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ABSTRACT

We introduce Hybrid Convolutions with Attention Stochasticity (HyCAS), an ad-
versarial defense that narrows the long-standing gap between provable robustness
under ℓ2 certificates and empirical robustness against strong ℓ∞ attacks, while pre-
serving strong generalization on both natural- and medical-image tasks. HyCAS
unifies deterministic and randomized principles by coupling 1-Lipschitz, spec-
trally normalized convolutions with two stochastic components—spectral nor-
malized random-projection filters and a randomized attention-noise mechanism.
Injecting smoothing randomness inside the architecture yields an overall ≤ 2-
Lipschitz network with formal certificates. Extensive experiments on diverse
benchmarks—including CIFAR-10/100, ImageNet-1k and NIH Chest
X-ray—show that HyCAS surpasses prior certified and empirical defenses,
boosting certified accuracy by up to ≈ 7.3% and empirical robustness by up to
≈ 3.3%, without sacrificing clean accuracy. These results demonstrate that a hy-
brid deterministic–stochastic design can harmonize provable and empirical adver-
sarial robustness, fostering safer deployment of deep models in high-stakes appli-
cations. Code: https://github.com/Paper-Submission01/HyCAS

1 INTRODUCTION

Despite impressive accuracy, deep learning architectures remain vulnerable to adversarial attacks in
both natural and medical imaging domains. Such vulnerabilities threaten safety-critical deployments
in fraud detection (Pumsirirat & Liu, 2018), autonomous driving (Cao et al., 2021), and clinical
decision support, where mistakes carry high costs. In response to these adversarial vulnerabilities,
early research focused on empirical defences, most notably adversarial training Madry et al. (2018a);
Ding et al. (2019); Shafahi et al. (2019); Sriramanan et al. (2021); Cheng et al. (2023). However,
these methods are frequently broken by intricately crafted adversarial attacks Carlini & Wagner
(2017); Yuan et al. (2021); Hendrycks et al. (2021); Duan et al. (2021); Li et al. (2023). This
limitation has fuelled interests in certified robustness techniques, which offer provable guarantees
that a classifier’s prediction cannot change within a specified perturbation radius Raghunathan et al.
(2018); Wong & Kolter (2018); Hao et al. (2022).

Randomized Smoothing (RS) (Lécuyer et al., 2019; Cohen et al., 2019) certifies robustness by
averaging a model’s predictions over noise-perturbed inputs at inference, and therefore scales to
modern deep architectures. Yet RS is inherently rigid: large noise budgets erode clean accuracy,
whereas small budgets certify only narrow ℓ2 radii. Recent baselines seek to bypass this trade-off
with test-time adaptations—both generic (Croce et al., 2022) and RS-specific (Alfarra et al., 2022b;
Súkenı́k et al., 2022; Hong et al., 2022). These defences, however, are mostly heuristic-based and
they quickly succumb to stronger, tailored attacks (Croce et al., 2022; Alfarra et al., 2022a; Hong
et al., 2022), rekindling the familiar “cat-and-mouse” cycle of empirical defences (Athalye et al.,
2018; Tramèr et al., 2020). Moreover, they are rarely benchmarked against state-of-the-art empir-
ical attacks such as PGD or AutoAttack—particularly on medical-imaging datasets—leaving their
real-world efficacy uncertain. We move beyond pure test-time fixes and inject fresh, independently
drawn noise during both training and inference. This two-phase strategy (i) preserves RS’s for-
mal guarantees, (ii) alleviates the accuracy–robustness trade-off, and (iii) is validated against both
certified and strong empirical attacks across natural and medical-image benchmarks.
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To bridge the gap between certified and empirical defenses, we introduce Hybrid Convolutions
with Attention Stochasticity (HyCAS). HyCAS offers provable ℓ2 adversarial robustness, boosts
empirical adversarial resilience to strong ℓ∞ attacks, and generalizes across natural- and medical-
image tasks. It couples a 1-Lipschitz deterministic core—implemented via spectrally normalized
convolutions—with two stochastic modules: (i) spectral normalized random-projection filters and
(ii) randomized attention noise injection. These components inject controlled smoothing noise,
thereby incorporating stochasticity into the architecture and yielding an overall ≤ 2-Lipschitz net-
work that admits formal certification while consistently enhancing empirical robustness to strong
ℓ∞ attacks in both domains.

The key contributions of this paper can be summarized as follows:

1. Hybrid defense. We introduce HyCAS, the first approach to offer both certified and empirical
robustness across natural and medical imaging domains.

2. Theoretical guarantees. We derive a tight ℓ2 robustness certificate for HyCAS and show that it
remains competitive in empirical adversarial robustness against state-of-the-art ℓ∞ attacks.

3. Plug-and-play design. HyCAS integrates a 1-Lipschitz deterministic core—implemented via
spectrally normalized convolutions—with two stochastic modules: spectral normalized random-
projection filters and randomized attention noise injection. These components inject controlled
smoothing noise, thereby incorporating refined stochasticity into the network. Together they form
a ≤2-Lipschitz network that admits formal certification while boosting empirical robustness.

4. Comprehensive evaluation. Experiments on several benchmarks confirm that HyCAS outper-
forms prior certified and empirical defenses while allowing controllable trade-offs between cer-
tificate and empirical adversarial robustness.

2 RELATED WORK

Deterministic certified defences. Bounding a network’s global Lipschitz constant makes its pre-
dictions provably stable to small ℓ2 perturbations. Early studies constrain fully–connected layers
via spectral normalisation or orthogonal parameterisations (Sedghi et al., 2019b; Miyato et al.,
2018b). Layer-wise Orthogonal Training (LOT) (Xu et al., 2022) and the Spectral–Lipschitz Lattice
(SLL) (Araujo et al., 2023) extend these ideas to CNNs, yet often sacrifice clean accuracy on high-
resolution data. Our deterministic backbone inherits its 1-Lipschitz guarantee while compensating
for the accuracy drop through stochastic branches.

Stochastic certified defences. Randomised smoothing (RS) converts any base classifier into a Gaus-
sian ensemble whose majority vote is certifiably robust (Cohen et al., 2019). Subsequent work
enlarges certificates via adversarially trained bases (Salman et al., 2019), consistency regularisation
(Jeong & Shin, 2020), and noise-aware denoising (Carlini et al., 2023). Mixing multiple noise scales
further tightens guarantees, as shown by Dual RS (DRS) (Xia et al., 2024), Incremental RS (IRS)
(Ugare et al.), and Adaptive RS (ARS) (Lyu et al., 2024). Our HyCAS departs from pure input–noise
smoothing by injecting internal randomness via dual stochastic noise—yet still preserves a global
≤ 2-Lipschitz certificate.

Empirical defences. Empirical methods drop certificates to maximise robustness against high-
budget ℓ∞ attacks. PNI (He et al., 2019) learns layer-wise Gaussian noise during adversarial train-
ing, boosting both clean and robust accuracy. Learn2Perturb (Jeddi et al., 2020) generalises
this idea by jointly optimising feature-perturbation modules in an EM-like loop. CTRW (Ma et al.,
2023) resamples convolution kernels at inference under learned mean–variance constraints, while
RPF (Dong et al., 2023) freezes part of the first convolution layer as Gaussian projections, both out-
performing strong PGD-trained baselines. In the medical domain, CAP (Xiang et al., 2023) injects
lung-edge priors to defend COVID-19 CXR models. Despite impressive gains, the underlying ran-
domness in these defences is static or easily inferred once seeds are fixed, rendering them vulnerable
to adaptive attacks and offering no formal guarantees.

