
Outcome-Based Online Reinforcement Learning:
Algorithms and Fundamental Limits

Fan Chen∗

fanchen@mit.edu
Zeyu Jia∗

zyjia@mit.edu
Alexander Rakhlin∗

rakhlin@mit.edu
Tengyang Xie†
tx@cs.wisc.edu

Abstract

Reinforcement learning with outcome-based feedback faces a fundamental chal-
lenge: when rewards are only observed at trajectory endpoints, how do we assign
credit to the right actions? This paper provides the first comprehensive analysis
of this problem in online RL with general function approximation. We develop a
provably sample-efficient algorithm achieving Õ(CcovH

3/ε2) sample complexity,
where Ccov is the coverability coefficient of the underlying MDP. By leveraging
general function approximation, our approach works effectively in large or infinite
state spaces where tabular methods fail, requiring only that value functions and
reward functions can be represented by appropriate function classes. Our results
also characterize when outcome-based feedback is statistically separated from per-
step rewards, revealing an unavoidable exponential separation for certain MDPs.
For deterministic MDPs, we show how to eliminate the completeness assump-
tion, dramatically simplifying the algorithm. We further extend our approach to
preference-based feedback settings, proving that equivalent statistical efficiency
can be achieved even under more limited information. Together, these results
constitute a theoretical foundation for understanding the statistical properties of
outcome-based reinforcement learning.

1 Introduction
Reinforcement learning with outcome-based feedback is a fundamental paradigm where agents
receive rewards only at the end of complete trajectories rather than at individual steps. This feedback
model naturally arises in many applications, from large language model training (Ouyang et al.,
2022; Bai et al., 2022; Jaech et al., 2024), where human preferences are provided for entire outputs
rather than individual tokens, to clinical trials, where patient outcomes are only observable after a
complete treatment regimen. Despite the prevalence of such settings, the statistical implications of
outcome-based feedback for online exploration remain poorly understood.

In traditional reinforcement learning (Sutton et al., 1998), agents observe rewards immediately after
each action, providing a granular signal that directly links actions to their consequences. In contrast,
outcome-based feedback presents a fundamental challenge: when rewards are only observed at
the trajectory level,determining which specific actions contributed to the final outcome becomes
significantly more difficult. This credit assignment problem is particularly acute in sequential
decision-making tasks with long horizons, where many different action combinations could lead to
the observed outcome.

While recent work (Jia et al., 2025) has shown that outcome-based feedback is sufficient for offline
reinforcement learning under certain conditions, the feasibility of efficient online exploration with
only trajectory-level feedback remains an open question. Online learning—where an agent actively
explores to gather new data—is essential for adaptive systems that must learn in dynamic environments
without pre-collected datasets. This leads to our central question:

When is online exploration with outcome-based reward statistically tractable?

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



This question has been studied in the setting where the reward function is assumed to be well-
structured (Efroni et al., 2021; Pacchiano et al., 2021; Chatterji et al., 2021; Cassel et al., 2024;
Lancewicki and Mansour, 2025), with a primary focus on the linear reward functions. Similar
reliance on the well-behaved reward structure3 also appears in the recent work on Reinforcement
Learning from Human Feedback (RLHF) (Chen et al., 2022b,a; Wu and Sun, 2023; Wang et al., 2023),
where only preference feedback is available. However, well-behaved reward structure is dedicated
and might fail to capture many real-world scenarios with general function approximation. In this
paper, we address this question by providing a comprehensive theoretical analysis of outcome-based
online reinforcement learning with general function approximation. We investigate when efficient
exploration is possible with only trajectory-level feedback and characterize the fundamental statistical
limits of learning in this setting. Our main results are as follows:

(1) We present a model-free algorithm for outcome-based online RL with general function approxi-
mation (Algorithm 1) that relies solely on trajectory-level reward feedback rather than per-step
feedback. Our algorithm achieves a complexity bound of Õ(CcovH

3/ε2) under standard realiz-
ability and completeness assumptions, where Ccov is the coverability coefficient that measures an
intrinsic complexity of the underlying MDP. This bound applies in the general function approxi-
mation setting where state spaces may be large or infinite, requiring only that value functions can
be represented by an appropriate function class with bounded statistical complexity.

(2) For the special case of deterministic MDPs, we present a simpler algorithm based on Bellman
residual minimization (Algorithm 2) that achieves similar theoretical guarantees with improved
computational efficiency.

(3) As extension, we generalize our approach to preference-based reinforcement learning (Section 4),
where feedback comes in the form of binary preferences between trajectory pairs under the
Bradley-Terry-Luce model. This extension bridges the gap to practical reinforcement learning
from human feedback (RLHF) scenarios, where even outcome reward feedback is rare.

(4) We also identify a fundamental separation between outcome-based and per-step feedback (Sec-
tion 5). Specifically, there exists a MDP with known transition dynamics and horizon H = 2, and
the reward being a d-dimensional generalized linear function, while in this problem eΩ(d) samples
are necessary to learn a near-optimal policy with only outcome reward. However, such a problem
is known to be easy with per-step reward feedback, in the sense that existing algorithms can return
an ε-optimal within Õ

(
d2/ε2

)
rounds with per-step feedback. This separation demonstrates that

delicate analysis based on well-behaved reward structure can fail catastrophically when only
outcome reward feedback is available.

Our results provide a theoretical foundation for understanding when outcome-based exploration is
tractable and when it presents insurmountable statistical barriers. By characterizing these fundamental
limits, we offer guidance for the development of efficient algorithms for learning from trajectory-level
feedback in online settings and highlight the precise conditions under which outcome-based feedback
is statistically equivalent to per-step feedback.

2 Preliminaries
Markov Decision Process. An MDP M is specified by a tuple (S,A,T, ρ, R,H), with state space
S, action space A, horizon H , transition kernel T = (Th : S × A → ∆(S))H−1

h=1 , is initial state
distribution ρ ∈ ∆(S), and the mean reward function R = (Rh : S × A → [0, 1])Hh=1. At the
start of each episode, the environment randomly draws an initial state s1 ∼ ρ, and then at each
step h ∈ [H], after the agent takes action ah, the environment generates the next state sh+1 ∼
T(·|sh, ah). The episode terminates immediately after aH is taken, and, for notational simplicity,
we denote sH+1 to be the deterministic terminal state. We denote τ = (s1, a1, · · · , sH , aH) to be
the trajectory, and throughout this paper we always assume the reward function is normalized, i.e.,
R(τ) :=

∑H
h=1Rh(sh, ah) ∈ [0, 1] almost surely.

In addition to the states, the learner may also observe the reward feedback after the episode terminates.
In the process reward feedback setting, the learner receives a random reward vector (r1, · · · , rH) ∈

3More specifically, most of the recent work either assume the reward class is linear or admits low eluder
dimension (as a function of the trajectory).

2



[0, 1]H such that E[rh|τ ] = Rh(sh, ah) for each h ∈ [H]. In the outcome reward setting, the learner
only receives a single reward value r ∈ [H] such that E[r|τ ] =

∑H
h=1Rh(sh, ah).

Policies, value functions, and the Bellman operator. A (randomized) policy π is specified as
{πh : S → ∆(A)}, and it induces a distribution Pπ of trajectory τ = (s1, a1, · · · , sH , aH) by s1 ∼ ρ,
and for each h ∈ [H], ah ∼ πh(sh), sh+1 ∼ Th(sh, ah). We let Eπ[·] to be the corresponding
expectation.

The expected cumulative reward of a policy π is given by J(π) := Eπ
[∑H

h=1Rh(sh, ah)
]
. The

value function and Q-function of π is defined as

V π
h (s) := Eπ

[
H∑

ℓ=h

Rℓ(sℓ, aℓ)

∣∣∣∣∣ sh = s

]
, Qπ

h(s, a) := Eπ

[
H∑

ℓ=h

Rℓ(sℓ, aℓ)

∣∣∣∣∣ sh = s, ah = a

]
.

Let π⋆ denote an optimal policy (i.e., π⋆ ∈ argmaxπ J(π)), and let V ⋆ and Q⋆ be the corresponding
value function and Q-function. It is well-known that (V ⋆, Q⋆) satisfies the following Bellman
equation for each s ∈ S, a ∈ A, h ∈ [H]:

V ⋆
h (s) = max

a∈A
Q⋆

h(s, a), Q⋆
h(s, a) = Rh(s, a) + Es′∼Th(·|s,a)V

⋆
h+1(s

′), (1)

with the convention that V ⋆
H+1 = 0. Therefore, we define the Bellman operator Th as follows: for

any f : S ×A → R, Thf is defined as
[Thf ](s, a) := Rh(s, a) + Es′∼Th(·|s,a) max

a′∈A
f(s′, a′). (2)

Then, it is straightforward to verify that the Bellman equation reduces to Q⋆
h = ThQ⋆

h+1 for h ∈ [H].

Complexity measure of the MDP. Coverability is a natural notion for measuring the difficulty of
learning in the underlying MDP (Xie et al., 2022).

Definition 1 (Coverability). For a given MDP M and a policy class Π, the coverability Ccov is
defined as

Ccov(Π;M) := min
µ1,··· ,µH∈∆(S×A)

max
h∈[H],π∈Π

∥∥∥∥dπhµh

∥∥∥∥
∞
,

where
∥∥∥ dπ

h

µh

∥∥∥
∞

:= maxs∈A,a∈A
dπ
h(s,a)

µh(s,a)
.

The coverability coefficient of an MDP is an inherent measure of the diversity of the state-action
distributions. Our main upper bounds scale with the coverability of the underlying MDP M⋆, and in
this case we abbreviate Ccov(Π) := Ccov(Π;M⋆) for succinctness.

Function approximation. In this paper, we work with (model-free) function approximation, where
the learner have access to a value function class F = F1 × · · · × FH and a reward function class
R = R1 × · · · × RH with each Fh,Rh ⊆ (S ×A → [0, 1]).

The function class F andR consist of candidate functions to approximate Q⋆ and the ground-truth
reward function R⋆.4 In the literature of RL with general function approximation, it is typically
assumed that the function classes are realizable, i.e., Q⋆ ∈ F and R⋆ ∈ R. In this paper, we adopt
the following relaxed realizability condition with a fixed approximation error εapp ≥ 0.

Assumption 1 (Realizability). There existsQ♯ ∈ F andR♯ ∈ R such that maxh∈[H] ∥Q♯
h−Q⋆

h∥∞ ≤
εapp, maxh∈[H] ∥R♯

h −R⋆
h∥∞ ≤ εapp.

For each value function f ∈ F , it induces a greedy policy πf given by πf,h(s) := argmaxa∈A f(s, a).
Therefore, the value function class F induces a policy class ΠF := {πf : f ∈ F}, and we take our
policy class Π = ΠF for the remaining part of this paper.

The complexity of the function class is measured by the covering number.

Definition 2 (Covering number). For a function class H ⊆ (X → R) and parameter α ≥ 0, an
α-covering of H (with respect to the sup norm) is a subset H′ ⊆ H such that for any f ∈ H,
there exists f ′ ∈ H′ with supx∈X |f(x) − f ′(x)| ≤ α. We define the α-covering number of H as
N(H, α) := min{|H′| : H′ is a α-covering ofH}.

4In the following, we always write R⋆ for the true reward function to avoid confusion.

3



Bellman operator. A reward function R = (R1, · · · , RH) ∈ R induces a Bellman operator as
[TR,hf ](s, a) := Rh(s, a) + Es′∼Th(·|s,a) max

a′∈A
fh+1(s

′, a′), ∀f = (f1, · · · , fH) ∈ F ,

where we also adopt the notation fH+1 = 0 for any f ∈ F . Most literature on RL with general
function approximation also makes use of a richer comparator function class G = G1 × · · · × GH that
satisfies the following Bellman completeness (Jin et al., 2021a; Xie et al., 2021, 2022, etc.).

Assumption 2 (Bellman completeness). For each h ∈ [H], Fh ⊆ Gh. For any f ∈ F and R ∈ R, it
holds infgh∈Gh

∥TR,hf − gh∥∞ ≤ εapp for h ∈ [H].

Miscellaneous notation. For any p ∈ [0, 1], we define Bern(p) to be the Bernoulli distribution
with P(X = 1) = p. For functions f and g ≥ 0, we use f = O(g) to denote that there exists a
universal constant C such that f ≤ C · g.

3 Sample-Efficient Online RL with Outcome Reward
In this section, we present a model-free RL algorithm with outcome reward, which achieves sample
complexity guarantee scaling with the coverability coefficient and the log-covering number of the
function classes.

3.1 Main Result
We present Algorithm 1, which is based on the principle of optimism. For simplicity of presentation,
we assume that the initial state s1 is fixed.

The crux of the proposed algorithm is a new method for performing Fitted-Q Iteration with only
outcome reward, in contrast to most existing RL algorithms (with general function approximation)
that make use the process reward (r1, · · · , rH) to fit the Q-function for each step (Du et al., 2021; Jin
et al., 2021a, etc.). A natural first idea is to fit, given a dataset D = {(τ, r)} consisting of previously
observed (trajectory, outcome reward) pairs, a reward model from the reward function class R by
optimizing the following reward model loss:

LRM
D (R) :=

∑
(τ,r)∈D

(
H∑

h=1

Rh(sh, ah)− r

)2

. (3)

As discussed below in Remark 1, directly fitting an estimated reward model based on LRM
D can lead

to bad performance. Instead, our algorithm jointly optimizes over the value functions and reward
models, as detailed below.

For any proxy reward model R ∈ R and a value function f ∈ F , we define the Bellman error at step
h ∈ [H] as

ED,h(fh, fh+1;R) :=
∑

(τ,r)∈D

(
fh(sh, ah)−Rh(sh, ah)−max

a′
fh+1(sh+1, a

′)
)2
, (4)

a measure of violation of the Bellman equation (1) with the proxy reward model R. Then, we
introduce the Bellman loss defined as

LBE
D (f ;R) :=

H∑
h=1

ED,h(fh, fh+1;R)− inf
g∈G

H∑
h=1

ED,h(gh, fh+1;R), (5)

where we subtract the infimum of g ∈ G over the helper function class G, a common approach to
overcoming the double-sampling problem (Antos et al., 2008; Zanette et al., 2020; Jin et al., 2021a;
Liu et al., 2023b).

