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Abstract

Causal Optimal Transport (COT) results from imposing a temporal causality con-
straint on classic optimal transport problems. Relying on recent work of COT-GAN
[36] optimized for sequential learning, the contribution of the present paper is
twofold. First, we develop a conditional version of COT-GAN suitable for se-
quence prediction. This means that the dataset is now used in order to learn how
a sequence will evolve given the observation of its past evolution. Second, we
improve on the convergence results by working with modifications of the empiri-
cal measures via kernel smoothing. The resulting kernel conditional COT-GAN
(KCCOT-GAN) algorithm is illustrated with an application for video prediction.

1 Introduction

Spatio-temporal learning is a challenging task. A desirable model should not only capture the
distribution of spatial features at each time step, but also learn its evolution over time. Prior works
typically rely on suitable network architectures to capture this complex spatio-temporal structure
[29, 2, 27, 33, 30]. At the same time, the recent advances in the field of causal optimal transport
(COT) have shown promising developments of loss functions for sequence comparison [5, 6, 24, 36].
This type of transport constrains the transport plans to respect temporal causality in a way that, at
every time step, we only use information available up to that time. This provides the foundation of
COT-GAN [36], which proved to be an efficient tool that produces high-quality video sequences.

As noted in [25] and [6], causal distances between a distribution and the empirical measure of a
sample from it may not vanish while the size of the sample goes to infinity. To correct for this,
Pflug and Pichler [25] proposed a convoluted empirical measure with a scaled smoothing kernel,
while Backhoff et al. [6] suggested an adapted empirical measure obtained by quantization - both
aiming to smooth the empirical measure in some way in order to yield a better convergence. In this
paper, we follow the approach of adapting the empirical measure by kernel smoothing, and prove that
the resulting adapted empirical measure is also a strongly consistent estimator with respect to COT.
Furthermore, we extend the COT-GAN to a conditional framework, to predict how a sequence is likely
to evolve given the observation of its past evolution. Finally, we show that our kernel conditional
COT-GAN algorithm achieves state-of-the-art results for video prediction.
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2 Causal Optimal Transport

Given two probability measures µ, ν defined on Rd×T , d× T ∈ N, and a cost function c : Rd×T ×
Rd×T → R, the causal optimal transport of µ into ν is formulated as

WK
c (µ, ν) := inf

π∈ΠK(µ,ν)
Eπ[c(x, y)], (1)

where ΠK(µ, ν) is the set of probability measures on Rd×T × Rd×T with marginals µ, ν, which are
called causal transport plans between µ and ν if they satisfy the constraint

π(dyt|dx1:T ) = π(dyt|dx1:t) for all t = 1, · · · , T − 1, (2)

where x = (x1, ..., xT ) and y = (y1, ..., yT ) are the first and second half of the coordinates on
Rd×T × Rd×T , and xs:t = (xs, ..., xt) for all s < t. Intuitively, the probability mass moved to the
arrival sequence at time t only depends on the starting sequence up to time t.

Solving (causal) optimal transport problems is typically computational costly for large datasets. One
way to circumvent this challenge is to resort to approximations of transport problems by means
of efficiently solvable auxiliary problems. Notably, Genevay et al. [15] proposed the Sinkhorn
divergence, which allows for the use of the Sinkhorn algorithm [11]. The first observation is that (1)
is the limit for ε→ 0 of the entropy-regularized transport problems

PK
c,ε(µ, ν) := inf

π∈ΠK(µ,ν)
{Eπ[c(x, y)]− εH(π)}, ε > 0, (3)

where H(π) is the Shannon entropy of π. Denoting by πK
c,ε(µ, ν) the optimizer in (3), and by

WK
c,ε(µ, ν) := EπK

c,ε(µ,ν)[c(x, y)] the resulting total cost, the Sinkhorn divergence is defined as

ŴK
c,ε(µ, ν) := 2WK

c,ε(µ, ν)−WK
c,ε(µ, µ)−WK

c,ε(ν, ν). (4)

By using an equivalent characterization of causality (see Appendix A), this can be reformulated
as a maximization over regularized transport problems w.r.t. a specific family of cost functions
CK(µ, c): PK

c,ε(µ, ν) = supcK∈CK(µ,c) PcK,ε(µ, ν). This suggests the following as a robust version
of the Sinkhorn divergence from (4) that takes into account causality (see Appendix A.2 for details):

sup
cK∈CK(µ,c)

ŴcK,ε(µ, ν).

