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Abstract

Self-supervised pre-training is essential for 3D point cloud representation learning,
as annotating their irregular, topology-free structures is costly and labor-intensive.
Masked autoencoders (MAEs) offer a promising framework but rely on explicit
positional embeddings, such as patch center coordinates, which leak geometric
information and limit data-driven structural learning. In this work, we propose
Point-MaDi, a novel Point cloud Masked autoencoding Diffusion framework for
pre-training that integrates a dual-diffusion pretext task into an MAE architecture
to address this issue. Specifically, we introduce a center diffusion mechanism in
the encoder, noising and predicting the coordinates of both visible and masked
patch centers without ground-truth positional embeddings. These predicted centers
are processed using a transformer with self-attention and cross-attention to capture
intra- and inter-patch relationships. In the decoder, we design a conditional patch
diffusion process, guided by the encoder’s latent features and predicted centers
to reconstruct masked patches directly from noise. This dual-diffusion design
drives comprehensive global semantic and local geometric representations during
pre-training, eliminating external geometric priors. Extensive experiments on
ScanObjectNN, ModelNet40, ShapeNetPart, S3DIS, and ScanNet demonstrate that
Point-MaDi achieves superior performance across downstream tasks, surpassing
Point-MAE by 5.50% on OBJ-BG, 5.17% on OBJ-ONLY, and 4.34% on PB-T50-
RS for 3D object classification on the ScanObjectNN dataset. Codes are available
at https://github.com/YangParky/Point-MaDi.

1 Introduction
Driven by advances in LiDAR and depth-sensing technologies, point clouds have become a fundamen-
tal data representation in applications such as autonomous driving, robotics, and virtual reality, owing
to their ability to capture fine-grained geometric details of objects and environments. More recently,
supervised learning has significantly advanced 3D computer vision by introducing 3D-centric meth-
ods that directly operate on raw point clouds for tasks such as object classification [34, 35, 51, 11],
semantic segmentation [34, 25], and object detection [33, 26]. These approaches typically rely on
large-scale annotated datasets to achieve high performance. However, unlike 2D images arranged in
regular grids, point clouds lack a consistent topology, making the annotation process both expensive
and labor-intensive. Labeling 3D data [4, 56, 2, 6, 60, 47] often requires expert knowledge to accu-
rately capture complex geometrical structures, which limits the scalability and generalization ability
of supervised approaches. Self-supervised learning (SSL) [29, 7, 54, 14] has emerged as a promising
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Figure 1: Comparison between different pretext tasks. (a) Masked autoencoders reconstruct masked
point patches. (b) PointDif uses a conditional point generator to guide the point-to-point generation
from noisy input. (c) Our Point-MaDi denoises noisy masked patches and reconstruct their centers.

alternative, enabling the extraction of generalizable representations from unlabeled point clouds
through the design of various pretext tasks, including generative- and contrastive-based objectives.

Among them, diffusion probabilistic models (DPMs) [15, 28, 32] have recently emerged as a powerful
paradigm for 3D point cloud representation learning, owing to their ability to model complex data
distributions through iterative denoising processes. Unlike contrastive learning [57, 69, 1, 61]
aligns views of a point cloud via maximizing the similarities of positive pairs to capture global
semantic consistency, or reconstruction-based methods [31, 65, 9, 13, 67, 36, 37] like masked
autoencoders (MAEs) [14, 31], which mask patches and reconstruct geometry using an encoder-
decoder architecture. DPMs generate data step-wise from Gaussian noise and learn to reverse this
process, potentially capturing rich semantic and geometric structures across scales. Despite their
strengths, existing diffusion-based methods mainly rely on global context aggregation or predefined
conditioning mechanisms, such as class labels or auxiliary features, to guide the denoising process.
Recent studies [70, 19] have begun to address these challenges by integrating diffusion frameworks
into MAEs; this structure naturally complements diffusion models: the encoder can operate on
partially observed data, while the decoder can progressively recover masked content from latent
noise, aligning well with the denoising objective of DPMs. Nonetheless, directly combining MAE
and diffusion remains nontrivial, as current MAEs inject geometric priors, such as patch center
embeddings, that leak explicit positional information into the encoder, hindering the objective of
learning structure purely from data-driven cues [42, 49, 3]. This motivates our central question: How
can we design a diffusion-based pre-training framework that mitigates geometric information
leakage while enhancing the modeling of local geometric structures for faithful reconstruction?

Intuitively, if positional embeddings are particularly provided or noised, the model is forced to
infer global spatial relationships solely from the visual and contextual content of the point cloud,
encouraging a deeper understanding of its structure and semantics. Considering this, we propose
Point-MaDi, a novel Point cloud Masked autoencoding Diffusion framework. It introduces a dual-
diffusion pretext task that applies diffusion to both centers and local patches, predicting centers and
reconstructing patches to enforce robust modeling of comprehensive representations without external
geometric cues. Fig. 1 illustrates how Point-MaDi contrasts with existing pretext tasks: while MAEs
reconstruct masked patches using provided positional embeddings, PointDif advances this paradigm
by formulating pre-training as a conditional point-to-point generation task. Our proposed Point-MaDi
further instantiates this by performing center denoising in the encoder and patch reconstruction in the
decoder, enabling geometry-aware self-supervised learning without positional cues.

To this end, we first group the point cloud into patches and apply random masking strategies to create
visible and masked regions, as in traditional MAEs. In the encoder, a center diffusion process applies
noise to visible and masked patch centers and tasks the model with denoising them, eliminating
reliance on ground-truth positional embeddings. This process, implemented via iterative sampling,
forces the encoder to model global spatial relationships by inferring center positions from partial
observations. Visible patches undergo self-attention to capture intra-patch relationships, while masked
patches leverage cross-attention with visible patches to model inter-patch dependencies, refining the
predicted centers. In the decoder, a patch diffusion process reconstructs masked patches from latent
noise, conditioned on the encoder’s latent representations of visible patches and the predicted centers.
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This reconstruction is optimized using Chamfer Distance, ensuring high-fidelity recovery of local
structures, particularly in sparse point clouds. By integrating center diffusion for global modeling
and patch diffusion for local reconstruction, Point-MaDi encourages the encoder to learn robust,
context-aware representations while enabling the decoder to focus on fine-grained geometric details.

Our main contributions of this work are as follows:

• We propose Point-MaDi, a novel self-supervised pre-training framework for point clouds
that disentangles positional encoding and geometry modeling via two dedicated diffusion
processes, effectively mitigating positional shortcut leakage.

• The center diffusion process adds noise to both visible and masked patch centers and predicts
clean coordinates, replacing explicit positional embeddings and promoting high-level spatial
understanding; the patch diffusion process, conditioned on visible features and predicted
centers, reconstructs noisy masked patches via step-wise denoising to recover local geometry.