Algorithm. First fix an arbitrary policy πref (can be the policy which takes an arbitrary action a0 at
al states). The proposed algorithm takes in a value function class F , a reward function classR and a
comparator function class G, and performs the following two steps for each iteration t = 1, 2, · · · , T :

1. (Optimism) Compute optimistic estimates of (Q⋆, R⋆) through solving the following joint maxi-
mization problem with the dataset D consisting of all previously observed (trajectory, outcome
reward) pairs:

(f (t), R(t)) = max
f∈F,R∈R

λf1(s1)− LBE
D (f ;R)− LRM

D (R), (6)

4



Algorithm 1 Outcome-Based Exploration with Optimism
input: Q-function class F , reward function classR, comparator class G, parameter λ > 0, reference
policy πref .
initialize: D ← ∅.

1: for t = 1, 2, . . . , T do
2: Compute the optimistic estimates:

(f (t), R(t)) = max
f∈F,R∈R

λf1(s1)− LBE
D (f ;R)− LRM

D (R).

3: Select policy π(t) ← πf(t) .
4: for h = 1, 2, · · · , H do
5: Execute π(t) ◦h πref for one episode and obtain (τ (t,h), r(t,h))
6: Update dataset: D ← D ∪ {(τ (t,h), r(t,h))}.
7: end for
8: end for
9: Output π̂ = Unif(π(1:T )).

where for any f ∈ F we denote f1(s1) := maxa∈A f1(s1, a) to be the value of f at the initial
state. Therefore, the optimization problem (6) enforces optimism by balancing the estimated
value f1(s1) and the estimation error LBE

D (f ;R) + LRM
D (R) though a hyper-parameter λ ≥ 0.

2. (Data collection) Based on the optimism estimate f (t), the algorithm selects π(t) := πf(t) . To
collect data, the algorithm then executes the exploration policies π ◦h πref for each h ∈ [H],
where for any policy π and πref , we let π ◦h πref be the policy that executes π for the first h steps,
and then executes πref starting at the (h+ 1)-th step.

Theoretical analysis. For Algorithm 1, we provide the following sample complexity guarantee,
which scales with the coverability Ccov = Ccov(ΠF ), where ΠF = {πf : f ∈ F} is the policy class
induced by F . To simplify the presentation, we denote logNT := infα≥0 (logN(α) + Tα), where
N(α) is defined as

N(α) := max
h∈[H]

{N(Fh, α), N(Rh, α), N(Gh, α)}.

With the function classes being parametric, it is clear that logNT ≤ O(d log(T )).

Theorem 1. Let δ ∈ (0, 1). Suppose that Assumption 1 and Assumption 2 hold, and the parameters
are chosen as

λ = c0 max

{
H log(NTH2/δ)

ε
, THεapp

}
, T ≥ c1

CcovH
2 log(T )

ε2
· log(NTH2/δ), (7)

where c0, c1 > 0 are absolute constants. Then with probability at least 1− δ, the output policy π̂ of
Algorithm 1 satisfies V ⋆(s1)− V π̂(s1) ≤ ε+O

(
CcovH

2 log(T ) · εapp
)
.

The proof of Theorem 1 is deferred to Appendix C. Particularly, we note that when the function
classes satisfy logNT ≤ Õ(d) and εapp = 0, Algorithm 1 outputs an ε-optimal policy with sample
complexity

TH ≤ Õ
(
CcovdH

3

ε2

)
.

Notably, the coverability Ccov measures the inherent complexity of the underlying MDP M⋆ (Xie
et al., 2022) and it is independent of the reward function class. As our result only depends on the
coverability Ccov and the statistical complexity of the function classes, it does not rely on the structure
of reward functions, while previous works assume the reward functions are either linear (Efroni et al.,
2021; Cassel et al., 2024) or admit low trajectory eluder dimension (Chen et al., 2022b,a).

Remark 1. In Algorithm 1, the reward functions R(t) and Q-functions f (t) are jointly optimized (see
Eq. (6)). A natural question is whether these can be optimized separately—i.e., first learning a fitted
reward model and then applying optimism to the Q-functions based on the learned reward model. We

5



Algorithm 2 Outcome-Based Exploration with Optimism for Determinsitic MDP
input: Function class F , parameter λ > 0.
initialize: D ← ∅, initial estimate f (1) ∈ F .

1: for t = 1, 2, . . . , T do
2: Receive s(t) and compute the optimistic estimates:

f (t) = max
f∈F

λf1(s
(t)

1 )− LBR
D (f).

3: Select policy π(t) ← πf(t) .
4: Execute π(t) to obtain a trajectory τ (t) = (s(t)1 , a

(t)

1 , . . . , s
(t)

H , a
(t)

H ) with outcome reward r(t).
5: Update dataset: D ← D ∪ {(τ (t), r(t))}.
6: end for
7: Output π̂ = Unif(π(1:T )).

show that this decoupled approach can lead to failures: due to reward model mismatch, the algorithm
may become ‘trapped’ in regions where the exploratory policy fails to gather informative data. As a
result, the sample complexity can become infinite in the worst case. See Section F.1 in the appendix
for details.

3.2 A Simpler Algorithm for Deterministic MDPs
A disadvantage of Algorithm 1 is that it requires solving a max-min optimization problem (6),
as the Bellman loss LBE

D involves a minimization problem over G. While such computationally
inefficient optimization problems are the common subroutines of existing function approximation
RL algorithms (Jin et al., 2021a; Foster et al., 2021, 2022; Chen et al., 2022a, etc.), it turns out that
Algorithm 1 can be significantly simplified when the transition dynamics in underlying MDP are
deterministic.

Assumption 3. The transition kernel T is deterministic, i.e., for any h ∈ [H] and sh ∈ S, ah ∈ A,
there is a unique state sh+1 ∈ S such that Th(sh+1 | sh, ah) = 1.

Note that in this setting, the initial state s1 and the outcome reward r can still be random. This setting
is also referred to as Deterministic Contextual MDP in Xie et al. (2024).

Value difference as reward model. A key observation is that, when the underlying MDP M⋆ is
deterministic, the Bellman equation (1) trivially reduces to the following equality

Q⋆
h(sh, ah) = R⋆

h(sh, ah) + V ⋆
h+1(sh+1),

which holds almost surely. Hence, for any trajectory τ , it holds that

R⋆(τ) =

H∑
h=1

R⋆
h(sh, ah) =

H∑
h=1

[
Q⋆

h(sh, ah)− V ⋆
h+1(sh+1)

]
.

Therefore, any value function f ∈ F induces an outcome reward model Rf : (S ×A)H → R defined
as

Rf (τ) =

H∑
h=1

[fh(sh, ah)− fh+1(sh+1)],

where we adopt the notation fh(s) := maxa∈A fh(s, a) for h ∈ [H]. This observation motivates the
following Bellman Residual loss:

LBR
D (f) :=

∑
(τ,r)∈D

(
H∑

h=1

[fh(sh, ah)− fh+1(sh+1)]− r

)2

, (8)

where D = {(τ, r)} is any dataset consisting of (trajectory, outcome reward) pairs.

6



Bellman Residual Minimization (BRM) with Optimism. For deterministic MDP, we propose
Algorithm 2 as a simplification of our main algorithm. Similar to Algorithm 1, the proposed algorithm
takes in the value function class F and alternates between the following two steps for each round
t = 1, 2, · · · , T :

1. (Optimism) Compute optimistic estimates of Q⋆ through solving the following maximization
problem with the dataset D consisting of all previously observed (trajectory, outcome reward)
pairs:

f (t) = max
f∈F

λf1(s1)− LBR
D (f), (9)

enforcing optimism by balancing the estimated value f1(s1) and the Bellman residual loss
LBR
D (f).

2. (Data collection) Based on the optimistic estimate f (t), selects π(t) := πf(t) and collect a trajectory
τ (t) = (s(t)1 , a

(t)

1 , . . . , s
(t)

H , a
(t)

H ) with outcome reward r(t).

Compared to Algorithm 1, Algorithm 2 has the several advantages. First, it does not rely on the
reward function class R and the comparator function class G, and the Bellman residual loss LBR

D
is much simpler than the Bellman loss LBE

D , thanks to the deterministic nature of the underlying
MDP. Therefore, Algorithm 2 is more amenable to computationally efficient implementation, as it
replaces the max-min optimization problem (6) in Algorithm 1 with a much simpler maximization
problem (9). Further, for every round t, the algorithm only needs to collect one episode from the
greedy policy π(t).

Theoretical analysis. We present the upper bound of Algorithm 2 in terms of the following notion
of coverability,

C ′
cov(Π) := Es1∼ρCcov(Π;M⋆

s1),

where M⋆ is the underlying MDP, M⋆
s1 is the MDP with deterministic initial state s1 and the same

transition dynamics as M⋆, and Π = ΠF is the policy class induced by F . In general, C ′
cov(Π) is

always an upper bound on the coverability Ccov(Π), and the guarantee of Algorithm 2 scales with
C ′

cov(Π) as it avoids the layer-wise exploration strategy of Algorithm 1. We also denote

logNF,T := inf
α≥0

(
max
h∈[H]

N(Fh, α) + Tα

)
.

Theorem 2. Let δ ∈ (0, 1). Suppose that Assumption 1 holds, and the parameters are chosen as

λ = c0 max

{
H3 log(NF,T /δ)

ε
, Tεapp

}
, T ≥ c1

C ′
cov(Π)H4 log(T )

ε2
· log(NF,T /δ), (10)

where c0, c1 > 0 are absolute constants. Then with probability at least 1− δ, Algorithm 2 achieves

1

T

T∑
t=1

(
V ⋆(s(t)1 )− V π(t)

(s(t)1 )
)
≤ ε+O(C ′

cov(Π)H log(T ) · εapp).

The above upper bound provides the PAC guarantee through the standard online-to-batch conversion,
and its proof is deferred to Appendix D. It is worth noting that Theorem 2 only relies on realizability
assumption on the Q-function class F , significantly relaxing the assumptions of realizablity (As-
sumption 1) and completeness (Assumption 2) in Theorem 1. As a remark, we note that Theorem 2
implies that Algorithm 2 in fact achieves a regret bound of order

√
T .5

4 Preference-based Reinforcement Learning
The goal of preference-based learning is to find a near-optimal policy only through interacting with
the environment that provides preference feedback. As an extension of our results presented in
Section 3, in this section we present a similar algorithm for preference-based RL with the same
sample complexity guarantee.

5The (expected) regret of the algorithm can be defined as Reg(T ) := E
[∑T

t=1(V
⋆(s(t)

1 )− V π(t)

(s(t)

1 ))
]
.

7



Preference-based learning in MDP. In preference-based RL, the interaction protocol of the learner
with the environment is specified as follows. For each round t = 1, 2, · · · ,

• The learner selects policy π(t,+) and π(t,−).

• The learner receives trajectories τ (t,+) ∼ π(t,+), τ (t,−) ∼ π(t,−), and preference feedback y(t) ∼
Bern(C(τ (t,+), τ (t,−))), where C is a comparison function.

Intuitively, for any trajectory pair (τ+, τ−), the comparison function C(τ+, τ−) = P(τ+ ≻ τ−)
measures the probability that τ+ is more preferred. In this paper, we mainly focus on the Bradley-
Terry-Luce (BTR) model (Bradley and Terry, 1952), which is widely used on RLHF literature. We
expect that our algorithm and analysis techniques apply to a broader class of preference models.

Definition 3 (BTR model). The comparison function C is specified as

C(τ+, τ−) =
exp (βR⋆(τ+))

exp (βR⋆(τ+)) + exp (βR⋆(τ−))
,

where R⋆ is the ground-truth reward function, β > 0 is a parameter.

Under BTR model, the preference feedback in fact contains information of the outcome rewards.
Hence, in this sense, preference-based RL can be regarded as an extension of outcome-based RL with
weaker feedback.

Algorithm for preference-based RL. To extend Algorithm 1, we need to modify the reward model
loss LRM

D (defined in (3)) to incorporate preference feedback. For any dataset D = {(τ+, τ−, y)}
consisting of (trajectories, preference) pair, we introduce the following preference-based reward
model loss LPbRM

D :

LPbRM
D (R) :=

∑
(τ+,τ−,y)∈D

L
(
R(τ+)−R(τ−), y

)
, (11)

where L(w, y) := −βwy + log(1 + eβw) is the logistic loss. It is well-known that under BTR
model (Definition 3), the ground-truth reward R⋆ is the population minimizer of LPbRM

D , and any
approximate minimizer of LPbRM

D can serve as a proxy for R⋆. Therefore, with the loss function
LPbRM
D , we propose the following algorithm (Algorithm 3, detailed description in Appendix E), which

generalizes Algorithm 1 to handle preference feedback: For each iteration t = 1, 2, · · · , T , the
algorithm performs the following two steps.

1. (Optimism) Compute optimistic estimates of (Q⋆, R⋆) through solving the following joint maxi-
mization problem with the dataset D consisting of all previously observed (trajectories, feedback)
pairs:

(f (t), R(t)) = max
f∈F,R∈R

λ
[
f1(s1)− V̂ ref

D,R

]
− LBE

D (f ;R)− LPbRM
D (R), (12)

where the Bellman loss LBE
D is defined in (5), V̂ ref

D,R is the estimated value function of πref defined
as

V̂ ref
D,R :=

1

|D|
∑

(τ+,τ−,y)∈D

R(τ−). (13)

The term f1(s1)− V̂ ref
D,R can be regarded as an estimate of the advantage of πf over πref under

(f,R). It is introduced to avoid over-estimating the optimal value, as the preference feedback
only provide information between the difference between two trajectories.

