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Abstract

Echocardiography records ultrasound videos of the heart, enabling clinicians to1

assess cardiac function. Recent advances in large-scale vision–language mod-2

els (VLMs) have spurred interest in automating echocardiographic interpretation.3

However, most existing medical VLMs rely on single-frame (image) inputs, which4

can reduce diagnostic accuracy for conditions identifiable only through cardiac mo-5

tion. In addition, echocardiographic videos are captured from multiple views, each6

varying in suitability for detecting specific conditions. Leveraging multiple views7

may therefore improve diagnostic performance. We developed a video–language8

model that processes full video sequences from five standard views, trained on9

60,747 echocardiographic video–report pairs. We evaluated the gains in retrieval10

performance from video input and multi-view support, including the contributions11

of various pretrained models.12

1 Introduction13

Echocardiography is a widely used, noninvasive method for diagnosing various cardiac conditions,14

including myocardial infarction, valvular diseases, and congenital heart defects. However, interpreting15

echocardiographic videos requires specialized expertise, which can be both time-consuming and16

costly, especially in emergency settings or areas lacking medical professionals. This has fueled17

growing interest in automated or AI-assisted diagnostic support. Recent advances in VLMs have18

enabled the development of AI systems that interpret echocardiographic images at near-expert levels.19

EchoCLIP [3] is a CLIP [6] model trained on 1,032,975 echocardiographic images paired with clinical20

reports from 224,685 cases. By learning to align image embeddings with their corresponding report21

embeddings, EchoCLIP can assess disease presence and severity based on the inferred similarity22

between the images and reports. This CLIP-based approach provides a generalizable solution23

for interpreting diverse cardiac conditions. Furthermore, training vision encoders that effectively24

represent visual inputs is crucial for developing multimodal large language models (MLLMs) capable25

of generating clinical reports and comprehensive diagnoses.26

Despite the progress made by EchoCLIP and other VLMs, two major challenges remain, given the27

unique nature of echocardiography: using videos instead of still images, and incorporating multiple28

views. Unlike static imaging methods such as chest X-rays, echocardiograms capture the heart’s29

rhythmic motion, an essential aspect for diagnosing certain conditions (e.g., valvular disease with30

abnormal blood flow). Another key feature of echocardiography is its variety of views. Because31

the heart is a three-dimensional, anisotropic organ, positioning the ultrasound probe at different32

angles yields distinct cross-sections. While there are dozens of potential views, commonly used33

ones include the long-axis (LAX), short-axis (SAX), two-chamber (2CH), three-chamber (3CH), and34

four-chamber (4CH) views. Each view is especially useful for assessing specific aspects of cardiac35
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Figure 1: Multi-view echocardiography interpretation (left) using video CLIP model (right). The
most appropriate clinical report for the echocardiographic videos is retrieved by embedding similarity.

function, indicating that further investigation is needed into performance improvements gained by36

integrating information from multiple views.37

In this study, we aim to enhance the interpretation accuracy of a CLIP model by leveraging these38

two characteristics of echocardiography data (Fig. 1). First, we replace the image encoder of a CLIP39

model with a video encoder [2, 7, 5], enabling the extraction of feature vectors that capture the40

temporal dynamics of echocardiogram videos. Second, we expand the dataset from the 4CH view to41

include five views—LAX, SAX, 2CH, 3CH, 4CH. We train this model on a dataset containing 60,74742

cases, comprising 747,900 pairs of multi-view echocardiogram videos and corresponding clinical43

reports from 29,886 patients. We then evaluate it by assessing its ability to retrieve the corresponding44

clinical reports from echocardiogram videos (video-to-text retrieval) and vice versa (text-to-video45

retrieval).46

The recently proposed EchoPrime [8] is a concurrent work that also extends a CLIP model to support47

multi-view and video inputs. However, under controlled conditions, it does not examine the extent to48

which image-to-video or multi-view approaches actually contribute to interpretation performance. In49

contrast, we train three ablation models to isolate the effects of video input and multi-view support50

during both training and inference. Moreover, we evaluate the impact of pretrained models for both51

video- and image-based settings.52

2 Method53

2.1 Model Architecture54

In this study, following EchoCLIP, we perform contrastive learning on pairs of echocardiogram55

videos and their corresponding clinical reports, treating the correct (matching) video–report pairs56

as positive pairs and all others as negative pairs. The overview of the model architecture is shown57

in Fig. 1. For the video encoder, we employ ViViT [7], which efficiently transforms a sequence of58

fixed-length frames (32 frames used) into a 512-dimensional embedding. The text encoder used is59

BERT [4]. Since the clinical reports are written in Japanese, we utilized BERTJapaneseV3 [1], which60

was pre-trained on a Japanese corpus.61

Additionally, while CLIP models such as EchoCLIP typically use 77 tokens for the text encoder,62

clinical reports in echocardiography often describe each symptom and item in detail, necessitating63

longer text inputs. Therefore, we adopted 256 tokens for the text encoder.64

2.2 Multi-view Video Report Retrieval65

The video encoder and text encoder, trained through Contrastive Learning, are used to retrieve the66

most appropriate report from a set of candidate reports based on the similarity of embeddings during67
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interpretation. For each symptom or item, its existence and severity (e.g., mild / moderate / severe)68

are associated with corresponding text, which is then converted into embeddings by the text encoder.69