• Extensive experiments on ScanObjectNN, ModelNet40, ShapeNet, S3DIS, and ScanNet
demonstrate that Point-MaDi significantly outperforms existing methods in classification,
segmentation, and detection tasks, validating its effectiveness and generalizability.

2 Related Work
Self-supervised point cloud representation learning. Self-supervised Learning (SSL) has achieved
remarkable success in many fields such as NLP and computer vision. It aims to learn useful
representations from the massive unlabeled data by defining a pre-text task [29, 17, 54] through
image/patch operations, with no external labels. Recent methods have explored the potential and
strengths of SSL in the point cloud domain. A prominent approach in SSL [57, 69] is contrastive
learning, which encourages representations of augmented versions of an instance to be more similar
compared to different inputs. PointContrast [57] pioneers contrastive learning by performing point-
level invariant mapping learning. Several recent works integrate point cloud representations with
other modalities, such as vision [1, 20, 46, 61] and language [66, 63, 59, 23] to facilitate the learning
of transferable 3D point cloud representations. CrossPoint [1] combines intra-modal and cross-modal
contrastive learning, enforcing invariance to point cloud augmentations and aligning 2D image
features with point cloud prototypes. More recently, masked prediction [14] has re-attracted attention
trying to recover the original input from a masked version since the introduction of the Vision
Transformer (ViT) [10]. Point-Bert [62] extends the BERT-style [7] pre-training strategy to point
cloud transformers via discrete Variational Autoencoder [39]. Point-MAE [31] brings the masked
autoencoder idea to point cloud tasks by randomly masking input point patches and reconstructing
them. Afterward, PointM2AE [65] and I2P-MAE [67] adopt hierarchical MAE transformers to
extract fine-grained and higher-level semantic features of 3D shapes. Subsequent works [9] mainly
enrich the model’s comprehension of point cloud geometric structures using cross-modal knowledge.
For instance, ACT [9] utilized a pre-trained ViT as a teacher model to acquire knowledge from other
modalities. Joint-MAE [13] proposes a 2D-3D joint MAE framework to reconstruct the masked
two modalities. ReCon++ [37] is similar to ReCon [36], both employing a generative framework
(MAE-based) and incorporating contrastive learning through ensemble distillation. Our Point-MaDi
leverages masked autoencoding with diffusion, and by progressively denoising noised positional
centers, it reduces reliance on positional shortcuts while enhancing geometric awareness.

Diffusion probabilistic models. Diffusion probabilistic models [15, 8], also known as score-based
models [43, 44], have gained significant attention in computer vision for their ability to generate
high-fidelity images. DPMs begin by using an evolving Stochastic Differential Equation (SDE) to
gradually add Gaussian noise to real data, turning complex data into a Gaussian distribution. Then, a
time-reversed SDE maps Gaussian noise back into high-quality samples, guided by a network using
the score function [45] with multiple steps. It has demonstrated superior performance in various
generative fields, including image generation [28, 40, 32, 71, 18, 64], video generation [41, 12],
and speech generation [21]. However, when adopted in the 3D domain, a number of works focus
on 3D generation [24, 58, 27, 30, 55, 19]. Applying DPMs to 3D point cloud pre-training remains
underexplored due to the challenges posed by the irregular sampling patterns of point clouds in
3D space. [24] proposed an autoencoder architecture with a DPM as a decoder. DiffPMAE [19]
introduces a two-stage architecture that denoises the masked regions conditioned on the latent
representation from the first stage. The most related work to ours is PointDif [70], which aggregates
latent features via a condition aggregation network to guide iterative denoising of noisy point
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Figure 2: The pipeline of our Point-MaDi framework. The encoder adopts a center diffusion process,
where noise is added to the centers of both visible and masked patches. A multilayer perceptron
(MLP) maps the noisy centers to positional embeddings, and both these and visible patch embeddings
are input to a transformer to predict the clean centers. The decoder performs a patch diffusion process,
conditioned on the visible tokens and the predicted centers, to progressively denoise and reconstruct
the masked patches. The chamfer distance guides the patch reconstruction, while the stop gradient
(SG) operation prevents leakage of ground-truth masked patch positions during pre-training.

clouds for pre-training. However, our Point-MaDi differs in several key aspects. First, unlike
PointDif’s holistic point-to-point denoising, we introduce a joint diffusion process that simultaneously
models patch centers and coordinates, capturing both structural and local geometric priors for
enhanced robustness. Second, instead of relying on complex modules like PointDif’s separate
encoder, aggregator, and diffusion model, we unify the point encoding and decoding process with a
bi-jective network design, improving efficiency and reconstruction fidelity.

3 Point-MaDi
3.1 Overview of Point-MaDi
The proposed framework contains two modules, each driven by distinct diffusion models for specific
tasks. Fig. 2 illustrates the end-to-end diffusion process of Point-MaDi. For a given clean point cloud,
the encoder module partitions the input into g patches and trains a diffusion model that iteratively adds
noise to the visible and masked patch centers. Then a denoising process predicts clean centers for all
patches. The decoder module, conditioned on the encoder’s visible tokens and predicted patch centers,
aims to reconstruct the noisy masked patches supervised by Chamfer Distance. This dual-diffusion
design enables Point-MaDi to learn both sparse structural and dense geometric representations.

3.2 Point cloud processing
Point patches generation. Following previous works [62, 31], we divide point clouds into overlap-
ping point patches via Farthest Point Sampling (FPS) and K-Nearest Neighbors (KNN) algorithm.
Formally, given the input point cloud X ∈ Rn×3 with three-dimensional (x, y, z coordinates) n num-
ber of points, we first choose the centers C ∈ Rg×3 for g number of groups through FPS. For centers
C, we adopt the KNN to select k nearest points and obtain local geometric groups P ∈ Rg×k×3.

C = FPS(X), P = KNN(X,C), (1)

To eliminate global location bias, each patch in P is normalized by subtracting its corresponding
center coordinates. The resulting centered patches are treated as sub-clouds and served as a sequence
of localized point representations treated like words in NLP or image patches in vision.

Patch masking. For the point patches, we select a predefined mask ratio m ∈ (0, 1) and deploy
random masking, outputting the visible point patches P v ∈ R(g−r)×k×3 and masked point patches
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Pm ∈ Rr×k×3, where r = ⌊g ·m⌋ is the number of masked patches, g − r is the number of visible
patches, and ⌊·⌋ denotes the floor function. The corresponding centers are denoted as Cv ∈ R(g−r)×3

and Cm ∈ Rr×3, respectively. We also obtain a binary indicator of whether the patch is masked.

Embedding. The visible point patches P v are embedded through a simplified PointNet which
employs 1×1 convolutions and max pooling to generate the visible tokens Ev .