3 Conditional COT-GAN

Consider a dataset consisting of n i.i.d. d-dimensional sequences (xi
1, . . . , x

i
T )

n
i=1 where T ∈ N is

the number of time steps and d ∈ N is the dimensionality at each time. This is thought of as a random
sample from an underlying distribution µ on Rd×T , from which we want to extract other sequences.
COT-GAN [36] learns to generate a sample distribution to be similar to the data distribution µ by
training a generator gθ via a min-max objective function equivalent toWK

c in (1).

Here, the conditional learning will be done via a conditional generative adversarial structure analo-
gously to [36]. Given a minibatch {xi

1:T }mi=1 from the dataset and a sample {zik+1:T }m from a noise
distribution ζ on some latent space Z , we deploy the generator gθ, parameterized by θ, to predict
the future evolution x̂i

k+1:T = gθ(x
i
1:k, z

i
k+1:T ) of xi

1:k. The prediction is then concatenated with
the corresponding input sequence over the time dimension in order to be compared with the training
sequence by the discriminator. We denote the empirical distributions of real and concatenated data by

µ̂ :=
1

m

m∑
i=1

δxi
1:T

, ν̂cθ :=
1

m

m∑
i=1

δconcat(xi
1:k,x̂

i
k+1:T ),

where ν̂cθ incorporates the parameterization of gθ through {x̂i
k+1:T }mi=1.
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4 Adapted Empirical Measure and KCCOT-GAN

The nested distance [24] or adapted Wasserstein (AW) distance [6] is the result of an optimal
transport problem where plans are required to satisfy the causality constraint as well as its symmetric
counterpart, when inverting the role of x and y. Denoting the inverse transport plan by π′(dx, dy) =
π(dy, dx), the AW-distance is defined as

AWc(µ, ν) := inf{Eπ[c(x, y)] : π ∈ ΠK(µ, ν), π′ ∈ ΠK(ν, µ)}. (5)

For any measure µ, and for the empirical measures µ̂m relative to a random sample of size m from it,
it is known (see e.g. [14]) that Wasserstein distanceWc(µ, µ̂m)→ 0 as m→∞, whereas [6] and
[25] observe that this is not necessarily true when substituting the Wasserstein distanceWc with the
adapted Wasserstein distance AWc. This is of course undesirable, in particular thinking of the fact
that the discriminator will evaluate discrepancies between real and generated measures by relying
on empirical measures of the corresponding minibatches, see [36]. Following [25], we obtain the
adapted empirical measure via kernel smoothing in order to yield a better convergence guarantee.

For a probability measure µ with density f , and a density function kh(x) :=
1
hk(

x
h ) where h is the

bandwidth parameter, the density estimator f̂ is defined as

f̂(x) =

∫
kh(x− y)f(y)dy = f ∗ kh(x), (6)

where ∗ denotes the convolution of densities. Denoting the measure induced by density kh as Kf , we
can write the convoluted measures with density kh as the weighted empirical measures of µ̂ and ν̂cθ :

µ̂f := µ̂ ∗Kf =

m∑
i=1

wiδxi
1:T

, and ν̂c,fθ := ν̂cθ ∗Kf =

m∑
i=1

wiδconcat(xi
1:k,x̂

i
k+1:T ), (7)

where the weight wi is determined by kh. Intuitively, this smooths the observations by taking a
weighted average of all observations, typically with more influence from neighboring points.

Pflug and Pichler [25] proved that the AW-distance of the convoluted measures converges, i.e.,

P (AWc(µ̂
f , ν̂c,fθ ) > ε)→ 0 as m→∞,

provided that:

1. the kernel kh is nonnegative and compactly supported on RD,
2. the density f is bounded and uniformly continuous,
3. the bandwidth h is a function of the sample size m that satisfies

hm → 0,
mhm

| log hm|
→ ∞,

| log hm|
log logm

→∞,

and mhm →∞, as m→∞, (8)

4. the measures µ and ν are conditionally Lipschitz.