2. (Data collection) The algorithm selects the greedy policy π(t) := πf(t) . For each h ∈ [H], the
algorithm sets π(t,h,+) := π ◦h πref and π(t,h,−) := πref , executes (π(t,h,+), π(t,h,−)) to collects
trajectories (τ (t,h,+), τ (t,h,−)) and the preference feedback y(t,h).

We provide the following sample complexity guarantee of the algorithm above.

8



Theorem 3. Let δ ∈ (0, 1). Suppose that Assumption 1 and Assumption 2 hold, and the parameters
of Algorithm 3 are chosen as

λ = c0 max

{
H log(NTH2/δ)

ε
, THεapp

}
, T ≥ Õ

(
CcovH

2

ε2
· log(NTH2/δ)

)
, (14)

where c0 > 0 is an absolute constant, and Õ(·) omits poly-logarithmic factors and constant depending
on β. Then, with probability at least 1− δ, the output policy π̂ of Algorithm 3 satisfies

V ⋆(s1)− V π̂(s1) ≤ ε+ Õ
(
CcovH

2εapp
)
.

The proof of Theorem 3 is deferred to Section E.1.

5 Lower Bounds
As shown by Theorem 1, with bounded coverability of the MDP and appropriate assumptions on the
function classes, finding a near-optimal policy within a polynomial number of episodes with outcome
rewards is possible. In this setting, our sample complexity bounds match the sample complexity of
Algorithm GOLF (Jin et al., 2021a; Xie et al., 2022), up to a factor of Õ(H). This indicates that,
under bounded coverability, learning with outcome-based rewards is almost statistically equivalent to
learning with process rewards.

Additionally, in the setting of offline reinforcement learning with bounded uniform concentrability,
the results of Jia et al. (2025) indicate that there is also a statistical equivalence between learning
with outcome rewards and learning with process rewards. Therefore, it is natural to ask the following
question:

Is learning with outcome rewards always statistically equivalent to
learning with process rewards in RL?

However, it turns out that the answer is negative if the statistical complexity is measured with respect
to the structure of the value (reward) function classes.

More specifically, we construct a class of MDPs with horizon H = 2, known transition T, and
d-dimensional generalized linear reward models (Appendix F.2). With process reward feedback,
such a problem is known to be easy as it admits low (Bellman) eluder dimension (Russo and Van Roy,
2013; Jin et al., 2021a, etc.), and existing algorithms can learn an ε-optimal policy using Õ

(
d2/ε2

)
episodes with process rewards. However, given only access to outcome rewards, we show that this
problem is as hard as learning ReLU linear bandits (Dong et al., 2021; Li et al., 2022), and hence
it requires at least eΩ(d) episodes to learn. Hence, in this setting, there is an exponential separation
between learning with process rewards and learning with outcome-based rewards.

Theorem 4. For any positive integer d ≥ 1, there exists a classM of two-layer MDPs with a fixed
transition kernel T and initial state s1, such that the following holds:

(a) There exists an algorithm that, for any MDP M⋆ ∈M and any ε ∈ (0, 1), given access to
process reward feedback, returns an ε-optimal policy with high probability using Õ

(
d2/ε2

)
episodes.

(b) Suppose that there exists an algorithm that, for any MDP M⋆ ∈M, given only access to
outcome reward, returns a 0.1-optimal policy with probability at least 3

4 using T episodes.
Then it must hold that T = Ω(ec1d), where c1 is an absolute constant. 6

This exponential separation demonstrates that the delicate analysis based on well-behaved Bellman
errors (Jiang et al., 2017; Jin et al., 2021a; Du et al., 2021, etc.) crucially relies on the process reward
feedback, and the resulting guarantees might not be preserved in the setting where only outcome
reward feedback is available.

6We note that under this construction, it is straightforward to construct function classes F and R such that
both Assumption 1 and Assumption 2 hold, but the coverability scales as Ccov = eΩ(d).

9



6 Conclusion
In this work, we develop a model-free, sample-efficient algorithm for outcome-based reinforcement
learning that relies solely on trajectory-level rewards and achieves theoretical guarantees bounded
by coverability under function approximation. From the lower bound side, we show that joint
optimization of reward and value functions is essential, and establish a fundamental exponential
gap between outcome-based and per-step feedback. For deterministic MDPs, we propose a simpler,
more efficient variant, and extend our approach to preference-based feedback, demonstrating that
it preserves the same statistical efficiency. In the current work, we only studied the case where the
outcome-based reward is the sum of all intermediate rewards. We leave the development of efficient
algorithms for other types of outcome-based rewards to future work.

Acknowledgements
We acknowledge support of the Simons Foundation and the NSF through awards DMS-2031883 and
PHY-2019786, ARO through award W911NF-21-1-0328, and the DARPA AIQ award.

References
Philip Amortila, Dylan J Foster, Nan Jiang, Ayush Sekhari, and Tengyang Xie. Harnessing density

ratios for online reinforcement learning. arXiv preprint arXiv:2401.09681, 2024a.

Philip Amortila, Dylan J Foster, and Akshay Krishnamurthy. Scalable online exploration via
coverability. arXiv preprint arXiv:2403.06571, 2024b.

András Antos, Csaba Szepesvári, and Rémi Munos. Learning near-optimal policies with bellman-
residual minimization based fitted policy iteration and a single sample path. Machine Learning,
71:89–129, 2008.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assistant with
reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862, 2022.

Alina Beygelzimer, John Langford, Lihong Li, Lev Reyzin, and Robert Schapire. Contextual bandit
algorithms with supervised learning guarantees. In Proceedings of the Fourteenth International
Conference on Artificial Intelligence and Statistics, pages 19–26. JMLR Workshop and Conference
Proceedings, 2011.

Mohak Bhardwaj, Tengyang Xie, Byron Boots, Nan Jiang, and Ching-An Cheng. Adversarial model
for offline reinforcement learning. Advances in Neural Information Processing Systems, 36, 2023.

Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39(3/4):324–345, 1952.

Asaf Cassel, Haipeng Luo, Aviv Rosenberg, and Dmitry Sotnikov. Near-optimal regret in linear mdps
with aggregate bandit feedback. arXiv preprint arXiv:2405.07637, 2024.

Shicong Cen, Jincheng Mei, Katayoon Goshvadi, Hanjun Dai, Tong Yang, Sherry Yang, Dale
Schuurmans, Yuejie Chi, and Bo Dai. Value-incentivized preference optimization: A unified
approach to online and offline rlhf. arXiv preprint arXiv:2405.19320, 2024.

Niladri Chatterji, Aldo Pacchiano, Peter Bartlett, and Michael Jordan. On the theory of reinforcement
learning with once-per-episode feedback. Advances in Neural Information Processing Systems, 34:
3401–3412, 2021.

Fan Chen, Song Mei, and Yu Bai. Unified algorithms for rl with decision-estimation coefficients:
pac, reward-free, preference-based learning, and beyond. arXiv preprint arXiv:2209.11745, 2022a.

Fan Chen, Constantinos Daskalakis, Noah Golowich, and Alexander Rakhlin. Near-optimal learning
and planning in separated latent mdps. In The Thirty Seventh Annual Conference on Learning
Theory, pages 995–1067. PMLR, 2024.

Jinglin Chen and Nan Jiang. Information-theoretic considerations in batch reinforcement learning. In
International Conference on Machine Learning, pages 1042–1051. PMLR, 2019.

10



Xiaoyu Chen, Han Zhong, Zhuoran Yang, Zhaoran Wang, and Liwei Wang. Human-in-the-loop:
Provably efficient preference-based reinforcement learning with general function approximation.
In International Conference on Machine Learning, pages 3773–3793. PMLR, 2022b.

Varsha Dani, Thomas P Hayes, and Sham M Kakade. Stochastic linear optimization under bandit
feedback. In 21st Annual Conference on Learning Theory, number 101, pages 355–366, 2008.

Nirjhar Das, Souradip Chakraborty, Aldo Pacchiano, and Sayak Ray Chowdhury. Provably sample
efficient rlhf via active preference optimization. arXiv preprint arXiv:2402.10500, 2024.

Kefan Dong, Jiaqi Yang, and Tengyu Ma. Provable model-based nonlinear bandit and reinforcement
learning: Shelve optimism, embrace virtual curvature. Advances in Neural Information Processing
Systems, 34:26168–26182, 2021.

Simon Du, Sham Kakade, Jason Lee, Shachar Lovett, Gaurav Mahajan, Wen Sun, and Ruosong
Wang. Bilinear classes: A structural framework for provable generalization in rl. In International
Conference on Machine Learning, pages 2826–2836. PMLR, 2021.

Yonathan Efroni, Nadav Merlis, and Shie Mannor. Reinforcement learning with trajectory feedback.
In Proceedings of the AAAI conference on artificial intelligence, volume 35, pages 7288–7295,
2021.

Amir-massoud Farahmand, Csaba Szepesvári, and Rémi Munos. Error propagation for approximate
policy and value iteration. Advances in neural information processing systems, 23, 2010.

Dylan J Foster, Sham M Kakade, Jian Qian, and Alexander Rakhlin. The statistical complexity of
interactive decision making. arXiv preprint arXiv:2112.13487, 2021.

Dylan J Foster, Alexander Rakhlin, Ayush Sekhari, and Karthik Sridharan. On the complexity of
adversarial decision making. Advances in Neural Information Processing Systems, 35:35404–
35417, 2022.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv preprint
arXiv:2412.16720, 2024.

Zeyu Jia, Alexander Rakhlin, and Tengyang Xie. Do we need to verify step by step? rethinking
process supervision from a theoretical perspective. arXiv preprint arXiv:2502.10581, 2025.

Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, and Robert E Schapire. Contex-
tual decision processes with low bellman rank are pac-learnable. In International Conference on
Machine Learning, pages 1704–1713. PMLR, 2017.

Chi Jin, Qinghua Liu, and Sobhan Miryoosefi. Bellman eluder dimension: New rich classes of rl
problems, and sample-efficient algorithms. Advances in Neural Information Processing Systems,
34:13406–13418, 2021a.

Ying Jin, Zhuoran Yang, and Zhaoran Wang. Is pessimism provably efficient for offline rl? In
International Conference on Machine Learning, pages 5084–5096. PMLR, 2021b.

Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning. In
ICML, volume 2, pages 267–274, 2002.

Tal Lancewicki and Yishay Mansour. Near-optimal regret using policy optimization in online mdps
with aggregate bandit feedback. arXiv preprint arXiv:2502.04004, 2025.

Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

Gene Li, Pritish Kamath, Dylan J Foster, and Nati Srebro. Understanding the eluder dimension.
Advances in Neural Information Processing Systems, 35:23737–23750, 2022.

Fanghui Liu, Luca Viano, and Volkan Cevher. What can online reinforcement learning with function
approximation benefit from general coverage conditions? In International Conference on Machine
Learning, pages 22063–22091. PMLR, 2023a.

Zhihan Liu, Miao Lu, Wei Xiong, Han Zhong, Hao Hu, Shenao Zhang, Sirui Zheng, Zhuoran Yang,
and Zhaoran Wang. Maximize to explore: One objective function fusing estimation, planning, and
exploration. Advances in Neural Information Processing Systems, 36, 2023b.

11



Rémi Munos. Error bounds for approximate policy iteration. In ICML, volume 3, pages 560–567.
Citeseer, 2003.

Gergely Neu and Gábor Bartók. An efficient algorithm for learning with semi-bandit feedback. In
International Conference on Algorithmic Learning Theory, pages 234–248. Springer, 2013.

Ellen Novoseller, Yibing Wei, Yanan Sui, Yisong Yue, and Joel Burdick. Dueling posterior sampling
for preference-based reinforcement learning. In Conference on Uncertainty in Artificial Intelligence,
pages 1029–1038. PMLR, 2020.

Ian Osband and Benjamin Van Roy. Model-based reinforcement learning and the eluder dimension.
In Advances in Neural Information Processing Systems, volume 27, pages 1466–1474, 2014.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 35:
27730–27744, 2022.

Aldo Pacchiano, Aadirupa Saha, and Jonathan Lee. Dueling rl: reinforcement learning with trajectory
preferences. arXiv preprint arXiv:2111.04850, 2021.

Daniel Russo and Benjamin Van Roy. Eluder dimension and the sample complexity of optimistic
exploration. In Advances in Neural Information Processing Systems, volume 26, pages 2256–2264,
2013.

Wen Sun, Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, and John Langford. Model-based
RL in contextual decision processes: PAC bounds and exponential improvements over model-free
approaches. In Conference on learning theory, pages 2898–2933. PMLR, 2019.

Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction, volume 1. MIT
press Cambridge, 1998.

Yuanhao Wang, Qinghua Liu, and Chi Jin. Is rlhf more difficult than standard rl? arXiv preprint
arXiv:2306.14111, 2023.

Runzhe Wu and Wen Sun. Making rl with preference-based feedback efficient via randomization.
arXiv preprint arXiv:2310.14554, 2023.

Tengyang Xie and Nan Jiang. Batch value-function approximation with only realizability. In
International Conference on Machine Learning, pages 11404–11413. PMLR, 2021.

Tengyang Xie, Ching-An Cheng, Nan Jiang, Paul Mineiro, and Alekh Agarwal. Bellman-consistent
pessimism for offline reinforcement learning. Advances in neural information processing systems,
34:6683–6694, 2021.

Tengyang Xie, Dylan J Foster, Yu Bai, Nan Jiang, and Sham M Kakade. The role of coverage in
online reinforcement learning. arXiv preprint arXiv:2210.04157, 2022.

Tengyang Xie, Dylan J Foster, Akshay Krishnamurthy, Corby Rosset, Ahmed Awadallah, and
Alexander Rakhlin. Exploratory preference optimization: Harnessing implicit q*-approximation
for sample-efficient rlhf. arXiv preprint arXiv:2405.21046, 2024.

Yichong Xu, Ruosong Wang, Lin Yang, Aarti Singh, and Artur Dubrawski. Preference-based
reinforcement learning with finite-time guarantees. Advances in Neural Information Processing
Systems, 33:18784–18794, 2020.