Most prior defenses optimize for either certified or empirical robustness and are validated on a
single regime—usually natural images, with only a few addressing specialised medical data. HyCAS
bridges this gap by incorporating a deterministic 1-Lipschitz backbone with stochastic random-
projection and attention-noise mechanisms, yielding a unified deterministic–stochastic architecture
that generalizes across both natural- and medical-image benchmarks. A modest reduction in clean
accuracy yields simultaneous performance gains in certified ℓ2 and empirical ℓ∞ robustness (Fig. 4).
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Consequently, HyCAS aims to surpass the strongest deterministic certifiers and the leading empirical
defences across both natural and medical domains Further details appear in Appendix A.1 (related
work) and Appendix A.2 (preliminaries).

FDPAN

SNCAN

 Jacobian
Orthogonal RPFAN

RANI

Image-Net

Input x

1-Lipschitz

2-Lipschitz

2-Lipschitz

2-Lipschitz
2-Lipschitz

Figure 1: Overview of HyCAS mechanism. It consists of three parallel streams—FDPAN, SNCAN, and
RPFAN—each built from 1-Lipschitz cores with Randomized Attention Noise Injection (RANI) residuals.
Per-channel convex gating fuses the streams to form Gb(; Ω). Each stream is ≤ 2-Lipschitz; the fused stream
and the stacked network remain ≤ 2-Lipschitz, enabling a margin-based ℓ2 certificate.

3 HYBRID CONVOLUTIONS WITH ATTENTION STOCHASTICITY

Randomized defenses often incorporate stochasticity into deep network structures by (i) tuning data-
dependent hyper-parameters (e.g. noise scale, sampling rate) or (ii) data-independent architectural
modifications. However, deep networks are highly vulnerable in natural images and even more in
the medical imaging domain, where imperceptible perturbations can sharply degrade accuracy. A
stand-alone randomized defense, therefore, needs a complementary deterministic defense to remain
effective, thereby forming a certified-empirical adversarial defense approach.

To address these limitations, we propose Hybrid Convolutions with Attention Stochasticity
(HyCAS), which replaces each convolutional layer in standard CNN backbones with a Lipschitz-
bounded stochastic streams that inject refined smoothing and controlled randomness into the net-
work structure via two complementary, data-independent defenses—(i) a Lipschitz-constrained de-
terministic defense and (ii) dual stochastic defenses—thereby improving adversarial robustness.

Let x ∈ RH×W×C be an input feature map with spatial dimensions (H,W ) and C channels with
label y ∈ Y = {1, . . . ,K}. We denote by ∥·∥2 the Euclidean norm over vectorized tensors and
by Lip(h) the (global) ℓ2-Lipschitz constant of a map h (“L-Lipschitz” means ∥h(u) − h(v)∥2 ≤
L∥u−v∥2. Our proposed HyCAS–integrated any base classifier fθ with parameters θ. The smoothed
classifier induced by HyCAS is:

gθ(x) = argmax
c∈Y

Pε,Ω
[
fθ(x+ ε; Ω) = c

]
. (1)

where Ω = (ξ, ψ,Mω), ε ∼ N (0, σ2I) denotes Gaussian noise with mean 0 and standard deviation
σ matching the dimensions of x to enable randomized smoothing, ξ induces deterministic Lipschitz-
constrained structure, ψ integrates implicit structural randomness (first-level stochastic defense),
and Mω injects the explicit attention noise (second-level stochastic defense). The classifier gθ(·)
returns whichever class fθ is most likely to return, taking expectations over the distributionsN (x+
ε;x, σ2I). An overview is given in Fig. 1; implementation shows in Algorithms 1–3 and App. A.6.

HyCAS processes every feature map through three parallel streams: (a) Frequency-aware Determin-
istic Projection with Attention Noise (FDPAN); (b) Spectrally Normalized Convolution with Atten-
tion Noise (SNCAN); and (c) Random Projection Filter with Attention Noise (RPFAN). Their outputs
are fused by a data-independent convex channel gate that down-weights high-sensitivity streams,
thereby weakening naı̈ve adversarial attacks.

Specifically, let B = {FDPAN,RPFAN,SNCAN} be the set of streams and for each stream b ∈ B,
let Gb(·; Ω) denote its output feature map and those output feature maps are fused by channel-
wise convex gate αb,c. For learnable, data-independent logits λb,c, we define channel-wise convex

3
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weights αb,c =
exp(λb,c)∑

b′∈B exp(λb′,c)
, such that

∑
b αb,c = 1, αb,c ≥ 0, thereby we obtain the HyCAS

block output is

z(x):,:,c =
∑
b∈B

αb,c
[
Gb(x; Ω)

]
:,:,c

+R
(∑
b∈B

αb,c
[
Gb(x; Ω)

]
:,:,c

;Mω

)
; c = 1, . . . , C. (2)

where R denotes RANI module.

Convex fusion and expected-logit map are ≤ 2-Lipschitz. If each stream satisfies Lip(Gb)≤
2, and the gate is convex (Eq. 2), then the per-channel fusion has Lip(x 7→ z(x)) ≤
maxb∈B Lip

(
Gb

)
≤ 2. (Prop. 4). Taking the expectation over Ω preserves the Lipschitz constant

(Lemma 2), so the network’s expected logit map Z(x) := EΩ

[
sθ(x; Ω)

]
remains ≤ 2-Lipschitz.

Formally:

Theorem 1 (HyCAS block is ≤ 2-Lipschitz). Each constituent stream—SNCAN, RPFAN, and
FDPAN with skip weight β ≤ 1

3—is individually ≤ 2-Lipschitz. Indeed, every stream is the
composition of three maps: (i) a stochastic projection Tψ (seeded by ψ), 1-Lipschitz; (ii) a de-
terministic projection Dξ (parameterized by ξ), 1-Lipschitz; and (iii) a stochastic attention noise
Mω : Rd→ [0, 1]d, 1-Lipschitz. For any input x, the resulting feature map

Gb(x; ξ, ψ, ω) = Dξ
(
Tψ(x)

)
+ Mω

(
Dξ(Tψ(x))

)
is therefore 2-Lipschitz on each forward pass. The subsequent per-channel convex fusion is non-
expansive, so it cannot increase the Lipschitz constant. Consequently, every HyCAS block is prov-
ably ≤ 2-Lipschitz (see Proposition 4).
Proof. See proof within the Appendix A.3.

Corollary 1 (Deterministic-stochastic margin certificate for expected logits). Let Z(x) be HyCAS
logits averaged over internal randomness, with Lip(Z) ≤ 2. Let ∆(x) = Z(1)(x) − Z(2)(x) is the
gap between the top-two logits. Then r2(x) =

∆(x)
4 is is a valid ℓ2 certificate: for all ∥δ∥2 < r2(x),

we have argmaxZ(x+ δ) = argmaxZ(x). This is the HyCAS pointwise ℓ2 certificate (App. A.4).
Proof. See proof within the Appendix A.3.

The HyCAS–integrated network is optimised with a standard ℓ2 loss as:
LHyCAS = ζ ⊙ LFDPAN + φ⊙ LSNCAN + ν ⊙ LRPFAN + κ⊙ LRANI , (3)

where ζ, φ, ν, and κ denoted by learnable parameters, while ⊙ represents Hadamard product.

All streams are spectrally normalised (∥W∥2 ≤ 1) and the stochastic attention noise module is
1-Lipschitz. Hence, by Theorem 1–Corollary 1, every HyCAS block—and any network built by
stacking them—is≤ 2-Lipschitz, so attacks with ℓ2-norm < Delta(x)/4 cannot alter the prediction.

3.1 FREQUENCY-AWARE DETERMINISTIC PROJECTION WITH ATTENTION NOISE (FDPAN)

Under ℓ2-bounded attacks, adversaries (i) conceal perturbations in high-frequency DCT coefficients
and (ii) exploit channel-wise gradient regularities that generalize across models. FDPAN counters
both phenomena by weaving frequency truncation, channel scrambling, spectral control, and cali-
brated stochasticity into the architecture.

