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Abstract
Deep learning-based (DL-based) malicious traffic detectionmethods
are effective but vulnerable to adversarial attacks. Existing adver-
sarial attack methods have shown promising results when targeting
traffic detection models based on statistics and sequence features.
However, these methods are less effective against models that rely
on payload analysis. The main reason is the difficulty in generating
semantic, compliant, and functional payloads, which limits their
practical application.

In this paper, we propose AdvTG, an adversarial traffic gener-
ation framework based on the large language model (LLM) and
reinforcement learning (RL). Specifically, AdvTG is designed to at-
tack various DL-based detection models across diverse features and
architectures, thereby enhancing the generalization capabilities of
the generated adversarial traffic. Moreover, we design a specialized
prompt for payload generation tasks, where functional fields and
target types are supplied as input, while non-functional fields are
generated to produce the mutated traffic. This fine-tuning endows
the LLM with task comprehension and traffic pattern reasoning
abilities, allowing it to generate traffic that remains compliant and
functional. Furthermore, leveraging RL, AdvTG automatically se-
lects traffic fields that exhibit more robust adversarial properties.
Experimental results show that AdvTG achieves over 40% attack
success rate (ASR) across six detection models on four base datasets
and two extended datasets, significantly outperforming other ad-
versarial attack methods.
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• Security and privacy→ Artificial immune systems.
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1 INTRODUCTION
Malicious traffic detection is an essential approach for detecting ma-
licious activities in networks. The traditional method extracts the
key fields of malicious traffic as signature rules [13, 18, 41]. How-
ever, as attack tactics continue to evolve, signature-based detection
methods are increasingly less effective at detecting unknown or
mutated malicious traffic. With the development of artificial in-
telligence, deep learning (DL) has seen widespread adoption in
cybersecurity. Most methods train DL-based models with large
amounts of traffic to detect traffic automatically [20, 57, 62]. At
present, DL-based malicious traffic detection has become a familiar
and effective technique in both academic and industrial settings
[2, 32, 42].

Unfortunately, DL-based models are vulnerable to adversarial at-
tacks [12, 34, 46, 59, 63]. In the field of network security, adversarial
samples have even more severe consequences [2]. Traffic features
can be modified to specifically target detection models, causing

the models to produce incorrect classification results. Recently,
numerous adversarial methods have been developed to exploit vul-
nerabilities in DL-based traffic detection systems and reveal their
weaknesses.

Existing adversarial attacks in the traffic domain can be catego-
rized into three types. Statistical feature attacks [17, 33, 49] mod-
ify statistical features (e.g., flow duration and average packet size)
but cannot be easily mapped back to actual traffic. Sequence fea-
ture attacks [22, 30, 39, 48, 50] alter temporal and spatial sequence
features (e.g., packet intervals, packet lengths) but payload-based
detection models remain effective. Content attacks [10, 35, 51, 58]
directly modify traffic packets to evade detection. The first two
types of attacks have already achieved considerable success in ad-
versarial traffic attacks; however, they fail to deceive models which
detect based on payload. Compared to these attacks, content attacks
pose more significant challenges, but they are also more disruptive.
By modifying the payload, these attacks can deceive payload-based
detection models [53, 55], allowing malicious activities to go unno-
ticed. In this study, we focus solely on content attacks, specifically
targeting DL-based detection models that rely on payload analysis,
and exclude the first two types of attacks from consideration.

Existing adversarial attacks on DL-based traffic detection are
limited to specific scenarios and rely on impractical assumptions.
Table 1 provides a comparative overview of these adversarial attack
methods within the traffic detection domain. The key challenges
can be summarized into three categories.

• Generality. Traffic features should be mapped to real-world
traffic spaces rather than generating non-existent features.
Adversarial attacks should demonstrate generalization, being
able to succeed across various extracted features and model
architectures.
• Availability. The generated traffic must adhere to strict pro-
tocol compliance while maintaining its functionality. Func-
tional fields are those that play a critical role in the execution
and routing of traffic packets. These fields directly influence
how the server processes the request or how the client inter-
acts with the server. For example, the request line and the
payload that executes malicious commands in HTTP traffic
are considered functional fields.
• Payload Generation. This challenge is specific to content
attacks. The generated adversarial traffic should consist of
complete packets, and remain semantic traffic.

Benefiting from advancements in large language models (LLMs),
which significantly enhance both semantic understanding and text
generation capabilities. Therefore, we are able to focus on traffic
content attacks aimed at generating mutated traffic, which can
deceive existing content-based detection models.

In this paper, we propose AdvTG, an adversarial traffic gener-
ation framework designed to deceive DL-based detection models.
The framework consists of three key stages.
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Table 1: The comparison with the existing methods of adversarial attacks in traffic.

Attack Types Target Models Attack Methods
Generality Availability Payload-generation

Mappable
Data

Black-Box
Models

Various
Features

Protocol
Compliance

Remaining
Functionality

Complete
Packet

Semantic
Content

Statistical
Feature Attacks

ML & DL
IDSGAN [33] × × × × × - -
DIGFuPas [17] × × × × ✓ - -

Multi-Source
Bars[49] × ✓ × × ✓ - -

Multiple Methods [28] × ✓ × × × - -
Flow Statistics [37] ✓ × × ✓ × - -

Sequence
Feature Attacks

ML & DL
Prism [30] ✓ × ✓ ✓ ✓ - -
RL [48] ✓ ✓ ✓ ✓ ✓ - -

ProGen [50] ✓ × ✓ ✓ ✓ - -

Multi-Source
Blanket [39] ✓ × × × ✓ - -
GA+GAN [22] ✓ ✓ × × ✓ - -

Content Attacks

ML & DL
Attack-GAN [10] × ✓ × × × ✓ ×

GA [58] ✓ ✓ × × ✓ × ×

Multi-Source
Text Attack [35] ✓ ✓ × × ✓ × ×

Fuzzy Attack [51] ✓ ✓ × ✓ ✓ × ✓

AdvTG ✓ ✓ ✓ ✓ ✓ ✓ ✓

First, we train multiple DL-based models using both image-based
and text-based features extracted from payload. These models serve
as targets for our adversarial attacks. Simultaneously, these models
serve as reward models during the adversarial generation process,
providing feedback on how effectively the generated traffic deceives
detection. Using diverse features and model architectures improves
AdvTG’s ability to generate adversarial traffic with improved gen-
eralization.

