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Abstract
We derive an (almost) guaranteed upper bound on
the error of deep neural networks under distribu-
tion shift using unlabeled test data. Prior methods
either give bounds that are vacuous in practice or
give estimates that are accurate on average but
heavily underestimate error for a sizeable fraction
of shifts. Our bound requires a simple, intuitive
condition which is well justified by prior empiri-
cal works and holds in practice effectively 100%
of the time. The bound is inspired by H∆H-
divergence but is easier to evaluate and substan-
tially tighter, consistently providing non-vacuous
guarantees. Estimating the bound requires opti-
mizing one multiclass classifier to disagree with
another, for which some prior works have used
sub-optimal proxy losses; we devise a “disagree-
ment loss” which is theoretically justified and per-
forms better in practice. Across a wide range of
benchmarks, our method gives valid error bounds
while achieving average accuracy comparable to
competitive estimation baselines.

1. Introduction
When deploying a model, it is important to be confident
in how it will perform under inevitable distribution shift.
Standard methods for achieving this include data depen-
dent uniform convergence bounds (Mansour et al., 2009;
Ben-David et al., 2006) (typically vacuous in practice) or
assuming a precise model of how the distribution can shift
(Rahimian and Mehrotra, 2019). Unfortunately, it is difficult
or impossible to determine how severely these assumptions
are violated by real data (“all models are wrong”), so practi-
tioners usually cannot trust such bounds with confidence.

To better estimate test performance in the wild, some re-
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Figure 1. Our bound vs. three prior methods for estimation
across a wide variety of shift benchmarks and training methods.
Prior methods are accurate on average, but it is impossible to know
if a given prediction is reliable. Worse, they usually overestimate
accuracy, with the gap growing as test accuracy decreases—this is
precisely when a reliable, conservative estimate is most desirable.
Instead, DIS2 maximizes the disagreement discrepancy to give a
reliable error bound which holds effectively 100% of the time.

cent work instead tries to directly predict accuracy of neural
networks using unlabeled data from the test distribution of
interest (Garg et al., 2022; Baek et al., 2022; Lu et al., 2023).
While these methods predict test performance surprisingly
well, they lack pointwise trustworthiness and verifiability:
their estimates are good on average, but they provide no
signal of the quality of any individual prediction (here, each
point is a distribution, for which a method predicts a classi-
fier’s average accuracy). Because of the opaque conditions
under which these methods work, it is also difficult to antic-
ipate their failure cases—indeed, it is reasonably common
for them to substantially overestimate test accuracy for a
particular shift, which is problematic when optimistic de-
ployment is costly or catastrophic. Worse yet, we find that
this gap grows with test error (Figure 1), making these pre-
dictions least reliable precisely when their reliability is most
important. Although it is clearly impossible to guarantee
upper bounds on test error for all shifts, there is still
potential for error bounds that are intuitive and reasonably
trustworthy.

In this work, we develop a method for (almost) provably
bounding test error of classifiers under distribution shift
using unlabeled test points. Our bound’s only requirement
is a simple, intuitive, condition which describes the ability
of a hypothesis class to achieve small loss on a particular
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objective defined over the (unlabeled) train and test dis-
tributions. Inspired by H∆H-divergence (Mansour et al.,
2009; Ben-David et al., 2010), our method requires training
a critic to maximize agreement with the classifier of interest
on the source distribution while simultaneously maximizing
disagreement on the target distribution; we refer to this joint
objective as the disagreement discrepancy, and so we name
the method DIS2. We optimize this discrepancy over linear
classifiers using deep features—or linear functions thereof—
finetuned on only the training set. Recent evidence suggests
that such representations are sufficient for highly expres-
sive classifiers even under large distribution shift (Rosenfeld
et al., 2022). Experimentally, we find that our bound is
valid effectively 100% of the time,1 consistently giving non-
trivial lower bounds on test accuracy which are reasonably
comparable to competitive baselines.

Additionally, we empirically show that it is even possible to
approximately test this bound’s likelihood of being satisfied
with only unlabeled data: the optimization process itself
provides useful information about the bound’s validity, and
we use this to construct a score which linearly correlates
with the tightness of the bound. This score can then be
used to relax the original bound into a sequence of succes-
sively tighter-yet-less-conservative estimates, interpolating
between robustness and accuracy and allowing a user to
make estimates according to their specific risk tolerance.

While maximizing agreement is statistically well under-
stood, our method also calls for maximizing disagreement
on the target distribution. This is not so straightforward in
the multiclass setting, and we observe that prior works use
unsuitable losses which do not correspond to minimizing
the 0-1 loss of interest and are non-convex (or even con-
cave) in the model logits (Chuang et al., 2020; Pagliardini
et al., 2023). To rectify this, we derive a new “disagreement
loss” which serves as an effective proxy loss for maximiz-
ing multiclass disagreement. Experimentally, we find that
minimizing this loss results in lower risk (that is, higher dis-
agreement) compared to prior methods, and we believe it can
serve as a useful drop-in replacement for any future methods
which require maximizing multiclass disagreement.

Experiments across numerous vision datasets demonstrate
the effectiveness of our bound. Though DIS2 is competi-
tive with prior methods for error estimation, we emphasize
that our focus is not on improving raw predictive ac-
curacy—rather, we hope to obtain reliable (i.e., correct),
reasonably tight bounds on the test error of a given clas-
sifier under distribution shift. In particular, while existing
methods tend to severely overestimate accuracy as the true

1The few violations are expected a priori, have an obvious
explanation, and only occur for a specific type of learned represen-
tation. We defer a more detailed discussion of this until after we
present the bound.

accuracy drops, our bound maintains its validity while re-
maining non-vacuous, even for drops in accuracy as large
as 70%. We also experiment with unsupervised domain
adaptation methods that use unlabeled target data and show
that our observations continue to hold.

2. Related Work
Estimating test error with unlabeled data. There are
several methods that predict the error of a classifier under
distribution shift with unlabeled test data: (i) methods that
explicitly predict the correctness of the model on individ-
ual unlabeled points (Deng and Zheng, 2021; Deng et al.,
2021; Chen et al., 2021a); and (ii) methods that directly
estimate the overall error without making a pointwise pre-
diction (Chen et al., 2021b; Guillory et al., 2021; Chuang
et al., 2020; Garg et al., 2022; Baek et al., 2022). Many of
these methods do not provide any sort of guarantee. Among
those that do, it is common to require calibration on the
target domain (Guillory et al., 2021). However, evaluat-
ing this property is impossible without test labels. Further,
these methods often yield poor estimates because models
calibrated on a source domain are not typically calibrated
on new, unseen domains (Ovadia et al., 2019). Addition-
ally, (Deng and Zheng, 2021; Guillory et al., 2021) require
a subset of labeled target domains to learn a regression
function—but this requires significant a priori knowledge
about the nature of shift which, in practice, is usually not
available before a model is deployed in the wild.