The similarity between these text embeddings and the embedding of the target echocardiographic70

video is compared, and the text with the highest similarity is selected as the interpretation result.71

However, in echocardiography, multiple echocardiographic videos from different views are taken72

for each case, and the physician creates a single report by comprehensively evaluating these videos.73

Similarly, in this study, all available echocardiographic videos for a given case are individually74

converted into embeddings, and their average is computed to obtain the overall video embedding. The75

similarity between this video embedding and the corresponding report embedding is then calculated76

and used to retrieve clinical reports. Reversely, it is also possible to retrieve the case with the most77

relevant echocardiographic videos for a given report.78

3 Experiments79

3.1 Dataset80

A total of 69,482 echocardiographic examination cases from 29,886 patients, collected between 201581

and 2023, were used to construct the dataset. These data were selected based on a separately trained82

view-classification CNN model, which assigned them to one of LAX, SAX, 2CH, 3CH, or 4CH views83

with a probability of at least 0.9. Any data classified into other views or assigned a lower probability84

were excluded beforehand.85

3.2 Ablation Models86

We evaluate the interpretative performance of the proposed multi-view video-input model87

(MultiVideo) by comparing it with two ablation models: a single-view video-input model88

(SingleVideo) and a single-view image-input model (SingleImage), the latter corresponding to89

EchoCLIP.90

SingleVideo shares the same architecture as MultiVideo but is trained exclusively on 4CH-view91

videos. SingleImage replaces the video encoder with ConvNext-Base, an image encoder. The training92

dataset for SingleImage only includes the 4CH view, and a single frame randomly extracted from the93

video is used as input. To ensure a fair comparison, all models use the same text encoder and are94

trained from scratch.95

For report retrieval, both SingleVideo and SingleImage use only 4CH-view videos as input. Unlike96

the video-based models, SingleImage computes the mean of all image embeddings extracted from97

every frame across the multiple videos, following the approach used in the EchoCLIP study.98

3.3 Model Comparison99

Table 1 shows the retrieval accuracy of the proposed model and the two ablation models. Accuracy100

is evaluated using mean cross-modal retrieval rank (MCMRR) and R@10. MCMRR represents the101

mean rank at which the correct report appears when all 5,515 reports are sorted by similarity, while102

R@k indicates the percentage of cases where the correct report is ranked within the top k positions.103

MCMRR ↓ R@10 ↑
Method V→R R→V V→R R→V

MultiVideo 595 584 10.9 % 10.3 %
MultiVideo-4CH 705 695 8.4 % 8.0 %
SingleVideo 676 686 8.8 % 7.1 %
SingleImage 1222 1115 3.6 % 4.8 %

Table 1: Retrieval scores for MultiVideo, SingleVideo and SingleImage (Video→Report and
Report→Video).

As shown in the table, the model with the highest readability performance was the multi-view video104

model (MultiVideo). The next highest was the 4CH-view-only video model (SingleVideo), followed105
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by the 4CH-view-only image model (SingleImage). The most significant improvement in retrieval106

accuracy was observed when switching from image-based to video-based input, with both MCMRR107

and R@10 approximately doubling. Furthermore, incorporating multiple views led to an additional108

improvement of about 1.2 times.109

To further evaluate the contribution of multi-view information, we also compared the performance of110

MultiVideo when restricted to the 4CH view at inference (MultiVideo-4CH) with that of SingleVideo.111

Their similar results suggest minimal knowledge transfer from multi-view training, indicating that112

the primary benefit of multi-view lies in providing diverse information during inference.113

3.4 Effect of Pretraining114

Beyond input modality and multi-view capability, the choice of pretrained models is a critical factor.115

For models with image or video inputs, a key concern is that far stronger pretrained models are116

available for images. To evaluate this effect, we trained SingleImage and MultiVideo-4CH models117

using different pretrained weights—ImageNet-21k, LAION-2B, Kinetics-400, and VideoMAE2—and118

compared retrieval performance. VideoMAE2 differs from ViViT in architecture and uses 16 frames119

per video.120

As shown in Fig. 2, pretraining substantially improved performance for both image and video models.121

Large-scale image pretraining greatly narrowed the performance gap between image and video122

models observed when both were trained from scratch. However, the best performance was achieved123

by the VideoMAE2-based video model, surpassing even the EchoCLIP-pretrained image model.124

Performance scaled almost linearly with video dataset size (log scale), suggesting that pretraining125

on 10M–100M-scale video datasets could yield further gains. In contrast, image datasets showed126

gradual saturation, with diminishing returns expected even at multi-billion scale.127
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Figure 2: Retrieval accuracy (log scale) of models trained with different pretrained initializations
(left: MCMRR, right: R%10).