For proofs and detailed discussions, see Theorem 2 and 4 in [25]. Note that the convergence result
above is derived for the AW-distance. In order to deduce the results onWK

c , notice that

WK
c (µ, ν) ≤ AWc(µ, ν) (9)

for any probability measures µ, ν and any cost function c, given that the set of transports over which
minimization is done for causal optimal transport is bigger than that for AW-distance, cf. (1) and (5).

The objective function of the KCCOT-GAN at the level of minibatches is then computed as:

ŴcKφ ,ε(µ̂
f , ν̂c,fθ )− λpMφ2

(µ̂f ), (10)

where the first term is the Sinkhorn divergence (3) relative to the cost cKφ and computed on the
convoluted measures in (7), and the second one is a martingale regularization; see Appendix (A.2)
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for details. The discriminator maximizes over φ to search for a worst-case distance between the
two measures (the convoluted measure coming from the observations and the generated one), while
the generator minimizes over θ to learn a conditional distribution that is as close as possible to the
real distribution (in a strong sense, as it is w.r.t. the worst-case distance). Implementation details of
KCCOT-GAN can be found in Appendix B.

One remarkable consequence of training by minimizing adapted distances comes from their robustness
with respect to a variety of stochastic optimization problems. Indeed, in Acciaio et al. [1] and
Backhoff-Veraguas et al. [7] it is shown how two financial models that are close w.r.t. AW give
similar results when it comes to e.g. optimal hedging and optimal stopping strategies. This shows
suitability of KCCOT-GAN for conditional generation of the evolution of stock prices.

5 Related Work

Many methods for video prediction relying on variational inference [8] and VAE [20], e.g. SV2P [4],
SVP-LP [12], VTA [19], and VRNN [9], have shown promising results. The majority of adversarial
models adopted in this domain were trained on the original GAN objective [17] or the Wasserstein
GAN objective [3], both of which provide step-wise comparison of sequences. SAVP [21] combined
the objective function of the original GAN and VAE to achieve the state of the art performance.
Among this line of works, substantial efforts have been devoted to designing specific architectures
that tackle the spatio-temporal dependencies, e.g. [33, 27, 30, 10, 22, 32], and training schemes that
facilitate learning, e.g. [22, 32, 2]. Whilst some works such as TGAN [27] and VGAN [33] combined
a static content generator with a motion generator, others, e.g. [30, 10], designed two discriminators
to evaluate the spatial and temporal components separately.

Another important direction of research is the identification of more suitable loss functions. Mathieu
et al. [22] explored a loss that measures gradient difference at frame level on top of an adversarial
loss trained with a multi-scale architecture. TimeGAN [37] combined the original GAN loss with
a step-wise loss that computes the distance between the conditional distributions in a supervised
manner. By matching a conditional model to the real conditional probability p(xt|x1:t−1) at every
time step, it explicitly encouraged the model to consider the temporal dependencies in the sequence.
In comparison, COT-GAN [36] explored a more natural formulation via COT for sequence modeling,
which leads to convincing results. The authors compared the performance of COT-GAN, which
respects causality, to the models that are trained using classic OT without a causality constraint, such
as Sinkhorn GAN [15] and WaveGAN [13]. It is shown that violating causality in the objective
function harms the learning for time series generations, and it is not sufficient to rely solely on the
network architecture to capture the temporal structure of data.

6 Experiments

We compare KCCOT-GAN to CCOT-GAN without kernel smoothing as an ablation study, to
SVP-LP [12], to SAVP [21], and to VRNN [9], on three well-established video prediction datasets.
The source code and video results are available at https://github.com/neuripss2020/
kccotgan. In all our experiments, the choice of cost function is c(x, y) =

∑
t ∥xt − yt∥22. We

select the first 15 frames and downsample them to a resolution of 64× 64. We use the first 5 frames
as the context sequence and the rest 10 frames as the target sequence. All results are evaluated on test
sets. Network architectures and more training details are given in Appendix B. Samples generated by
KCCOT-GAN trained on Moving MNIST dataset are shown in Appendix C.