Chenlu Ye, Wei Xiong, Yuheng Zhang, Nan Jiang, and Tong Zhang. A theoretical analysis of
nash learning from human feedback under general kl-regularized preference. arXiv preprint
arXiv:2402.07314, 2024.

Andrea Zanette, Alessandro Lazaric, Mykel Kochenderfer, and Emma Brunskill. Learning near
optimal policies with low inherent bellman error. In International Conference on Machine Learning,
pages 10978–10989. PMLR, 2020.

Wenhao Zhan, Masatoshi Uehara, Nathan Kallus, Jason D Lee, and Wen Sun. Provable offline
preference-based reinforcement learning. arXiv preprint arXiv:2305.14816, 2023.

12



Shenao Zhang, Donghan Yu, Hiteshi Sharma, Han Zhong, Zhihan Liu, Ziyi Yang, Shuohang Wang,
Hany Hassan, and Zhaoran Wang. Self-exploring language models: Active preference elicitation
for online alignment. arXiv preprint arXiv:2405.19332, 2024.

Tong Zhang. Covering number bounds of certain regularized linear function classes. Journal of
Machine Learning Research, 2(Mar):527–550, 2002.

Banghua Zhu, Michael Jordan, and Jiantao Jiao. Principled reinforcement learning with human
feedback from pairwise or k-wise comparisons. In International Conference on Machine Learning,
pages 43037–43067. PMLR, 2023.

13



NeurIPS Paper Checklist
The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Claims made in the abstract and introduction accurately reflect this paper’s
contributions and scope. More supporting details are included in the main text.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: This paper discussed the limitations in the main body below each theorem.

14



Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: This paper provides the full set of assumptions in the main body and a complete
(and correct) proof in the appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: This paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.

15



• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: This paper does not include experiments requiring code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/pu
blic/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: This paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: This paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: The paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.

17



• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The authors have reviewed the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This is a pure theoretical paper. There is no societal impact of the work
performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

18

https://neurips.cc/public/EthicsGuidelines


• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: This paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

19

paperswithcode.com/datasets


Justification: This paper does not involve crowdsourcing and research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM


A More Related Works
We review more related works in this section.

The coverability coefficient has recently gained attention in the theory of online reinforcement
learning (Xie et al., 2022; Liu et al., 2023a; Amortila et al., 2024a,b). This condition is in the same
spirit as the widely used concentrability coefficient (Munos, 2003; Antos et al., 2008; Farahmand
et al., 2010; Chen and Jiang, 2019; Jin et al., 2021b; Xie and Jiang, 2021; Xie et al., 2021; Bhardwaj
et al., 2023), a concept frequently employed in the theory of offline (or batch) reinforcement learning.
A well-known duality suggests that the coverability coefficient can be interpreted as the optimal
concentrability coefficient attainable by any offline data distribution. For further discussion, see Xie
et al. (2022).

A related body of theoretical work explores reinforcement learning with trajectory feedback (Neu
and Bartók, 2013; Efroni et al., 2021; Chatterji et al., 2021; Cassel et al., 2024; Lancewicki and
Mansour, 2025), where the learner receives only episode-level feedback at the end of each trajectory.
This category also encompasses preference-based reinforcement learning (Pacchiano et al., 2021;
Chen et al., 2022b; Zhu et al., 2023; Wu and Sun, 2023; Zhan et al., 2023), which relies on pairwise
comparisons between trajectories. While most prior work focuses on tabular or linear MDP settings,
we take a step further by studying learning with function approximation, and bound the complexity
by the coverability coefficient.

In the context of Online Reinforcement Learning, numerous prior works have investigated the
complexity of exploration and policy optimization, introducing various complexity measures such as
Bellman rank (Jiang et al., 2017), Eluder dimension (Russo and Van Roy, 2013; Osband and Van Roy,
2014), witness rank (Sun et al., 2019), Bellman-Eluder dimension (Jin et al., 2021a), the bilinear class
(Du et al., 2021), and decision-estimation coefficients (Foster et al., 2021). These complexity notions
characterize properties of the function or model class but are generally not instance-dependent. In
contrast, Xie et al. (2022) introduces the instance-dependent notion of coverability coefficients to
provide complexity bounds in online reinforcement learning. For further discussion on instance-
dependent complexity measures, we refer the reader to the discussions therein.

We further review some literatures on online preference-based learning or online RLHF. Xu et al.
(2020); Novoseller et al. (2020); Pacchiano et al. (2021); Wu and Sun (2023); Zhan et al. (2023); Das
et al. (2024) provides theoretical guarantees for tabular MDPs and linear MDPs. Ye et al. (2024)
studies RLHF with general function approximation for contextual bandits, which is equivalent to
the case where H = 1. Chen et al. (2022b); Wang et al. (2023) use the Eluder dimension type
complexity measures to characterize the sample complexity of online RLHF, which sometimes can
be too pessimistic. Xie et al. (2024); Cen et al. (2024); Zhang et al. (2024) proposed algorithms for
online RLHF with function approximation, but their complexity depends on the trajectory coverability
instead of the state coverability

B Technical tools
B.1 Uniform convergence with square loss
To prove the uniform convergence results with square loss, we frequently use the following version
Freedman’s inequality (see e.g., Beygelzimer et al., 2011).

Lemma 5 (Freedman’s inequality). Suppose that Z(1), · · · , Z(T ) is a martingale difference sequence
that is adapted to the filtration (F(t))Tt=1, and Z(t) ≤ C almost surely for all t ∈ [T ]. Then for any
λ ∈ [0, 1

C ], with probability at least 1− δ, for all n ≤ T ,
n∑

t=1

Z(t) ≤ λ
n∑

t=1

E
[
(Z(t))2

∣∣F(t−1)
]
+

log(1/δ)

λ
.

Lemma 6. Suppose that (x(1), y(1)), · · · , (x(T ), y(T )) is a sequence of random variable in X × [0, C]
that is adapted to the filtration (F(t))Tt=1, such that there exists a function F ⋆ : X → [0, 1] with
F ⋆(x(t)) = E[y(t)|F(t−1), x(t)] almost surely. Then for any function F : X → [0, C], it holds that
with probability at least 1− δ, for all n ∈ [T ],
n∑

t=1

(F (x(t))− y(t))
2 −

n∑
t=1

(F ⋆(x(t))− y(t))
2 ≥ 1

2

n∑
t=1

E
[
(F (x(t))− F ⋆(x(t)))

2
∣∣∣F(t−1)

]
− 10C2 log(1/δ).

21



Conversely, it holds that with probability at least 1− δ, for all n ∈ [T ],
n∑

t=1

(F (x(t))− y(t))
2 −

n∑
t=1

(F ⋆(x(t))− y(t))
2 ≤ 2

n∑
t=1

E
[
(F (x(t))− F ⋆(x(t)))

2
∣∣∣F(t−1)

]
+ 5C2 log(1/δ).

Proof of Lemma 6. Denote

W (t) := (F (x(t))− y(t))
2 − (F ⋆(x(t))− y(t))

2

= (F (x(t))− F ⋆(x(t)))
2
+ 2(F (x(t))− F ⋆(x(t)))(F ⋆(x(t))− y(t)).

Note that

E [W (t)|F(t−1)] = E
[
(F (x(t))− F ⋆(x(t)))

2
∣∣∣F(t−1)

]
,

and

Z(t) :=W (t) − E [W (t)|F(t−1)] ≤W (t) ≤ C2.

Therefore, using Freedman’s inequality (Lemma 5), for any fixed λ ∈ [0, 1
C2 ], we have with probabil-

ity at least 1− δ,
n∑

t=1

Z(t) ≤ λ
n∑

t=1

E
[
(Z(t))2

∣∣F(t−1)
]
+

log(1/δ)

λ
, ∀n ∈ [T ].

Note that

E
[
(Z(t))2

∣∣F(t−1)
]
≤ E

[
(W (t))2

∣∣F(t−1)
]

= E
[
(F (x(t))− F ⋆(x(t)))

4
+ 4(F (x(t))− F ⋆(x(t)))

2
(F ⋆(x(t))− y(t))

2
∣∣∣F(t−1)

]
≤ 5C2E

[
(F (x(t))− F ⋆(x(t)))

2
∣∣∣F(t−1)

]
.

Therefore, by setting λ = 1
5C2 , we get the desired upper bound.

Similarly, for the lower bound, we can apply Freedman’s inequality with (−Z(t)) to show that for
λ = 1

10C2 , with probability at least 1− δ,

−
n∑

t=1

Z(t) ≤ λ
n∑

t=1

E
[
(Z(t))2

∣∣F(t−1)
]
+

log(1/δ)

λ

≤ 1

2

n∑
t=1

E
[
(F (x(t))− F ⋆(x(t)))

2
∣∣∣F(t−1)

]
+ 10C2 log(1/δ), ∀n ∈ [T ].

Proposition 7. Fix a parameter α ≥ 0. Under the assumption of Lemma 6, suppose thatH ⊆ (X →
[0, C]) is a fixed function class, and F ♯ ∈ H satisfies

∥∥F ⋆ − F ♯
∥∥
∞ ≤ εapp. Define

Ln(F ) :=

n∑
t=1

(F (x(t))− y(t))
2
, En(F ) :=

n∑
t=1

E
[
(F (x(t))− F ⋆(x(t)))

2
∣∣∣F(t−1)

]
.

Let κ := 15C2 log(2N(H, α)/δ) + 3Cnα+ 4nε2app. Then the following holds simultaneously with
probability at least 1− δ:

(1) For each n ∈ [T ],

Ln(F
♯)− inf

F ′∈H
Ln(F

′) ≤ κ.

(2) For each n ∈ [T ], for all F ∈ H,

1

2
En(F ) ≤ Ln(F )− inf

F ′∈H
Ln(F

′) + κ.

22



Proof of Proposition 7. Denote N := N(H, α). Let Hα be a minimal α-covering of H. Then
applying Lemma 6 and the union bound, we have with probability at least 1− δ, the following holds
simultaneously for n ∈ [T ]:

(1) For all F ′ ∈ Hα, it holds that

1

2
En(F ′) ≤ Ln(F

′)− Ln(F
⋆) + 10C2 log(2N/δ).

(2) It holds that

Ln(F
♯)− Ln(F

⋆) ≤ 2En(F ♯) + 5C2 log(2/δ).

In the following, we condition on the above success event.

By definition, En(F ♯) ≤ nε2app, and hence

Ln(F
⋆) ≥ Ln(F

♯)− 4nε2app − 5C2 log(2/δ). (15)

Furthermore, for any F ∈ H, there exists F ′ ∈ Hα with ∥F − F ′∥∞ ≤ α, which implies

|Ln(F )− Ln(F
′)| ≤ 2Cnα, |En(F )− En(F ′)| ≤ 2Cnα.

Therefore, under the success event, we have

1

2
En(F ) ≤ Ln(F )− Ln(F

⋆) + 10C2 log(2N/δ) + 3Cnα.

holds for arbitrary F ∈ F . Hence, by (15), we have

1

2
En(F ) ≤ Ln(F )− Ln(F

♯) + 15C2 log(2N/δ) + 3Cnα+ 4nε2app.

Noting that Ln(F
♯) ≥ infF ′∈H Ln(F

′) completes the proof of (2). Furthermore, using En(F ) ≥ 0,
we also have

Ln(F
♯) ≤ inf

F ′∈H
Ln(F

′) + 15C2 log(2N/δ) + 3Cnα+ 4nε2app.

This completes the proof of (1).

B.2 Uniform convergence with log-loss
We prove the following result, which is a direct extension of the standard MLE guarantee (Zhang,
2002).

Proposition 8. Suppose that {Pθ(y|x)}θ∈Θ ⊆ (X → ∆(Y)) is a class of condition densities
parametrized by an abstract parameter class Θ. Without loss of generality, we assume Y is discrete.

A α-covering of Θ is a subset Θ′ ⊆ Θ such that for any θ ∈ Θ, there exists θ′ ∈ Θ′ such that
|logPθ(y|x)− logPθ′(y|x)| ≤ α for all x ∈ X , y ∈ Y . We define the covering number of Θ under
log-loss as

Nlog(Θ, α) := min{|Θ′| : Θ′ is a α-covering of Θ}.

Suppose that (x(1), y(1)), · · · , (x(T ), y(T )) is a sequence of random variables adapted to the filtration
(F(t))Tt=1, such that there exists θ⋆ ∈ Θ so that P(y(t) = ·|x(t),F(t−1)) = Pθ⋆(y(t) = ·|x(t)) almost
surely for t ∈ [T ]. Then it holds that for all n ∈ [T ], for all θ ∈ Θ,

n∑
t=1

E
[
D2

H(Pθ(·|x(t)), Pθ⋆(·|x(t)))
∣∣F(t−1)

]
≤ − 1

2

n∑
t=1

[logPθ(y
(t)|x(t))− logPθ⋆(y(t)|x(t))]

+ logNlog(Θ, α) + 2nα.

Proof of Proposition 8. Let Θ′ ⊆ Θ be a minimal α-covering, and let N := |Θ′| = Nlog(Θ, α).
For each θ ∈ Θ, we consider

L(t)(θ) := logPθ(y
(t)|x(t))− logPθ⋆(y(t)|x(t)).

23



Then it holds that

E
[
exp

(
1

2
L(t)(θ)

)∣∣∣∣x(t),F(t−1)

]
= Ey∼Pθ⋆ (·|x(t))

√
Pθ(y|x(t))

Pθ⋆(y|x(t))

=
∑
y∈Y

√
Pθ(y|x(t))Pθ⋆(y|x(t))

= 1−D2
H(Pθ(·|x(t)), Pθ⋆(·|x(t))).

Therefore, applying Lemma 9 and using union bound over θ ∈ Θ′, we have the following bound:
with probability at least 1− δ, for any θ′ ∈ Θ′, n ∈ [T ],

n∑
t=1

− log

[
exp

(
1

2
L(t)(θ′)

)∣∣∣∣F (t−1)

]
≤ −1

2

n∑
t=1

L(t)(θ′) + log(N/δ).