FDPAN is a four-stage cascade (Fig. 5), where each component comprises a deterministic 1-
Lipschitz core followed by two randomized residuals, i.e., 2-Lipschitz: (i) Low-pass DCT mask
(1-Lipschitz) — excises fragile high-frequency bands. (ii) Orthogonal Jacobian 1×1 matrix + Ran-
domized Attention Noise Injection (RANI) (2-Lipschitz) — scrambles channel gradients and injects
structured noise. (iii) SNCAN (2-Lipschitz) — keeps the convolutional kernel spectrum bounded
while introducing additional stochasticity. (iv) RANI that further incorporates refined randomness
and is 2-Lipschitz.

Let the deterministic core beH(x) = CKe

(
U Φ⊤(Λ⊙Φx)), whereCKe

be Spectrally normalized
convolution, U denotes Orthogonal Jacobian matrix layer, Φ is the orthonormal 2-D DCT and Λ is
the low-pass mask.

4
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To incorporate richer, refined stochasticity, we apply RANI immediately after the deterministic core.
Given an attention noise Mω and a noise–strength parameter ω ∈ [0, 1], a RANI module is denoted
by R

(
x;Mω

)
, and is 1–Lipschitz for every freshly drawn ω during both training and inference.

Hence, combining the deterministic path and two independent RANI injections (stochastic) yields
the FDPAN stream output as: GFDPAN(x; ξ,Mω) = H(x; ξ) + R

(
H(x; ξ);Mωi

)
, where H(; ξ)

is the deterministic core, and each R
(
; ξ,Mωi

)
introduces independent stochastic attention noise

Mωi
for i ∈ {1 : 2}. Because the two Mωi

terms are cascaded i and the entire stream is at most
2-Lipschitz by the triangle inequality. The skip connection is 1-Lipschitz as well. Notably, more
details about SNCAN module and RANI mechanism are in the following sections. Formally:

Proposition 1 (FDPAN is at most 2-Lipschitz). Assume the deterministic core H(·) is 1-Lipschitz
and that, for every attention noiseMωi

, the RANIR(·;ωi) is also 1-Lipschitz; the skip connection is
likewise 1-Lipschitz. Define the FDPAN stream output by GFDPAN(x;Mω) = H(·) + (R(·) ◦H(·))
is 4-Lipschitz and therefore satisfies Lipschitz(GFDPAN) ≤ 2.

Proof. See proof within the Appendix A.3.

Therefore, FDPAN minimises the objective of HyCAS by incorporating refined stochasticity into the
network through all employed modules as mentioned in the above:

LFDPAN(θ) = min
θ

E(x,y) Eε∼N (0,σ2I), ξ,Mωi
ℓ
(
fθ(x+ ε; ξ,Mωi), y

)
. (4)

3.2 SPECTRALLY NORMALIZED CONVOLUTIONS WITH ATTENTION NOISE (SNCAN)

To design SNCAN (ref. Figure 6), we replace every standard convolutional layer with a spectrally
normalized convolution (SNC; see Appendix A.2.2). This substitution introduces controlled gradi-
ent variability while preserving the deterministic 1-Lipschitz bound on worst-case ℓ2 perturbations.
However, the resulting stationary gradient fields can still be exploited by adversarial attacks. To
mitigate this vulnerability and further strengthen robustness, we incorporate our data-independent
RANI module (Section 3.4) to each SNC layer, thereby injecting fine-grained stochasticity while
preserving a tight Lipschitz envelope.

Let v = CKe
(x), R(v;Mω) = Dω v, where CKe

is an SNC with kernel Ke rescaled to satisfy
∥Ke∥op ≤ 1 and Dω = diag(Mω) is a diagonal matrix formed from the attention-noise tensor
Mω ∈ [0, 1]H×W×C . Because every diagonal entry ofDω lies in [0, 1], we have ∥Dω∥2 ≤ 1. Hence
Lip

(
CKe

)
≤ 1, Lip

(
R(·;Mω)

)
≤ 1, Lip

(
I +Dω

)
≤ 2.

RANI generates a bounded attention noise Mω ∈ [0, 1]H×W×C and forms the stochastic residual
output as:

GSNCAN (x; ξ,Mω) = CKe
(x; ξ) +R

(
CKe

(x; ξ);Mω

)
= (I +Dω)CKe

(x; ξ). (5)

By incorporating RANI into a deterministic, 1-Lipschitz convolutional block, we obtain a random-
ized defense that is provably 2-Lipschitz, as formalized below.

Proposition 2 (2-Lipschitz hybrid block). For every input pair x, y ∈ RH×W×C and every noise
sample Mω ,

∥GSNCAN(x;Mω)−GSNCAN(y;Mω)∥2 ≤ 2 ∥x− y∥2.

Proof. See proof within the Appendix A.3.

Each SNCAN block, therefore, multiplies the network’s global Lipschitz constant by at most 2 while
injecting fresh randomness on every forward pass, synchronizing the gradient landscape that an
adversary sees. Therefore, SNCAN minimizes the objective of HyCAS by incorporating refined
stochasticity into the network through SNC and RANI modules:

LSNCAN(θ) = min
θ

E(x,y) Eε∼N (0,σ2I), ξ,Mω
ℓ
(
fθ(x+ ε; ξ,Mω), y

)
. (6)

In summary, these spectral normalization (e.g., SNC) is complemented by RANI to create a hybrid
deterministic–randomized module whose Lipschitz envelope remains tight while its gradients vary
across evaluations.
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Table 1: Certified accuracy (%) of HyCAS and prior baselines on CIFAR-10 and ImageNet. Bold value
denotes the best in each column across all noise–radius pairs. All methods are evaluated at two noise levels.

CIFAR-10 ImageNet
Approaches σ Certified accuracy at predetermined ℓ2 radius r (%) Certified accuracy at predetermined ℓ2 radius r (%)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 2.0 0.00 0.25 0.50 0.75 1.00 1.25 1.50 2.0

RS 0.25 75.3 60.2 43.4 26.1 0 0 0 0 67.1 48.7 0 0 0 0 0 0
0.50 65.2 54.1 41.3 32.4 23.2 14.7 9.34 0 57.3 45.9 36.8 28.7 0 0 0 0

IRS 0.25 78.6 63.2 47.5 30.8 19.6 10.3 5.72 0 68.4 58.5 46.2 38.7 32.1 19.3 10.8 0
0.50 71.3 58.5 44.1 33.3 24.1 15.7 11.4 2.2 62.4 50.9 41.5 34.7 27.3 20.2 13.8 6.31

DRS 0.25 83.4 65.8 50.2 34.5 24.7 15.8 10.5 0 70.6 61.2 51.8 42.7 38.4 32.6 25.4 0
0.50 78.1 62.1 48.7 35.8 24.5 17.9 12.9 4.6 67.6 58.2 49.6 42.8 35.6 33.2 29.8 21.3

ARS 0.25 84.1 67.3 51.4 39.1 30.9 21.1 16.2 0 71.1 61.4 52.7 43.1 39.1 33.4 26.7 0
0.50 78.4 63.7 50.2 38.9 31.8 23.3 19.7 8.47 68.1 58.7 50.3 43.4 39.1 34.5 30.6 22.4

LOT — 80.5 64.7 48.6 34.3 23.6 15.2 9.14 0 69.7 60.6 50.9 42.2 37.1 30.5 21.8 0
76.7 60.4 46.3 35.1 24.9 17.3 12.1 6.25 66.1 57.4 48.9 42.8 38.4 32.9 28.3 19.8

SLL — 81.4 65.3 49.9 33.1 23.6 14.7 9.94 0 70.2 57.7 48.4 41.8 37.6 31.9 24.3 0
77.9 62.6 48.7 34.5 24.4 16.2 13.7 5.83 67.3 55.5 49.1 42.8 39.1 34.5 26.7 21.3

HyCAS 0.25 85.4 70.1 56.7 44.3 36.5 29.6 22.9 8.52 72.3 63.9 55.6 46.4 40.7 35.2 29.7 5.42
0.50 80.7 65.3 54.8 44.3 36.8 30.3 23.4 12.5 69.2 60.6 53.9 45.6 41.1 36.3 32.7 24.8

3.3 RANDOM-PROJECTION CONVOLUTION WITH ATTENTION NOISE (RPFAN)

RPFAN couples a spectrally controlled random projection (1-Lipschitz) with a data-independent
randomized attention residual (2-Lipschitz). It therefore introduces dual stochasticity—(i) from
the random projection itself and (ii) from RANI—while keeping the stream’s Lipschitz constant
at most 2. In practice, both the random projection and attention noise are freshly resampled as
described in §3.5. Network Execution.