GQN Mazes. Figure 1 demonstrates that all models successfully captured the spatial structure
in the frames well. However, predictions produced by SVG-LP lack of the evolution of motions,
which is observed in many reproduced results of the model across various dataset. This could be
attributed to the fact that SVG-LP is conditioned on a single frame from the previous time step,
which makes it impossible for the model to pick up any information about past evolution. Visually,
KCCOT-GAN and VRNN produced the sharpest frames out of all. Whilst samples from VRNN show
more variations, those from KCCOT-GAN tend to be closer to the ground truth which may contribute
to the better numerical evaluations in Table 6.
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Figure 1: GQN Mazes test results. Only the last 2 frames from the context sequence are shown.

BAIR Push Small. For this dataset, the results from SVG-LP and VRNN are extremely good in
terms of both the image quality and the variation in samples, see Figure 2. It is clearly a very difficult
task to outperform these two baselines. On the other hand, SAVP has failed in producing high quality
predictions. Although KCCOT-GAN underperforms the SVG-LP and VRNN baselines, we observe a
clear improvement in sharpness from CCOT-GAN to KCCOT-GAN. As these two models share the
same network structure and hyper-parameter settings, we can confirm that this improvement solely
comes from the adaption of empirical measures via kernel smoothing.

Figure 2: BAIR Push Small test results. Only the last 2 frames from the context sequence are shown.

Evaluation. We evaluate the video predictions using three metrics: Structural Similarity Index [34]
(SSIM, higher is better), Learned Perceptual Image Patch Similarity [39] (LPIPS, lower is better),
Fréchet Video Distance [31] (FVD, lower is better); see the table below.

GQN Mazes BAIR Push Small Moving MNIST
SSIM ↑ LPIPS ↓ FVD ↓ SSIM ↑ LPIPS ↓ FVD ↓ SSIM ↑ LPIPS ↓ FVD ↓

SAVP 0.49 0.077 488.35 0.502 0.090 280.32 0.571 0.123 129.33
VRNN 0.56 0.062 345.51 0.825 0.054 148.51 0.770 0.116 59.14
SVG-LP 0.43 0.094 575.22 0.822 0.059 158.80 0.770 0.116 59.14
CCOT-GAN 0.60 0.061 323.28 0.723 0.063 201.72 0.661 0.139 74.20
KCCOT-GAN 0.64 0.060 267.90 0.765 0.060 167.94 0.788 0.975 60.33
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Conditional COT-GAN for Video Prediction with Kernel
Smoothing:

Supplementary material

A Details on regularized Causal Optimal Transport

A.1 Sinkhorn algorithm

The entropy-regularized transport problems is obtained by considering an entropic constraint. For
transport plans with marginals µ supported on a finite set {xi}i and ν on a finite set {yj}j , any
π ∈ Π(µ, ν) is also discrete with support on the set of all possible pairs {(xi, yj)}i,j . Denoting
πij = π(xi, yj), the Shannon entropy of π is given by H(π) := −

∑
i,j πij log(πij). A transport

plan in the discrete case can be considered as a table identified with a joint distribution. The intuition
of imposing such a regularization is to restrict the search of couplings to tables with sufficient
smoothness in order to improve efficiency.

When the measures are discrete, such a regularized optimal transport problem becomes easily solvable
by using the Sinkhorn algorithm for a given number of iterations, say L, in order to approximate
a solution to the Sinkhorn divergence (4), see [15] for detail. Generally speaking, the stronger the
regularization is (that is, the bigger the parameter ε is), the fewer number of iterations L are needed
in order to yield a good approximation.

A.2 Details about COT-GAN

In this section we will recall the main steps that led to the COT-GAN algorithm for sequential learning
in Xu et al. [36].