Next, we fine-tune the LLM with a traffic-specific prompt format.
Instructions define the traffic categories, and functional fields are
provided as input while the LLM generates non-functional fields to
create a complete payload. The fine-tuning approach ensures the
generated traffic is compliant, functional, and semantically rich.

Finally, reinforcement learning (RL) is applied to optimize the
adversarial traffic generation process. The detection models pro-
vide feedback on whether each generated traffic sample effectively
deceives detection, enabling the LLM to refine and enhance its out-
puts based on feedback continually. This adaptive process enables
the LLM to optimize adversarial non-functional fields, making the
generated traffic harder for detection models to detect.

• We propose AdvTG1, an adversarial traffic generation frame-
work based on the LLM and RL to deceive DL-based mali-
cious traffic models.
• We introduce a tailored fine-tuning process for the LLM,
designed to enhance its understanding for traffic genera-
tion tasks, enabling it to generate semantic traffic. By using
prompts that specify the expected traffic type and functional
fields, the LLM generates traffic by altering non-functional
fields while preserving both functionality and protocol com-
pliance.
• AdvTG leverages RL to optimize adversarial traffic gener-
ation by continuously generating mutated traffic based on

1https://github.com/TrafficDetection-art/AdvTG

feedback from detection models. This adaptive process en-
ables the LLM to iteratively improve its outputs iteratively,
identifying the optimal adversarial non-functional fields and
making the generated traffic increasingly difficult for detec-
tion models to identify.
• Experimental results show that AdvTG achieves over 40%
attack success rate (ASR) across six detection models on
four base datasets and two extended datasets, significantly
outperforming other adversarial attack methods.

2 BACKGROUND AND MOTIVATION
2.1 Scenarios
We clarify our scenarios by answering the following key questions.

A. Why are we targeting content adversarial attacks?
Existing adversarial traffic attack methods work by altering the

direction of packets or employing techniques such as truncation
and padding. These approaches have demonstrated vulnerabilities
in many feature-based traffic detection models. However, such
changes are easily detected by models that analyze deeper features,
such as the payload. Our goal is to generate adversarial mutated
traffic, aiming to evaluate the robustness of payload-based detection
models. Traffic data is structured and frequently contains redundant
information; however, upper-layer protocols typically carry more
meaningful data compared to lower-layer protocols like IP and TCP.
Therefore, we focus content attacks on application-layer protocols.

B. Why are we focusing on HTTP protocol?
HTTP/HTTPS protocols have long been primary communica-

tion protocols on the internet and are key vectors for malicious
activities. Many attacks, such as web exploitation, vulnerability
exploitation, and C&C communications, are carried out via these
protocols. We focus on adversarial attacks on plaintext traffic, ex-
cluding encrypted traffic. The main reason is that encrypted data is
transformed into unpredictable ciphertext, and any modification
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can corrupt the data, leading to incorrect plaintext upon decryp-
tion. However, plaintext traffic detection research can extend to
encrypted traffic, as defenders can use decryption techniques for ef-
fective monitoring. Essential security tools like Endpoint Detection
and Response (EDR), Web Application Firewalls (WAF), and Inter-
net Information Services (IIS) rely on plaintext analysis to enhance
security.

C. Where to add perturbations to achieve attacks?
HTTP traffic has a strict header specification with many fields,

as shown in Fig. 1. Both benign and malicious traffic exhibit certain
regularities in the header fields they utilize, with noticeable dif-
ferences between the two. These fields are commonly used as key
features in malicious traffic detection. We can categorize the packet
into functional and non-functional fields based on their necessity,
with their differences detailed in an example in § A. In brief, func-
tional fields cannot be altered, whereas non-functional fields can
be modified. By targeting the non-functional fields, we can attack
the detection model without compromising the compliance and
functionality of the HTTP traffic.

Figure 1: Comparison of header fields between benign traffic
and malicious traffic.

2.2 THREAD MODEL
We define threat model based on previous work [5].

Figure 2: The scenarios of adversarial attacks.

Attacker’s Goal. The attacker seeks to generate adversarial traffic
to deceive DL-based detection models, leading to misclassification,
as shown in Fig. 2. The attacker produces complete payloads while
ensuring they remain protocol-compliant and functional.

Attacker’s Knowledge. The attacker has no prior knowledge of
the detection model architecture or the extracted features. Instead,
the attacker inputs the generated traffic into a black-box detection,
which extracts features and outputs classification results. These
results serve as a reward signal, enabling the attacker to generate
more challenging adversarial traffic based on RL automatically.
Attacker’s Capability. The attacker can only modify the test
dataset and cannot alter the training dataset, thus preventing data
poisoning attacks [6]. The attacker leverages the advanced LLM to
generate adversarial traffic that remains both semantic and func-
tional.