Ev = PointNet(P v), Ev ∈ R(g−r)×d. (2)

where d is the hidden dimension of the network. To incorporate spatial information, we compute
positional embeddings for both visible and masked patches by applying a shared-weight MLP with
GELU activation to their respective center points:

PEv = MLP(Cv), PEm = MLP(Cm). (3)

The position embeddings PEv and PEm are added to every transformer block. For the encoder,
these positional embeddings are fixed, derived directly from the input patch centers to provide stable
spatial cues during the masking and diffusion process. In contrast, the decoder leverages predicted
center positions estimated from the encoder’s output. Note that we use the same MLP for the encoder
and decoder in our autoencoder to compute positional embeddings.

3.3 Center diffusion process
After obtaining visible and masked point patches Ev , Em. We adopt a 12-layer standard transformer
encoder as the diffusion backbone, with each block containing a multi-head self-attention (MSA) layer
and a feed-forward network (FFN). The encoder applies self-attention to Ev to extract conditioning
features that guide the diffusion dynamics, and then performs cross-attention using Em as the query
to generate masked token representations conditioned on visible context.

Forward diffusion process. To model geometric corruption, we apply a forward diffusion process
to the centers of visible and masked point patches. At each of the T time steps, Gaussian noise is
incrementally added to Cv and Cm following a Markov chain:

q(Cv
t |Cv

t−1) = N (Cv
t ;
√
1− βtC

v
t−1, βtI), (4)

where tc ∈ [1, 2, 3, ..., T ] is the time step of center diffusion process and βtI is the variance of the
noise at step tc, which controls the amount of noise added at each step. Since all transition kernels
of the diffusion process are Gaussian, samples from the intermediate distributions can be directly
formulated in a single step by applying the reparameterization trick:

q(Cv
t |Cv

0 ) = N (Cv
t ;
√
ᾱtC

v
0 , (1− ᾱt)I), (5)

with αt = 1 − βt and ᾱt =
∏T

i=1 αi. Similarly, the forward process for masked centers can be
sampled directly:

q(Cm
t |Cm

0 ) = N (Cm
t ;

√
ᾱtC

m
0 , (1− ᾱt)I). (6)

We use a linear variance schedule with βt increasing from 0.0001 to 0.02 over 2000 steps. As time
goes by, the centers gradually diffuse into a chaotic set of points. To ensure stability and consistency,
we use the same variance schedule for both visible and masked centers.

Conditional reverse process. Providing strong conditioning information c is usually helpful to
reduce the number of inference steps and improve the generation quality. For visible centers and
corresponding tokens, we input the latent space Ev from the token layer and the corresponding noised
position embedding PEv

t to generate the conditional latent visible patches.

T v = Encoder(Ev, PEv), Tm = Encoder(Em, Ev, PEm), (7)

where T v serves as the conditioning feature for visible centers, guiding the reverse transition, while
Tm serves as the conditioning feature for masked centers, integrating visible and masked patch
information to guide the reverse diffusion process. It is performed via self-attention and cross-
attention within each transformer block, which includes both MSA and FFN layers. The self-attention
and cross-attention for a single block can be formulated as:

Zv = SelfAttn(Qv,Kv, V v), Zm = CrossAttn(Qm,Km+v, V m+v), (8)

where Qv, Kv, V v are the Query, Key, Value of the visible features, and Qm, Km+v, V m+v are
the masked query, concatenated key, and value, respectively. These attention outputs (Zv, Zm) are
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passed through the FFN and normalization layers with shared parameters to produce the final encoder
outputs T v and Tm. The self-attention and cross-attention share the parameters of transformer
encoder blocks to avoid increasing parameters.

Unlike conventional diffusion models predicting additive noise, our reverse process aims to recover the
visible and masked centers Cv and Cm by gradually removing the noise under the condition of both
the visible and masked representations. However, it is non-trivial to approximate q(Cv

t−1

∣∣Cv
t , T

v
t )

without knowing the entire diffusion process. Therefore, we train the Encoder module with trans-
formers to learn pθ(C

v
t−1

∣∣Cv
t , T

v
t ) for approximating the conditional probabilities to infer the entire

reverse diffusion process. The reverse transition for the visible centers can be formulated as:

Cx
t−1 =

(√
αt(1− ᾱt−1)

1− ᾱt
Cx

t +

√
ᾱt−1βt

1− ᾱt
Ĉx

0

)
+ σt · ϵ, ϵ ∼ N (0, I). (9)

Here, x ∈ {v,m} indicates visible or masked centers. Ĉx
0 = fθ(·) denotes the predicted clean center,

inferred by a shared-parameter encoder. For the visible case (x = v), the prediction is conditioned on
Cv

t , Ev , PEv
t , and tc; for the masked case (x = m), additional inputs Em and PEm

t are included.

3.4 Patch diffusion process
Similar to the encoder’s center diffusion process, the decoder in Point-MaDi leverages a diffusion-
based approach to pre-train robust point cloud representations by denoising masked patches. However,
it differs in its target and conditioning mechanism. While the encoder diffuses both visible and
masked group centers (Cv, Cm), employing self-attention for visible centers and cross-attention
for masked ones, the decoder exclusively denoises masked point cloud patches Pm. In the forward
diffusion process, Gaussian noise is added to masked patches Pm

t over T time steps, formulated
as q(Pm

t |Pm
0 ) = N (Pm

t ;
√
ᾱtP

m
0 , (1 − ᾱt)I), where ᾱt =

∏T
i=1 αi, following the same lin-

ear variance schedule as in Sec. 3.3. The reverse process approximates the denoising transition
pθ(P

m
t−1

∣∣Pm
t , T v

t , t) = N (Pm
t−1 ;µθ(P

m
t , T v

t , t), σ
2
t I), with the transformer decoder predicting clean

patches. To this end, we train a diffusion model as the decoder, which conditions on the encoder’s
visible encoded features T v concatenated with learnable mask tokens Xm, utilizing a transformer-
based architecture with self-attention to process these integrated inputs. This design, coupled with
specialized modules for token generation and reconstruction, enables the recovery of dense local
geometry, complementing the encoder’s sparse center denoising, with key components as follows.

Mask token layer. The mask token layer maps noisy masked patches Pm
t from the diffusion process

to a latent representation Xm
t ∈ Rr×D, ensuring a constant number of output samples and aligning

the masked and visible patches. It consists of a 1D convolutional layer processing input patches
of shape r × k × 3. The model processes a point cloud with 1024 input points with a mask ratio
m = 0.6, resulting in ⌊1024 · 0.6⌋ masked points. The output from the mask token layer is size r× d.

Time embedding. To provide a unique embedding for each time step in the diffusion sequence,
allowing the decoder transformer to learn the temporal relation and handle the time sequence.
We construct a 384-dimensional frequency embedding TEt followed by a two-layer MLP with
dimensionality equal to the transformer’s hidden size and SiLU activations.