It is useful to recall an equivalent characterization of causality: a transport plan π ∈ Π(µ, ν) is causal
if and only if

Eπ
[∑T−1

t=1 ht(y)∆t+1M(x)
]
= 0 for all (h,M) ∈ H(µ). (11)

With an abuse of notation we write ht(y), Mt(x), ∆t+1M(x) rather than ht(y1:t), Mt(x1:t),
∆t+1M(x1:t+1). Therefore, the entropy-regularized COT problem (3) can be reformulated as a
maximization over regularized transport problems with respect to a specific family of cost functions:

PK
c,ε(µ, ν) = sup

cK∈CK(µ,c)

PcK,ε(µ, ν). (12)

The family of costs CK(µ, c) is given by

CK(µ, c) :=

{
c(x, y) +

J∑
j=1

T−1∑
t=1

hj
t (y)∆t+1M

j(x) : J ∈ N, (hj ,M j) ∈ H(µ)

}
, (13)

where ∆t+1M(x) := Mt+1(x1:t+1)−Mt(x1:t) andH(µ) is a set of functions depicting causality:

H(µ) := {(h,M) : h = (ht)
T−1
t=1 , ht ∈ Cb(Rd×t),M = (Mt)

T
t=1 ∈M(µ), Mt ∈ Cb(Rd×t)},

withM(µ) being the set of martingales on Rd×T w.r.t. the canonical filtration and the measure µ,
and Cb(Rd×t) the space of continuous, bounded functions on Rd×t. This suggests the following
version of the Sinkhorn divergence from (4) that takes into account causality:

sup
cK∈CK(µ,c)

ŴcK,ε(µ, ν).

This is the distance used by the discriminator in COT-GAN [36] in order to evaluate the discrepancy
between real data and generated one, and it is the one we will use in the current paper for sequential
prediction.

Furthermore, [36] makes the two following adjustments needed to make computations feasible. First,
rather than considering the whole set of costs in (13), in (12) we optimize over a subset CK(µ, c), by
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Algorithm 1 training KCCOT-GAN by SGD
Input: {xi

1:T }ni=1(data), ζ(distribution on latent space)
Parameters: θ0, φ0(initialization of parameters), m(batch size), ε(regularization parameter),
α(learning rate), λ(martingale penalty coefficient), h(bandwidth parameter)
repeat

(1) Sample {xi
1:T }mi=1 from real data;

(2) Learn features from input sequences:
{ei1:T }mi=1 ← fθe({xi

1:T }mi=1);
(3) Sample {zik:T−1}mi=1 from ζ;
(4) Predict conditioned on features and inputs:
{x̂i

k+1:T }mi=1

← fθd({ei1:T }mi=1, {xi
k:T−1}mi=1, {zik:T−1}mi=1);

(5) Obtain smoothed measures: µ̂f and ν̂c,fθ ;
(6) Compute ŴcKφ ,ε(µ̂

f , ν̂c,fθ ) by the Sinkhorn algorithm;
(7) Update discriminator parameter:
φ← φ+ α∇φ

(
ŴcKφ ,ε(µ̂

f , ν̂c,fθ )− λpMφ2
(µ̂f )

)
;

(8) Repeat step (2) - (6);
(9) Update generator parameter:

θ ← θ − α∇θ

(
ŴcKφ ,ε(µ̂

f , ν̂c,fθ )
)

;
until convergence

considering h := (hj)Jj=1 and M := (M j)Jj=1 of dimension bounded by a fixed J ∈ N. Second,
instead of requiring M to be a martingale, we consider all continuous bounded functions and introduce
a regularization term which penalizes deviations from being a martingale. For a mini-batch of size m,
{xi

1:T }mi=1, sampled from the dataset, the martingale penalization for M is defined as

pM(µ̂) :=
1

mT

J∑
j=1

T−1∑
t=1

∣∣∣∣∣
m∑
i=1

M j
t+1(x

i
1:t+1)−M j

t (x
i
1:t)√

Var[M j ] + η

∣∣∣∣∣,
where µ̂ is the empirical measure corresponding to the mini-batch sampled from the dataset, Var[M ]
is the empirical variance of M over time and batch, and η > 0 is a small constant. This leads to the
following objective function for COT-GAN in [36]:

ŴcKφ ,ε(µ̂, ν̂θ)− λpMφ2
(µ̂), (14)

where ν̂θ is the empirical measure corresponding to the mini-batch produced by the generator,
parameterized by θ, hφ1 and Mφ2 represent the discriminator who learns the worst-case cost cKφ ,
parameterized by φ := (φ1, φ2), and λ is a positive constant.