3 OVERVIEW
In this section, we propose AdvTG, targeting DL-based malicious
traffic detection models. Fig. 3 shows three phases of AdvTG. (i) We
train multiple DL-based malicious traffic detections with different
traffic features and model architectures using supervised learning.
(ii) The domain-specific LLM is fine-tuned using large amounts of
HTTP traffic based on self-supervised learning. (iii) The domain-
specific LLM is further fine-tuned to carry out adversarial attacks
using RL based on the feedback from the malicious traffic detection
in the first stage.
Detection Model Training. We train multiple malicious traffic
detection models as adversarial attack targets. These models are
trained on small datasets and demonstrate a certain level of gener-
alization in detecting malicious HTTP traffic. The detection mod-
els utilize both image-based and text-based features, incorporat-
ing a range of standard DL-based architectures alongside promi-
nent models from the academic field of malicious traffic detection
[14, 16, 29, 36, 53, 64].

The trained models are used as reward models for adversarial
generation through RL. Specifically, these classification models
evaluate the quality of the traffic generated by the LLM. Traffic that
successfully deceives the detection model receives a higher score,
while easily detected traffic is given a lower score.
Domain-Specific LLMs Fine-tuning.We fine-tune the general-
purpose LLM using a large set of domain-specific data. This process
helps the model learn HTTP traffic patterns and formats, improving
its ability to generate and understand data within this domain while
also enhancing its distinction between benign and malicious traffic.

We propose a traffic-specific prompt format where instructions
define the traffic categories. Functional fields are given as input,
while non-functional fields are generated to form a complete traffic
packet.
RL-based Adversarial Generation. Reinforcement learning is
employed to optimize the adversarial attack generation strategy.
The rewardmodel, trained in the first phase, evaluates the outputs of
the LLM, and these scores are used to update the LLM’s parameters.

In practice, a batch of prompts is randomly sampled, and the
fine-tuned LLM generates traffic packets. The generated traffic is
then input into the detection model to receive feedback, where the
reward model assigns a reward representing the overall quality of
the generated payload. Once the final reward for the word sequence
is obtained, it is propagated backwards through the sequence, treat-
ing each word as a time step. The objective is to train the LLM to
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Figure 3: The overview of AdvTG.

produce high-reward outputs that align with the reward model and
represent high-quality responses.

4 DETECTION MODEL TRAINING
According to the threat model, we train multiple detection models
with probabilistic outputs through supervised training. We design
multiple feature extractors and models to verify the generalization
of adversarial attacks to different feature models. The feature ex-
tractor converts the traffic into a continuous or discrete numerical
sequence that can be input into the model. At present, in the field
of deep learning, detection models for traffic payload mainly in-
clude two types. One is transforming traffic into images, where the
byte stream data of the traffic is converted into a two-dimensional
grayscale image. This representation is then classified using deep
learning models [36, 53]. The other approach treats traffic as tex-
tual data, converting traffic into vector representations using word
embedding techniques [26, 52].

4.1 Image-based Features
Converting network traffic into images enables the capture of spa-
tial and local patterns within the data. By representing each byte
as a pixel, this method leverages image analysis techniques, such
as CNN, to enhance detection accuracy. Eq. 1 and Eq. 2 outline the
process of transforming network traffic𝑇 into an image. The traffic
is first divided into individual bytes and normalized to a continuous
sequence 𝑇 ′ between 0 and 1. This sequence is then reshaped into
a 2D image of size𝑚 ×𝑛. If the traffic exceeds the predefined image
size, the excess data is truncated; otherwise, padding with zeros is
applied to match the required dimensions.

𝑇 ′ =
𝑇

255
, 𝑇 = [𝑏1, 𝑏2, . . . , 𝑏𝑛], 𝑏𝑖 ∈ [0, 255] (1)

𝐼 (𝑖, 𝑗) = 𝑇 ′(𝑖−1)×𝑛+𝑗 (𝑖 ∈ [1,𝑚], 𝑗 ∈ [1, 𝑛]) (2)

The extracted features are input into a DL-based model, which
outputs classification probability scores. In this work, we utilize
various DL-based model architectures, including the classic CNN
and other commonly used models in the field of image processing.

4.2 Text-based Features
Transforming traffic into text highlights its semantic payload and se-
quential patterns, aiding detection through semantic analysis. In Eq.
3,𝑇 denotes the traffic data, which is tokenized into (𝑤1,𝑤2, . . . ,𝑤𝑛).
Each token 𝑡𝑜𝑘𝑒𝑛𝑖𝑧𝑒𝑟 (𝑇 )𝑘 is mapped to an index 𝑡𝑘 via a vocabu-
lary function𝑉 , assigning a unique identifier to preprocess the data
for input into a DL-based model.

𝑡𝑘 = 𝑉 (𝑡𝑜𝑘𝑒𝑛𝑖𝑧𝑒𝑟 (𝑇 )𝑘 ), 𝑘 = 1, 2, . . . , 𝑛 (3)
Once the token sequence is processed by the tokenizer, it passes

through the complex DL-based model, which outputs classification
probabilities. In this paper, we employ various model architectures,
including the classic LSTM and BERT [14].

4.3 Target Model
The feature models mentioned above serve as target models for our
adversarial attacks. This process follows a black-box attack scenario,
where the attacker has no knowledge of the target model’s features
or architecture and relies solely on the output scores. In the third
phase, RL is employed to fine-tune the LLM, using these models
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as reward models. The reward model guides the LLM to generate
payloads that more effectively challenge and deceive the detection
model.

5 DOMAIN-SPECIFIC LLM FINE-TUNING
In this section, we fine-tune a general-purpose LLM using traffic
datasets to improve its performance in traffic generation tasks.
While advancements in LLMs have significantly enhanced text
generation across general language understanding tasks [8, 43, 44],
these LLMs often struggle in domain-specific applications due to a
lack of specialized knowledge and contextual understanding. Fine-
tuning on specialized datasets effectively addresses this limitation.
The LLM is able to better understand and generate text that fits the
specific domain tasks.