In the following, we condition on the above event. Fix any θ ∈ Θ. Then, there exists θ′ ∈ Θ′ such
that |logPθ(y|x)− logPθ′(y|x)| ≤ α for all x ∈ X , y ∈ Y , and hence |L(t)(θ)− L(t)(θ′)| ≤ α
almost surely. Therefore, combining the results above and using logw ≤ w − 1 for w > 0, we have

n∑
t=1

E
[
D2

H(Pθ(·|x(t)), Pθ⋆(·|x(t)))
∣∣F(t−1)

]
≤

n∑
t=1

− log

[
exp

(
1

2
L(t)(θ)

)∣∣∣∣F (t−1)

]

≤ nα+

n∑
t=1

− log

[
exp

(
1

2
L(t)(θ′)

)∣∣∣∣F (t−1)

]

≤ nα− 1

2

n∑
t=1

L(t)(θ′) + log(N/δ)

≤ 2nα− 1

2

n∑
t=1

L(t)(θ) + log(N/δ).

By the arbitrariness of θ ∈ Θ, the proof is completed.

Lemma 9 (Foster et al. (2021, Lemma A.4)). For any sequence of real-valued random variables
X(1), · · · , X(T ) adapted to a filtration (F(t))

T
t=1, it holds that with probability at least 1− δ, for all

n ∈ [T ],
n∑

t=1

− log [exp(−X(t))| F (t−1)] ≤
n∑

t=1

X(t) + log (1/δ) .

C Missing Proofs in Section 3.1
C.1 Proof of Theorem 1
We first present a more detailed statement of the upper bound of Theorem 1, as follows.

Theorem 10. Let δ ∈ (0, 1), ρ ∈ [0, 1), and we denote Ccov = Ccov(ΠF ), where ΠF = {πf : f ∈
F} is the policy class induced by F . Suppose that Assumption 1 and Assumption 2 hold. Then with
probability at least 1− δ, the output policy π̂ of Algorithm 1 satisfies

V ⋆(s1)− V π̂(s1) =
1

T

T∑
t=1

(
V ⋆(s1)− V π(t)

(s1)
)

≤ O(H) ·

[
log(N(ρ)/δ) + TH2(ρ+ ε2app)

λ
+
λCcov log(T )

T

]
.

Therefore, for any ε ∈ (0, 1), with the optimally-tuned parameter λ, it holds that V ⋆(s1)−V π̂(s1) ≤
ε+ Õ

(√
CcovH

2εapp
)
, as long as

T ≥ Õ
(
CcovH

2

ε2
· logN(ε2/(CcovH

4))

)
.

24



Recall that we let Q♯ ∈ Q, R♯ ∈ R be such that

max
h∈[H]

∥∥∥Q♯
h −Q

⋆
h

∥∥∥
∞
≤ εapp, max

h∈[H]

∥∥∥R♯
h −R

⋆
h

∥∥∥
∞
≤ εapp.

For each t ∈ [T ], we write D(t) to be the dataset maintained by Algorithm 1 at the end of the tth
iteration, i.e.,

D(t) = {(τ (k,h), r(k,h))}k≤t,h∈[H].

We summarize the uniform concentration results for the loss LBE
D(t) and LRM

D(t) as follows. We note
that these concentration bounds are fairly standard (see e.g. Jin et al. (2021a)), and for completeness,
we present the proof in Appendix C.3.

Proposition 11. Let δ ∈ (0, 1), ρ ≥ 0. Suppose that Assumption 1 and Assumption 2 holds. Then
with probability at least 1− δ, for all t ∈ [T ], f ∈ F , R ∈ R, it holds that

1

2

∑
k≤t

H∑
h=1

Eπ(k)◦hπref (R(τ)−R⋆(τ))
2 ≤ LRM

D(t)(R)− LRM
D(t)(R

♯) +Hκ,

1

2

∑
k≤t

H∑
h=1

Eπ(k)

(fh(sh, ah)− [TR,hfh+1](sh, ah))
2 ≤ LBE

D(t)(f ;R)− LBE
D(t)(Q

♯;R♯) +Hκ,

where

κ = C
(
logN(ρ) + log(H/δ) + TH2(ε2app + ρ)

)
,

and C > 0 is an absolute constant.

Performance difference decomposition. Denote V ♯(s1) := maxa∈AQ
♯(s1, a). Then it is clear

that
∣∣V ♯(s1)− V ⋆(s1)

∣∣ ≤ εapp. Therefore, for any t ∈ [T ], by optimism (the definition of
(f (t), R(t))), it holds that

V ⋆(s1)− εapp ≤ V ♯(s1)

= V ♯(s1)−
LBE
D(t−1)(Q

♯, R♯) + LRM
D(t−1)(R

♯)

λ
+
LBE
D(t−1)(Q

♯, R♯) + LRM
D(t−1)(R

♯)

λ

≤ f (t)

1 (s1, π
(t))−

LBE
D(t−1)(f

(t), R(t)) + LRM
D(t−1)(R

(t))

λ
+
LBE
D(t−1)(Q

♯, R♯) + LRM
D(t−1)(R

♯)

λ
.

Furthermore, by the standard performance difference lemma (Kakade and Langford, 2002), it holds
that

f (t)

1 (s1, π
(t))− V π(t)

(s1) =

H∑
h=1

Eπ(t)[
f (t)

h (sh, ah)− [T ⋆
h f

(t)

h+1](sh, ah)
]
. (16)

Based on (16), the existing approaches (with per-step reward feedback) bound the expectation of
the Bellman error e(t)h (sh, ah) := f (t)

h (sh, ah)− [T ⋆
h fh+1](sh, ah) through various arguments (e.g.,

eluder argument (Jin et al., 2021a) and coverability argument (Xie et al., 2022)). However, in outcome
reward model, it is possible that Eπ(t)[

f (t)

h (sh, ah)− [T ⋆
h fh+1](sh, ah)

]
is large even when the sub-

optimality of π(t) is small, because the outcome reward is invariant under shifting of the ground-truth
reward function R⋆.

Therefore, we consider the following refined decomposition:

f (t)

1 (s1)− V π(t)

(s1) =

H∑
h=1

Eπ(t)[
f (t)

h (sh, ah)− [TR(t)f (t)

h+1](sh, ah)
]

+ Eπ(t)

[
H∑

h=1

R(t)

h (sh, ah)−
H∑

h=1

R⋆
h(sh, ah)

]
.

(17)

25



Coverability argument. Following the coverability argument of Xie et al. (2022), we have the
following upper bound on the expected Bellman errors.

Proposition 12. Denote e(t)h := f (t)

h − T ⋆
h fh+1. Then, for each h ∈ [H], it holds that

T∑
t=1

Eπ(t) ∣∣e(t)h (sh, ah)
∣∣ ≤

√√√√√2Ccov log

(
1 +

CcovT

κ

)
·

2Tκ+
∑

1≤k<t≤T

Eπ(k)e(t)h (sh, ah)2

.
Following the ideas of Jia et al. (2025), we prove the following upper bound on the reward errors.

Proposition 13. It holds that
T∑

t=1

Eπ(t)

|R(t)(τ)−R⋆(τ)|

≤

√√√√√8HCcov log

(
1 +

CcovT

κ

)
·

HTκ+
∑

1≤k<t≤T

H∑
h=1

Eπ(k)◦hπref (R(t)(τ)−R⋆(τ))
2

.
Based on the results above, we finalize the proof of Theorem 1.

Proof of Theorem 1. By optimism and the decomposition (17), it holds that for t ∈ [T ],

V ⋆(s1)− V π(t)

(s1)− εapp ≤
H∑

h=1

Eπ(t)[
e(t)h (sh, ah)

]
−
LBE
D(t−1)(f

(t), R(t))− LBE
D(t−1)(Q

♯, R♯)

λ

+ Eπ(t)

[R(t)(τ)−R⋆(τ)]−
LRM
D(t−1)(R

(t))− LRM
D(t−1)(R

♯)

λ
.

Then, under the success event of Proposition 11, we have

V ⋆(s1)− V π(t)

(s1)− εapp −
2Hκ

λ

≤
H∑

h=1

(
Eπ(t)[

e(t)h (sh, ah)
]
− 1

2λ

∑
k<t

Eπ(k)

e(t)h (sh, ah)
2

)

+ Eπ(t)

[R(t)(τ)−R⋆(τ)]− 1

2λ

∑
k<t

H∑
h=1

Eπ(k)◦hπref (R(t)(τ)−R⋆(τ))
2
.

(18)

Applying Proposition 12 and Cauchy inequality gives for all h ∈ [H],

T∑
t=1

Eπ(t) ∣∣e(t)h (sh, ah)
∣∣ ≤ λCcov log

(
1 +

CcovT

κ

)
+

1

2λ

2Tκ+
∑

1≤k<t≤T

Eπ(k)

e(t)h (sh, ah)
2

,
and similarly, applying Proposition 13 and Cauchy inequality gives

T∑
t=1

Eπ(t)

|R(t)(τ)−R⋆(τ)|

≤ 4λHCcov log

(
1 +

CcovT

κ

)
+

1

2λ

HTκ+
∑

1≤k<t≤T

H∑
h=1

Eπ(k)◦hπref (R(t)(τ)−R⋆(τ))
2

.
Therefore, we take summation of (18) over t ∈ [T ], and combining the inequalities above gives

T∑
t=1

(
V ⋆(s1)− V π(t)

(s1)
)
≤ Tεapp +

4THκ

λ
+ 5λHCcov log

(
1 +

CcovT

κ

)
.

This is the desired upper bound.

26



C.2 Proof of Proposition 12 and Proposition 13
The following proposition is an generalized version of the results in Xie et al. (2022, Appendix D).
For proof, see e.g. Chen et al. (2024).

Proposition 14 (Xie et al. (2022)). Let C ≥ 1 be a parameter. Suppose that p(1), · · · , p(T ) is a
sequence of distributions over X , and there exists µ ∈ ∆(X ) such that p(t)(x)/µ(x) ≤ C for all
x ∈ X , t ∈ [T ]. Then for any sequence ψ(1), · · · , ψ(T ) of functions X → [0, 1] and constant B ≥ 1,
it holds that

T∑
t=1

Ex∼p(t)ψ(t)(x) ≤

√√√√2C log

(
1 +

CT

B

)[
2TB +

T∑
t=1

∑
k<t

Ex∼p(k)ψ(t)(x)2

]
.

As a warm-up, we prove Proposition 12 by directly invoking Proposition 14.

Proof of Proposition 12. Fix a h ∈ [H]. To apply Proposition 14, we consider X = S ×A, and
define

p(t) := Pπ(t)

((sh, ah) = ·) ∈ ∆(S ×A), ψ(t) :=
∣∣e(t)h

∣∣ ∈ (S ×A → [0, 1]).

By the definition of coverability (Definition 1), for C = Ccov(Π), there exists µ ∈ ∆(S × A)
such that p(t)(s, a)/µ(s, a) ≤ C for all (s, a) ∈ S × A. Therefore, applying Proposition 14 with
B = κ ≥ 1 gives the desired upper bound.

Next, we proceed to prove Proposition 13. Our key proof technique is summarized in the following
proposition, which is inspired by the (rather sophisticated) analysis of Jia et al. (2025).

Proposition 15. Recall that for any D = (Dh : S ×A → R), we denote

D(τ) =

H∑
h=1

Dh(sh, ah), ∀τ = (s1, a1, · · · , sH , aH) ∈ (S ×A)H .

Fix a Markov policy πref , we denote D1(s) = DH+1(s) = 0, and

Dh(s) := Eπref

[
H∑

ℓ=h

Dℓ(sℓ, aℓ)

∣∣∣∣∣ sh = s

]
, ∀1 < h ≤ H, s ∈ S.

Then for any policy π, it holds that

H∑
h=1

Eπ
(
Dh(sh, ah) +Dh+1(sh+1)−Dh(sh)

)2 ≤ 4

H∑
h=1

Eπ◦hπrefD(τ)2.

The proof of Proposition 15 is deferred to the end of this subsection. With Proposition 15, we prove
Proposition 13 as follows.

Proof of Proposition 13. To apply Proposition 15, for each t ∈ [T ], we consider

∆(t)

h (s) := Eπref

[
H∑

ℓ=h

R(t)

ℓ (sℓ, aℓ)−
H∑

ℓ=h

R⋆
ℓ (sℓ, aℓ)

∣∣∣∣∣ sh = s

]
, ∀h = 2, · · · , H, s ∈ S,

Then, by Proposition 15, it holds that for any policy π,

H∑
h=1

Eπ
(
R(t)

h (sh, ah)−R⋆
h(sh, ah) + ∆(t)

h+1(sh+1)−∆(t)

h (sh)
)2

≤ 4

H∑
h=1

Eπ◦hπref (R(t)(τ)−R⋆(τ))
2
.

(19)

27



Furthermore,

Eπ |R(t)(τ)−R⋆(τ)| = Eπ

∣∣∣∣∣
H∑

h=1

[
R(t)

h (sh, ah)−R⋆
h(sh, ah) + ∆(t)

h+1(sh+1)−∆(t)

h (sh)
]∣∣∣∣∣

≤
H∑

h=1

Eπ
∣∣R(t)

h (sh, ah)−R⋆
h(sh, ah) + ∆(t)

h+1(sh+1)−∆(t)

h (sh)
∣∣ . (20)

Therefore, to apply Proposition 14, we consider the space X = S × A× S, and for each h ∈ [H],
we define

p(t)

h := Pπ(t)

((sh, ah, sh+1) = ·) ∈ ∆(S ×A× S),
ψ(t)

h (s, a, s′) :=
∣∣R(t)

h (s, a)−R⋆
h(s, a) + ∆(t)

h+1(s
′)−∆(t)

h (s)
∣∣ .