Closest to our work is (Chuang et al., 2020), where the
authors use domain-invariant predictors as a proxy for un-
known target labels. However, there are several crucial
differences. First, like other works, their method only esti-
mates the target accuracy—the error bounds they derive are
not tractably computable. Second, their method relies on
multiple approximations, numerous hyperparameters, and
their algorithm is computationally demanding; as a result,
it does not scale to modern deep networks. Finally, they
suggest minimizing the (concave) negative cross-entropy
loss to maximize disagreement; we propose a more suitable
replacement which performs much better in practice.

Uniform convergence bounds. Our bound is inspired by
classic analyses using H- and H∆H-divergence (Mansour
et al., 2009; Ben-David et al., 2006; 2010). These provide
error bounds via a complexity measure that is both data- and
hypothesis-class-dependent. Unfortunately, such bounds are
often intractable to evaluate and are usually vacuous in real
world settings. See Section 3.1 for more discussion.

3. Deriving an (Almost) Provable Error Bound
Notation. Let S, T denote the source and target (train
and test) distributions, respectively, over labeled inputs
(x, y) ∈ X × Y , and let Ŝ, T̂ denote sets of samples from
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them with cardinalities nS and nT (they also denote the cor-
responding empirical distributions). Recall that we observe
only the covariates x without the label y when a sample
is drawn from T . We consider classifiers h : X → R|Y|

which output a vector of logits, and we let ĥ denote the
particular classifier whose error we aim to bound. Gener-
ally, we use H to denote a hypothesis class of such classi-
fiers. Occasionally, where clear from context, we use h(x)
to refer to the argmax logit, i.e. the predicted class. We
treat these classifiers as deterministic throughout, though
our analysis can easily be extended to probabilistic clas-
sifiers and labels. For a distribution D on X × Y , let
ϵD(h, h

′) := ED[1{argmaxy h(x)y ̸= argmaxy h
′(x)y}]

denote the one-hot disagreement between classifiers h and
h′ on D. Let y∗ represent the true labeling function such
that y∗(x) = y for all samples (x, y); with some abuse of
notation, we write ϵD(h) to mean ϵD(h, y

∗), i.e. the 0-1
error of classifier h on distribution D.

The bound we derive in this work is extremely simple and
relies on one new concept:

Definition 3.1. The disagreement discrepancy ∆(h, h′) is
the disagreement between h and h′ on T minus their dis-
agreement on S: ∆(h, h′) := ϵT (h, h

′)− ϵS(h, h
′).

We leave the dependence on S, T implicit. Note that this
term is symmetric and signed—it can be negative. With this
definition, we now have the following lemma:

Lemma 3.2. For any h, ϵT (h) = ϵS(h) + ∆(h, y∗).

Proof. By definition, ϵT (h) = ϵS(h)+(ϵT (h)− ϵS(h)) =
ϵS(h) + ∆(h, y∗).

We cannot directly use Lemma 3.2 to estimate ϵT (ĥ) be-
cause the second term is unknown. However, observe that
y∗ is fixed. That is, while a learned ĥ will depend on y∗—
and therefore ∆(ĥ, y∗) may be large under large distribution
shift—y∗ is not chosen to maximize ∆(ĥ, y∗) in response
to the ĥ we have learned. This means that for a suffi-
ciently expressive hypothesis class H, it should be possible
to identify an alternative labeling function h′ ∈ H for which
∆(ĥ, h′) ≥ ∆(ĥ, y∗) (we refer to such h′ as the critic). In
other words, we should be able to find an h′ ∈ H which,
if it were the true labeling function, would imply at least
as large of a drop in accuracy from train to test as occurs
in reality. This key observation serves as the basis for our
bound, and we discuss it in greater detail in Section 3.1.

In this work we consider the class H of linear critics, with
X defined as source-finetuned deep neural representations
or the resulting logits output by ĥ. Prior work provides
strong evidence that this class has surprising capacity under
distribution shift, including the possibility that functions
very similar to y∗ lie in H (Kang et al., 2020; Rosenfeld

et al., 2022; Kirichenko et al., 2022). We formalize this
intuition with the following assumption:

Assumption 3.3. Define h∗ := argmaxh′∈H ∆(ĥ, h′). We
assume ∆(ĥ, y∗) ≤ ∆(ĥ, h∗).

Note that this statement is guaranteed for y∗ ∈ H; it only
becomes meaningful when considering restricted H, as we
do here. Note also that this assumption is made specifically
for ĥ, i.e. on a per-classifier basis. This is important be-
cause while the above may not hold for every classifier ĥ,
it need only hold for the classifiers whose error we would
hope to bound, which is in practice a very small subset of
classifiers (such as those which can be found by approx-
imately minimizing the empirical training risk via SGD).
From Lemma 3.2, we immediately have the following result:

Proposition 3.4. Under Assumption 3.3, ϵT (ĥ) ≤ ϵS(ĥ) +

∆(ĥ, h∗).

Unfortunately, identifying the optimal critic h∗ is intractable,
meaning this bound is still not estimable—we present it as
an intermediate result for clarity of presentation. To derive
the practical bound we report in our experiments, we need
one additional step. In Section 4, we derive a “disagreement
loss” which we use to approximately maximize the empiri-
cal disagreement discrepancy ∆̂(ĥ, ·) = ϵT̂ (ĥ, ·)− ϵŜ(ĥ, ·).
Relying on this loss, we instead make the assumption:

Assumption 3.5. Suppose we identify the critic h′ ∈ H
which maximizes a concave surrogate to the empirical dis-
agreement discrepancy. We assume ∆(ĥ, y∗) ≤ ∆(ĥ, h′).

This assumption is slightly stronger than Assumption 3.3—
in particular, Assumption 3.3 implies with high probability
a weaker version of Assumption 3.5 with additional terms
that decrease with increasing sample size and a tighter proxy
loss.2 Thus, the difference in strength between these two
assumptions shrinks as the number of available samples
grows and as the quality of our surrogate objective improves.
Ultimately, our bound holds without these terms, implying
that the stronger assumption is reasonable in practice. We
can now present our main result:

Theorem 3.6 (Main Bound). Under Assumption 3.5, with
probability ≥ 1− δ,

ϵT (ĥ) ≤ ϵŜ(ĥ) + ∆̂(ĥ, h′) +

√
(nS + 4nT ) log 1/δ

2nSnT
.

Proof. Assumption 3.5 gives ϵT (ĥ) ≤ ϵS(ĥ)+∆(ĥ, h′) =

ϵS(ĥ, y
∗) + ϵT (ĥ, h

′)− ϵS(ĥ, h
′). We now define the ran-

dom variables for Ŝ ∪ T̂ :
2Roughly, Assumption 3.3 implies ∆(ĥ, y∗) ≤ ∆(ĥ, h′) +

O
(√

log 1/δ
min(nS ,nT )

)
+ γ, where γ is a data-dependent measure of

how tightly the surrogate loss bounds the 0-1 loss in expectation.
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ri =


1/nS, h′(xi) = ĥ(xi) ̸= yi, xi ∈ Ŝ
−1/nS, h′(xi) ̸= ĥ(xi) = yi, xi ∈ Ŝ
1/nT , ĥ(xi) ̸= h′(xi), xi ∈ T̂ ,

0, otherwise.