4 Conclusion128

In this study, we focus on two key aspects of echocardiography: they ideally require video-based129

interpretation and they provide multiple views of the heart. Most VLM models applied to the medical130

domain so far have been single-image single-view approaches, so we extended these models to handle131

video inputs and multiple views for echocardiography. To assess the impact of these extensions,132

we compared the retrieval accuracy of the extended models with their unextended counterparts.133

The results show that, much like physicians, the CLIP model benefits from both video inputs and134

multi-view support.135

Because the healthcare field often restricts public data sharing, each organization’s accessible dataset136

tends to be limited. As a result, it becomes crucial to develop video-language models that maximize137

information extraction from available data. In the future, we plan to replace the vision encoder of138

existing MLLMs with the video encoder developed in this study and to build an echocardiography-139

specific MLLM capable of generating diagnostic reports.140
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A Details on Report Retrieval165

The entire report retrieval process based on multi-view video interpretation is summarized in Algo-166

rithm 1.167

Algorithm 1 Report Retrieval from Multi-view Videos

Given: N reference videos from a single study {ϕ0, ϕ1, . . . , ϕN}, and reports from M studies
{τ0, τ1, . . . , τM}.
Notation: Let f(·) and g(·) denote the trained video and text encoders, respectively.

1: {v0, v1, . . . , vN} ← {f(ϕ0), f(ϕ1), . . . , f(ϕN )}
2: v ← mean(v0, v1, . . . , vN ) ▷ average video embeddings
3: s← ∅
4: for m = 1 to M do
5: tm ← g(τm)

6: s← s ∪ tTmv
∥tm∥∥v∥ ▷ compute similarity

7: end for
Return: τargmax(s) ▷ retrieved report

B Training Details168

B.1 Contrastive Learning Loss169

For a batch of size B containing pairs of echocardiogram videos and clinical reports, we obtain170

embeddings {(vi, ti)}i=0,...,B using the video encoder and text encoder, respectively. The contrastive171
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loss can then be expressed as follows:172

Lvideo-to-report =
1

B

B∑
i=0

− log
exp

(
1
τ

tTi vi
∥ti∥∥vi∥

)
∑

i exp
(

1
τ

tTi vi
∥ti∥∥vi∥

) , (1)

Lreport-to-video =
1

B

B∑
i=0

− log
exp

(
1
τ

vT
i ti

∥vi∥∥ti∥

)
∑

i exp
(

1
τ

vT
i ti

∥vi∥∥ti∥

) , (2)

where τ denotes temperature. Eq. (1) represents the contrastive loss for video-to-report, while Eq. (2)173

represents the contrastive loss for report-to-video. The training loss is the average of both.174

B.2 Dataset175

Table 2 summarizes the dataset. The patients were split into training, validation, and test sets in a176

ratio of 0.875:0.025:0.1. MultiVideo was trained on 747,900 multi-view videos, whereas SingleVideo177

and SingleImage were trained on 184,444 4CH-view videos. For the test set, in order to compare178

4CH-view and multi-view approaches, 5,515 of the 7,050 cases that contained a 4CH-view video179

were used.180

Train Valid Test

Case 60,747 1,685 7,050 (5,515)
Patient 29,886 853 3,416 (2,917)
LAX-view Video 201,253 5,758 23,358
SAX-view Video 191,577 5,477 22,068
2CH-view Video 65,630 1,777 7,405
3CH-view Video 104,996 2,915 12,062
4CH-view Video 184,444 5,113 21,345
Total Video 747,900 21,040 86,238 (78,276)

Table 2: Summary of the dataset. The values in parentheses indicate cases that include 4CH-view
videos.

B.3 Training181

All models were trained on four NVIDIA H100 GPUs. A batch size of 64 was used for the video-182

based models and 2,304 for the image-based model. The learning rate was set to 1e-5, with a linear183

warm-up during the first 2,000 steps followed by a cosine-annealing schedule. Training each model184

required one to two days.185

C Example of Data and Retrieval Results186

In Figure 3, one can see an example of the echocardiographic videos and corresponding reports (the187

ground truth and retrieved) used in the experiments. Each study contains videos from various views,188

and the number of views and videos per view differs across cases. Clinical reports describe whether189

symptoms are present and to what degree. Any text exceeding 256 tokens was truncated.190

These three clinical reports are considered most similar out of 5,515 possible reports by MultiVideo,191

MultiVideo-4CH, and SingleImage for the given echocardiogram video / image. In this case,192

the discrepancy (in red text in the figure) between the retrieved clinical reports and the ground193

truth report decreases in the order of SingleImage, MultiVideo-4CH, and then MultiVideo. The194

decline in left ventricular systolic function, difficult to assess from still images, was not detected195

by SingleImage, yet it was correctly interpreted by the video-based models, MultiVideo-4CH and196

MultiVideo. Furthermore, for conditions such as left ventricular enlargement and hypertrophy, which197

are difficult to identify using only the 4CH view, MultiVideo was more accurate than SingleImage or198

MultiVideo-4CH.199
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Figure 3: An example of the most similar clinical reports retrieved from 5,515 candidates for a
specific echocardiogram case by SingleImage, MultiVideo-4CH, and MultiVideo. Text in red denotes
discrepancies from the ground truth, while underlined text indicates missing content.
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