Note that for any h, we have ψ(t)

h : S × A × S → [0, 1]. Further, let µh ∈ ∆(S × A) be the
distribution such that ∥dπh/µh∥∞ ≤ Ccov for any policy π. Then we can consider the distribution
µh ∈ ∆(S ×A× S) given by µh(s, a, s

′) = µh(s, a)Th(s
′|s, a). Then it holds that∥∥∥∥p(t)

h

µh

∥∥∥∥
∞

= sup
s,a,s′

p(t)

h (s, a, s′)

µh(s, a, s
′)

= sup
s,a,s′

dπ
(t)

h (s, a)Th(s
′|s, a)

µh(s, a)Th(s′|s, a)
≤ Ccov.

Therefore, for h ∈ [H], applying Proposition 14 on the sequence (p(1)

h , · · · , p(T )

h ) and (ψ(1)

h , · · · , ψ(T )

h )
gives

T∑
t=1

E
x∼p

(t)
h

ψ(t)

h (x) ≤

√√√√2Ccov log

(
1 +

CcovT

κ

)[
2Tκ+

T∑
t=1

∑
k<t

E
x∼p

(k)
h

ψ(t)

h (x)2

]
.

To conclude, we combine the inequalities above and bound

T∑
t=1

Eπ(t)

|R(t)(τ)−R⋆(τ)|

≤
T∑

t=1

H∑
h=1

Eπ(t) ∣∣R(t)

h (sh, ah)−R⋆
h(sh, ah) + ∆(t)

h+1(sh+1)−∆(t)

h (sh)
∣∣

=

T∑
t=1

H∑
h=1

E
x∼p

(t)
h

ψ(t)

h (x) =

H∑
h=1

T∑
t=1

E
x∼p

(t)
h

ψ(t)

h (x)

≤
H∑

h=1

√√√√2Ccov log

(
1 +

CcovT

κ

)[
2Tκ+

T∑
t=1

∑
k<t

E
x∼p

(k)
h

ψ(t)

h (x)2

]

≤

√√√√2HCcov log

(
1 +

CcovT

κ

)[
2THκ+

H∑
h=1

T∑
t=1

∑
k<t

E
x∼p

(k)
h

ψ(t)

h (x)2

]

≤

√√√√√8HCcov log

(
1 +

CcovT

κ

)
·

HTκ+
∑

1≤k<t≤T

H∑
h=1

Eπ(k)◦hπref (R(t)(τ)−R⋆(τ))
2

,
where the first inequality follows from (20), the second last line follows from Cauchy inequality, and
last inequality follows from the definition of (p(t)

h , ψ
(t)

h ) and (19).

Proof of Proposition 15. For τ = (s1, a1, · · · , sH , aH) ∈ (S × A)H , we denote τh =
(s1, a1, · · · , sh, ah, sh+1) to be the prefix sequence of τ for each h ∈ [H]. Then, we note that

Eπ◦hπref [D(τ)| τh] =
h∑

ℓ=1

Dℓ(sℓ, aℓ) + Eπ◦hπref

[
H∑

ℓ=h+1

Dℓ(sℓ, aℓ)

∣∣∣∣∣ τh
]

28



=

h∑
ℓ=1

Dℓ(sℓ, aℓ) +Dh+1(sh+1),

because the policy π ◦h πref executes the Markov policy πref starting at the (h+1)-th step. Therefore,
it holds that

Eτh∼π

(
h∑

ℓ=1

Dℓ(sℓ, aℓ) +Dh+1(sh+1)

)2

= Eτh∼π◦hπref
(Eπ◦hπref [D(τ)| τh])2

≤ Eτ∼π◦hπref
D(τ)2 = Eπ◦hπrefD(τ)2,

where the first equality follows from the fact that the policy π ◦h πref executes π for the first h steps.
Therefore, for h > 1, it holds that

Eπ
(
Dh(sh, ah) +Dh+1(sh+1)−Dh(sh)

)2
= Eτh∼π

(
h∑

ℓ=1

Dℓ(sℓ, aℓ) +Dh+1(sh+1)−
h−1∑
ℓ=1

Dℓ(sℓ, aℓ)−Dh(sh)

)2

≤ 2Eτh∼π

(
h∑

ℓ=1

Dℓ(sℓ, aℓ) +Dh+1(sh+1)

)2

+ Eτh−1∼π

(
h−1∑
ℓ=1

Dℓ(sℓ, aℓ) +Dh(sh)

)2

≤ 2Eπ◦hπrefD(τ)2 + Eπ◦h−1πrefD(τ)2.

For h = 1, because D1(s) = 0, we already have

Eπ
(
D1(s1, a1) +D2(s2)−D1(s1)

)2
= Eπ

(
D1(s1, a1) +D2(s2)

)2 ≤ Eπ◦1πrefD(τ)2.

Taking summation over h ∈ [H] completes the proof.

C.3 Proof of Proposition 11
We prove Proposition 11 in Lemma 16 and Lemma 17 separately. Recall again that under Assumption
1, the function Q♯ ∈ F , R♯ ∈ R satisfy

max
h∈[H]

∥∥∥Q♯
h −Q

⋆
h

∥∥∥
∞
≤ εapp, max

h∈[H]

∥∥∥R♯
h −R

⋆
h

∥∥∥
∞
≤ εapp.

Lemma 16. Under Assumption 1, with probability at least 1− δ, for any t ∈ [T ], for all R ∈ R, it
holds that

1

2

∑
k≤t

H∑
h=1

Eπ(k)◦hπref (R(τ)−R⋆(τ))
2 ≤ LRM

D(t)(R)− LRM
D(t)(R

♯)

+ 15H logN(ρ) + 15(2/δ) + 2TH3ε2app + 4TH2ρ.

Proof of Lemma 16. To apply Proposition 7, we consider the whole history

{(τ (t,h), r(t,h))}t∈[T ],h∈[H].

generated by executing Algorithm 1, and recall that D(t−1) = {(τ (k,h), r(k,h))}k<t,h∈[H] is the history
up to the t-th iteration. Note that (τ (t,1), r(t,1)), · · · , (τ (t,H), r(t,H)) are pairwise independent given
D(t−1), with

τ (t,h) ∼ π(t) ◦h πref , E [r(t,h)| D(t−1), τ (t,h)] = R⋆(τ (t,h)).

Also note that r ∈ [0, 1] almost surely, and we regard R ⊆ ((S × A)H → [0, 1]), and R♯ ∈ R
satisfies

∣∣R♯(τ)−R⋆(τ)
∣∣ ≤ Hεapp for all τ ∈ (S ×A)H .

Therefore, applying Proposition 7 on the function class R and the sequence
{(τ (t,h), r(t,h))}t∈[T ],h∈[0,H] gives that with probability at least 1− δ, for all R ∈ R, t ∈ [T ], it holds
that

1

2

t∑
k=1

H∑
h=1

Eπ(k)◦hπref (R(τ)−R⋆(τ))
2
=

1

2

t∑
k=1

H∑
h=1

E
[
(R(τ (k,h))−R⋆(τ (k,h)))

2
∣∣∣D(k−1)

]

29



≤ LRM
D(t)(R)− LRM

D(t)(R
♯) + 15 log(2N(R, Hρ)/δ) + 2TH3ε2app + 4TH2ρ.

Finally, we note that logN(R, Hρ) ≤
∑H

h=1 logN(Rh, ρ) ≤ H logN(ρ). This gives the desired
upper bound.

Similarly, we prove Proposition 11 (2) as follows, following Jin et al. (2021a).

Lemma 17. Fix h ∈ [H] and δ ∈ (0, 1), ρ ≥ 0. Suppose that Assumption 1 and Assumption 2 holds.
Then with probability at least 1− δ, the following holds:

(1) For each t ∈ [T ],

ED(t),h(Q
♯
h, Q

♯
h+1;R

♯)− inf
gh∈Gh

ED(t),h(gh, Q
♯
h+1;R

♯) ≤ O
(
THε2app + THρ+ log(N(ρ)/δ)

)
.

(2) For each t ∈ [T ], for all fh ∈ Fh, fh+1 ∈ Fh+1, and Rh ∈ Rh,

1

2

t∑
k=1

Eπ(k)

(fh(sh, ah)− [TR,hfh+1](sh, ah))
2

≤ ED(t),h(fh, fh+1;Rh)− inf
gh∈Gh

ED(t),h(gh, fh+1;Rh) +O
(
THε2app + THρ+ log(N(ρ)/δ)

)
,

where we use O(·) to hide absolute constant for simplicity.

Proof of Lemma 17. Fix h ∈ [H] and denote N := N(ρ). We let F ′
h+1 be a minimal ρ-covering

of Fh+1, and letR′
h be a minimal ρ-covering ofRh. By definition, |F ′

h+1| ≤ N, |R′
h| ≤ N .

In the following, we adopt the notation of the proof of Lemma 16. Recall that conditional on D(t−1),

τ (t,ℓ) = (s(t,ℓ)1 , a(t,ℓ)

1 , · · · , s(t,ℓ)H , a(t,ℓ)

H ) ∼ π(t) ◦ℓ πref ,
and τ (t,1), · · · , τ (t,H) are independent conditional on D(t−1). For simplicity, we denote x(t,ℓ) :=
(s(t,ℓ)h , a(t,ℓ)

h ).

Fix fh+1 ∈ F ′
h+1 ∪ {Q

♯
h+1} and Rh ∈ R′

h ∪ {R
♯
h}, we consider

y(t,ℓ) := fh+1(s
(t,ℓ)

h+1) +Rh(s
(t,ℓ)

h , a(t,ℓ)

h ).

and it holds that

E [y(t,ℓ)| D(t−1), x(t,ℓ)] = [TR,hfh+1](x
(t,ℓ)).

Then, for any gh ∈ Gh, it holds that

ED(t),h(gh, fh+1;Rh) =

t∑
k=1

H∑
ℓ=1

(gh(x
(t,ℓ))− y(t,ℓ))

2
,

and we also have
t∑

k=1

H∑
ℓ=1

Eπ(k)◦ℓπref (gh(sh, ah)− [TR,hfh+1](sh, ah))
2
=

t∑
k=1

H∑
ℓ=1

E
[
(gh(x

(k,ℓ))− [TR,hfh+1](x
(k,ℓ)))

2
∣∣∣D(k−1)

]
Then, applying Proposition 7 with the function class H = Gh yields that with probability at least
1− δ

2N , the following holds:

(a) For each t ∈ [T ], for any gh ∈ Gh,

1

2

t∑
k=1

Eπ(k)

(gh(sh, ah)− [TR,hfh+1](sh, ah))
2

≤ED(t),h(gh, fh+1;Rh)− inf
g′
h∈Gh

ED(t),h(g
′
h, fh+1;Rh) +O

(
log(N/δ) + THε2app + THρ

)
.

(b) When fh+1 = Q♯
h+1 and Rh = R♯

h, the function Q♯
h ∈ Fh ⊆ Gh satisfies the inequality

∥Q♯
h − TR♯,hQ

♯
h+1∥∞ ≤ 3εapp, and thus

ED(t),h(Q
♯
h, Q

♯
h+1;R

♯
h) ≤ inf

gh∈Gh

ED(t),h(gh, Q
♯
h+1;R

♯
h) +O

(
log(N/δ) + THε2app + THρ

)
.

30



Therefore, taking the union bound, we know that the inequalities (a) and (b) above hold simultaneously
with probability at least 1− δ for all fh+1 ∈ F ′

h+1 ∪ {Q
♯
h+1} and Rh ∈ R′

h ∪ {R
♯
h}. In particular,

we have completed the proof of (1).

To prove (2), we only need to note that Gh ⊆ Fh, and for any fh+1 ∈ Fh+1, Rh ∈ Rh, there exists
f ′h+1 ∈ F ′

h+1, R
′
h ∈ R′

h such that ∥fh+1 − f ′h+1∥∞ ≤ ρ, ∥Rh − R′
h∥∞ ≤ ρ. Therefore, by the

standard covering argument and the fact that π(k) ◦H πref = π(k), we have also shown (2).

D Proof of Theorem 2
In this section, we provide the proof of Theorem 2, which is a direct adaption of the proof of
Theorem 1 in Appendix C. We first present a more detailed statement of the upper bound (with any
parameter λ > 0).

Theorem 18. Suppose that Assumption 1 holds. Then with probability at least 1− δ, Algorithm 2
achieves

1

T

T∑
t=1

(
V ⋆(s(t)1 )− V π(t)

(s(t)1 )
)
≤ εapp +O(1) ·

[
H3 log(NF,T /δ) + Tε2app

λ
+
λHC ′

cov(Π)

T

]
,

We also work with a slightly relaxed version of Assumption 3.

Assumption 4. Under any policy π, for each h ∈ [H], it holds that almost surely
Q⋆

h(sh, ah) = R⋆
h(sh, ah) + V ⋆

h+1(sh+1).

Further, to simply the notation, for each f ∈ F , we recall that the induced reward model Rf is
defined as Rf

1 (s, a) := f1(s, a), R
f
h(s, a) = fh(s, a)− fh(s), which implies

Rf (τ) =

H∑
h=1

fh(sh, ah)− fh+1(sh+1).

Uniform convergence. For each t ∈ [T ], we defineD(t−1) := {(τ (k), r(k))}k<t be the data collected
before tth iteration. We also recall that by definition (8), we have

LBR
D(t)(f) :=

t∑
k=1

(
H∑

h=1

[
fh(s

(k)

h , a(k)

h )− fh+1(s
(k)

h+1)
]
− r(k)

)2

=

t∑
k=1

(
Rf (τ (k))− r(k)

)2
.

Therefore, a direct instantiation of Proposition 7 on the classR := {Rf : f ∈ F} yields the following
proposition.