Noting that the expectation of their sum is exactly the above
three terms, we apply Hoeffding’s inequality: the probability
that the expectation exceeds their sum by t is no more than
exp

(
− 2t2

nS(2/nS)2+nT (1/nT )2

)
. Now simply solve for t.

The core message behind Theorem 3.6 is that if there is a
simple (i.e., linear) critic h′ with large discrepancy, the true
y∗ could plausibly be this function, implying ĥ could have
high error—likewise, if no simple y∗ could hypothetically
result in high error, we should expect low error.
Remark 3.7. Bounding error under distribution shift is fun-
damentally impossible without assumptions. Prior works
which estimate accuracy using unlabeled data rely on ex-
periments, suggesting that whatever condition allows their
method to work holds in a variety of settings (Garg et al.,
2022; Baek et al., 2022; Lu et al., 2023; Guillory et al.,
2021); using these methods is equivalent to implicitly as-
suming that it will hold for future shifts. Understanding
these conditions is thus crucial for assessing in a given sce-
nario whether they can be expected to be satisfied.3 It is
therefore of great practical value that Assumption 3.5 is sim-
ple and intuitive: below we demonstrate that this simplicity
allows us to identify potential failure cases a priori.

3.1. How Does DIS2 Improve over H∆H-Divergence?

To verifiably bound a classifier’s error under distribution
shift, one must develop a meaningful notion of distance
between distributions. One early attempt at this was H-
divergence (Ben-David et al., 2006; Mansour et al., 2009)
which measures the ability of a binary hypothesis class to
discriminate between S and T in feature space. This was
later refined to H∆H-divergence (Ben-David et al., 2010),
which is equal to H-divergence where the discriminator
class comprises all exclusive-ors between pairs of functions
from the original class H. Though this measure can in
principle provide non-vacuous bounds, it usually does not,
and evaluating it is intractable because of a maximization
over all pairs of hypotheses. Furthermore, these bounds
are overly conservative even for simple function classes and
distribution shifts because they rely on uniform convergence.
In practice, we do not care about bounding the error of all
classifiers in H—we only care to bound the error of ĥ. This
is a clear advantage of DIS2 over H∆H.

3Whether and when to trust a black-box estimate that is con-
sistently accurate in all observed settings is a centuries-old philo-
sophical problem (Hume, 2000) which we do not address here.
Regardless, Figure 1 shows that these estimates are not consis-
tently accurate, making interpretability that much more important.

(a) (b) (c)

Figure 2. The advantage of DIS2 over bounds based on H- and
H∆H-divergence. Consider the task of classifying circles and
squares (triangles are unlabeled). (a): Because h1 and h2 ⊕
h3 perfectly discriminate between S (blue) and T (red), H- and
H∆H-divergence bounds are always vacuous. In contrast, DIS2 is
only vacuous when 0% accuracy is induced by a reasonably likely
ground truth (such as y∗

3 in (c), but not y∗
1 in (b)), and can often

give non-vacuous bounds (such as y∗
2 in (b)).

The true labeling function is rarely worst-case. More
importantly, we observe that one should not expect the dis-
tribution shift to be truly worst case, because the test distri-
bution T and ground truth y∗ are not chosen adversarially
with respect to ĥ. Figure 2 gives a simple demonstration of
this point. Consider the task of learning a linear classifier
to discriminate between squares and circles on the source
distribution S (blue) and then bounding the error of this clas-
sifier on the target distribution T (red), whose true labels are
unknown and are therefore depicted as triangles. Figure 2(a)
demonstrates that both H- and H∆H-divergence achieve
their maximal value of 1, because both h1 and h2 ⊕ h3

perfectly discriminate between S and T . Thus both bounds
would be vacuous.

Now, suppose we were to learn the max-margin ĥ on the
source distribution (Figure 2(b)). It is possible that the true
labels are given by the worst-case boundary as depicted by
y∗1 (pink), thus “flipping” the labels and causing ĥ to have 0
accuracy on T . In this setting, a vacuous bound is correct.
However, this seems rather unlikely to occur in practice—
instead, recent experimental evidence (Kang et al., 2020;
Rosenfeld et al., 2022; Kirichenko et al., 2022) suggests
that the true y∗ will be much simpler. The maximum dis-
agreement discrepancy here would be approximately 0.5,
giving a test accuracy lower bound of 0.5—this is consis-
tent with plausible alternative labeling functions such as
y∗2 (orange). Even if y∗ is not linear, we still expect that
some linear function will induce larger discrepancy; this is
precisely Assumption 3.3. Suppose instead we learn ĥ as
depicted in Figure 2(c). Then a simple ground truth such as
y∗3 (green) is plausible, which would mean ĥ has 0 accuracy
on T . In this case, y∗3 is also a critic with disagreement
discrepancy equal to 1, and so DIS2 would correctly output
an error upper bound of 1.

A setting where DIS2 may be invalid. There is one set-
ting where it should be clear that Assumption 3.5 is less
likely to be satisfied: when the representation we are using
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Figure 3. DIS2 may be invalid when the features are explicitly
learned to violate Assumption 3.5. Domain-adversarial represen-
tation learning algorithms such as DANN (Ganin et al., 2016) and
CDAN (Long et al., 2018) indirectly minimize maxh′∈H ∆(ĥ, h′),
meaning the necessary condition is less likely to be satisfied. Nev-
ertheless, when DIS2 does overestimate accuracy, it almost always
does so by less than prior methods.

is explicitly regularized to keep maxh′∈H ∆(ĥ, h′) small.
This occurs for domain-adversarial representation learning
methods such as DANN (Ganin et al., 2016) and CDAN
(Long et al., 2018), which penalize the ability to discrim-
inate between S and T in feature space. Given a critic
h′ with large disagreement discrepancy, the discrimina-
tor D(x) = 1{argmaxy ĥ(x)y = argmaxy h

′(x)y} will

achieve high accuracy on this task (precisely, 1+∆(ĥ,h′)
2 ). By

contrapositive, enforcing low discriminatory power means
that the max discrepancy must also be small. It follows
that for these methods DIS2 should not be expected to hold
universally, and in practice we see that this is the case (Fig-
ure 3). Nevertheless, when DIS2 does overestimate accuracy,
it does so by significantly less than prior methods.

4. Efficiently Maximizing the Discrepancy

For a classifier ĥ, Theorem 3.6 clearly prescribes how to
bound its error: train a critic h′ to approximately maximize
∆(ĥ, h′), then evaluate ϵŜ(ĥ) and ∆̂(ĥ, h′) using a holdout
set. The difficulty is in identifying the maximizing h′ ∈ H.
We can approximately minimize ϵS(ĥ, h

′) by minimizing
the convex surrogate ℓlog := − 1

log |Y| log softmax(h(x))y
as justified by statistical learning theory, but it is less clear
how to maximize ϵT (ĥ, h

′). A few prior works suggest
proxy losses for multiclass disagreement (Chuang et al.,
2020; Pagliardini et al., 2023). We observe that these losses
are not theoretically justified, as they do not upper bound
the 0-1 disagreement loss we hope to minimize and are non-
convex (or even concave) in the model logits. Indeed, it is
easy to identify simple settings in which minimizing these
losses will result in a degenerate classifier with arbitrarily
small loss but high agreement. Instead, we derive a new
loss which satisfies the above desiderata and thus serves as
a more principled approach to maximizing disagreement.

