism to balance
the personalized and general ranking, yielding significant improve-
ments in both query sets. Moreover, CoPS, without requiring any
additional training, achieves results that closely approach those
of the fine-tuned personalized model HTPS for both repeated and
non-repeated queries. This demonstrates the effectiveness of CoPS
to boost personalized search results in zero-shot scenarios.

5.5 Analysis of Efficiency
In personalized search, the user modeling step often consumes a sig-
nificant amount of time, making efficiency a crucial consideration.
Specifically, we break down efficiency into two aspects: fine-tuning
efficiency and inference efficiency. The former refers to the number
of hours spent on training the model for downstream tasks, while
the latter denotes the query latency during actual use. To showcase
the efficiency of CoPS more comprehensively, we test the inference
efficiency of invoking the API and locally deployment (6B LLM).

As depicted in Figure 5, the time required for training and in-
ference in fine-tuned models exhibits a direct relationship. Among
them, the SLTB model stands out for its high efficiency, although it
showcases the poorest performance. The HRNN and RPMN mod-
els, leveraging RNN structures, manage to enhance the model’s
complexity and achieve better results simultaneously. By replacing
the RNN structure with a transformer structure, the HTPS model
not only attains improved performance but also elevates efficiency.
Concerning zero-shot models, our proposed CoPS, without utilizing
any fine-tuning data, achieves inference efficiency and ranking per-
formance comparable to that of fine-tuned models. Moreover, local
deployment of the model can also mitigate the impact on inference
speed caused by network latency.

5.6 Case Study
To provide a more intuitive demonstration of the workings of our
proposed CoPS mechanism, we conduct a case study to observe

Table 4: The case study of CoPS on the query “Maybelline
new yorky”. The same color indicates that CoPS is helpful for
correctly matching the ground-truth document.

Query Maybelline new yorky

Sensory Response No re-finding data found

Query Re-writing Maybelline New York make up

User Profile
Retrieval

Explicit Memory Retrieval
-Shoes: sandals, designer shoes
-Cosmetics Products: MAC, Loreal Paris Hair
-Salon Services: Killeen, Texas, hair styling
Implicit Memory Retrieval
-Gender: Female
-Age: teens to middle-aged
-Social Image: Beauty Enthusiast, Fashion

User Modeling Fashion trends featuring Maybelline New
York cosmetics and make up products

Ground-truth
document

Make up products, Make up tips, and
fashion trends maybelline new york

the role of the LLM throughout the pipeline, which includes query
re-writing, user profile retrieval, and user modeling. We have color-
coded the content generated by the LLM that aids in personalized
ranking for clearer distinction.

As shown in Table 4, the input query was "Maybelline new
yorky", which contains a spelling error. CoPS initially channels it
through the sensory memory for re-finding identification. When
the sensory response indicates "No re-finding data found", the query
is directed to the query re-writing module. Here, the LLM corrects
and expands the initial query and subsequently retrieves a related
user profile from the long-term memory. Finally, using this com-
bined information, the LLM performs user modeling and deduces
the user’s personalized search intent as "Fashion trends featuring
Maybelline New York cosmetics and makeup products". This refined
query aligns much more closely with the ground-truth document
than the original one, ensuring that the document is ranked higher
in personalized search results.

6 CONCLUSION
In conclusion, we have presented CoPS which combines LLMs and
a cognitive memory mechanism to enhance user modeling and
improve personalized search results. To tackle the pervasive chal-
lenges of data sparsity and lengthy, noisy user interactions, our
design adopts external memory components, drawing inspiration
from human brain’s memory system. CoPS integrates three essen-
tial components: the sensory memory, working memory, and long-
term memory. These memory units allow the model to efficiently
store and retrieve user interactions, enabling quick responses to
re-finding behaviors and constructing a comprehensive user profile
for effective query intent modeling. The integration of LLMs into
personalized search opens up new avenues for future research. A
direction worthy of research is the privacy protection and security
issues in the fusion of personal data and LLMs, promoting the birth
of a reliable personal intelligent information assistant.
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