The RPFANmodule (ref. Figure 7) inherits the Johnson–Lindenstrauss (JL) embedding guarantee of
a random-projection filter (RPF) Dong et al. (2023) (see Appendix A.2.3 for details) and extends it
with three carefully chosen components: (i) two core innovations that render the module certifiably
1-Lipschitz, and (ii) the RANI module, which raises the Lipschitz constant to 2 while injecting
an additional source of data-independent stochasticity. Combined, these elements provide dual
stochasticity—one arising from the random projection itself and the other from RANI—thereby
strengthening adversarial robustness without exceeding a 2-Lipschitz bound. The three components
are summarized below.

1. Energy-preserving channel pre-mix. Before the random-projection filter is applied, we lever-
age 1×1 orthogonal Jacobian matrix as channel mixer U with U⊤U = I Horn & Johnson (2013)
to apply x 7→ Ux, which equalises channel energy so that every spatial dimension enters the
projection space with identical energy distribution ((See Lemma 3).

2. Batch-aware spectral normalisation for random projection. The random-projection filter W0

is sampled exactly as in Dong et al. (2023) (ref. A.2.3). We then rescale it using a per-sample,
two-step power-iteration (PI) scheme: (i) Draw u∼N (0, 1) of shape (N, Hs ,

W
s , Cout); (ii) Up-

date twice v ← Conv⊤(u;W0)
∥·∥2

, u ← Conv(v;W0)
∥·∥2

, normalising each sample independently; and
(iii) compute the Rayleigh quotient (RQ), thereby to form a spectral normalized random projec-
tion filter WSN as:

RQ =
1

N

∑
n

⟨un,Conv(vn;W0)⟩, WSN =
W0

max(RQ, 1)
.

This batch-aware PI yields a tighter bound on ∥Conv(·;W0)∥2 than layer-wise PI while guar-
anteeing that the projection remains 1-Lipschitz (Appendix A.3).

3. Randomised Attention Noise Injection (RANI). Given the 1-Lipschitz projection output h =
Conv(Ux; WSN), draw internal randomness ω and apply a data-independent bounded mask
Mω ∈ [0, 1]d through the RANI module R(h;Mω). For newly drawn ω, ∥I+DMω

∥2 ≤
∥I∥2+∥DMω

∥2 ≤ 2; therefore the composite map x 7→ R
(
Conv(Ux; WSN);ω

)
is 2-Lipschitz.

This couples the spectrally normalised random projection with RANI, injecting refined stochas-
ticity while multiplying the stream’s Lipschitz constant by at most 2 (ref. Proposition 2; see also
App. A.2 for the residual bound). Define the 1-Lip core HRPFAN(x) = Conv(Ux; WSN) and
the stream output as:

GRPFAN(x;ψ,Mω) = HRPFAN(x;ψ) +R
(
HRPFAN(x;ψ);Mω

)
; (7)
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then Lip
(
GRPFAN

)
≤ 2 (See Proof 5).

Therefore, RPFAN minimises the objective of HyCAS by incorporating refined stochasticity into the
network through RPF and RANI modules:

LRPFAN(θ) = min
θ

E(x,y) Eε∼N (0,σ2I), Ω ℓ
(
fθ(x+ ε; Ω), y

)
. (8)

CIFAR-10 PGD Sizes CIFAR-10 PGD Steps

Figure 2: Empirical robustness of HyCAS versus leading baselines (RPF, CTRW, DRS, ARS) on CIFAR-10
under strong PGD attacks. We evaluate two settings: (1) perturbation sizes ϵ from 0.01 to 0.08 and (2) iteration
steps from 10 to 100.

3.4 RANI: RANDOMIZED ATTENTION NOISE INJECTION

Motivation. Certified deterministic 1-Lipschitz defenses (e.g., SNC) bound the worst–case ℓ2 per-
turbation but still expose a deterministic gradient field that adversaries can exploit. Classical ran-
domized defenses inject noise only at the input, whereas certified Lipschitz defenses remain deter-
ministic inside the network. RANI closes this gap: it injects a data-independent, stochastic attention
mask Mω ∈ [0, 1]d after every spectrally-normalised block in the three streams (FDPAN, RPFAN,
SNCAN) and once more at their fused output, while preserving a global 2-Lipschitz envelope. For-
mally, the deterministic 1-Lipschitz map h ∈ H(x; ξ, ψ) is replaced by the stochastic 2-Lipschitz
map ĥ ∈ R(h;Mω) via incorporating RANI module (R(;Mω).

Attention noise mechanism. For each forward pass, RANI draws fresh noise ω ∼ N (0, I) for
internal randomness and computes a bounded attention noise Mω∈ [0, 1]d that is independent of the
current features. For any deterministic feature tensor h∈RH×W×C , we modulate it according to:

ĥ = h ⊙ Mω, (9)

where ⊙ denotes the Hadamard product. This yields a Lipschitz constant of at most 2; hence every
block’s constant grows from 1− Lipschitz deterministic to a randomised defense (Lemma 3).

In practice,Mω is produced by our RANImodule via injecting noise at local and channel information
of the given deterministic feature maps (e.g., h ∈ H(x; ξ, ψ)); (See Appendix A.5 for more details
of our RANI module. The following lemma states the guarantee formally.

Lemma 1 (RANI module is 2-Lipschitz). Let h ∈ Rd and let M(ω) ∈ [0, 1]d be sampled i.i.d. from
an arbitrary distribution that is independent of h. Define the RANI mapping as shown in Eq. 9.
Then, for each randomly drawn ω and any h1, h2, the mapping ĥ is 2-Lipschitz with respect to the
Euclidean norm ∥ · ∥2; i.e.,

∥R(h1;Mω)−R(h2;Mω)∥2 ≤ 2 ∥h1 − h2∥2.

Proof. See proof within the Appendix A.3.

Therefore, RANI minimises the objective of HyCAS by incorporating refined stochasticity into the
network:

LRANI(θ) = min
θ

E(x,y) Eε∼N (0,σ2I), Mω
ℓ
(
fθ(x+ ε;Mω), y

)
, (10)
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CIFAR-100 PGD Sizes CIFAR-100 PGD Steps

Figure 3: Empirical robustness of HyCAS versus leading baselines (RPF, CTRW, DRS, ARS) on CIFAR-100
under strong PGD attacks. We evaluate two settings: (1) perturbation sizes ϵ from 0.01 to 0.08 and (2) iteration
steps from 10 to 100.