Definition 4.1. The disagreement logistic loss of a classifier

h on a labeled sample (x, y) is defined as ℓdis(h(x), y) :=
1

log 2 log
(
1 + exp

(
h(x)y − 1

|Y|−1

∑
ŷ ̸=y h(x)ŷ

))
.

Fact 4.2. The disagreement logistic loss is convex in
h(x) and upper bounds the 0-1 disagreement loss (i.e.,
1{argmaxŷ h(x)ŷ = y}). For binary classification, it is
equivalent to the logistic loss with the label flipped.

We expect that ℓdis can serve as a useful drop-in replace-
ment for any future algorithm which requires maximizing
disagreement in a principled manner. We combine ℓlog and
ℓdis to get the empirical disagreement discrepancy objective:

L̂ :=
1

|Ŝ|
∑
Ŝ

ℓlog(h
′(x), ĥ(x)) +

1

|T̂ |
∑
T̂

ℓdis(h
′(x), ĥ(x)).

By construction, 1 − L̂ is concave and bounds ∆̂(ĥ, h′)
from below. However, as the representations are already
optimized for accuracy on S, the predictions should have
low entropy and thus the 1/log |Y| scaling is unnecessary for
balancing the two terms. We therefore drop the scaling
factor, simply using standard cross-entropy; this often leads
to higher discrepancy. In practice we optimize this objective
with multiple initializations and hyperparameters and select
the solution with the largest empirical discrepancy on a
holdout set to ensure a conservative bound. Experimentally,
we find that replacing ℓdis with either of the surrogate losses
from (Chuang et al., 2020; Pagliardini et al., 2023) results in
smaller discrepancy; we present these results in Appendix B.

Tightening the bound by optimizing over logits. It is
clear that the value of the bound in Theorem 3.6 will de-
crease as H is restricted. Since the number of features is
large, one may expect that Assumption 3.5 holds even for a
reduced feature set. In particular, it is well documented that
deep networks experience neural collapse (Papyan et al.,
2020), giving representations whose effective rank is ap-
proximately equal to the number of classes. This suggests
that the logits themselves should contain most of the fea-
tures’ information about S and T . To test this, we evaluate
DIS2 on the full features, the logits output by ĥ, and various
fractions of the top principal components (PCs) of the fea-
tures. We observe that using logits indeed results in tighter
error bounds while still remaining valid—in contrast, using
fewer top PCs also results in smaller error bounds, but at
some point they become invalid (Figure C.2). The bounds
we report in this work are thus evaluated on the logits of ĥ,
except where we provide explicit comparisons in Section 5.

Identifying the ideal number of PCs via a “validity
score”. Even though reducing the feature dimensionality
eventually results in an invalid bound, we may hope to iden-
tify approximately when this occurs, giving a more accurate
(though less conservative) prediction. We find that the opti-
mization trajectory itself provides meaningful signal about
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MAE (↓) Coverage (↑) Overest. (↓)
DA? ✗ ✓ ✗ ✓ ✗ ✓

Prediction Method

AC (Guo et al., 2017) 0.1055 0.1077 0.1222 0.0167 0.1178 0.1089
DoC (Guillory et al., 2021) 0.1046 0.1091 0.1667 0.0167 0.1224 0.1104
ATC NE (Garg et al., 2022) 0.0670 0.0838 0.3000 0.1833 0.0842 0.0999
COT (Lu et al., 2023) 0.0689 0.0812 0.2556 0.1833 0.0851 0.0973

DIS2 (Features) 0.2807 0.1918 1.0000 1.0000 0.0000 0.0000
DIS2 (Logits) 0.1504 0.0935 0.9889 0.7500 0.0011 0.0534
DIS2 (Logits w/o δ) 0.0829 0.0639 0.7556 0.4167 0.0724 0.0888

Table 1. Comparing the DIS2 bound to prior methods for pre-
dicting accuracy. DA denotes if the representations were learned
via a domain-adversarial algorithm. In addition to mean abso-
lute error (MAE), we report what fraction of predictions correctly
bound the true error (Coverage), and the average prediction error
among shifts whose accuracy is overestimated (Overest.). DIS2

has reasonably competitive MAE but substantially higher coverage.
By dropping the concentration term in Theorem 3.6 we can do
even better, at some cost to coverage.

this change. We design a “validity score” which captures
this information and we observe that it is roughly linearly
correlated with the tightness of the bound (Figure C.4). We
can thus evaluate DIS2 with successively fewer PCs and
only retain those above a certain score threshold, reducing
MAE while remaining reasonably conservative (Figure C.5).
For further details, see Appendix C.

5. Experiments
Datasets. We conduct experiments across 11 diverse vision
benchmark datasets for distribution shift on datasets that
span applications in object classification, satellite imagery,
and medicine. Each dataset consists of multiple domains
with different types of natural and synthetic shifts. See Ap-
pendix A for precise details. Because distribution shifts
vary widely in scope, prior evaluations which focus on only
one specific type of shift (e.g., corruptions) or algorithm
often do not convey the full story. We therefore empha-
size the need for more comprehensive evaluations across
many different types of shifts and training methods, as
we present here. We also experiment with Unsupervised
Domain Adaptation (UDA) methods which aim to improve
target performance with unlabeled target data.

Methods evaluated. We compare DIS2 to four competitive
baselines: Average Confidence (AC), Difference of Confi-
dences (DoC), Average Thresholded Confidence (ATC), and
Confidence Optimal Transport (COT). We give detailed de-
scriptions of these methods in Appendix A. For all methods,
we implement post-hoc calibration on validation source data
with temperature scaling (Guo et al., 2017), which has been
shown to improve performance. For DIS2, we report bounds
evaluated both on the full features and on the logits of ĥ as
described in Section 4. Unless specified otherwise, we set
δ = .01 everywhere. We also experiment with dropping the
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Figure 4. (a): Scatter plots depicting DIS2 estimated bound vs.
true error for a variety of shifts. “w/o δ” indicates that the lower-
order term of Theorem 3.6 has been dropped. (b): Observed bound
violation rate vs. desired probability δ. Observe that the true rate
lies at or below y = x across a range of values.

lower order term in Theorem 3.6.

Metrics for evaluation. We report the mean absolute error
(MAE) as is standard. As our emphasis is on conservative
error bounds, we also report the coverage, i.e. the fraction
of predictions for which the true error does not exceed the
predicted error. Finally, we measure the conditional average
overestimation: this is the MAE among predictions which
overestimate the accuracy.