Transformer decoder. The structure of the decoder contains fewer transformer blocks compared
to the encoder. Empirically, the depth of the network affects its diffusion performance. Hence,
we explore fine-tuning with a different number of layers. Unlike existing SSL methods such as
Point-MAE [31] and ReCon [36], which rely on ground-truth positional embeddings for both visible
and masked patches alongside visible tokens (Cv, Cm) and learnable mask tokens Xm, our decoder
processes a concatenated input of encoded visible tokens and noisy mask tokens, paired with positional
embeddings that combine ground-truth positions for visible patches PEv and predicted positions
PEm,pred for masked patches. This can be expressed as:

Hm = Decoder(T v, Xm, PEv,SG(PEm,pred), TE), (10)

where Hm ∈ Rr×d denotes the decoder’s output, SG is the stop-gradient operation. By using
ground-truth PEv , we leverage accurate spatial context for visible patches, while PEm,pred, derived
from the encoder’s predicted centers Cm via stop-gradient, prevents leakage of ground-truth masked
patch positions and encourages the decoder reliance on the encoder’s learned representations. The
stop-gradient further ensures that decoder gradients do not disrupt the encoder’s center diffusion
task, preserving the encoder’s robust feature representations. Subsequently, Hm is passed through a
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MLP layer for masked coordinate reconstruction, producing P̂m ∈ Rr×k×3. This hybrid approach
enhances the robustness and generalization of patch reconstruction, complementing the encoder’s
sparse center denoising objective.

3.5 Training objective
Center diffusion loss. The encoder predicts clean group centers from noisy counterparts by leveraging
latent features of visible and masked tokens in the forward diffusion process. It predicts visible
group centers by feeding their latent features Zv into a dedicated MLP, yielding Ĉv = MLPv(Z

v).
Similarly, it predicts masked group centers by processing Zm through a separate MLP, giving
Ĉm = MLPm(Zm), for visible and masked tokens, respectively. These two MLP networks do not
share parameters, ensuring that each group (visible and masked) is processed independently. The loss
function for this task is computed as follows:

Lcenter =
1

g − r

g−r∑
i=1

∥∥∥Ĉv
i − Cv

i

∥∥∥2
2
+

1

r

r∑
j=1

∥∥∥Ĉm
j − Cm

j

∥∥∥2
2
, (11)

where Ĉv
i , Ĉm

j and Cv
i , Cm

j are the predicted and ground-truth visible/masked centers, respectively.

Patch diffusion loss. Unlike the encoder, which predicts the center positions using MSE, the decoder
reconstructs masked point cloud patches from noisy inputs. The L2 Chamfer Distance is adopted as
the decoder loss function.

Lpatch =
1

|P̂m|

∑
p̂∈P̂m

min
p∈Pm

∥p̂− p∥22 +
1

|Pm|
∑

p∈Pm

min
p̂∈P̂m

∥p− p̂∥22. (12)

Final loss. Therefore, we have a final loss with a weighting factor:

L = γLcenter + Lpatch, (13)

where γ adjusts the relative importance of the center denoising task. We set it to 0.1 by default.
Intuitively, the training process encourages the encoder to learn geometric features from the corrupted
inputs and encourages the decoder to reconstruct the original point cloud. The diffusion process
introduces structured perturbations to the data and promotes the encoder to capture both local
geometric details and global context, thus enhancing its capacity beyond the original Point-MAE.
After pre-training, we abandon the decoder and only keep the encoder for downstream tasks.

4 Experiments
4.1 Downstream tasks
Linear evaluation for real-world classification. We first fine-tune the proposed method on real-
world scenes for 3D object classification. Rotation is applied for data augmentation during fine-tuning.
We take the overall accuracy (OA) on ScanObjectNN [47] subsets as the evaluation metric and
summarize experiment results as in Tab. 1. Our Point-MaDi achieves superior performance on all
subsets, reaching 95.52%, 93.46%, and 89.52% accuracies, respectively. Compared to the previous
Point-MAE [31], our diffusion-based Point-MaDi yields consistent improvements of 5.50%, 5.17%,
and 4.34% on OBJ-BG, OBJ-ONLY, and PB-T50-RS, respectively. Furthermore, the performance is
competitive with recent cross-modal methods (e.g., ReCon [36], I2P-MAE [67]), without requiring
additional modalities or complex pre-training pipelines.

Linear evaluation for synthetic classification. We also conduct experiments on the classification
of the synthetic ModelNet40 dataset [56]. Standard random scaling and translation are applied for
data augmentation during training. While diffusion-based methods like PointDif may not consistently
dominate on the relatively clean and less diverse ModelNet40 dataset, our Point-MaDi still achieves
93.6% accuracy, demonstrating strong generalization without relying on additional modalities or
elaborate architectures.

Part semantic segmentation. We conduct part segmentation on the ShapeNetPart [60] dataset.
Following previous research, we randomly sample 2,048 points from each input instance and adopt
the same segmentation head for the fair comparison, which concatenates the global features with each
local feature from the 4th, 8th, and 12th layers of the transformer block, and a shared MLP predicts
a part label for each point. Both category mIoU and instance mIoU are computed and presented in
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Table 1: Classification accuracy (%) on three variants of ScanObjectNN and ModelNet40. Parameters
of inference models #P (M) are listed. We report ScanObjectNN results without voting. ModelNet40
results are shown without and with voting. Not all papers report Acc, indicated as "–" in our table.

Method Reference #P ScanObjectNN ModelNet40

OBJ-BG OBJ-ONLY PB-T50-RS w/o Vote w/ Vote

Supervised Learning Only

PointNet [34] CVPR 2017 3.5 73.3 79.2 68.0 89.2 –
PointNet++ [35] NeurIPS 2017 1.5 82.3 84.3 77.9 90.7 –
DGCNN [51] TOG 2019 1.8 82.8 86.2 78.1 92.9 –
SimpleView [11] ICML 2021 – – – 80.5±0.3 93.9 –
PointMLP [25] ICLR 2022 12.6 – – 85.4±0.3 94.5 –
P2P-HorNet [52] NeurIPS 2022 195.8 – – 89.3 94.0 –

with Single-Modal Self-supervised Learning

Point-BERT [62] CVPR 2022 22.1 87.43 88.12 83.07 92.7 93.2
MaskPoint [22] ECCV 2022 – 89.30 88.10 84.30 – 93.8
Point-MAE [31] ECCV 2022 22.1 90.02 88.29 85.18 93.2 93.8
Point-M2AE [65] NeurIPS 2022 15.3 91.22 88.81 86.43 93.4 94.0
PointGPT [5] NeurIPS 2022 19.5 91.60 90.00 86.90 – 94.0
Point-CMAE [38] ACCV 2024 22.1 93.46 91.05 88.75 93.6 –
PCP-MAE [68] NeurIPS 2024 22.1 95.52 94.32 90.35 94.0 94.2
PointDif [70] CVPR 2024 22.3 91.91 93.29 87.61 – –
Point-MaDi (Ours) – 22.1 95.52 93.46 89.52 93.6 94.1
Improve (over Point-MAE) – – +5.50 +5.17 +4.34 +0.4 +0.3

with Cross-Modal Self-Supervised Learning

ACT [9] ICLR 2023 22.1 93.29 91.91 88.21 93.2 93.7
Joint-MAE [13] IJCAI 2023 – 90.94 88.86 86.07 – 94.0
I2P-MAE [67] CVPR 2023 15.3 94.14 91.57 90.11 93.7 94.1
ReCon [36] ICML 2023 43.6 95.18 93.63 90.63 94.1 94.5