B Implementation of KCCOT-GAN

B.1 Encoder-decoder structure

The generator of KCCOT-GAN consists of an encoder that learns features from the input sequences,
and a decoder that generates predictions conditioned on the input features and noise, supported by
convolutional LSTM (convLSTM) [28]. The decoder was trained using a hierarchical version of the
Teacher Forcing algorithm [35] which feeds the real values from observations as inputs during the
training stage, in order to reduce the compounding error from multi-step predictions. To make it
concrete, we proceed to formulate the implementation of KCCOT-GAN.

To avoid confusion, we refer to the entire input x1:T as the input sequence, and to the sequence x1:k

upon which the prediction xk+1:T is made as the context sequence. Since the full input sequence is
available to us at the stage of training, we first learn the hierarchical features of it through an encoder
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with n layers,
e11:T = fθ1

e
(x1:T ),

e21:T = fθ2
e
(e11:T ),

...

en1:T = fθn
e
(en−1

1:T ).

From here on, we denote the encoder as fθe parametrized by θe := {θ1e , θ2e , ..., θne }, and the features
extracted by the encoder as e1:T := {e11:T , ..., en1:T }.
To deploy the teacher forcing algorithm, we make use of the hierarchical features as well as the
input sequence. At time step k + 1, we predict x̂k+1 conditioned on (ek, xk), under the assumption
that the feature ek contains all the information about the context sequence. Instead of feeding the
prediction x̂k+1 back to the model to make next prediction, we continue to predict x̂k+2 conditioned
on (ek+1, xk+1) in an effort to prevent the model to derail from the truth by making a mistake in an
intermediate step. As a result, we train the model to predict x̂k+1:T conditioned on (ek:T−1, xk:T−1).
In the inference stage, however, we do not have the information beyond the context sequence. The
prediction is therefore completed in an auto-regressive manner.

Given Gaussian noise zk:T−1, the decoder fθd with l layers for l ≥ n+ 1 learns to predict the future
steps by

d1k+1:T = fθ1
d
(enk:T−1, zk:T−1),

...

dl−1
k+1:T = fθl−1

d
(e1k:T−1, d

l−2
k+1:T )

x̂k+1:T = fθl
d
(xk:T−1, d

l−1
k+1:T ).

As usual, the generator parameters θ := {θe, θd} and discriminator parameters φ are learned on the
level of mini-batches via Stochastic Gradient Descent (SGD). The training workflow of KCCOT-GAN
is summarized in Algorithm 1.

B.2 Kernel Choice

To yield better convergence property, we smooth the mini-batches in each iteration using a scaled
Gaussian kernel with zero mean,

kh(x) =
1

h
e−

x2

2h2 .

Differently from the technique of Gaussian blur widely used in image processing, see e.g. [18, 26,
23, 16], we apply a 3D scaled Gaussian kernel to both spatio and temporal dimensions. In another
line of work, Zhang et al. [38] show that convoluting measures with a kernel density estimator is also
a valid approach to tackle the problem of disjoint supports in divergence minimization.

Pflug and Pichler [25] proved that the adapted Wasserstein distance of the convoluted measures
converges, i.e.,

P (AWc(µ̂
f , ν̂c,fθ ) > ε)→ 0 as m→∞,

provided that

1. the kernel kh is nonnegative and compactly supported on RD,

2. the density f is bounded and uniformly continuous,

3. the bandwidth h is a function of the sample size m that satisfies

hm → 0,
mhm

| log hm|
→ ∞,

| log hm|
log logm

→∞,

and mhm →∞, as m→∞, (15)

4. the measures µ and ν are conditionally Lipschitz.
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Table 1: Encoder and decoder architecture.