Results. Table 1 reports metrics for all methods. We ag-
gregate over all datasets, shifts, and training methods—we
stratify only by whether the training method is domain-
adversarial (DA), as this affects Assumption 3.5. We find
that DIS2 achieves competitive MAE while maintaining sub-
stantially higher coverage, even for DA features. When it
does overestimate accuracy, it does so by much less, imply-
ing that it is ideal for conservative estimation even when any
given error bound is not technically satisfied. Dropping the
concentration term performs even better (sometimes beat-
ing the baselines), at the cost of some coverage. We also
show scatter plots to visualize performance on individual
distribution shifts, plotting each source-target pair as a sin-
gle point; we report results for DA (Figure 3) and non-DA
methods (Figure 1) separately. To avoid clutter, these two
plots do not include DoC, as it performed comparably to
AC. Figure 4(a) displays additional scatter plots which di-
rectly compare variants of DIS2. Finally, Figure 4(b) plots
the observed violation rate (i.e. 1−coverage) of DIS2 on
non-DA methods for varying δ. We observe that it lies at or
below the line y = x, meaning the probabilistic bound in
Theorem 3.6 holds across a range of failure probabilities.

Strengthening the baselines to improve coverage. Since
the baselines prioritize predictive accuracy over conserva-
tive estimates, their coverage might be improvable without
too much increase in error. We attempt this with a simple
post-hoc adjustment in Appendix D. We find that (i) the
baselines do not achieve the desired coverage level, though
they get somewhat close; and (ii) the adjustment causes
them to suffer higher MAE than DIS2. Thus DIS2 is on
the Pareto frontier of MAE and coverage, and is preferable
when conservative bounds are desirable.
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6. Conclusion
The ability to evaluate trustworthy, non-vacuous error
bounds for deep neural networks under distribution shift
remains an extremely important open problem. Due to the
wide variety of real-world shifts and the complexity of mod-
ern data, restrictive a priori assumptions on the distribution
(i.e., before observing any data from the shift of interest)
seem unlikely to be fruitful. On the other hand, prior meth-
ods which estimate accuracy using extra information—such
as unlabeled test samples—often rely on opaque conditions
whose likelihood of being satisfied is difficult to predict,
and so they sometimes provide large overestimates of test
accuracy with no warning signs.

This work attempts to bridge this gap with a simple, intu-
itive condition and a new disagreement loss which together
result in competitive error prediction, while simultaneously
providing an (almost) provable probabilistic error bound.
We also study how the process of evaluating the bound
(e.g., the optimization landscape) can provide even more
useful signal, enabling better predictive accuracy. We expect
there is potential to push further in each of these directions,
hopefully extending the current accuracy-reliability Pareto
frontier for test error bounds under distribution shift.
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Appendix

A. Experimental Details
A.1. Description of Baselines

Average Thresholded Confidence (ATC). ATC first estimates a threshold t on the confidence of softmax prediction (or on
negative entropy) such that the number of source labeled points that get a confidence greater than t match the fraction of
correct examples, and then estimates the test error on on the target domain Dtest as the expected number of target points that
obtain a score less than t, i.e.,

ATCDtest
(s) =

n∑
i=1

I [s(f(x′
i)) < t] ,

where t satisfies:
∑j

i=1 I [maxj∈Y(fj(xi)) < t] =
∑m

i=1 I
[
argmaxj∈Y fj(xi) ̸= yi

]
Average Confidence (AC). Error is estimated as the average value of the maximum softmax confidence on the target data,
i.e, ACDtest

=
∑n

i=1 maxj∈Y fj(x
′
i).

Difference Of Confidence (DOC). We estimate error on the target by subtracting the difference of confidences on source
and target (as a surrogate to distributional distance (Guillory et al., 2021)) from the error on source distribution, i.e.,
DOCDtest

=
∑n

i=1 maxj∈Y fj(x
′
i) +

∑m
i=1 I

[
argmaxj∈Y fj(xi) ̸= yi

]
−∑m

i=1 maxj∈Y fj(xi). This is referred to as
DOC-Feat in (Guillory et al., 2021).

Confidence Optimal Transport (COT). COT uses the empirical estimator of the Earth Mover’s Distance between labels
from the source domain and softmax outputs of samples from the target domain to provide accuracy estimates:

COTDtest(s) =
1

2
min

π∈Π(Sn,Y m)

n,m∑
i,j=1

∣∣∣∣si − eyj

∣∣∣∣
2
πij ,

where Sn = {f(x′
i)}ni=1 are the softmax outputs on the unlabeled target data and Y m = {yj}mj=1 are the labels on holdout

source examples.

For all of the methods described above, we assume that {(x′
i)}ni=1 are the unlabeled target samples and {(xi, yi)}mi=1 are

hold-out labeled source samples.

A.2. Dataset Details

In this section, we provide additional details about the datasets used in our benchmark study.

• CIFAR10 We use the original CIFAR10 dataset (Krizhevsky and Hinton, 2009) as the source dataset. For target domains,
we consider (i) synthetic shifts (CIFAR10-C) due to common corruptions (Hendrycks and Dietterich, 2019); and (ii)
natural distribution shift, i.e., CIFAR10v2 (Recht et al., 2018; Torralba et al., 2008) due to differences in data collection
strategy. We randomly sample 3 set of CIFAR-10-C datasets. Overall, we obtain 5 datasets (i.e., CIFAR10v1, CIFAR10v2,
CIFAR10C-Frost (severity 4), CIFAR10C-Pixelate (severity 5), CIFAR10-C Saturate (severity 5)).

• CIFAR100 Similar to CIFAR10, we use the original CIFAR100 set as the source dataset. For target domains we consider
synthetic shifts (CIFAR100-C) due to common corruptions. We sample 4 CIFAR100-C datasets, overall obtaining 5
domains (i.e., CIFAR100, CIFAR100C-Fog (severity 4), CIFAR100C-Motion Blur (severity 2), CIFAR100C-Contrast
(severity 4), CIFAR100C-spatter (severity 2) ).

• FMoW In order to consider distribution shifts faced in the wild, we consider FMoW-WILDs (Koh et al., 2021; Christie
et al., 2018) from WILDS benchmark, which contains satellite images taken in different geographical regions and at
different times. We use the original train as source and OOD val and OOD test splits as target domains as they are
collected over different time-period. Overall, we obtain 3 different domains.

• Camelyon17 Similar to FMoW, we consider tumor identification dataset from the wilds benchmark (Bandi et al., 2018).
We use the default train as source and OOD val and OOD test splits as target domains as they are collected across different
hospitals. Overall, we obtain 3 different domains.
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• BREEDs We also consider BREEDs benchmark (Santurkar et al., 2020) in our setup to assess robustness to subpopulation
shifts. BREEDs leverage class hierarchy in ImageNet to re-purpose original classes to be the subpopulations and defines a
classification task on superclasses. We consider distribution shift due to subpopulation shift which is induced by directly
making the subpopulations present in the training and test distributions disjoint. BREEDs benchmark contains 4 datasets
Entity-13, Entity-30, Living-17, and Non-living-26, each focusing on different subtrees and levels in the hierarchy. We
also consider natural shifts due to differences in the data collection process of ImageNet (Russakovsky et al., 2015), e.g,
ImageNetv2 (Recht et al., 2019) and a combination of both. Overall, for each of the 4 BREEDs datasets (i.e., Entity-13,
Entity-30, Living-17, and Non-living-26), we obtain four different domains. We refer to them as follows: BREEDsv1
sub-population 1 (sampled from ImageNetv1), BREEDsv1 sub-population 2 (sampled from ImageNetv1), BREEDsv2
sub-population 1 (sampled from ImageNetv2), BREEDsv2 sub-population 2 (sampled from ImageNetv2). For each
BREEDs dataset, we use BREEDsv1 sub-population A as source and the other three as target domains.