Table 2: Part segmentation on ShapeNetPart and semantic segmentation on S3DIS Area 5. The mean
intersection over union (mIoU) for all classes (Cls.) and for all instances (Inst.) are reported for Part
Segmentation. Mean accuracy (mAcc) and mIoU are reported for Semantic Segmentation.

Method Reference Part Seg. Semantic Seg.

Cls. mIoU Inst. mIoU mAcc mIoU

Supervised Learning Only

PointNet [34] CVPR 2017 80.4 83.7 49.0 41.1
DGCNN [51] TOG 2019 82.3 85.2 – –
PointMLP [25] ICLR 2022 – – – –

Self-Supervised Representation Learning

Transformer [48] NeurIPS 2017 83.4 84.7 68.6 60.0
Point-BERT [62] CVPR 2022 84.1 85.6 – –
MaskPoint [22] ECCV 2022 84.4 86.0 70.1 61.0
Point-MAE [31] ECCV 2022 84.2 86.1 69.9 60.8
PointGPT [5] NeurIPS 2022 84.1 86.2 – –
PointDif [70] CVPR 2024 84.4 85.8 69.5 60.2
Point-MaDi (Ours) – 84.8 86.3 71.0 61.2
Improve (over Point-MAE) – +0.6 +0.2 +1.1 +0.4

Tab. 2. Our Point-MaDi achieves state-of-the-art performance, with a category mIoU of 84.8% and
an instance mIoU of 86.3%, improving over Point-MAE by 0.6% and 0.2%, respectively.

3D scene segmentation. We validate our model on the indoor S3DIS [2] dataset to demonstrate the
ability of the models to comprehend contextual semantics and intricate local geometric relationships.
Tab. 2 demonstrates the performance of our proposed method. Our Point-MaDi achieves superior
performance on Area 5, with a mAcc of 71.0% and a mIoU of 61.2%, improving over Point-MAE
by 0.2% and 0.4%, respectively. These results underscore the effectiveness of Point-MaDi’s dual-
diffusion pre-training in capturing complex scene semantics and fine-grained geometric details.
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Table 3: Object detection results on ScanNet. We report average precision (%). "Pre Dataset" refers
to the pre-training dataset. ScanNet-Medium is a subset of ScanNet.

Method Reference [P] Pre Dataset AP50

VoteNet [33] ICCV 2019 × – 33.5
STRL [16] ICCV 2021 ✓ ScanNet 38.4
PointContrast [57] ECCV 2020 ✓ ScanNet 38.0
3DETR [26] ICCV 2021 × – 37.9
Point-BERT [62] CVPR 2022 ✓ ScanNet-Medium 38.3
Mask-Point [22] ECCV 2022 ✓ ScanNet-Medium 42.1
Point-MAE [31] ECCV 2022 ✓ ShapeNet 42.8
TAP [53] ICCV 2023 ✓ ShapeNet 41.4
PointDif [70] CVPR 2024 ✓ ShapeNet 43.7

Point-MaDi (Ours) – ✓ ShapeNet 43.7
Improve (over Point-MAE) – - - +0.9

Table 4: Classification accuracy (%) of decoder
architectures on ScanObjectNN variants. The
configurations differ in how attention is applied
between visible and masked tokens.

Decoder Configuration OBJ-BG OBJ-ONLY PB-T50-RS

Joint decoder 95.52 93.46 89.52
Cross decoder 94.66 92.60 88.69
Cross-self decoder 93.63 92.43 87.93

Table 5: Classification accuracy (%) of masking
strategies on ScanObjectNN variants. "Random"
is random masking, "Block" is block masking,
"Rand & Block" combines both.

Masking Strategy OBJ-BG OBJ-ONLY PB-T50-RS

Rand 93.98 92.77 88.45
Block 93.63 91.57 88.10
Rand & Block 95.52 93.46 89.52

3D object detection. To further demonstrate the scene understanding ability of the proposed method,
we fine-tune our Point-MaDi on the more challenging indoor dataset ScanNetV2 [6]. Following
MaskPoint, we utilize 3DETR [26] as the baseline and replace the encoder with our Point-MaDi
backbone. For evaluation purposes, we measure the Average Precision (AP) of 3D bounding boxes
with 0.5 thresholds for IoU. Tab. 3 presents the results. Our method, along with Point-MAE and
TAP, is pre-trained on ShapeNet in a different domain compared to the ScanNet-Medium dataset.
Our Point-MaDi, pretrained on ShapeNet, achieves a state-of-the-art AP50 of 43.7%, improving
over Point-MAE by 0.9%. Despite the domain gap Point-MaDi outperforms methods pretrained on
ScanNet-Medium, such as MaskPoint (42.1%) and Point-BERT (38.3%), highlighting the robustness
of its dual-diffusion pre-training in capturing complex scene semantics and geometric structures.

4.2 Ablation studies

Decoder architecture. We discuss the effect of different decoder designs, exploring three configura-
tions that vary in how attention modules are applied to visible latent tokens T v and the noise tokens
Xm. The joint decoder applies transformer blocks on the concatenated sequence of the visible latent
and the noise tokens, enabling self-attention across all tokens to capture global interactions. The Cross
decoder takes T v as queries and Xm as keys and values in cross-attention, mapping noise tokens
to reconstructed patches within visible context. The cross-self decoder combines cross-attention,
where visible tokens T v serve as context, with self-attention on noise tokens Xm, allowing noise
tokens to interact before querying visible tokens. We conduct experiments with the same depth to
investigate the quality of predicted representations. As shown in Tab. 4, the joint decoder achieves
the best overall performance. We make the joint decoder the default option for pre-training.

Masking strategy. We assess the impact of different masking strategies on the classification tasks. We
trained our model with a 60% mask ratio on three masking settings: Rand: randomly selecting masked
and visible parts; Block: masking a large block that contains multiple continuous and consecutive
patches; and Rand & Block: which denotes that we feed both masked inputs sequentially through
the same network and employ a shared weight prediction head, ensuring no additional parameters
are introduced during training. As illustrated in Tab. 5, the Rand & Block strategy achieves the best
performance under the same masking ratio. It introduces more spatial diversity in corrupted regions,
which encourages the model to learn more robust and generalized representations.