Proposition 19. Let δ ∈ (0, 1), ρ ≥ 0. Suppose that Assumption 1 and Assumption 4 holds. Then
with probability at least 1− δ, for all t ∈ [T ], f ∈ F , it holds that

1

2

t∑
k=1

Eπ(k)(
Rf (τ)−R⋆(τ)

)2 ≤ LBR
D(t)(f)− LBE

D(t)(Q
♯) + κ,

where
κ = C

(
H3 log(NF (α)/δ) + THα+ Tε2app)

)
,

C > 0 is an absolute constant, and we denote NF (α) := maxh∈[H]N(Fh, α) for any α ≥ 0.

Performance difference decomposition. In this setting, we can rewrite the decomposition (16) as

f (t)

1 (s1)− V π(t)

(s1) =

H∑
h=1

Eπ(t)[
f (t)

h (sh, ah)−R⋆
h(sh, ah)− f

(t)

h+1(sh+1)
]

= Eπ(t)

[
H∑

h=1

[
f (t)

h (sh, ah)− f (t)

h+1(sh+1)
]
−

H∑
h=1

R⋆
h(sh, ah)

]
= Eπ(t)

[R(t)(τ)−R⋆(τ)],

(21)

where we denote R(t) := Rf(t)

, which is a reward model given by
R(t)

1 (s, a) := f (t)

1 (s, a), R(t)

h (s, a) = f (t)

h (s, a)− f (t)

h (s).

31



Optimism. Similar to Appendix C.1, we use the fact that from (9),

f (t) = max
f∈F

λf1(s
(t)

1 )− LBR
D(t−1)(f),

and hence

λf (t)

1 (s(t)1 )− LBR
D(t−1)(f

(t)) ≥ λV ♯
1 (s

(t)

1 )− LBR
D(t−1)(f

(t)).

Using
∣∣∣V ♯

1 (s
(t)

1 )− V ⋆
1 (s

(t)

1 )
∣∣∣ ≤ εapp, (21) and Proposition 19, we now deduce that

V ⋆(s(t)1 )− V π(t)

(s(t)1 ) ≤ εapp + Eπ(t)

[R(t)(τ)−R⋆(τ)]−
LBR
D(t−1)(f

(t))− LBE
D(t−1)(Q

♯)

λ

≤ εapp +
κ

λ
+ Eπ(t)

[R(t)(τ)−R⋆(τ)]− 1

2λ

t−1∑
k=1

Eπ(k)

(R(t)(τ)−R⋆(τ))
2
.

(22)

Therefore, it remains to prove an analogue to Proposition 13.

Coverability argument. We strength Proposition 13 using the deterministic nature of the underlying
MDP. For each s ∈ S and h ∈ [H], we define

Sh(s; Π) := {(s′, a) : ∃π ∈ Π, under π and s1 = s, it holds that sh = s′, ah = a},

and Nh(s; Π) := |Sh(s; Π)|.

Proposition 20. Let B ≥ 1. For any initial state s1 ∈ S, any sequence of reward functions
R(1), · · · , R(T ) and any sequence of policies π(1), · · · , π(T ), it holds that

T∑
t=1

Eπ(t)

[R(t)(τ)−R⋆(τ)| s1]

≤

√√√√√2N(s1) log

(
1 +

4TH

B

)
·

2TB +
∑

1≤k<t≤T

Eπ(k)
[
(R(t)(τ)−R⋆(τ))

2
∣∣∣ s1]

,
where N(s1) :=

∑H
h=1Nh(s1; Π), and the conditional distribution Eπ(t)

[ ·| s1] is taken over the
expectation of τ generated by executing policy π starting with the initial state s1.

The proof of Proposition 20 is deferred to the end of this section.

Finalizing the proof. With the above preparation, we now finalize the proof of Theorem 2. Taking
summation of (22) over t = 1, 2, · · · , T , we have

T∑
t=1

V ⋆(s(t)1 )− V π(t)

(s(t)1 )

≤ Tεapp +
Tκ

λ
+

T∑
t=1

Eπ(t)

[R(t)(τ)−R⋆(τ)]− 1

2λ

∑
1≤k<t≤T

Eπ(k)

(R(t)(τ)−R⋆(τ))
2

= Tεapp +
Tκ

λ
+ Es1∼ρ

 T∑
t=1

Eπ(t)

[R(t)(τ)−R⋆(τ)| s1]−
1

2λ

∑
1≤k<t≤T

Eπ(k)
[
(R(t)(τ)−R⋆(τ))

2
∣∣∣ s1]


≤ Tεapp +

2Tκ

λ
+ Es1∼ρ

[
N(s1)λ log

(
1 +

TH

κ

)]
,

where the last inequality follows from Proposition 20 and Cauchy inequality. This is the desired
upper bound.

32



Proof of Proposition 20. In the following proof, we assume s1 ∈ S is fixed. Consider

I := {(h, s, a) : h ∈ [H], (s, a) ∈ Sh(s1; Π)} ⊆ [H]× S ×A.

Note that |I| =
∑H

h=1Nh(s1; Π) = N(s1). By definition, for any policy π, there is a unique
pair (sπh, a

π
h) ∈ Sh(s1; Π), such that under π and starting from s1, we have sh = sπh, ah = aπh

deterministically.

For each t ∈ [T ], we consider the following vectors indexed by I:

ψ(t) :=
[
R(t)

h (s, a)−R⋆
h(s, a)

]
(h,s,a)∈I ∈ RI ,

ϕ(t) :=
[
Pπ(t)

(sh = s, ah = a|s1)
]
(h,s,a)∈I

=

H∑
h=1

e
(h,sπ

(t)

h ,aπ(t)

h )
∈ RI .

With this definition, it holds that for any k, t ∈ [T ],

Eπ(k)

[R(t)(τ)−R⋆(τ)| s1] =
H∑

h=1

[
R(t)(sπ

(k)

h , aπ
(k)

h )−R⋆(sπ
(k)

h , aπ
(k)

h )
]
= ⟨ϕ(k), ψ(t)⟩.

Therefore, we apply the elliptical potential argument (Lattimore and Szepesvári, 2020). Let Vt :=∑
k<t ϕ

(k)(ϕ(k))
⊤
+BI. Then it holds that

T∑
t=1

|⟨ϕ(t), ψ(t)⟩| ≤
T∑

t=1

min{∥ϕ(t)∥V −1
t

, 1} ·max{∥ψ(t)∥Vt
, 1}

≤

√√√√ T∑
t=1

min{∥ϕ(t)∥2V −1
t

, 1} ·

√√√√ T∑
t=1

max{∥ψ(t)∥2Vt
, 1}.

Note that
T∑

t=1

max{∥ψ(t)∥2Vt
, 1} ≤

T∑
t=1

[
1 +B ∥ψ(t)∥2 +

t−1∑
k=1

⟨ϕ(k), ψ(t)⟩2
]

≤ T (1 + 4B|I|) +
∑

1≤k<t≤T

Eπ(k)
[
(R(t)(τ)−R⋆(τ))

2
∣∣∣ s1] ,

and by Lattimore and Szepesvári (2020), we have
T∑

t=1

min{∥ϕ(t)∥2V −1
t

, 1} ≤ 2|I| log
(
1 +

TH

|I|B

)
.

Combining the inequalities above and rescale B ← B
4|I| completes the proof.

E Proofs from Section 4
We present the full description of our algorithm or preference-based RL as follows.

E.1 Proof of Theorem 3
For each t ∈ [T ], we write D(t) to be the dataset maintained by Algorithm 1 at the end of the tth
iteration, i.e.,

D(t) = {(τ (k,h,+), τ (k,h,−), y(k,h))}k≤t,h∈[H].

Note that for each t ∈ [T ], h ∈ [H], we have π(t,h,−) = πref . Therefore, for each R ∈ R, we define
V ref
R := Eπref [R(τ)] and recall that

V̂ ref
D,R :=

1

|D|
∑

(τ+,τ−,y)∈D

R(τ−).

The following lemma follows from the standard uniform convergence rate with Hoeffding’s inequality
and the union bound.

33



Algorithm 3 Outcome-Based Exploration for Preference-based RL
input: Function class F , parameter λ > 0, reference policy πref .
initialize: D ← ∅.

1: for t = 1, 2, . . . , T do
2: Compute the optimistic estimates through (12):

(f (t), R(t)) = max
f∈F,R∈R

λ
[
f1(s1)− V̂ ref

D,R

]
− LBE

D (f ;R)− LPbRM
D (R),

3: Select policy π(t) ← πf(t) .
4: for h = 1, 2, · · · , H do
5: Execute π(t) ◦h πref for two episode and obtain two trajectories (τ (t,h,+), τ (t,h,−)) and

preference feedback y(t,h).
6:
7: Update dataset: D ← D ∪ {(τ (t,h,+), τ (t,h,−), y(t,h))}.
8: end for
9: end for

10: Output π̂ = Unif(π(1:T )).

Lemma 21. Let δ ∈ (0, 1), ρ ≥ 0. Suppose that Assumption 1 and Assumption 2 holds. Then with
probability at least 1− δ, for all t ∈ [T ], R ∈ R, it holds that∣∣∣V̂ ref

D(t),R − V
ref
R

∣∣∣ ≤√ log(2TN(ρ)/δ)

t
+Hρ.

We summarize the uniform concentration results for the loss LBE
D(t) and LPbRM

D(t) as follows. The proof
is analogous to Proposition 11 and is provided in Appendix E.2.

Proposition 22. Let δ ∈ (0, 1), ρ ≥ 0. Suppose that Assumption 1 and Assumption 2 holds. Then
with probability at least 1− δ, for all t ∈ [T ], f ∈ F , R ∈ R, it holds that∣∣∣V̂ ref

D(t),R − V
ref
R

∣∣∣ ≤√ κ

tH
,

∑
k≤t

H∑
h=1

Eπ(k,h,+),π(k,h,−)([
R(τ+)−R(τ−)

]
−
[
R⋆(τ+)−R⋆(τ−)

])2 ≤ Cβ

[
LPbRM
D(t) (R)− LPbRM

D(t) (R♯)
]
+ CβHκ,

∑
k≤t

H∑
h=1

Eπ(k)

(fh(sh, ah)− [TR,hfh+1](sh, ah))
2 ≤ 2

[
LBE
D(t)(f ;R)− LBE

D(t)(Q
♯;R♯)

]
+Hκ,

where Cβ = 4e2β

β2 ,

κ = C
(
logN(ρ) + log(TH/δ) + TH2(β + 1)(ε2app + ρ)

)
,

and C > 0 is an absolute constant.

In the following, we condition on the success event of Proposition 22. Note that π(t,h,−) ≡ πref , and
hence Proposition 22 implies that for all R ∈ R, t ∈ [T ],

∑
k≤t

H∑
h=1

Eπ(k)◦hπref
(
[R(τ)−R⋆(τ)]−

[
V ref
R − V ref

R⋆

])2 ≤ Cβ

[
LPbRM
D(t) (R)− LPbRM

D(t) (R♯)
]
+ CβHκ.

Therefore, for any reward function R, we define R̃ as R̃1(s, a) = R1(s, a)− V ref
R and R̃h(s, a) =

Rh(s, a) for h > 1. Then it is clear that R̃(τ) = R(τ)− V ref
R , and for all R ∈ R, t ∈ [T ], we have

∑
k≤t

H∑
h=1

Eπ(k)◦hπref

(
R̃(τ)− R̃⋆(τ)

)2
≤ Cβ

[
LPbRM
D(t) (R)− LPbRM

D(t) (R♯)
]
+ CβHκ. (23)

34



Performance difference decomposition. In this setting, we re-write (17) as follows:

f (t)

1 (s1)− V π(t)

(s1) =

H∑
h=1

Eπ(t)[
f (t)

h (sh, ah)− [TR(t)f (t)

h+1](sh, ah)
]

+ Eπ(t)

[
H∑

h=1

R(t)

h (sh, ah)−
H∑

h=1

R⋆
h(sh, ah)

]

=

H∑
h=1

Eπ(t)

e(t)h (sh, ah) + Eπ(t)
[
R̃(t)(τ)− R̃⋆(τ)

]
+ V ref

R(t) − V ref
R⋆ ,

where we recall that we denote e(t)h := f (t)

h − TR(t)f
(t)

h+1. Therefore, we re-organize the equality as

[
f (t)

1 (s1)− V ref
R(t)

]
−
[
V π(t)

(s1)− V ref
R⋆

]
= Eπ(t)

[
R̃(t)(τ)− R̃⋆(τ)

]
+

H∑
h=1

Eπ(t)

e(t)h (sh, ah).

(24)

With the above preparation, we present the proof of Theorem 3, which closely follows the proof of
Theorem 1 in Appendix C.1.

Proof of Theorem 3. By definition, for each t ∈ [T ],

(f (t), R(t)) = max
f∈F,R∈R

λ
[
f1(s1)− V̂ ref

D(t−1),R

]
− LBE

D(t−1)(f ;R)− LPbRM
D(t−1)(R).

Therefore, using Q♯ ∈ F , R♯ ∈ R, we have[
f (t)

1 (s1)− V̂ ref
D(t−1),R(t)

]
−
[
V ♯
1 (s1)− V̂ ref

D(t−1),R♯

]
≤ −

LBE
D(t−1)(f

(t);R(t))− LBE
D(t−1)(Q

♯;R♯)

λ
−
LPbRM
D(t−1)(R

(t))− LPbRM
D(t−1)(R

♯)

λ
.

Using the decomposition (24), Proposition 22, and the fact that
∣∣∣V ♯

1 (s1)− V ⋆
1 (s1)

∣∣∣ ≤ εapp,∣∣R♯(τ)−R⋆(τ)
∣∣ ≤ Hεapp, we have

V ⋆
1 (s1)− V π(t)

(s1) ≤ (H + 1)εapp +
∣∣∣V ref

R(t) − V̂ ref
D(t−1),R(t)

∣∣∣+ ∣∣∣V ref
R♯ − V̂ ref

D(t−1),R♯

∣∣∣+ 2Hκ

λ

+

H∑
h=1

(
Eπ(t)[

e(t)h (sh, ah)
]
− 1

Cβλ

∑
k<t

Eπ(k)

e(t)h (sh, ah)
2

)

+ Eπ(t)
[
R̃(t)(τ)− R̃⋆(τ)

]
− 1

2λ

∑
k<t

H∑
h=1

Eπ(k)◦hπref

(
R̃(t)(τ)− R̃⋆(τ)

)2
.