We employ the Parameter-Efficient Fine-Tuning (PEFT) [31] to
improve efficiency. Specifically, we utilize Low-Rank Adaptation
(LoRA) [25], which minimizes the number of trainable parameters
by focusing on low-rank matrix adaptation during fine-tuning. As
shown in Eq. 4 and Eq. 5, ℎ represents the fine-tuned model param-
eters,𝑊0 denotes the original pre-trained parameters, and matrices
𝐴 and 𝐵 serve as the low-rank down-projection and up-projection
matrices, respectively, which are updated during fine-tuning. While
full-parameter fine-tuning requires updating a large number of
parameters, LoRA learns the low-rank matrix 𝐵𝐴 while keeping
the pre-trained weights𝑊0 frozen, which significantly reduces the
trainable parameter counts, and reducing GPU consumption.

As shown in Fig. 3, we design prompts specifically for traffic
generation. The instruction set guides the generation of specific
traffic categories, with the input consisting of the functional fields.
The LLM generates the non-functional fields, forming a complete
traffic packet. The prompts are specifically designed to keep the
functional fields unchanged while modifying the non-functional
fields to create mutated traffic. Having learned the structural pat-
terns of both benign and malicious traffic during fine-tuning, the
LLM is able to generate corresponding traffic based on instructions.

𝐵 ∈ R𝑑×𝑟 , 𝐴 ∈ R𝑟×𝑘 (4)
ℎ =𝑊0𝑥 + Δ𝑊𝑥 =𝑊0𝑥 + 𝐵𝐴𝑥 (5)

6 RL-BASED ADVERSARIAL GENERATION
In this section, we employ Proximal Policy Optimization (PPO)
[45] to fine-tune a LLM [40]. We propose a novel approach that
builds upon the previously fine-tuned LLM in § 5, applying PPO
for further fine-tuning. Specifically, the LLM, already adapted to
the generation task, is now tasked with generating adversarial
traffic to deceive detection models. This process treats the detection
models as black-box systems that only output scores, with the
LLM generating payloads and receiving reward scores based on the
detection models’ evaluations (§ 4).

As shown in Fig. 3, the prompt set 𝑥 consists of two parts: an
instruction and functional fields. The functional fields are provided
as input, while the instruction directs the LLM to generate traffic
from the opposite class. For example, when the input consists of
functional fields for malicious traffic, the instruction requires the
output to be benign traffic. The LLM generates benign traffic 𝑦 that
deviate from the expected behavior based on the prompt 𝑥 . This

allows the attacker to craft complete adversarial traffic tailored to
each input’s functional fields.

We design a novel reward mechanism that makes PPO suitable
for adversarial attack tasks. The PPO process involves two LLMs:
the domain-specific LLM,with frozen parameters, and the RL-Tuned
LLM, which is updated during training. The purpose of this setup is
to refine the RL-Tuned LLM’s ability to generate adversarial traffic
while preserving the foundational behavior learned by the Domain
LLM. The RL-Tuned LLM’s outputs are evaluated using multiple
reward models trained in the first phase. As shown in Eq. 6, each
reward model provides a reward score, 𝑟𝜃 (𝑥,𝑦), which can be in-
terpreted as a variant of the cross-entropy function, referred to as
negative cross-entropy. Traditional cross-entropy minimizes the
difference between the predicted value 𝐷𝑖 (𝑦) and the label 𝐿𝑥 . In
contrast, negative cross-entropy increases the reward as the pre-
diction deviates further from 𝐿𝑥 , encouraging the generation of
adversarial examples. The final reward score is calculated as the
average of multiple reward model 𝐷𝑖 (𝑦) outputs. This aggregation
provides a more balanced and comprehensive evaluation, ensur-
ing that the adversarial traffic generated by the RL-Tuned LLM
effectively challenges a range of detection models.

In addition to the averaged reward score, the PPO includes a KL-
divergence penalty. This penalty ensures that while the RL-Tuned
LLM is optimized for adversarial performance, its outputs do not
deviate excessively from the behavior of the domain-specific LLM.
The KL-divergence term helps maintain consistency in the genera-
tion process, preventing the RL-Tuned LLM from generating traffic
that is too different from the original model’s behavior. As shown
in Eq. 7, the PPO process strikes a balance between generating
highly adversarial traffic and retaining the underlying structure
and coherence of the original model by combining multiple reward
models with the KL-divergence term.

𝑟𝜃 (𝑥,𝑦) = −
1
𝑁

𝑁∑︁
𝑖=1
[(1 − 𝐿𝑥 ) log(𝐷𝑖 (𝑦)) + 𝐿𝑥 log(1 − 𝐷𝑖 (𝑦))] (6)

𝑅(𝑥,𝑦) = 𝑟𝜃 (𝑥,𝑦) − 𝛽 log
[
𝜋RL
𝜙
(𝑦 | 𝑥)/𝜋SFT (𝑦 | 𝑥)

]
(7)

In general, we leverage a novel reward mechanism and balance
it with a KL-divergence penalty, enabling the RL-Tuned LLM to
generate mutated traffic that detection models struggle to detect.

7 EXPERIMENTAL EVALUATION
7.1 Experiment Setup
Testbed. We deploy AdvTG in Ubuntu 22.04.1 with Python3.11
based on a testbed built upon Supermicro servers with one AMD
EPYC 7532 CPU, one NVIDIA 4090, 256GB MEM.
Datasets. We mainly use a variety of open-source malicious traffic
datasets and self-collected datasets. The details of the datasets are
introduced in § C.
Targeted Detection Models.We construct three different detec-
tion models, each applied separately to both image-based and text-
based feature extraction methods.