Effective of component. We conduct a comprehensive ablation study focusing on the components
of our dual-diffusion framework in Tab. 6. To ensure a fair comparison, we maintained the core
Point-MaDi framework. The baseline uses clean patch centers for both visible and masked patches in
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Table 6: Classification accuracy (%) of different component configurations on three variants of
ScanObjectNN.

Center (Vis) Center (Mask) Patch Time Embedding OBJ-BG OBJ-ONLY PB-T50-RS

- - - - 93.97 92.60 88.83
✓ - - - 93.63 92.43 88.13
- ✓ - - 94.32 92.08 88.79
✓ ✓ - - 94.32 92.94 89.17
- - ✓ ✓ 94.66 93.11 89.17
✓ ✓ ✓ - 94.49 92.43 88.83
✓ ✓ ✓ ✓ 95.52 93.46 89.52

the encoder and employs learnable mask tokens in the decoder. The key variable is the activation or
deactivation of the diffusion processes. The analysis reveals several key points: firstly, the baseline
achieves a performance of 93.97%, 92.60%, 88.83% on OBJ-BG, OBJ-ONLY, PB-T50-RS. When
only one set of centers is noised while the other remains clean, the performance compared to the
baseline is either slightly degraded or shows mixed results, suggesting that providing clean positional
information for only a subset of patches creates an inconsistent learning signal for the encoder;
secondly, when both visible and masked centers are noised in the encoder, performance improves to
94.32%, 92.94%, 89.17%, demonstrating that our full center diffusion mechanism, which removes
all ground-truth positional shortcuts and forces the encoder to predict all clean centers from noisy
inputs, is more effective than partial noising or relying on clean centers. Furthermore, this benefit is
amplified when combined with the patch diffusion task in the decoder: the configuration with full
center diffusion and patch diffusion enabled achieves the best overall performance, outperforming the
scenario where center diffusion is disabled but patch diffusion is active. Additionally, the analysis
highlights the positive impact of incorporating time embeddings for patch diffusion processes.

5 Conclusions
In this work, we present a novel self-supervised pre-training framework for point cloud analysis
that integrates a dual-diffusion paradigm into a masked autoencoding architecture. By jointly
modeling the denoising of both patch centers and masked patches, our method mitigates the risk of
geometric information leakage and encourages the learning of more robust semantic and geometric
representations. The proposed framework leverages a center diffusion module in the encoder to
eliminate reliance on positional embeddings, while a conditional patch diffusion module in the decoder
facilitates fine-grained reconstruction guided by visible context. Through extensive experiments
across multiple downstream tasks, our approach consistently demonstrates superior performance and
generalization. These results validate our initial motivation to force the model to infer global spatial
relationships, enhancing its ability to capture comprehensive 3D structural understanding.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The Abstract and Introduction sections clearly and accurately summarize the
paper’s core contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
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much the results can be expected to generalize to other settings.
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2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
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in Appendix E.
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• The answer NA means that the paper has no limitation while the answer No means that
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model well-specification, asymptotic approximations only holding locally). The authors
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implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
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• The authors should discuss the computational efficiency of the proposed algorithms
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Justification: This paper does not include theoretical results that require a full proof.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide comprehensive details to ensure the reproducibility of our experi-
mental results. This includes clear descriptions of the model architecture, training settings,
dataset splits, and data preprocessing steps. For each downstream task, we specify the exact
hyperparameters and configurations used. All results are obtained using standard publicly
available datasets, and the experimental setups are described in Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We have already open sourced our method. Experiments can be replicated
using our open source PyTorch optimizer implementation together with existing open source
code bases implementing each method.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have detailed all the training and evaluation settings before the main results
in the experimental part.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We have reported the experimental results averaged over multiple random
seeds.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide information of GPU type and number of GPUs used for running
our experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have read the NeurIPS Code of Ethics and confirm that this research
conforms to it.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: We foresee no potential societal impact of this work.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper does not involve data or models with a high risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All assets used in this work have been properly credited, and the licenses and
terms of use are explicitly mentioned and respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This research does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This research does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core methods of this research do not involve LLMs as important, original,
or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Table 7: Training details for pre-training and downstream fine-tuning.

Config ShapeNet ScanObjectNN ModelNet ShapeNetPart S3DIS

Optimizer AdamW AdamW AdamW AdamW AdamW
Learning rate 5e-4 2e-5 1e-5 2e-4 2e-4
Weight decay 5e-2 5e-2 5e-2 5e-2 5e-2
Learning rate scheduler cosine cosine cosine cosine cosine
Training epochs 300 300 300 300 60
Warmup epochs 10 10 10 10 10
Batch size 128 32 32 16 32
Drop path rate 0.1 0.1 0.1 0.1 0.1
Number of points 1024 2048 1024 2048 2048
Number of point patches 64 128 64 128 128
Diffusion step 2000 – – – –
Beta start 1e-4 – – – –
Beta end 1e-2 – – – –
Augmentation Scale&Trans+Rotation Rotation Scale&Trans – –
GPU device RTX 3090 RTX 3090 RTX 3090 RTX 3090 RTX 3090

Appendix

A Experimental Settings Details

Pre-training details. We sample each input 1,024 points and divide them into 64 groups, each
containing 32 points. We apply scale and translation operations, followed by rotation for data
augmentation. The model is pre-trained with a batch size of 128 for 300 total epochs. Following
Point-BERT [62], we set the hidden dimension of each encoder block to 384, the number of heads
to 6, and the FFN expansion ratio to 4. The depth of the transformer decoder is set to 4. During
pre-training, we adopt the AdamW optimizer with a weight decay of 0.05 and an initial learning rate
of 5× 10−4 with the cosine decay. All experiments are conducted on a single GeForce RTX 3090.
To ensure a fair comparison, we employed identical experimental settings to the default fine-tuning.
More details are provided in Tab. 7.

Dataset details. The ShapeNet [4] is used as our pre-training dataset; it covers over 50,000 unique
3D models from 55 common categories. ScanObjectNN [47] contains 15K unique 3D point cloud
objects spanning 15 diverse categories, scanned from indoor scenes obtained by scanning, often
characterized by cluttered backgrounds and occlusions. We evaluate our Point-MaDi on three variants:
OBJ-BG, OBJ-ONLY, and PB-T50-RS, each with increasing complexity. ModelNet40 [56] includes
12,311 clean 3D CAD objects with 40 different categories; these objects are split into 9,843 samples
in the official training set and 2,468 in the test set. ShapeNetPart [60] dataset contains 14,007 and
2,874 samples with 16 object categories and 50 semantic parts for training and validation. S3DIS [2]
consists of 3D scan data from 271 rooms across 6 different indoor spaces, which are annotated into 13
classes. We evaluate our model on Area 5, while the other areas are used for fine-tuning our model.