4 EXPERIMENT RESULT

4.1 EXPERIMENT SETUP

Evaluation protocol. We evaluate HyCAS on four natural-image benchmarks
(CIFAR-10/100 (Krizhevsky, 2009), ImageNet-1k (Deng et al., 2009), CelebA (Liu
et al., 2015)) and on four medical datasets (NCT-CRC-HE-100K Kather et al. (2018), NIH-CXR
Wang et al. (2017), EyePACS EyePACS (2015), HAM10000 Tschandl et al. (2018)). We report
certified accuracy at preset ℓ2 radii r for smoothing noise σ ∈ {0.25 − 2.0}. Empirical robustness
is measured under PGD-20 Madry et al. (2018a) and AutoAttack (AA-20) Croce & Hein (2020) at
ℓ∞ budgets ϵ ∈ {8/255, , 16/255}; we also evaluate our HyCAS for determining its effectiveness
against stronger PGD attacks with larger ϵ and more PGD steps (Figs. 2-4). Baselines span
randomized smoothing methods (RS (Cohen et al., 2019), IRS (Ugare et al.), DRS (Xia et al.,
2024)), ARS (Lyu et al., 2024), and 1-Lipschitz defenses (LOT (Xu et al., 2022), SLL (Araujo et al.,
2023)). All experiments are run with five random seeds, and we report the mean, the standard
deviation, or both for each experiment. Implementation details, certification and empirical settings
are in Appendix A.7.

4.2 CERTIFIED ADVERSARIAL ROBUSTNESS AT PRESET RADII

CIFAR-10 and ImageNet. Across all baselines in Table 1, HyCAS achieves the best certified accu-
racy for every (r, σ) pair. On the CIFAR-10, at the representative medium radius r=0.75, it yields
44.3% certified accuracy for both σ∈{0.25, 0.50}—an gain of 5.2–18.2% over the prior methods.
Even in the large-radius tail (r=2.0, σ = 0.50), it retains 12.5%, surpassing the leading baseline by
4.0–12.5%. A similar trend emerges on ImageNet: in the large-radius regime (r=1.5, σ=0.50),
HyCAS reaches 32.7% certified accuracy, exceeding every baseline by 2.1–32.7%. HyCAS also de-
livers state-of-the-art clean accuracy—85.4% on CIFAR-10 and 72.3% on ImageNet—modestly
but consistently ahead of all baselines.

Medical and face datasets. Table 2 demonstrates the same dominance beyond natural images.
On the CelebA dataset, HyCAS achieves certified accuracies of 62.3% at r = 0.5 and 36.9% at
r = 1.0, outperforming RS and ARS by 5.3–18.1%. For the HAM10000 dataset, it reaches 61.9%
(at r = 0.5) and 38.5% (at r = 1.0), leading all baselines by approximately 4%. On the NIH-CXR
dataset, certified accuracy spans 61.9% (at r = 0.5, σ = 0.25) to 41.4% (at r = 1.0, σ = 1.0), a
gain of 3.5–7.3% over the leading baseline (e.g., ARS). Clean accuracy is likewise higher or on par
across the board, ranging from 81.6–97.2%.

Effect of the noise level. Increasing the smoothing noise σ consistently trades a negligible drop
at small radii for substantial gains at large radii across every baseline, yielding a tunable accu-
racy–robustness frontier. For example, on CIFAR-10, raising σ from 0.25 to 0.50 leaves perfor-
mance at r = 0.75 unchanged (44.3%) yet improves r = 2.0 from 8.52% to 12.5%. The same
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adjustment on ImageNet elevates r = 2.0 from 5.42% to 24.8%. These monotonic improvements
confirm that HyCAS provides a controllable, rather than fixed, trade-off curve.

4.3 EMPIRICAL ADVERSARIAL ROBUSTNESS

Medical-imaging benchmarks. Across all four diagnostic datasets (Tables 4–5), HyCAS achieves
the highest robust top-1 accuracy under PGD-20 and AA-20 at ϵ∈{8, 16}/255. Specifically, on the
NIH-CXR benchmark, HyCAS retains robust accuracy, outperforming the leading baseline (CTRW)
by up to +1.0–2.2% while matching clean-set accuracy (89.5% vs. 89.4%). A similar trend ap-
pears on the NCT-CRC-HE-100K dataset, where HyCAS records robust accuracies of 76.7–79.3%
against the same attacks, edging past CTRW by ≈ +1% and leaving earlier certified defences (e.g.,
ARS, DRS) more than +7% behind at the larger perturbation strength. Dermoscopic HAM10000
and fundus-image EyePACS exhibit the same hierarchy: HyCAS secures robust accuracies of 53.1–
67.8% against PGD-20 and AA-20 attacks on HAM10000—roughly +1.1–7.4% better than the
next-best adversarial defence—and widens the margin on EyePACS to 58.3–72.6%, thereby sur-
passing the leading baseline CTRW by +2.0–3.3%. Together, these results show that HyCAS trans-
fers its hybrid deterministic–stochastic strategy from certified to empirical settings, preserving clean
accuracy while hardening medical-imaging models against strong first-order attacks.

Adversarial robustness on natural images. Evaluation under stronger PGD attacks (Figs. 2–3)
reveals that HyCAS not only wins at standard PGD-20 settings (App. A.7) but also sustains its lead
as the adversary grows stronger. When the perturbation strength is swept from ϵ = 0.01 → 0.08
on CIFAR-10, HyCAS traces the upper envelope of robust-accuracy curves, preserving a ≈ 10%
gap at the maximum perturbation strength, where all baselines collapse sharply. An analogous
pattern emerges on CIFAR-100 as the number of PGD iterations climbs from 10 → 100: while
every defense degrades monotonically, HyCAS declines more gracefully and ends 7–12% above
the closest competitor at 100 steps, confirming that its internally resampled attention noise and
random projections thwart extended optimization. Thus, the hybrid design scales gracefully with
both perturbation size and steps, offering adversarial robustness and a broader safety margin.

4.4 CERTIFIED–EMPIRICAL ROBUSTNESS TRADE–OFF

Figure 4 plots HyCAS on a three-axis Pareto frontier that couples certified ℓ2 accuracy (radius r) with
empirical ℓ∞ robustness (PGD-20 accuracy at perturbation strength ϵ). Across both CIFAR-10
and ImageNet, the frontier is smooth and strictly downward-sloping: as the certified radius widens,
empirical robustness inevitably contracts. Two consistent phenomena stand out: (a) Certificate
conservativeness. For the small perturbation regime (left-most region), the empirical curve lies
markedly above the certified curve, confirming that formal certificates are—by design—pessimistic
relative to observed robustness. (b) Norm mismatch tail-gap. At large radii/perturbation strength
(right-most region), the gap widens further, highlighting the inherent difficulty of translating ℓ2
guarantees into ℓ∞ performance.

HyCAS achieves this trade-off by increasing the smoothing noise from σ = 0.25 to 0.50 (arrow
along each curve) leaves mid-radius performance virtually unchanged, yet extends both certified
and empirical robustness deep into the high-perturbation regime. On CIFAR-10, certified accuracy
at radius r = 2.0 improves from 8.5% to 12.5%, while ImageNet shows an even larger jump—from
5.4% to 24.8%—at the same radius. Crucially, these gains incur minimal loss in clean-accuracy /
small-ϵ robustness, giving this state-of-the-art adversarial defense a knob to dial the desired security
level without wholesale accuracy sacrifice. Additional experiments are presented in Appendix A.8
while detailed ablations for certified and empirical robustness are presented in the Appendix A.9.

5 CONCLUSION

We presented HyCAS, a hybrid deterministic–stochastic adversarial defence that injects two forms
of data-independent internal randomness, yielding a global ≤ 2-Lipschitz network and a sim-
ple margin-based ℓ2 certificate. Experiments on diverse natural- and medical-image benchmarks
demonstrate state-of-the-art certified accuracy and strong empirical robustness against powerful ℓ∞
attacks. Future work includes deriving tighter ℓ∞ certificates, designing lighter-weight certification
samplers, and integrating HyCAS into multi-modal clinical pipelines.
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A APPENDIX

A.1 ADDITIONAL RELATED STUDY

Note that: in the Table 3, we compare the properties for novel adversarial defense approach for
enhancing adversarial robustness against existing baselines, demonstrating how HyCAS uniquely
overcomes each identified research gap.