Image-based Detection Models.
• MalTraffic [53] first maps traffic to grayscale images and
trains it based on the CNN model.
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• RBRN [64] learns the deep features of traffic through cod-
ing and relational networks and detects malicious traffic by
calculating the similarity of traffic pairs.
• DeepMal [36] leverages a combination of CNN and LSTM,
enabling better detection of malware traffic.

Text-based Detection Models.

• TextCNN [29] applies CNN to text data. It works by sliding
convolution filters over word embeddings to detect text.
• DeepLog [16] is commonly used as an anomaly detection
model in the cybersecurity field, and it uses LSTM-based
deep learning to detect anomalous logs.
• BERT [14] is a transformer-based model designed specifi-
cally for NLP tasks and is advantageous for long text classi-
fication tasks.

LLM Architecture.We select Meta-Llama-3-8B as the base LLM
for fine-tuning and adversarial sample generation [1].
Attack Baselines. We select text-based adversarial attack mod-
els and do not consider image domain, including some methods
mentioned in § 1. This is because these attacks introduce byte-level
perturbations that either violate network protocol specifications
or fail to generate complete traffic. Therefore, we compare three
text-based adversarial attack methods.

• TextFooler (T-F) [27] generates adversarial attacks by re-
placing key words with semantically similar alternatives to
change model predictions.
• WordLevel (W-L) [61] optimizes word substitutions to mis-
lead models, preserving the text’s meaning and fluency.
• BAE [21] uses BERT to generate adversarial examples through
word substitution and insertion, maintaining the text’s orig-
inal semantics.

In addition to the text adversarial attack methods, we employ the
Random Substitution (R-S)method. Specifically, we randomly se-
lect unrelated fields from different categories to replace the original
non-functional fields. For instance, non-functional fields in mali-
cious traffic are substituted with those from benign traffic, thereby
deceiving the detection model.
Metrics. We evaluate our approach primarily from both detection
effectiveness and attack effectiveness perspectives.

• Detection Effectiveness.We mainly use precision (P), re-
call (R), and F1 score which they are most widely used in the
literature [7, 19, 38]
• Attack Effectiveness. We use the attack success rate (ASR)
as the primary metric to evaluate the effectiveness of attacks
[4, 9, 54], measuring the proportion of successful attacks in
deceiving the detection model as shown in Eq. 8.

𝐴𝑆𝑅 =
𝑁success
𝑁total

(8)

7.2 Evaluation
The following sections present a comprehensive evaluation of detec-
tion models and adversarial attack methods across several datasets.
First, we evaluate the effectiveness of six detection models using
both text and image features, and evaluate attack performance
based on ASR. Then, we evaluate the adversarial traffic compliance

before and after fine-tuning using a compliance evaluation algo-
rithm. In addition, ablation studies are conducted to analyze the
impact of RL on improving ASR. Finally, extended datasets are used
to verify the generalization capabilities of AdvTG.

Table 2 summarizes the performance of detection models and
attack methods. The left three columns (P, R, F1) evaluate the de-
tection accuracy of six models across two feature types, while the
right five columns present the attack success rate (ASR) to evaluate
the effectiveness of various attack methods.

Detection Effectiveness.We evaluate the effect of detection mod-
els. We train models based on text and image features based on
training sets and test their detection effects on test sets. As shown
in Table 2, the F1 score on the test set is higher than 0.96 regardless
of the characteristics of the model used. Noteworthy, the text-based
models all reach above 0.98, which is better than the image-based
models. This shows that the text feature is more effective at de-
tecting the plaintext payload and can better identify the relevant
patterns.

Attack Effectiveness on the Base Datasets. We evaluate the
impact of adversarial traffic on detection models by measuring the
ASR of four traffic. As shown in Table 2, AdvTG consistently achieve
over 40% ASR across four datasets, whereas text-based attacks
result in less than 10% ASR. This is because traditional methods
focus on altering a few keywords, which is insufficient to evade
detection. Our approach, leveraging LLM, modifies multiple fields
while ensuring the traffic remains both semantic and functional,
producing a diverse range of mutated traffic templates that deceive
detection models.

Additionally, since text-based adversarial attacks are limited to
text domains, they cannot target models relying on image features.
In contrast, AdvTG provides general adversarial attacks, effective
across models with any content-based features. Furthermore, the
R-T attack also shows a low ASR, below 22.27%, indicating that
replacing non-functional fields alone is not enough to mislead the
models. This underscores the generalization capability of detection
models. By using RL with multiple reward feedback loops, our
approach identifies fields most likely to deceive the model, resulting
in a higher ASR.
Traffic Compliance.We develope an algorithm, detailed in § D,
to evaluate the compliance of generated traffic. We compare the
compliance proportion of traffic generated by the general-purpose
LLM with that of the fine-tuned LLM. As shown in Table 3, traffic
generated before fine-tuning has a compliance proportion of around
20% across the four datasets. After fine-tuning, this proportion
increases significantly to over 80%, demonstrating that the methods
proposed in § 5 effectively improve traffic compliance for real-world
applications.

Ablation Experiments. As shown in Fig. 4, we conduct adver-
sarial generation experiments on a general-purpose LLM without
fine-tuning, a fine-tuned domain-specific LLM, and an RL-Tuned
LLM. The domain-specific LLM shows weak adversarial capabili-
ties. However, after applying RL, the ASR significantly improves,
demonstrating the effectiveness of RL. Additionally, while some
general-purpose LLMs without fine-tuning achieve relatively high



AdvTG: An Adversarial Traffic Generation Framework to Deceive DL-Based Malicious Traffic Detection Models WWW’25, April 2025, Sydney, Australia

Table 2: The adversarial effectiveness of DL-based traffic detection on the base datasets.