(25)

Taking summation over t = 1, 2, · · · , T and apply Proposition 12, Proposition 13, and Lemma 21
yields
T∑

t=1

V ⋆
1 (s1)− V π(t)

(s1) ≤ O(1) ·
[
H(εapp + ρ) +

√
Tκ+

THκ

λ
+ CβλHCcov log

(
1 +

CcovT

κ

)]
.

This is the desired upper bound.

E.2 Proof of Proposition 22
The inequality involving LBE

D(t) is implied by Proposition 11 and proven in Appendix C.3. In the
following, we only need to prove the inequality involving LPbRM

D(t) by invoking Proposition 8.

Consider the class Θ = R∪ {R⋆}, X = (S ×A)H × (S ×A)H , and Y = {0, 1}. For any R ∈ Θ,
we define

PR(1|τ+, τ−) =
exp (βR(τ+))

exp (βR(τ+)) + exp (βR(τ−))
, PR(0|τ+, τ−) =

exp (βR(τ−))

exp (βR(τ+)) + exp (βR(τ−))
,

35



following Definition 3.

Recall that D(t−1) = {(τ (k,h,+), τ (k,h,−), y(k,h))}k<t,h∈[H] is the history up to the t-th iteration. For
simplicity, we denote x(t,h) := (τ (t,h,+), τ (t,h,−)). Note that (x(t,1), y(t,1)), · · · , (x(t,H), y(t,H)). Then
it is clear that for all t ∈ [T ], h ∈ [H],

P(y(t,h)|x(t,h),D(t−1)) = PR⋆(y(t,h)|x(t,h)),

and it also holds that

L(R(τ+)−R(τ−), y) = − logPR(y|τ+, τ−), ∀y ∈ {0, 1}.
Further, noting that Nlog(Θ, 2Hβρ) ≤ N(R, ρ) + 1. Therefore, applying Proposition 8 gives the
following result: with probability at least 1− δ

2 , for any R ∈ R, t ∈ [T ],
t∑

k=1

H∑
h=1

Eπ(k,h,+),π(k,h,−)

D2
H

(
PR(·|τ+, τ−), PR⋆(·|τ+, τ−)

)
≤ 1

2

∑
(τ+,τ−,y)

[
L(R(τ+)−R(τ−), y)− L(R⋆(τ+)−R⋆(τ−), y)

]
+ log(N(R, Hρ) + 1) + log(2/δ) + TH3βρ

≤ 1

2

[
LPbRM
D(t) (R)− LPbRM

D(t) (R♯)
]
+

1

2
Hκ,

where the second inequality uses the fact that
∣∣R♯(τ)−R⋆(τ)

∣∣ ≤ Hεapp. Finally, note that
D2

H(Bern(p),Bern(q)) ≥ 1
2 (p− q)

2 and∣∣∣∣ 1

eβw + 1
− 1

eβw′ + 1

∣∣∣∣ ≥ β

2eβ
|w − w′| , ∀w,w′ ∈ [−1, 1].

Therefore, using the definition of PR completes the proof.

F Proofs of Lower Bounds
F.1 Hard Case of Learning with Fitted Reward Models
As mentioned in Section 3.1, in Algorithm 1 the learner has to optimize over the reward class and
value function class jointly. In the following, we argue that if the learner first learns a fitted reward
model in the reward class, then optimizes the value function with the fitted rewards, the output
policies at each iteration never converge to the optimal policy.

In detail, we consider algorithms in the form of Algorithm 4, where the learner fits the reward model
R(t) at iteration t first, then the learner calls algorithm alg, which takes per-step rewards data as
input and outputs a policy πt at each iteration. To align with the structure of Algorithm 1, we take
alg to be a single iteration of the GOLF algorithm in Jin et al. (2021a), i.e. π(t) = πf(t) where
f (t) = argmaxf∈F(t) f(x1, πf (x1)). Here the confidence set F (t) is defined as

F (t) =
{
f ∈ F : LBE

D(t−1)(f ; R̂
(t−1)) ≤ β

}
with LBE

D defined in Eq. (5).

Then we have the following proposition, which shows that this approach outputs suboptimal policies
at every iteration in some special hard cases.

Proposition 23. Consider Algorithm 4 with alg to a single iteration of the GOLF algorithm. After
running T iterations, the learner averages over all policies to output a policy. There exists an MDP
class that realizes the ground truth MDP, such that the above algorithm outputs a policy which is at
least 0.01-suboptimal.

Proof of Proposition 23. We consider the following class of two-layer MDP, where S1 = {s1},
S2 = {s2}, and the action space to be A = {a1, a2}. The transition models T are identical across
the class, and have the following form:

T(s2 | s1, ai) = 1, ∀i ∈ {1, 2}.

36



Algorithm 4 RL with fitted reward models
input: Algorithm alg, reward regression oracle O.

1: Initialize D(0)

h = ∅ for every h ∈ [H]
2: for t = 1, 2, . . . , T do
3: Feed D(t−1) to alg and receive π(t) from alg
4: Execute π(t) and receive (τ (t), r(t)), where τ (t) = (s(t)1 , a

(t)

1 , · · · , s
(t)

H , a
(t)

H )
5: Receive the fitted reward function from O:

R̂(t) = min
R∈R

t∑
k=1

(R(τ (k))− r(k))2.

6: Let r̂(t)

h = R̂(t)

h (s(t)h , a
(t)

h ) for each h ∈ [H].
7: Let D(t) = D(t−1) ∪ {(s(t)1 , a

(t)

1 , r̂
(t)

1 , · · · , s(t)H , a
(t)

H , r̂
(t)

H )}.
8: end for

The reward class is defined asR = {R1, R2}, where

R1(s1, a1) = R1(s1, a2) = 0.20, R1(s2, a1) = 0.20, R1(s2, a2) = 0.19,

and R2(s1, a1) = R2(s1, a2) = 0.00, R2(s2, a1) = 0.38, R2(s2, a2) = 0.39.

The Q-function class Q is defined as Q = {Q1, Q2, Q3, Q4}, which takes value in Table 1 respec-
tively. Notice that in all possible reward models and Q-functions, the values at (s1, a1) and at (s1, a2)

Table 1: Value of Q1, Q2, Q3, Q4

(s1, a1) (s1, a2) (s2, a1) (s2, a2)
Q1 0.40 0.40 0.20 0.19
Q2 0.20 0.20 0.20 0.19
Q3 0.59 0.59 0.38 0.39
Q4 0.39 0.39 0.38 0.39

are the same. In the following, when without ambiguity we simply use R(s1) to denote R(s1, a1)
and R(s1, a2), and use Q(s1) to denote Q(s1, a1) and Q(s2, a2).

We further suppose the ground truth model reward satisfies R = R1, then we can verify that the
optimal Q-function is Q1. It is easy to verify that sets Q andR satisfy the completeness assumption.
Hence, sets Q and R satisfy the realizability assumption Assumption 1 and the completeness
assumption Assumption 2 with G = Q.

To see why this is a hard-case for GOLF type algorithms, we first notice that for any trajectory
τ = (s1, ã1, s2, ã2) with outcome reward r = R1(s1, ã1) +R1(s2, ã2) collected by the algorithm,
we always have

r = R2(s1) +R2(s2, ã2).

Hence as long as D does not contain state-action pair (s2, a1), when fitting the reward function using
the following ERM oracle:

R = argmin
R∈R

∑
(τ,r)∈D

(r(τ)− r)2,

the reward model R2 always achieves the minimum. In the worst case, we assume the fitted reward
models encountered by the learner at such rounds are always R2.

In the following, we verify that by running the GOLF algorithm, the learner will not encounter the
state-action pair (s2, a1) at any round. We notice that the optimal policies of Q3 and Q4 all take a2
at state s2, and also that

Q3(s1) ≥ Q1(s1) and Q3(s1) ≥ Q2(s1).

Hence, to verify that the algorithm never chooses a1 at state s2, we only need to verify that if either
Q1 or Q2 belongs to the confidence set, then Q3 also belongs to the confidence set.

37



When the learner collects a new trajectory, two new pieces of data will be added to the dataset D. If
the trajectory does not pass through the state-action pair (s2, a1), these two pieces of data will be in
the following form:

(s1, a1, R
2(s1)), (s2, a2, R

2(s2, a2)) or (s1, a2, R
2(s1)), (s2, a2, R

2(s2, a2)).

No matter which one of these two, we have the following inequality for the sum of squared Bellman
error across these two pieces of data

E1(Q1)2 + E2(Q1)2 = 0.202 + 0.202 ≥ 0.202 = E1(Q3)2 + E2(Q3)2,

E1(Q2)2 + E2(Q2)2 = 0.012 + 0.282 ≥ 0.202 = E1(Q3)2 + E2(Q3)2.

According to the construction of the confidence set, if either Q1 or Q2 belongs to the confidence set,
then Q3 belongs to the confidence set as well.

Therefore, no matter how many rounds the algorithm runs, the optimistic policy always takes action
a2 at state s2. Hence the average policy π̂ also takes a2 at s2, which implies that

J(π⋆)− J(π̂) ≥ 0.01.

F.2 Proof of Theorem 4
Fix a parameter ε ∈ (0, 1) and N ≤

(
1
2ε

)d/2
. Then, by the standard packing argument over sphere

(see e.g., Li et al., 2022), there exists a set Θ = {θ1, · · · , θN} ⊆ Sd−1 such that

∥θi − θj∥ ≥
√
2ε, ∀i ̸= j.

This implies ⟨θi, θj⟩ ≤ 1− ε for any i ̸= j.

Construction. In the following, we set b = 1− ε, and construct state space S as

S = S1 ⊔ S2, S1 = {s1}, S2 = Θ,

and let action space A = Θ. The initial state is always s1, and we define the transition T as

T(s2 = θ | s1, a = θ) = 1, ∀θ ∈ Θ,

i.e., taking action a = θ at s1 transits to s2 = θ deterministically.

Reward functions. For any v ∈ Θ, we define the reward model Rv as follows:

Rv
1(s, a) =

1

3
[ReLU(⟨a, v⟩ − b) + ⟨a, v⟩+ 1] ∈ [0, 1], ∀a ∈ Θ,

Rv
2(s, a) =

1

3
[1− ⟨s, v⟩] ∈ [0, 1], ∀s ∈ Θ.

Note that we can write g1(x) = 1
3 [ReLU(x− b) + x+ 1], g2(x) = 1−x

3 , and then g2 is a linear
function, and

1

3
|x− y| ≤ |g1(x)− g2(y)| ≤

2

3
|x− y| , ∀x, y ∈ R.

Hence, g1 and g2 are (well-conditioned) generalized linear functions, and hence Rv
1 and Rv

2 are both
(well-conditioned) d-dimensional generalized linear functions.

We let Mv be the MDP with transition T and mean reward function Rv , andM = {Mv : v ∈ Θ} be
the corresponding class of MDPs. We next show thatM can be learned with polynomial process-
based samples, but cannot be learned with polynomial outcome-based samples.

Exponential Lower Bound for Outcome-Based Setting. When executing a policy π in MDP
Mv, we have a1 = π1(s1), s2 = a1, and a2 = π2(s2), and the data (τθ,θ′ , R) observed are in the
following form of trajectory together outcome-based rewards:

τπ = (s1, a1, s2, a2), R|τπ ∼ Bern

(
1

3
ReLU(⟨a1, v⟩ − b) +

2

3

)
,

38



where τπ is a deterministic function of π. In the following, we denote aπ = π1(s1), and then
E[R|π] = 1

4ReLU(⟨aπ, v⟩ − b) + 1
2 . Further, under Mv ,

J(π) =
2

3
+
ε

3
1{aπ = v},

and in particular, J(π⋆) = 2
3 + ε

3 . Therefore, for any policy π, it is (ε/3)-optimal under Mv only
when aπ = v. Hence, we can apply the standard lower bound argument for multi-arm bandits (see
e.g., Lattimore and Szepesvári, 2020) to show that: If there any T -round algorithm that returns
an (ε/3)-optimal policy with probability at least 3

4 for any MDP Mv ∈ M, then it must hold that
T ≥ cNε2 (where c > 0 is an absolute constant). Setting ε = 1

3 completes the proof of the lower
bound.

Polynomial Upper Bound with Process-Based Samples. Notice that for fixed v ∈ Θ, under
Mv ∈M, we have

J(π⋆)− J(π) = ε

3
[1− 1{aπ = v}] = 1

3
[⟨v, v⟩ − ⟨aπ, v⟩].

Thus, for any θ ∈ Θ, we define πθ as πθ
1(s) = πθ

2(s) = θ for ∀s ∈ S. Then it holds that under Mv ,

E
[
1

3
−R2

∣∣∣∣πθ

]
=

1

3
⟨θ, v⟩.

Therefore, given access to process reward feedback, we can reduce learningM to learning a class of
linear bandits. Hence, for any α > 0, with process reward feedback, there are algorithms that returns
an α-optimal policy with high probability, using T ≤ Õ

(
d2/α2

)
episodes with process rewards (see

e.g., Dani et al., 2008).

39


	Introduction
	Preliminaries
	Sample-Efficient Online RL with Outcome Reward
	Main Result
	A Simpler Algorithm for Deterministic MDPs

	Preference-based Reinforcement Learning
	Lower Bounds
	Conclusion
	More Related Works
	Technical tools
	Uniform convergence with square loss
	Uniform convergence with log-loss

	Missing Proofs in Section 3.1
	Proof of Theorem 1
	Proof of Proposition 12 and Proposition 13
	Proof of Proposition 11

	Proof of Theorem 2
	Proofs from Section 4
	Proof of Theorem 3
	Proof of Proposition 22

	Proofs of Lower Bounds
	Hard Case of Learning with Fitted Reward Models
	Proof of Theorem 4