Certified–Empirical Adversarial Robustness Trade-offs on CIFAR-10 Certified–Empirical Adversarial Robustness Trade-offs on ImageNet

Figure 4: Trade-off between certified and empirical adversarial robustness achieved by HyCAS on the
CIFAR-10 (Left) and ImageNet (Right) datasets.

A.2 PRELIMINARIES

A.2.1 RANDOMIZED SMOOTHING (RS)

Consider a k-class classification problem with input x ∈ Rd and label y ∈ Y = {c1, . . . , ck}. RS
first corrupts each input x by adding isotropic Gaussian noiseN (ε; 0, σ2I). It then turns an arbitrary
base classifier f into a smoothed version F that possesses ℓ2 certified robustness guarantees. The
smoothed classifier F returns whichever class the base classifier f is most likely to return under the
distribution N (x+ ε;x, σ2I),

F (x) = argmax
c∈Y

Pr
(
f(x+ ε) = c

)
. (11)

Theorem 2 (Cohen et al., 2019). Let f : Rd → Y be any deterministic or random function, and let
F be the smoothed version defined in Equation equation 11. Let cA and cB be the most probable
and runner-up classes returned by F with smoothed probabilities pA and pB , respectively. Then
F (x+ δ) = cA for all adversarial perturbations δ satisfying

∥δ∥2 ≤ R′ , R′ = 1
2 σ

(
Φ−1(pA)− Φ−1(pB)

)
,

where Φ−1 is the inverse standard-Gaussian CDF.

In Equation 2, Φ denotes the Gaussian cumulative distribution function (CDF) and Φ−1 signifies
its inverse function. Theorem 1 indicates that the ℓ2 certified robustness provided by RS is closely
linked to the base classifier’s performance on the Gaussian distribution; a more consistent predic-
tion within a given Gaussian distribution will return a stronger certified robustness. (The proof of
Theorem 1 can be found in Appendix A.1.) It is not clear how to calculate pA and pB exactly when
f is a deep neural network, so Monte Carlo sampling is used to estimate the smoothed probability.
The theorem also establishes that, when we assign pA a lower-bound estimate p

A
and assign pB an

upper-bound estimate with p
B
= 1− p

A
, the radius R′ equals

R′ = σΦ−1
(
p
A

)
. (3)

Equation (3) follows from −Φ−1(1 − p
A
) = Φ−1(p

A
). The smoothed classifier F is therefore

guaranteed to return the constant prediction cA around x within the ℓ2 ball of radius R′.
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A.2.2 SPECTRAL NORMALISATION OF CONVOLUTIONS

For a kernel K ∈Rkh×kw×Cin×Cout we denote by CK the induced circular convolution. We follow
the two most widely–used operator-norm estimators:

(a) Exact Fourier bound Sedghi et al. (2019a) derived

σ⋆(K) = max
ω∈Ω
∥K̂(ω)∥2, ∥CK∥op = σ⋆(K), (12)

which we adopt verbatim in Eq. 12 to scale kernels whenever an FFT is affordable.

(b) Power-iteration (PI) surrogate Miyato et al. (2018a) proposed a light T -step estimate, also
used by subsequent Lipschitz CNNs. Our implementation in Eq. 13 mirrors their update:

σ̂(T )(K) = ⟨u(T ), CK(v(T ))⟩, (13)

with T =5 as in their default setting.

Kernel rescaling. Both estimators feed the same renormalisation rule

K̃ =
K

max{σ̂(K), 1}+ ε
, ε = 10−6, (14)

which keeps ∥CK̃∥op ≤ 1. (The clamp max{σ̂, 1} is a minor safety tweak; we note it here for
completeness but do not claim novelty.)
Proposition 3 (Layer-wise 1-Lipschitzness). Eqs. 12–14 ensure ∥CK̃∥op ≤ 1.

All subsequent sections treat Eq. 14 as a black-box deterministic contraction. Our contribution
begins only after this step, in the following Method section.

Proof. Fix ω and let x, y be arbitrary inputs. Define

zx = CK̃(x), zy = CK̃(y).

Step 1: 1-Lipschitz contraction. By construction of K̃ (Eq. 14) we have

∥zx − zy∥2 = ∥CK̃(x)− CK̃(y)∥2 ≤ ∥x− y∥2. (15)

Step 2: Bounded multiplicative mask. The mask generated by RANI is data-independent for
fixed ω, and satisfies the element-wise bound M(ω) ∈ [0, 1]H×W×C . Consequently

1 ≤ 1 +M(ω) ≤ 2 (element-wise).

For any tensor a this implies

∥(1 +M(ω))⊙ a∥2 ≤ 2 ∥a∥2. (16)

Step 3: Lipschitz constant of F (·, ω). Using definition equation 6,

F (x, ω)− F (y, ω) = (1 +M(ω))⊙
(
zx − zy

)
,

and therefore, by equation 16 and equation 15,

∥F (x, ω)− F (y, ω)∥2 ≤ 2 ∥zx − zy∥2 ≤ 2 ∥x− y∥2.
Because the bound holds for every choice of x, y, the mapping F (·, ω) is 2-Lipschitz.

A.2.3 RANDOM-PROJECTION FILTERS

Random-projection filters (RPF) replace a subset of convolution kernels with i.i.d. Gaussian weights.
Let x ∈ RH×W×Cin be an input, F ∈ Rk2Cin×Cout the flattened kernel matrix and z = F⊤x the pro-
jected feature. When the number of random columnsCout = Nr satisfies the Johnson–Lindenstrauss
lower bound,

(1− ε) ∥xi − xj∥22 ≤ ∥zi − zj∥22 ≤ (1 + ε) ∥xi − xj∥22, (17)
local geometry is provably preserved Dong et al. (2023). A standard way to keep the mapping
1-Lipschitz is to rescale the frozen kernel with a spectral-norm estimate obtained by a few power-
iteration (PI) steps after each forward pass.

15
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Table 2: Certified accuracy (%) of HyCAS and prior defenses on CelebA, HAM10000, and NIH-CXR.
Boldface denotes the best in each column across all noise–radius pairs. Methods are evaluated at 3 noise levels.

CelebA HAM10000 NIH-CXR
Approaches σ ℓ2 radius r (%) ℓ2 radius r (%) ℓ2 radius r (%)

0.0 0.50 1.0 0.0 0.50 1.0 0.0 0.50 1.0

RS 0.25 92.8 45.7 0 94.6 53.2 10.5 77.4 43.5 15.7
0.50 87.7 47.8 10.5 89.3 52.1 12.2 73.3 39.9 21.8
1.0 81.4 51.6 18.8 84.7 54.3 21.2 66.4 42.9 22.8

ARS 0.25 95.2 53.3 27.4 96.7 57.4 31.3 79.1 58.4 32.5
0.50 91.3 53.9 30.4 91.9 55.1 32.8 74.9 54.7 33.3
1.0 85.3 59.2 31.6 86.9 57.4 34.6 69.9 52.9 34.1

HyCAS 0.25 96.8 58.1 33.7 97.2 60.5 35.4 81.6 61.9 38.6
0.50 92.7 59.3 34.8 93.1 60.4 36.6 76.2 58.6 40.9
1.0 87.7 62.3 36.9 88.2 61.9 38.5 71.7 60.6 41.4

A.3 PROOFS

Proof of Theorem 1. By Propositions 2 and 5, SNCAN and RPFAN are ≤ 2-Lipschitz. By Proposi-
tion 1, FDPAN’s gated output is also ≤ 2-Lipschitz. Finally, Proposition 4 shows the per-channel
convex fusion has Lip(z) ≤ maxb∈B Lip(Gb) ≤ 2.