Feature
Extractor

Text

Image

(a) CICIDS2017

ML
Classifier

Detection Attack (ASR)—higher is better

P R F1 T-F W-L BAE R-T AdvTG

TextCNN 0.99 1 0.99 0.07% 0.13% 0.60% 0.84% 69.53%
DeepLog 0.99 0.99 0.99 2.01% 2.02% 2.61% 5.25% 66.41%
BERT 0.99 0.99 0.99 0.24% 0.08% 2.42% 3.94% 67.18%

MalTraffic 0.98 0.99 0.98 - - - 20.13% 42.78%
RBRN 0.98 0.99 0.99 - - - 20.08% 42.17%

DeepMal 0.98 0.99 0.98 - - - 16.68% 43.69%

(b) CICIoT2023

ML
Classifier

Detection Attack (ASR)—higher is better

P R F1 T-F W-L BAE R-T AdvTG

TextCNN 0.99 0.99 0.99 0.13% 0.74% 0.60% 1.08% 69.53%
DeepLog 0.98 0.99 0.99 2.41% 2.43% 3.02% 7.44% 66.41%
BERT 0.99 0.99 0.99 0% 0.35% 2.69% 5.33% 67.19%

MalTraffic 0.96 0.99 0.97 - - - 20.87% 66.99%
RBRN 0.96 0.99 0.98 - - - 20.68% 64.08%

DeepMal 0.96 0.99 0.98 - - - 20.87% 64.56%

Feature
Extractor

Text

Image

(c) Malware

ML
Classifier

Detection Attack (ASR)—higher is better

P R F1 T-F W-L BAE R-T AdvTG

TextCNN 0.99 0.99 0.99 0.20% 0.68% 0.40% 1.18% 65.62%
DeepLog 0.98 0.99 0.99 5.35% 5.35% 6.38% 7.26% 59.37%
BERT 0.99 0.99 0.99 0.41% 0.36% 2.80% 5.53% 61.71%

MalTraffic 0.95 0.99 0.97 - - - 20.87% 67.47%
RBRN 0.96 0.99 0.98 - - - 22.27% 67.96%

DeepMal 0.96 0.98 0.97 - - - 19.32% 66.50%

(d) APT

ML
Classifier

Detection Attack (ASR)—higher is better

P R F1 T-F W-L BAE R-T AdvTG

TextCNN 0.99 0.99 0.99 0.11% 0.79% 0.14% 0.76% 48.43%
DeepLog 0.99 0.99 0.99 2.64% 2.98% 2.64% 5.28% 41.41%
BERT 0.99 0.99 0.99 0.10% 0% 1.60% 3.87% 50.29%

MalTraffic 0.98 0.99 0.98 - - - 14.20% 47.57%
RBRN 0.98 0.99 0.99 - - - 15.42% 49.18%

DeepMal 0.97 0.99 0.98 - - - 15.09% 49.51%

Table 3: Proportion of Compliance in Generated Traffic Be-
fore and After Fine-tuning

Datasets Before Fine-tuning After Fine-tuning

CICIDS2017 29.68% 89.16%
CICIoT2023 16.40% 82.75%
Malware 39.06% 87.54%
APT 28.90% 88.67%

ASR, their generated traffic often fails to meet compliance, as pre-
viously mentioned.
Attack Effectiveness on the Extended Datasets.We evaluate
the generalization capabilities of AdvTG on two extended datasets,
CICAPT-IoT2024 and APT2024. The two datasets are used solely for
testing and not involved in training or LLM fine-tuning. As shown
in Table 4, the detection models demonstrate strong performance,
with F1 consistently above 0.92 across both text-based and image-
based detection. After applying adversarial attacks, our method,
AdvTG, consistently achieves higher ASR compared to other attacks,
with over 40% ASR on CICAPT-IoT2024 and over 50% on APT2024.
This indicates that AdvTG generalizes well across different datasets,
maintaining a high level of adversarial effectiveness.

8 DISCUSSION
In this section, we discuss some potential limitations and challenges
of AdvTG.
Adversarial Attacks against LLM. LLMs have gradually been
applied to cybersecurity, with their unique language understanding
capabilities offering an advantage in analyzing payload. As shown in
Table 5, we conducted experiments using general-purpose models,
ChatGPT 3.5 and ChatGPTs, on APT and malware datasets. Due
to the lack of fine-tuning, the F1-scores of both detection models
were around 0.6. After generating adversarial samples with AdvTG,
the ASR reached only 15%. LLMs possess stronger robustness than

DL-based models, because of their better interpretability. In the
future, it will be necessary to train detection models specifically
based on LLMs rather than relying on general-purpose models and
to further verify the robustness of LLMs.
Encrypted Traffic Detection. Encrypted traffic detection is an
important direction [11, 15]. Many encrypted detection models
[24, 32, 56] combine the analysis of sequence features, such as
packet size, with an encrypted payload. Therefore, further investi-
gation is needed to determine whether adversarial traffic generated
by AdvTG retains its evasive properties after encryption. Exploring
the potential to deceive encrypted traffic detection models by ma-
nipulating both sequence features and payload presents a valuable
avenue for future exploration.