• OfficeHome We use four domains (art, clipart, product and real) from OfficeHome dataset (Venkateswara et al., 2017).
We use the product domain as source and the other domains as target.

• DomainNet We use four domains (clipart, painting, real, sketch) from the Domainnet dataset (Peng et al., 2019). We use
real domain as the source and the other domains as target.

• Visda We use three domains (train, val and test) from the Visda dataset (Peng et al., 2018). While ‘train’ domain contains
synthetic renditions of the objects, ‘val’ and ‘test’ domains contain real world images. To avoid confusing, the domain
names with their roles as splits, we rename them as ‘synthetic’, ‘Real-1’ and ‘Real-2’. We use the synthetic (original train
set) as the source domain and use the other domains as target.

Dataset Source Target

CIFAR10 CIFAR10v1 CIFAR10v1, CIFAR10v2, CIFAR10C-Frost (severity 4),

CIFAR10C-Pixelate (severity 5), CIFAR10-C Saturate (severity 5)

CIFAR100 CIFAR100 CIFAR100, CIFAR100C-Fog (severity 4),

CIFAR100C-Motion Blur (severity 2), CIFAR100C-Contrast (severity 4),

CIFAR100C-spatter (severity 2)

Camelyon Camelyon

(Hospital 1–3) Camelyon (Hospital 1–3), Camelyon (Hospital 4), Camelyon (Hospital 5)

FMoW FMoW (2002–’13) FMoW (2002–’13), FMoW (2013–’16), FMoW (2016–’18)

Entity13 Entity13

(ImageNetv1

sub-population 1) Entity13 (ImageNetv1 sub-population 1),

Entity13 (ImageNetv1 sub-population 2),

Entity13 (ImageNetv2 sub-population 1),

Entity13 (ImageNetv2 sub-population 2)

Entity30 Entity30

(ImageNetv1

sub-population 1) Entity30 (ImageNetv1 sub-population 1),

Entity30 (ImageNetv1 sub-population 2),

Entity30 (ImageNetv2 sub-population 1),

Entity30 (ImageNetv2 sub-population 2)

Living17 Living17

(ImageNetv1

sub-population 1) Living17 (ImageNetv1 sub-population 1),

Living17 (ImageNetv1 sub-population 2),

Living17 (ImageNetv2 sub-population 1),

Living17 (ImageNetv2 sub-population 2)

Nonliving26 Nonliving26

(ImageNetv1

sub-population 1) Nonliving26 (ImageNetv1 sub-population 1),

Nonliving26 (ImageNetv1 sub-population 2),

Nonliving26 (ImageNetv2 sub-population 1),

Nonliving26 (ImageNetv2 sub-population 2)

Officehome Product Product, Art, ClipArt, Real

DomainNet Real Real, Painiting, Sketch, ClipArt

Visda Synthetic

(originally referred

to as train) Synthetic, Real-1 (originally referred to as val),

Real-2 (originally referred to as test)

Table A.2. Details of the source and target datasets in our testbed.
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A.3. Setup and Protocols

Architecture Details For all datasets, we used the same architecture across different algorithms:

• CIFAR-10: Resnet-18 (He et al., 2016) pretrained on Imagenet

• CIFAR-100: Resnet-18 (He et al., 2016) pretrained on Imagenet

• Camelyon: Densenet-121 (Huang et al., 2017) not pretrained on Imagenet as per the suggestion made in (Koh et al.,
2021)

• FMoW: Densenet-121 (Huang et al., 2017) pretrained on Imagenet

• BREEDs (Entity13, Entity30, Living17, Nonliving26): Resnet-18 (He et al., 2016) not pretrained on Imagenet as per the
suggestion in (Santurkar et al., 2020). The main rationale is to avoid pre-training on the superset dataset where we are
simulating sub-population shift.

• Officehome: Resnet-50 (He et al., 2016) pretrained on Imagenet

• Domainnet: Resnet-50 (He et al., 2016) pretrained on Imagenet

• Visda: Resnet-50 (He et al., 2016) pretrained on Imagenet

Except for Resnets on CIFAR datasets, we used the standard pytorch implementation (Gardner et al., 2018). For Resnet
on cifar, we refer to the implementation here: https://github.com/kuangliu/pytorch-cifar. For all the
architectures, whenever applicable, we add antialiasing (Zhang, 2019). We use the official library released with the paper.

For imagenet-pretrained models with standard architectures, we use the publicly available models here: https://
pytorch.org/vision/stable/models.html. For imagenet-pretrained models on the reduced input size images
(e.g. CIFAR-10), we train a model on Imagenet on reduced input size from scratch. We include the model with our publicly
available repository.

Hyperparameter details First, we tune learning rate and ℓ2 regularization parameter by fixing batch size for each dataset
that correspond to maximum we can fit to 15GB GPU memory. We set the number of epochs for training as per the
suggestions of the authors of respective benchmarks. Note that we define the number of epochs as a full pass over the
labeled training source data. We summarize learning rate, batch size, number of epochs, and ℓ2 regularization parameter
used in our study in Table A.3.

Dataset Epoch Batch size ℓ2 regularization Learning rate

CIFAR10 50 200 0.0001 (chosen from {0.0001, 0.001,1e-5, 0.0}) 0.01 (chosen from {0.001, 0.01, 0.0001})

CIFAR100 50 200 0.0001 (chosen from {0.0001, 0.001,1e-5, 0.0}) 0.01 (chosen from {0.001, 0.01, 0.0001})

Camelyon 10 96 0.01 (chosen from {0.01, 0.001, 0.0001, 0.0}) 0.03 (chosen from {0.003, 0.3, 0.0003, 0.03})

FMoW 30 64 0.0 (chosen from {0.0001, 0.001,1e-5,0.0}) 0.0001 (chosen from {0.001, 0.01, 0.0001})

Entity13 40 256 5e-5 (chosen from {5e-5, 5e-4, 1e-4, 1e-5}) 0.2 (chosen from {0.1, 0.5, 0.2, 0.01, 0.0})

Entity30 40 256 5e-5 (chosen from {5e-5, 5e-4, 1e-4, 1e-5}) 0.2 (chosen from {0.1, 0.5, 0.2, 0.01, 0.0})

Living17 40 256 5e-5 (chosen from {5e-5, 5e-4, 1e-4, 1e-5}) 0.2 (chosen from {0.1, 0.5, 0.2, 0.01, 0.0})

Nonliving26 40 256 0 5e-5 (chosen from {5e-5, 5e-4, 1e-4, 1e-5}) 0.2 (chosen from {0.1, 0.5, 0.2, 0.01, 0.0})

Officehome 50 96 0.0001 (chosen from {0.0001, 0.001,1e-5, 0.0}) 0.01 (chosen from {0.001, 0.01, 0.0001})

DomainNet 15 96 0.0001 (chosen from {0.0001, 0.001,1e-5, 0.0}) 0.01 (chosen from {0.001, 0.01, 0.0001})

Visda 10 96 0.0001 (chosen from {0.0001, 0.001,1e-5, 0.0}) 0.01 (chosen from {0.001, 0.01, 0.0001})

Table A.3. Details of the learning rate and batch size considered in our testbed

For each algorithm, we use the hyperparameters reported in the initial papers. For domain-adversarial methods (DANN and
CDANN), we refer to the suggestions made in Transfer Learning Library (Jiang et al., 2022). We tabulate hyperparameters
for each algorithm next:

https://github.com/kuangliu/pytorch-cifar
https://pytorch.org/vision/stable/models.html
https://pytorch.org/vision/stable/models.html
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• DANN, CDANN, As per Transfer Learning Library suggestion, we use a learning rate multiplier of 0.1 for the featurizer
when initializing with a pre-trained network and 1.0 otherwise. We default to a penalty weight of 1.0 for all datasets with
pre-trained initialization.