Proposition 4 (Convex fusion retains the max-Lipschitz). Given channel-wise convex fusion z(·)
(see Eq. 2) that satisfies Lipschitz(z) ≤ maxb Lipschitz(Gb) ≤ 2, if every stream output is
≤ 2-Lipschitz, then the HyCAS block is also ≤ 2-Lipschitz.

Proof of Proposition 4. Fix a channel c and any x, y. Triangle inequality gives

∥z(x):,:,c − z(y):,:,c∥ =
∥∥∥∑

b

αb,c
(
Gb(x):,:,c −Gb(y):,:,c

)∥∥∥ ≤∑
b

αb,c ∥Gb(x)−Gb(y)∥.

Since ∥Gb(x) − Gb(y)∥ ≤ Lb∥x − y∥ and
∑
b αb,c = 1, we have ∥z(x):,:,c − z(y):,:,c∥ ≤

(maxb Lb)∥x− y∥. Taking the maximum over channels yields Lip(z) ≤ maxb Lb, Thus Lip(z) ≤
2.

Lemma 2 (Expectation preserves Lipschitz constant). If x 7→ s(x,Ω) is L-Lipschitz for all Ω, then
the expected logits Z(x) = Eω[ s(x, ω)] are L-Lipschitz. (By Jensen’s inequality and linearity of
expectation Dong et al. (2023).) Hence, HyCAS’s expected classifier inherits the same constant.

Proof of Lemma 2. For any x, y,

∥Z(x)−Z(y)∥ =
∥∥Eω[s(x, ω)−s(y, ω)]∥∥ ≤ Eω∥s(x, ω)−s(y, ω)∥ ≤ Eω[L∥x−y∥] = L∥x−y∥,

using Jensen’s inequality ∥EX∥ ≤ E∥X∥.

Proof of Corollary 1. By Lemma 2, Z is 2-Lipschitz. Hence for any coordinate c,

|Zc(x+ δ)− Zc(x)| ≤ ∥Z(x+ δ)− Z(x)∥∞ ≤ ∥Z(x+ δ)− Z(x)∥2 ≤ 2∥δ∥2 <
∆(x)

2
.

Thus the top logit can decrease by at most ∆/2 and the runner-up can increase by at most ∆/2; their
order cannot swap.

Proof of Proposition 1. By the triangle inequality and the chain rule for Lipschitz maps,

∥GFDPAN(x;ω)−GFDPAN(y;ω)∥ = ∥H(x)−H(y) +R(H(x);ω)−R(H(y);ω)∥
≤ ∥H(x)−H(y)∥+ ∥R(H(x);ω)−R(H(y);ω)∥
≤ Lip(H) ∥x− y∥+ Lip(R) ∥H(x)−H(y)∥
≤ 1 · ∥x− y∥+ 1 · 1 · ∥x− y∥ = 2 ∥x− y∥.

Thus Lip(GFDPAN) ≤ 2.
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Proof of Proposition 2. Let x, y ∈ RH×W×C and set z1 = CKe
(x) and z2 = CKe

(y). Using equa-
tion 5 and the sub-multiplicativity of operator norms,

∥GSNCAN(x;Mω)−GSNCAN(y;Mω)∥2 = ∥(I +Dω)(z1 − z2)∥2
≤ ∥I +Dω∥2 ∥z1 − z2∥2
≤ 2 ∥CKe

(x)− CKe
(y)∥2

≤ 2 ∥x− y∥2,
which establishes the claim.

Proposition 5 (RPFAN is 2-Lipschitz). Let U be an orthogonal 1× 1 channel mixer (∥U∥op = 1).
LetWSN be a spectrally normalized random-projection filter so that the linear mapHRPFAN(x) :=
Conv(Ux;WSN ) satisfies Lip(HRPFAN) ≤ 1. Let Dω = diag(Mω) with Mω ∈ [0, 1]d and define

GRPFAN(x;Mω) = HRPFAN(x) +DωHRPFAN(x) = (I +Dω)HRPFAN(x).

Then Lip(GRPFAN) ≤ 2.

Proof of Proposition 5. ∥G(x) − G(y)∥ = ∥(I + Dω)
(
HRPFAN(x) − HRPFAN(y)

)
∥ ≤ ∥I +

Dω∥2 Lip(HRPFAN) ∥x− y∥ ≤ 2 · 1 · ∥x− y∥.

Proof of Lemma 1. Fix any realisation of the noise ω and set Dω = diag(Mω) ∈ Rd×d. By
Eq. equation 9 the RANI transformation satisfies

R(h;Mω) = h+Dωh = (I +Dω)h.

Step 1: bound the operator norm of I +Dω . Because every coordinate of Mω lies in [0, 1], each
diagonal entry of Dω is in the same interval. Hence all singular values of Dω are ≤ 1 and

∥I +Dω∥2 ≤ ∥I∥2 + ∥Dω∥2 = 1 + 1 = 2.

Step 2: translate the norm bound into a Lipschitz constant. For arbitrary h1, h2 ∈ Rd,
∥R(h1;Mω)−R(h2;Mω)∥2 = ∥(I +Dω)(h1 − h2)∥2

≤ ∥I +Dω∥2 ∥h1 − h2∥2
≤ 2 ∥h1 − h2∥2.

Therefore R(·;Mω) is 2-Lipschitz with respect to the Euclidean norm for every draw of ω, complet-
ing the proof.

Lemma 3 (Orthogonal transforms are 1-Lipschitz). If U ∈ Rd×d is orthonormal then Lip(U) = 1.
In particular, 2-D DCT/IDCT and any frozen orthogonal 1×1 convolution satisfy Lip = 1.

For a map h : Rd→Rd the ℓ2–Lipschitz constant is

Lip(h) = sup
u̸=v

∥h(u)− h(v)∥2
∥u− v∥2

.

Throughout we use the vectorised ℓ2 norm over N ×H ×W × C tensors. We make repeated use
of: Triangle inequality. ∥a + b∥2 ≤ ∥a∥2 + ∥b∥2. Convex combination bound. If

∑
i λi = 1 and

λi ≥ 0 then
∥∥∑

i λiai
∥∥
2
≤

∑
i λi∥ai∥2. Jensen. ∥E[X] ∥2 ≤ E[∥X∥2].

Proof of Lemma 3.
∥Ux− Uy∥ = ∥U(x− y)∥ = ∥x− y∥ for all x, y.

Lemma 4 (Spectral normalisation). Rescaling a convolutional kernel W by W/max(∥W∥2, 1)
enforces Lip(ConvW ) ≤ 1 (Gouk et al., 2021).

Proof of Lemma 4. By construction,

∥CKe
∥op =

∥CK∥op
max{σ(K), 1}

≤ max{∥CK∥op, σ(K)}
max{σ(K), 1}

≤ 1.
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Table 3: Scope of representative certified, empirical, and hybrid defences. A ✓ indicates that the property is
explicitly addressed, or the domain is reported, in the original paper.

Method Certified Empirical Natural images Medical images
RS Cohen et al. (2019) ✓ ✓
IRS Ugare et al. ✓ ✓
DRS Xia et al. (2024) ✓ ✓
ARS Lyu et al. (2024) ✓ ✓
LOT Xu et al. (2022) ✓ ✓
SLL Araujo et al. (2023) ✓ ✓

PNI He et al. (2019) ✓ ✓
Learn2Perturb Jeddi et al. (2020) ✓ ✓
CTRW Ma et al. (2023) ✓ ✓
RPF Dong et al. (2023) ✓ ✓
CAP Xiang et al. (2023) ✓ ✓

HyCAS (ours) ✓ ✓ ✓ ✓

Image-Net

SNCAN
Orthogonal
Jacobian
Matrix

1-Lipschitz

2-Lipschitz

1-Lipschitz

DCT/IDCT RANI

FDPAN

Lipschitz-
Contrained 

Deterministic-
Stocahastic

Constrained 

2-Lipschitz
Deterministic-

Stocahastic
Constrained

Deterministic-
Stocahastic
Constrained

Input x

Figure 5: Overview of FDPAN stream. A four-stage cascade: (i) low-pass DCT masking and orthogonal
1×1 channel mix (both 1-Lipschitz); (ii) SNCAN block (spectrally normalized convolution) with RANI; (iii)
additional RANI; and (iv) skip/gating. The stream remains ≤2-Lipschitz.