B Model Efficiency Comparison

We also have conducted additional experiments comparing the pre-training efficiency of our method,
Point-MaDi, against both single-modal and cross-modal masked autoencoding approaches, including
the most relevant recent work PointDif. As shown in Tab. 8, we report four key metrics: the number
of parameters, GFLOPs, pre-training time (hours), and downstream classification performance on
ScanObjectNN and ModelNet40. Point-MaDi achieves a similar or faster pre-training time compared
to PointDif (14.4h vs. 14.8h), while avoiding complex multi-stage training. Compared to other
MAE-based methods, Point-MaDi introduces only a slight increase in parameters and pre-training
cost, while maintaining high efficiency.
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Table 8: Comparison of existing single-modal and cross-modal MAE methods in terms of pre-training
efficiency and representation capability on standard SSL benchmarks.

Method Reference Single/Cross Modal Pre-training efficiency Performance

# Params GFLOPS Time (h) ScanObjectNN ModelNet40

Point-MAE [31] ECCV 2022 Single 29.0 2.3 13.1 85.18 93.8
Point-M2AE [65] NeurIPS 2022 Single 15.3 3.7 29.1 86.43 94.0
PointDif [70] CVPR 2024 Single 25.5 - 14.8 87.61 -
ACT [9] ICLR 2023 Cross 135.5 31.0 52.8 88.21 93.7
I2P-MAE [67] CVPR 2023 Cross 74.9 16.8 64.4 90.11 94.1
ReCon [36] ICML 2023 Cross 140.9 20.9 28.3 90.63 94.5
Point-MaDi – Single 29.5 2.9 14.4 89.52 94.1

Table 9: Few-shot classification results on ModelNet40. We perform ten separate trials for each
experimental setting and the mean accuracy (%) and standard deviation are reported.

Method 5-way 10-way

10-shot 20-shot 10-shot 20-shot

Supervised Learning Only

PointNet [34] 52.0±3.8 57.8±4.9 46.6±4.3 35.2±4.8
DGCNN [51] 31.6±2.8 40.8±4.6 19.9±2.1 16.9±1.5
OcCo [50] 90.6±2.8 92.5±1.9 82.9±1.3 86.5±2.2

with Single-Modal Self-Supervised Representation Learning

Point-BERT [62] 94.6±3.1 96.3±2.7 91.0±5.4 92.7±5.1
MaskPoint [22] 95.0±3.7 97.2±1.7 91.4±4.0 93.4±3.5
Point-MAE [31] 96.3±2.5 97.8±1.8 92.6±4.1 95.0±3.0
Point-M2AE [65] 96.8±1.8 98.3±1.4 92.3±4.5 95.0±3.0
PointGPT [5] 96.8±2.0 98.6±1.1 92.6±4.6 95.2±3.4
Point-MaDi (Ours) 97.2±1.9 99.0±0.9 93.5±4.3 95.7±2.3
Improve (over Point-MAE) +0.9 +1.2 +0.9 +0.7

with Cross-Modal Self-Supervised Representation Learning

ACT [9] 96.8±2.3 98.0±1.4 93.3±4.0 95.6±2.8
Joint-MAE [13] 96.7±2.2 97.9±1.9 92.6±3.7 95.1±2.6
I2P-MAE [67] 97.0±1.8 98.3±1.3 92.6±5.0 95.5±3.0
TAP [53] 97.3±1.8 97.8±1.9 93.1±2.6 95.8±1.0
ReCon [36] 97.3±1.9 98.9±1.2 93.3±3.9 95.8±3.0

C Additional Experimental Results

C.1 Additional downstream tasks

3D object few-shot classification. We conduct few-shot classification experiments on the Model-
Net40 dataset to evaluate our model’s ability to generalize to new categories with limited labeled data.
In the N -way K-shot setting, N classes are randomly selected, and K instances per class are used for
training. We evaluate configurations with N ∈ {5, 10} and K ∈ {10, 20}. For each class, K samples
are utilized for fine-tuning the model, while 20 unseen samples per class are reserved for testing.
We perform 10 independent trials for each configuration following previous works [50, 62]. The
mean accuracy (%) and standard deviation across these trials are reported, as shown in Tab. 9. The
results demonstrate that our method achieves superior performance compared to recent state-of-the-art
approaches across various settings.

C.2 Additional ablation studies

Mask ratio. We evaluate the effect of varying the mask ratio to assess its impact on downstream
performance. As shown in Tab. 10, the optimum mask ratio of our Point-MaDi is 60%. In our
framework, Point-MaDi learns features from the ground truth of masked patches and uses visible
patches and predicted centers as guidance to reconstruct masked patches only. Hence, a lower
mask ratio provides excessive visible context, which simplifies center denoising and weakens the
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Table 10: Performance of our model on different masking strategies. The accuracies (%) are reported
on three variants of ScanObjectNN.

Mask Ratio OBJ-BG OBJ-ONLY PB-T50-RS

40% 93.98 91.91 88.03
50% 93.63 92.43 88.51
60% 95.52 93.46 89.52
65% 94.66 92.25 88.31
70% 94.32 92.43 88.24
75% 93.12 92.43 88.72
80% 92.77 92.08 88.51

Table 11: Effect of different loss functions for Lcenter and Lpatch. The accuracies (%) are reported
on three variants of ScanObjectNN.

Loss Function OBJ-BG OBJ-ONLY PB-T50-RS

MSE, MSE 94.49 92.43 87.89
CDL2, CDL2 91.91 90.71 86.47
MSE, CDL2 95.52 93.46 89.52
Smooth L1, CDL2 94.84 92.25 88.83

Table 12: The number of decoder depth. The accuracies (%) are reported on three variants of
ScanObjectNN.

Decoder Depth # P (M) OBJ-BG OBJ-ONLY PB-T50-RS

1 24.36 94.49 91.57 87.75
4 29.68 95.52 93.46 89.52
8 36.78 93.98 90.88 87.54
12 43.87 93.12 92.60 88.58

difficulty of learning meaningful spatial correlations, while higher ratios leave too few visible patches,
hindering the encoder’s ability to infer accurate centers.

Loss function. We explore different loss function settings to evaluate the impact on the pre-training
objective by varying the loss functions for Lcenter and Lpatch. We test four combinations: (1)
MSE for both Lcenter and Lpatch, (2) L2 Chamfer Distance for both, (3) MSE for Lcenter and
CDL2 for Lpatch, and (4) Smooth L1 for Lcenter and CDL2 for Lpatch. The results are shown
in Tab. 11. The combination of MSE for Lcenter and CDL2 achieves the best performance across
all benchmarks. This suggests that MSE effectively aligns sparse group centers to ground truth
by penalizing coordinate errors directly. Using CDL2 for both yields the lowest performance.
Smooth L1 for Lcenter mitigates outlier effects but provides less precise center predictions than MSE.
Consequently, we adopt the MSE loss for center prediction and CDL2 for patch reconstruction.