9 RELATEDWORK
There are several related works in the fields of malicious traffic
detection and adversarial attacks.
Malicious Traffic Detection. Malicious traffic detection based on
deep learning has become a widely used technology. Based on con-
tent features, HSTF-Model extracts information from payload [55],
and HMCD-Model adds GAN-based enhancement technology for
more scenarios [60]. Based on sequence features, ContraMTD uses
contrastive learning to learn the relationship between local/global
interaction features [23] and Trident transforms known/new class
recognition problems into multiple independent single-class learn-
ing tasks in traffic detection [63].
Adversarial Attacks on Traffic Detection. As shown in Table 1,
these methods mainly involve three types of technologies: statisti-
cal feature attacks, sequence feature attacks, and content attacks. (i)
Statistical feature attacks [17, 33, 49] modify statistical features
(flow duration and average packet size). These methods typically
suffer from limitations in handling various features and generaliz-
ing across different attack scenarios. (ii) Sequence feature attacks
[22, 30, 39, 48, 50] alter temporal and spatial sequence features (e.g.,



WWW’25, April 2025, Sydney, Australia Trovato et al.

Table 4: The adversarial effectiveness of DL-based traffic detection on the extended datasets.

Feature
Extractor

Text

Image

(a) CICAPT-IIoT2024

ML
Classifier

Detection Attack (ASR)—higher is better

P R F1 T-F W-L BAE R-T AdvTG

TextCNN 0.99 0.99 0.99 1.35% 2.45% 1.69% 0.69% 46.87%
DeepLog 0.99 1 0.99 1.91% 1.74% 3.45% 5.15% 33.59%
BERT 0.99 0.99 0.99 0.55% 0.14% 1.56% 4.58% 43.75%

MalTraffic 0.98 0.99 0.99 - - - 17.64% 45.31%
RBRN 0.98 0.99 0.99 - - - 18.79% 43.75%

DeepMal 0.98 0.99 0.98 - - - 15.08% 42.18%

(b) APT2024

ML
Classifier

Detection Attack (ASR)—higher is better

P R F1 T-F W-L BAE R-T AdvTG

TextCNN 0.98 0.99 0.99 0.30% 0.60% 0.60% 1.40% 53.97%
DeepLog 0.98 0.91 0.94 1.07% 1.72% 2.79% 7.63% 39.70%
BERT 0.99 0.99 0.99 1.11% 1.61% 2.32% 4.64% 50.78%

MalTraffic 0.95 0.90 0.92 - - - 16.52% 54.31%
RBRN 0.97 0.97 0.97 - - - 20.68% 52.73%

DeepMal 0.95 0.94 0.95 - - - 14.37% 50.52%

(a) ASR on CICIDS2017 (b) ASR on CICIoT2023

(c) ASR on Malware (d) ASR on APT

Figure 4: Adversarial effectiveness across different LLMs on various datasets and detection models.

Table 5: Effectiveness of adversarial attacks against LLM-
based detection models

Detection Model Datasets P R F1 ASR

ChatGPT
Malware 0.71 0.54 0.61 16.35%
APT 0.89 0.42 0.57 16.64%

ChatGPTs
Malware 0.79 0.56 0.66 16.03%
APT 0.90 0.43 0.58 15.57%

packet intervals, packet lengths) but payload-based detection mod-
els remain effective. While they offer improvements in maintaining
protocol compliance, they cannot often generate traffic content. (iii)
Content attacks [10, 35, 51, 58] directly modify traffic packets to
evade detection. These methods focus on generating traffic pack-
ets directly, but they struggle to produce traffic that is semantic,
compliant, and functional.

10 CONCLUSION
In this paper, we propose AdvTG, a framework that uses LLMs
and RL to generate adversarial traffic and deceive DL-based de-
tection models that analyze malicious payloads. The adversarial
traffic generated by AdvTG maintains both semantic coherence
and protocol compliance. We introduce perturbations in the non-
functional space to ensure the core functionality of the mutated
traffic remains intact. Extensive experiments across various model
architectures and feature sets demonstrate that AdvTG achieves
a high ASR against DL-based models, highlighting the inherent
weakness in these detection models.
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APPENDIX
A MALICIOUS HTTP PACKET CASE
We use an example of Cobalt Strike’s HTTP traffic to illustrate the
distinction between functional and non-functional fields, as shown
in Fig. 5. Cobalt Strike is a penetration testing tool often repurposed
by attackers formalicious activities. The red-highlighted parts repre-
sent the core functional fields of the HTTP traffic, including the URI
header, Host field, and payload. These are essential for maintaining
traffic functionality and are difficult to modify without risking the
disruption of network activity. While non-functional fields carry
less significance compared to functional fields, they often contain

Figure 5: Cobalt Strike HTTP traffic.

inherent characteristics of traffic. As a result, non-functional fields
are also frequently used as features to detect malicious traffic rather
than solely relying on functional fields. The italicized parts show
the User-Agent field (Mozilla/5.0 (compatible:MSIE 9.0;Windows NT
6.1:WOW64:Trident/5.0:MATP:MATP)) commonly used by Cobalt
Strike and the Content-Type field (application/octet-stream), which
is fixed features of Cobalt Strike. These are examples of non-functional
features exploited by defenders for detection. Defenders can detect
these features using rule-based methods or detection models. Simi-
larly, attackers can modify non-functional fields to evade detection,
especially DL-based detection.

B A CASE OF DECEIVING DL-BASED
DETECTION USING AdvTG

This example demonstrates the effectiveness of AdvTG in deceiving
a DL-based malicious traffic detection. Initially, as shown in Fig. 6,
the traffic packet on the left is classified with 97.85% confidence as
malicious by the detection model. The packet includes a User-Agent
field (Go-http-client/1.1), which is a known indicator of potentially
malicious activity often associated with automated tools or attacks.

Through the application of AdvTG, modifications are made to
certain non-functional fields of the traffic, ensuring that the traffic
remains its original structure and functionality. Unlike traditional
adversarial attack methods that often rely on manual feature manip-
ulation, AdvTG leverages the ability of the LLM and RL to automate
the generation of the most effective adversarial fields. By continu-
ously refining the traffic through RL, AdvTG identifies and alters the
non-functional fields that are most likely to deceive the detection
model.