• FixMatch We use the lambda is 1.0 and use threshold τ as 0.9.

Compute Infrastructure Our experiments were performed across a combination of Nvidia T4, A6000, and V100 GPUs.

B. Comparing Disagreement Losses
We define the alternate losses for maximizing disagreement:

1. Chuang et al. (2020) minimize the negative cross-entropy loss, which is concave in the model logits. That is, they add
the term log softmax(h(x)y) to the objective they are minimizing. This loss results in substantially lower disagreement
discrepancy than the other two.

2. Pagliardini et al. (2023) use a loss which is not too different from ours. They define the disagreement objective for a point
(x, y) as

log

(
1 +

exp(h(x)y)∑
ŷ ̸=y exp(h(x)ŷ)

)
. (1)

For comparison, ℓdis can be rewritten as

log

1 +
exp(h(x)y)

exp
(

1
|Y|−1

∑
ŷ ̸=y h(x)ŷ

)
 , (2)

where the incorrect logits are averaged and the exponential is pushed outside the sum. This modification results in (2) being
convex in the logits and an upper bound to the disagreement 0-1 loss, whereas (1) is neither.
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Neg. X-Ent (Chuang et al., 2020) 0.3555± .0124 0.1694± .0105
D-BAT (Pagliardini et al., 2023) 0.8145± .0177 0.3224± .0212
ℓdis (Ours) 0.8333± .0132 0.3322± .0205

Figure B.1 & Table B.3. Histogram of disagreement discrepancies for each of the three losses, and the average values across all datasets.
Bold (resp. Underline) indicates the method has higher average discrepancy under a paired t-test at significance p = .01 (resp. p = .05).

Figure B.1 displays histograms of the achieved disagreement discrepancy across all distributions for each of the disagreement
losses (all hyperparameters and random seeds are the same for all three losses). The table below it reports the mean
disagreement discrepancy on the train and test sets. We find that the negative cross-entropy, being a concave function, results
in very low discrepancy. The loss (1) is reasonably competitive with our loss (2) on average, seemingly because it gets very
high discrepancy on a subset of shifts. This suggests that it may be particularly suited for a specific type of distribution shift,
though it is less good overall. Though the averages are reasonably close, the samples are not independent, so we run a paired



(Almost) Provable Error Bounds Under Distribution Shift via Disagreement Discrepancy

t-test and we find that the increases to average train and test discrepancies achieved by ℓdis are significant at levels p = 0.024
and p = 0.009, respectively. However, with enough holdout data, a reasonable approach would be to split the data in two:
one subset to validate critics trained on either of the two losses, and another to evaluate the discrepancy of whichever one is
ultimately selected.

C. Exploration of the Validity Score
To experiment with reducing the complexity of the class H, we evaluate DIS2 on progressively fewer top principal
components (PCs) of the features. Precisely, for features of dimension d, we evaluate DIS2 on the same features projected
onto their top d/k components, for k ∈ [1, 4, 16, 32, 64, 128] (Figure C.2). We see that while projecting to fewer and fewer
PCs does reduce the error bound value, unlike the logits it is a rather crude way to reduce complexity of H, meaning at some
point it goes too far and results in invalid error bounds.
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Figure C.2. DIS2 bound as fewer principal components are kept. Reducing the number of top principal components crudely reduces
complexity of H—this leads to lower error estimates, but at some point the bounds become invalid for a large fraction of shifts.

However, during the optimization process we observe that around when this violation occurs, the task of training a critic to
both agree on S and disagree on T goes from “easy” to “hard”. Figure C.3 shows that on the full features, the critic rapidly
ascends to maximum agreement on S, followed by slow decay (due to both overfitting and learning to simultaneously
disagree on T ). As we drop more and more components, this optimization becomes slower.

We therefore design a “validity score” intended to capture this phenomenon which we refer to as the cumulative ℓ1 ratio.
This is defined as the maximum agreement achieved, divided by the cumulative sum of absolute differences in agreement
across all epochs up until the maximum was achieved. Formally, let {ai}Ti=1 represent the agreement between h′ and ĥ after
epoch i, i.e. 1− ϵŜ(ĥ, h

′
i), and define m := argmaxi∈[T ] ai. The cumulative ℓ1 ratio is then am

a1+
∑m

i=2 |ai−ai−1| . Thus, if
the agreement rapidly ascends to its maximum without ever going down over the course of an epoch, this ratio will be equal
to 1, and if it non-monotonically ascends then the ratio will be significantly less. This definition was simply the first metric
we considered which approximately captures the behavior we observed; we expect it could be greatly improved.

Figure C.4 displays a scatter plot of the cumulative ℓ1 ratio versus the difference in estimated and true error for DIS2

evaluated on the full range of top PCs. A negative value implies that we have underestimated the error (i.e., the bound is not
valid). We see that even this very simply metric roughly linearly correlates with the tightness of the bound, which suggests
that evaluating over a range of top PC counts and only keeping predictions whose ℓ1 ratio is above a certain threshold can
improve raw predictive accuracy without reducing coverage by too much. Figure C.5 shows that this is indeed the case:
compared to DIS2 evaluated on the logits, keeping all predictions above a score threshold can produce more accurate error
estimates, without too severely underestimating error in the worst case.
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Figure C.3. Agreement on one shift between ĥ and h′ on Ŝ during optimization. We observe that as the number of top PCs retained
drops, the optimization occurs more slowly and less monotonically. For this particular shift, the bound becomes invalid when keeping
only the top 1/128 components, depicted by the brown line.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Cumulative `1 Ratio

−0.2

0.0

0.2

0.4

0.6

0.8

A
cc

ur
ac

y
M

in
us

B
ou

nd

Valid Bound
Invalid Bound

Figure C.4. Cumulative ℓ1 ratio versus error prediction gap. Despite its simplicity, the ratio captures the information encoded in the
optimization trajectory, roughly linearly correlating with the tightness and validity of a given prediction. It is thus a useful metric for
identifying the ideal number of top PCs to use.