Effect of decoder depth. We investigate the impact of decoder depth in Point-MaDi to assess whether
increasing the number of transformer layers enhances the quality of patch reconstruction. The results
are presented in Tab. 12. The performance improves as the depth increases from 1 to 4, indicating
that a moderate number of layers helps the decoder better process the predicted representations.
Nevertheless, Point-MaDi does not benefit from a larger depth, as excessive layers (8–12) lead to
overfitting, focusing on overly specific patch details.

Loss weighting. The final loss involves a weighted combination of the center denoising loss and
the patch reconstruction loss. We evaluate different weighting values to examine their influence on
performance. As shown in Tab. 13, setting γ yields the best overall results across all datasets. We
also observe a consistent decline in performance as γ increases, indicating that excessive emphasis
on patch reconstruction may distract the model from learning robust and generalizable structural
representations through center denoising.

Diffusion timestep. To measure the impact of times tp on the patch diffusion process, we pre-train the
model with different values of tp ∈ {20, 100, 200, 400, 1000, 2000}, keeping other hyperparameters
fixed. The results are shown in Tab. 14. We observe that performance generally improves with
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Table 13: Performance with different γ values. The accuracies (%) are reported on three variants of
ScanObjectNN.

γ OBJ-BG OBJ-ONLY PB-T50-RS

0.1 95.52 93.46 89.52
0.2 93.98 92.60 88.10
0.4 93.98 91.91 88.72
0.6 94.66 92.08 88.17
0.8 94.15 91.91 88.45

Table 14: The impact of pre-training with different timestep tp. The accuracies (%) are reported on
three variants of ScanObjectNN.

tp OBJ-BG OBJ-ONLY PB-T50-RS

20 94.49 92.25 88.17
100 94.66 93.29 88.65
200 94.84 92.77 88.72
400 93.98 92.77 88.65
1000 93.98 92.94 88.38
2000 95.52 93.46 89.52

Table 15: The impact of timestep schedules for center tc and patch tp diffusion. The accuracies (%)
are reported on three variants of ScanObjectNN.

tc tp OBJ-BG OBJ-ONLY PB-T50-RS

200 2000 94.15 92.60 88.90
1000 2000 94.15 92.60 88.72
2000 2000 95.52 93.46 89.52
200 1000 93.80 92.94 88.97
2000 200 94.66 91.91 88.72

increasing tp, peaking at tp = 2000. This trend suggests that a larger timestep introduces a broader
noise range, forcing the encoder to learn robust center predictions across diverse noise levels.

Timestep schedule. In our default setting, center diffusion and patch diffusion are sampled simulta-
neously using the same number of time steps tc = tp = 2000 with a shared linear variance schedule
(βt from 0.0001 to 0.02). We conducted ablation experiments by varying tc and tp independently.
Results are shown in Tab. 15. We observe that desynchronizing the diffusion schedules leads to
performance degradation in all cases. Interestingly, the model is more sensitive to changes in the
decoder-side patch diffusion tp compared to variations in the encoder-side center diffusion tc. When
tp is reduced while keeping tc fixed (e.g., tp = 200), the performance drops more significantly, likely
due to insufficient corruption during training, which weakens the decoder’s ability to reconstruct
complex local geometry. In contrast, reducing tc while keeping tp fixed leads to a smaller, though
still noticeable, performance drop.

Time embedding of the encoder. In our framework, we intentionally omit time-step embeddings in
the transformer encoder during the center diffusion process. The motivation behind this decision is to
align the encoder’s architecture with downstream tasks, where no diffusion steps or time conditioning
are present. By avoiding the introduction of time embeddings during pre-training, we ensure that
the encoder learns time-agnostic, task-agnostic features that generalize better across downstream
domains. To validate this design decision, we conducted an ablation study comparing two variants
in Tab. 16: 1) With time embedding added to the encoder; 2) Without time embedding, as used in
our default implementation. The results on the ScanObjectNN benchmark are summarized below.
Incorporating time embeddings led to consistent performance degradation across all three variants.
We hypothesize that the time embeddings may introduce unnecessary conditioning noise or reduce the
encoder’s ability to generalize to downstream inputs, which are always clean and have no associated
time-step semantics.
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Table 16: The effect of time embedding in the encoder. The accuracies (%) are reported on three
variants of ScanObjectNN.

Time Embedding OBJ-BG OBJ-ONLY PB-T50-RS

× 94.49 92.59 88.83
✓ 95.52 93.46 89.52

D Additional Visualization Results

We present additional visualizations on the ShapeNet [4] test split to evaluate the denoising perfor-
mance of our Point-MaDi model. The encoder independently predicts visible and masked center
points from 3D input coordinates, which are concatenated to form the denoised centers. Concurrently,
the decoder reconstructs the full point cloud from encoded features. As illustrated in Figures 3–5,
the denoised centers closely align with the GT centers across diverse categories, demonstrating the
encoder’s ability to capture global structure effectively. Meanwhile, the decoder reconstructs both
global shape and local geometry in the denoised points. These results highlight the model’s strengths
in global representation and reconstruction, with ongoing challenges in detailed local recovery.

E Limitations

This work primarily focuses on learning robust geometric and semantic representations from point
clouds in a purely self-supervised and unimodal setting. While the proposed dual-diffusion framework
achieves consistent improvements across various downstream tasks, several directions remain open
for future exploration. One natural extension is to incorporate multi-modal information, such as
images or language, to further enrich the learned representations and enhance scene understanding.
Additionally, while our encoder effectively predicts denoised centers that capture the global shape
of point clouds, it struggles to preserve fine-grained local details, limiting the precision of local
geometry in the predicted centers.
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Figure 3: Visualization of point cloud denoising by Point-MaDi. (a) GT Points: original point
cloud on ShapeNet test split. (b) GT Centers: FPS-sampled centers. (c) Denoised Points: decoder-
reconstructed point cloud. (d) Denoised Centers: encoder-predicted center points.
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Figure 4: Visualization of point cloud denoising by Point-MaDi. (a) GT Points: original point
cloud on ShapeNet test split. (b) GT Centers: FPS-sampled centers. (c) Denoised Points: decoder-
reconstructed point cloud. (d) Denoised Centers: encoder-predicted center points.
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Figure 5: Visualization of point cloud denoising by Point-MaDi. (a) GT Points: original point
cloud on ShapeNet test split. (b) GT Centers: FPS-sampled centers. (c) Denoised Points: decoder-
reconstructed point cloud. (d) Denoised Centers: encoder-predicted center points.
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