Encoder Configuration
Input x1:T with shape T × 64× 64× 3

1 convLSTM2D(N32, K6, S2, P=SAME), LN
2 convLSTM2D(N64, K6, S2, P=SAME), LN
3 convLSTM2D(N128, K5, S2, P=SAME), LN
4 convLSTM2D(N256, K5, S2, P=SAME), LN
5 output features e1:T with shape T × 4× 4× 256

Decoder Configuration
Input zk:T−1, ek:T−1, xk:T−1

1 DCONV(N256, K2, S2, P=SAME), LN
2 convLSTM2D(N128, K4, S1, P=SAME), LN
3 DCONV(N128, K4, S2, P=SAME), LN
4 convLSTM2D(N64, K6, S1, P=SAME), LN
5 DCONV(N64, K6, S2, P=SAME), LN
6 convLSTM2D(N32, K6, S1, P=SAME), LN
4 DCONV(N16, K6, S1, P=SAME), LN
5 convLSTM2D(N8, K8, S1, P=SAME), LN
7 DCONV(N3, K8, S1, P=SAME), Sigmoid

For proofs and detailed discussions, please see Theorem 2 and 4 in [25]. The result proved for the
COT distances in Section 4 is also conditioned on the constraints in Eq. (15).

However, to simplify the implementation, we relax this assumption by deploying a decaying band-
width as a function of the number of the training iterations, rather than a function of sample size m.
We realize that this simplification may lead to inferior theoretical guarantee of convergence. However,
we will leave the exploration of a more appropriate approach to satisfy the theoretical assumptions to
future research.

C Experiment details

C.1 Network architectures and training details

All experiments on the three datasets share the same GAN architectures. The generator is split into
an encoder and a decoder, supported by convolutional LSTM (convLSTM). The encoder learns both
the spatial and temporal features of the input sequences, whereas the decoder predicts the future
evolution conditioned on the learned features and a latent variable.

The features from the last encoding layer has a shape of 4 × 4 (height × width) per time step. A
latent variable z is sampled from a multivariate standard normal distribution with the same shape as
the features (same number of channels too depending on the model size). We then concatenate the
features, input sequence, and latent variables over the channel dimension as input for the decoder.
The encoder and decoder structures are detailed in Table 1. As the discriminator, the process h
and M are parameterized with two separate networks that share the same structure, shown in Table
2. In all tables, we use DCONV to represent a de-convolutional (convolutional transpose) layer.
The layers may have N filter size, K kernel size, S strides and P padding option. We adopt both
batch-normalization(BN) and layer-normalization(LN), and the LeakyReLU activation function. All
hyperparameter setting are the same for all three datasets except that the filter size is halved for the
Moving MNIST dataset.

During training, we apply exponential decay to the learning rate by ηt = η0r
s/c where η0 is the initial

learning rate, r is decay rate, s is the current number of training steps and c is the decaying frequency.
The bandwidth parameter h are also annealed from 1.5 to 0.1 in a similar manner. In all experiments,
the initial learning rate is 0.0005, decay rate 0.985, decaying frequency 10000, and batch size m = 8.
The settings of hyper-parameters in the Sinkhorn algorithm are also shared across the three datasets
with λ = 1.0, ε = 0.8 and the Sinkhorn iterations L = 100. We train KCCOT-GAN and CCOT-GAN
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Table 2: Discriminator architecture.

Discriminator Configuration
Input 64x64x3

0 CONV(N32, K5, S2, P=SAME), BN
1 CONV(N64, K5, S2, P=SAME), BN
2 CONV(N128, K5, S2, P=SAME), BN
3 reshape 3D array for LSTM
4 LSTM(state size = 128), LN
5 LSTM(state size = 64), LN
6 LSTM(state size = 32), LN

on a single NVIDIA GTX 1080 Ti GPU. Each iteration takes roughly 3.5 seconds. Each experiment
is run for around 100000 iterations.

C.2 Results on Moving MNIST

Predictions from KCCOT-GAN conditioned on the first 5 context frames from the test set of the
Moving MNIST dataset are presented in Figure 3.
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Figure 3: Moving MNIST results on test set. The first 5 frames are context sequence and last 10
frames are predictions from KCCOT-GAN, separated by the yellow vertical line.
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