D. Making Baselines More Conservative with LOOCV
To more thoroughly compare DIS2 to prior estimation techniques, we consider a strengthening of the baselines which may
give them higher coverage without too much cost to prediction accuracy. Specifically, for each desired coverage level
α ∈ [0.9, 0.95, 0.99], we use all but one of the datasets to learn a parameter to either scale or shift a method’s predictions
enough to achieve coverage α. We then evaluate this scaled or shifted prediction on the distribution shifts of the remaining
dataset, and we repeat this for each one.
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Figure C.5. DIS2 bounds and MAE / coverage as the cumulative ℓ1 ratio threshold is lowered. Values in parenthesis are (MAE /
coverage). By only keeping predictions with ratio above a varying threshold, we can smoothly interpolate between bound validity and raw
error prediction accuracy.

The results, found in Table D.4, demonstrate that prior methods can indeed be made to have much higher coverage, although
as expected their MAE suffers. Furthermore, they still underestimate error on the tail distribution shifts by quite a bit, and
they rarely achieve the desired coverage on the heldout dataset—though they usually come reasonably close. In particular,
ATC (Garg et al., 2022) and COT (Lu et al., 2023) do well with a shift parameter, e.g. at the desired coverage α = 0.95
ATC matches DIS2 in MAE and gets 94.4% coverage (compared to 98.9% by DIS2). However, its conditional average
overestimation is quite high, almost 9%. COT gets much lower overestimation (particularly for higher coverage levels), and
it also appears to suffer less on the tail distribution shifts in the sense that α = 0.99 does not induce nearly as high MAE as
it does for ATC. However, at that level it only achieves 95.6% coverage, and it averages almost 5% accuracy overestimation
on the shifts it does not correctly bound (compared to 0.1% by DIS2). Also, its MAE is still substantially higher than DIS2,
despite getting lower coverage. Finally, we evaluate the scale/shift approach on our DIS2 bound without the lower order
term, but based on the metrics we report there appears to be little reason to prefer it over the untransformed version, one of
the baselines, or the original DIS2 bound.

Taken together, these results imply that if one’s goal is predictive accuracy and tail behavior is not important (worst ~10%),
ATC or COT will likely get reasonable coverage with a shift parameter—though they still significantly underestimate error
on a non-negligible fraction of shifts. If one cares about the long tail of distribution shifts, or prioritizes being conservative
at a slight cost to average accuracy, DIS2 is clearly preferable. Finally, we observe that the randomness which determines
which shifts are not correctly bounded by DIS2 is “decoupled” from the distributions themselves under Theorem 3.6, in
the sense that it is an artifact of the random samples, rather than a property of the distribution (recall Figure 4(b)). This is
in contrast with the shift/scale approach which would produce almost identical results under larger sample sizes because
it does not account for finite sample effects. This implies that some distribution shifts are simply “unsuitable” for prior
methods because they do not satisfy whatever condition these methods rely on, and observing more samples will not remedy
this problem. It is clear that working to understand these conditions is crucial for reliability and interpretability, since we are
not currently able to identify which distributions are suitable a priori.

E. Proving that Assumption 3.5 Holds
Here we describe how the equivalence of Assumption 3.5 and the bound in Theorem 3.6 allow us to prove that the assumption
holds with high probability. By repeating essentially the same proof as Theorem 3.6 in the other direction, we get the
following corollary:

Corollary E.1. If Assumption 3.5 does not hold, then with probability ≥ 1− δ,

ϵT̂ (ĥ) > ϵŜ(ĥ) + ∆̂(ĥ, h′)−
√

2(nS + nT ) log 1/δ

nSnT
.

Note that the last term here is different from Theorem 3.6 because we are bounding the empirical target error, rather than the
true target error. The reason for this change is that now we can make direct use of its contrapositive:
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MAE (↓) Coverage (↑) Overest. (↓)
α → 0.9 0.95 0.99 0.9 0.95 0.99 0.9 0.95 0.99

Method Adjustment

AC none 0.106 0.122 0.118
shift 0.153 0.201 0.465 0.878 0.922 0.956 0.119 0.138 0.149
scale 0.195 0.221 0.416 0.911 0.922 0.967 0.135 0.097 0.145

DoC none 0.105 0.167 0.122
shift 0.158 0.200 0.467 0.878 0.911 0.956 0.116 0.125 0.154
scale 0.195 0.223 0.417 0.900 0.944 0.967 0.123 0.139 0.139

ATC NE none 0.067 0.289 0.083
shift 0.117 0.150 0.309 0.900 0.944 0.978 0.072 0.088 0.127
scale 0.128 0.153 0.357 0.889 0.933 0.978 0.062 0.074 0.144

COT none 0.069 0.256 0.085
shift 0.115 0.140 0.232 0.878 0.944 0.956 0.049 0.065 0.048
scale 0.150 0.193 0.248 0.889 0.944 0.956 0.074 0.066 0.044

DIS2 (w/o δ) none 0.083 0.756 0.072
shift 0.159 0.169 0.197 0.889 0.933 0.989 0.021 0.010 0.017
scale 0.149 0.168 0.197 0.889 0.933 0.989 0.023 0.021 0.004

DIS2 (δ = 10−2) none 0.150 0.989 0.001
DIS2 (δ = 10−3) none 0.174 1.000 0.000

Table D.4. MAE, coverage, and conditional average overestimation for the strengthened baselines with a shift or scale parameter on
non-domain-adversarial representations. Because a desired coverage α is only used when an adjustment is learned, “none”—representing
no adjustment—does not vary with α.

Corollary E.2. If it is the case that

ϵT̂ (ĥ) ≤ ϵŜ(ĥ) + ∆̂(ĥ, h′)−
√

2(nS + nT ) log 1/δ

nSnT
,

then either Assumption 3.5 holds, or an event has occurred which had probability ≤ δ over the randomness of the samples
Ŝ, T̂ .

We evaluate this bound on non-domain-adversarial shifts with δ = 10−6. As some of the BREEDS shifts have as few as 68
test samples, we restrict ourselves to shifts with nT ≥ 500 to ignore those where the finite-sample term heavily dominates;
this removes a little over 20% of all shifts. Among the remainder, we find that the bound in Corollary E.2 holds 55.7% of
the time when using full features and 25.7% of the time when using logits. This means that for these shifts, we can be
essentially certain that Assumption 3.5—and therefore also Assumption 3.3—is true.

Note that the fact that the bound is not violated for a given shift does not at all imply that the assumption is not true. In
general, the only rigorous way to prove that Assumption 3.5 does not hold would be to show that for a fixed δ, the fraction
of shifts for which the bound in Theorem 3.6 does not hold is larger than δ (in a manner that is statistically significant under
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the appropriate hypothesis test). Because this never occurs in our experiments, we cannot conclude that the assumption is
ever false. At the same time, the fact that the bound does hold at least 1− δ of the time does not prove that the assumption
is true—it merely suggests that it is reasonable and that the bound should continue to hold in the future. This is why it is
important for Assumption 3.5 to be simple and intuitive, so that we can trust that it will persist and anticipate when it will
not.

However, Corollary E.2 allows us to make a substantially stronger statement. In fact, it says that for any distribution shift,
with enough samples, we can prove a posteriori whether or not Assumption 3.5 holds, because the gap between these two
bounds will shrink with increasing sample size.