In the altered traffic packet (right side of the figure), the User-
Agent field has been replaced with a more commonly used and be-
nign browser identifier: Mozilla/5.0 (Windows NT 10.0; Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149
Safari/537.36. This modification makes the traffic appear to be from
a legitimate web browser, thus reducing the likelihood of detection.
After this adversarial transformation, the detection model’s clas-
sification confidence shifted dramatically. The modified packet is
classified as 66.61% benign, a stark contrast to the initial malicious
classification. This reduction in malicious probability highlights
how adversarial attacks can successfully deceive well-trained DL-
based models by subtly altering traffic fields that are commonly
relied upon for detection.
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Table 6: Traffic datasets.

Dataset Group Datasets Attacks Types (Examples) # Test Pkts (Malicious) # Training Pkts

Base Dataset

CICIDS2017 Botnet, Web Attack, Infiltration 10,000 (5,132)
100,000

(50,000 benign &
50,000 malicious)

CICIoT2023 Recon, Web attack, DDoS 10,000 (3,045)
Malware Trickbot, Qakbot, Emotet 10,000 (2,670)
APT APT27, APT28, APT37 10,000 (4,813)

Extended Dataset CIC-APT-IIoT2024 APT29, APT28, APT32 5,000 (2,500) -
APT2024 Lazarus, Kimsuky, Bitter 1,000 (384)

Figure 6: A case of deceiving DL-based detection using Ad-
vTG.

C DETAILS OF DATASET
Table 6 summarizes the information about the traffic datasets used
in this study, including the base dataset and extended database.

C.1 Base Dataset
We utilize three publicly accessible, open-source datasets, along
with an additional dataset that we collected independently as part
of the base dataset.
• CICIDS2017 2 contains benign and themost up-to-date com-
mon attacks, which resembles real-world data. We extracted
HTTP traffic from it, including Web Attack, Infiltration, Bot-
net, and others.
• CICIoT2023 3 is a novel and extensive IoT attack dataset
to foster the development of security analytics applications
in real IoT operations. The dataset contains a number of
HTTP-based malicious attacks, including Recon, Web attack,
DDoS, and others.
• Malware 4 is sourced from a prominent website that spe-
cializes in malware, containing traffic captured from popular
malware between 2021 and 2023. HTTP traffic packets are
extracted from 30 different categories of malware, including
Trickbot, Qakbot, Emotet, and others.
• APT is the traffic generated by real APT organizations inde-
pendently collected by our research team. First, we extract
malicious sample hashes from 5000 APT reports, which in-
clude data from 256 different APT groups. Then these hashes
are used to obtain the original traffic generated by these sam-
ple hashes from open-source sandbox intelligence such as
Virustotal [47] and Anyrun [3]. We get a total of 10 gigabytes
of traffic and filter out the HTTP traffic. Since this dataset is

2https://www.unb.ca/cic/datasets/ids-2017.html
3https://www.unb.ca/cic/datasets/iotdataset-2023.html
4https://www.malware-traffic-analysis.net/index.html

Algorithm 1: HTTP Traffic Compliance
Input: HTTP traffic: http_traffic
Output: Validation result: is_valid, Errors: errors

1 errors← []
2 parts← Split http_traffic by "\r\n\r\n"
3 headers_part← parts[0]
4 body_part← if exists, parts[1]
5 headers_lines← Split headers_part by "\r\n"
6 request_line← headers_lines[0]
7 if Invalid request line format then
8 errors.append("Invalid request line")

9 foreach header in headers_lines[1 :] do
10 if Invalid header format then
11 errors.append("Invalid header")

12 if Missing separating line between headers and body then
13 errors.append("Missing separator")

14 if errors is not empty then
15 return False, errors

16 return True, "Valid HTTP traffic"

taken from a real sandbox, it more accurately reflects real-
world conditions than open-source datasets.
• Benign consists of benign traffic extracted from several of
the datasets above, as well as traffic we decrypted from the
300 most popular websites listed in the Alexa Top rankings.

C.2 Extended Dataset
The extended dataset is not involved in any model training or fine-
tuning; it is solely used for testing purposes.

• CICAPT-IIoT2024 5 is designed to provide cybersecurity
researchers focusing on APT detection tasks with a compre-
hensive dataset specifically collected from an APT campaign
in an Industrial Internet of Things (IIoT) environment. This
dataset comprises a total of 19 APT groups, including well-
known organizations such as APT28, APT29, APT32, and
others.
• APT2024 is a dataset we gathered from open-source sand-
box environments, representing APT traffic data from the
year 2024. This dataset consists of traffic patterns from 8
APT groups, such as Lazarus, Kimsuky, Bitter, and several
others. These APT campaigns are critical for researchers aim-
ing to enhance detection and mitigation strategies against
advanced threats.
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D HTTP TRAFFIC COMPLIANCE
As shown in algorithm 1, we define the compliance for HTTP traffic
based on the RFC document. In simple terms, HTTP traffic should
consist of the following parts: 1. Request Line: Includes the method
(e.g., GET, POST, HEAD), the request URI, and the HTTP version.
2. Headers: Key-value pairs providing additional information about
the request. 3. Blank Line: Separates the headers from the body. 4.

Body (Payload): Contains the data being sent. Through the above
methods, we verify whether the generated traffic complies with
the specifications. In addition, the generated HTTP traffic should
remain functional. So we define something like the red part in Fig.
5 as unchangeable, and we force that part not to be changed.

5https://www.unb.ca/cic/datasets/iiot-dataset-2024.html
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