Image-Net

RANI

SNCAN

SNC

1-Lipschitz

1-Lipschitz

2-Lipschitz

Lipschitz-
Constrained 

Deterministic-
Stocahastic

Constrained 

Deterministic-
Stocahastic
Constrained

Input x

Figure 6: Overview of SNCAN block. A spectrally normalized convolution (CKe) ensures operator norm≤ 1;
RANI applies a bounded, data-independent attention mask Mω so the block output equals (I +Dω)CKe(x),
which is ≤ 2-Lipschitz.

A.4 CERTIFIED PREDICTION UNDER HYCAS

Each HyCAS stream comprises a 1-Lipschitz deterministic core followed by a data-independent
RANI module. Conditioning on the internal noise ω, each stream is therefore 2-Lipschitz (see
Lemma 3), and the composite core remains 2-Lipschitz (ref. Lemma 1). Specifically, the FDPAN
stream is the only exception: it contains two residual blocks (SNCAN + RANI), giving a naı̈ve
4—Lipschitz upper bound. We tighten this to ≤ 2-Lipschitz by scaling the skip connection (Propo-
sition 1). A convex channel gate then fuses the streams without increasing the Lipschitz constant
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(Proposition 4). Finally, stacking modules and applying a global calibrator with gain c ≤ 2/L̂net
ensures the entire network is at most 2—Lipschitz.

Margin certificate. Define the expected logits, averaged only over the model’s internal random-
ness, be

Z(x) = Eω
[
s(x;ω)

]
, Lip

(
Z
)
≤ 2 (Lemma 2).

Let ∆Z(x) = Z(1)(x)− Z(2)(x) denote the gap between the top two logits. The certified ℓ2 radius
at x is then,

r2(x) =
∆Z(x)

4
,

which guarantees argmaxZ(x + δ) = argmaxZ(x) for every perturbation ∥δ∥2 < r2(x)

(Corollary 1). For ℓ∞, the norm inequality ∥δ∥2 ≤
√
d ∥δ∥∞ yields the conservative certificate

r∞(x) = r2(x)√
d
.

Estimation under internal randomness. At test time we approximate Z through Monte Carlo
sampling over ω. Draw n0 pilot samples to identify the top class, then take n additional samples;
compute one-sided confidence bounds for Z(1)(x) and Z(2)(x) and certify with

rLCB(x) =
LCB

(
Z(1)(x)

)
− UCB

(
Z(2)(x)

)
4

,

at confidence 1− α.

A.5 EXTENDED DETAILS FOR RANI MODULE

Deterministic attentions. We design two deterministic attentions—local (LA) and channel
(CA)—that highlight informative local and inter-channel dependencies, respectively. Specifically,
we leverage GAP and 1*1 convolution followed by leveraging dense layer and sigmoid to learn
these attention maps:

LA(z) = σ
(
Conv(l)

1×1(z)
)
, CA(z) = σ

(
Dense(l)2

(
ReLU

(
Dense(l)1 (GAP(z))

)))
, (18)

Injecting stochasticity. We these deterministic attention maps into randomized attention maps
(γ

′

g and γ
′

l ) via injecting feature layer noises ηIg , ηIl ∈ RC , thereby incorporating stochasticity. We
formulate this as:

γ′g = ηIg + g′, γ′l = ηIl + l′, (19)

where σg, σl ∈ RC are trainable scale vectors and Ψ(u) = min{1,max{0, u}} clips the maps into
[0, 1].

Noise parameterization and iterative refinement. To realise heteroscedastic, yet data-
independent, stochasticity at minimal cost we employ a two-step self-modulation loop

ηI• = η• ⊙
(
σ• + η• ⊙ σ•

)
, • ∈ {g, l},

This yields two potential benefits: (a) Richer expressivity—because σ• is trainable, the model
learns which channels benefit from strong noise and which should stay nearly deterministic; and (b)
Negligible overhead—only 2C extra scalars per branch.

Iterative noise fusion. We propagate the stochastic smoothing through the backbone in four stages.
At each stage j ∈ {1, . . . , 4} the current feature tensor x′f is modulated by the noisy randomized
the deterministic attention maps, Ψ(γ′g)j and Ψ(γ′l)j followed by fuse them as

xU = x′f ⊙
4∏
j=1

[
Ψ
(
γ′g
)
j
⊙ Ψ

(
γ′l
)
j

]
, (20)
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Each stage injects a freshly resampled attention noise yielding a progressively smoother–stochastic
feature tensor. This cascade progressively smooths the feature tensor and presents a continually
shifting optimisation landscape to an adversary, thereby enhancing robustness while preserving the
global 2-Lipschitz guarantee. Thus RANI converts every deterministic 1-Lipschitz block into a
randomised counterpart that keeps the certified ℓ2 margin while impeding adversarial attacks by
presenting a moving optimisation landscape.

A.6 DETAILS ABOUT THE HYCAS CERTIFIED ALGORITHM

This section illustrates the details of the certified algorithm of HyCAS, as shown in the following
subsections:

A.6.1 HYCAS TRAINING

Our base network couples a deterministic, Lipschitz–constrained backbone with stochastic smooth-
ing branches. Concretely, let fθ( · ; Ω) denote the hybrid classifier with parameters θ and internal
randomness Ω = (ψ,Mω), where ψ parametrizes implicit randomness (e.g., random projection fil-
ters) and Mω injects explicit attention noise. Following randomized smoothing (RS), we expose the
input to isotropic Gaussian noise ε ∼ N (0, σ2I) during training and minimize the expected loss

min
θ

E(x,y) Eε∼N (0,σ2I),Ω ℓ(fθ(x+ ε; Ω), y) ,

which is the same objective used to train the stochastic component in our hybrid architecture (cf.
Eq. (10) for RANI in HyCAS). To make RS effective at scale while retaining deterministic control,
the backbone is constrained to be Lnet≤ 2-Lipschitz; our implementation mirrors the HyCAS con-
struction where residual blocks are scaled so the stacked network remains ≤ 2-Lipschitz and thus
amenable to margin certification.

To mitigate the curse of dimensionality inherent to RS, we optionally activate a DRS (Dual Random-
ized Smoothing) path that partitions x into two lower-dimensional sub-inputs and smooths them
separately before fusion. This preserves most information while tightening the ℓ2 certificate upper
bound from O(1/

√
d) to O(1/

√
m+ 1/

√
n) with m+ n = d. Our training simply shares the same

θ and minimizes the same expectation, with the forward pass executing the two DRS branches in
parallel.

Algorithm 1 summarizes one epoch: for each minibatch we (i) sample (ε,Ω) once per forward;
(ii) run the deterministic Lipschitz backbone and the stochastic streams; (iii) backpropagate the
Monte-Carlo estimate of the RS objective; and (iv) apply the Lipschitz constraints (spectral normal-
ization / calibrated residual scaling) to keep Lnet≤ 2.
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Algorithm 1 HyCAS Training
Requires: Dataset D; epochs E; batch size B; noise level σ; HyCAS-integrated network fθ

with streams {SNCAN,RPFAN,FDPAN}, convex channel gate αb,c (
∑
b αb,c = 1), and

1-Lipschitz building blocks; optimizer O; (optional) stream loss weights ζ, ϕ, ν, κ.

1 Init: Initialize θ; set spectral normalisation (SN) for all convs (operator norm ≤ 1); for e = 1 to E
do

2 foreach minibatch {(xi, yi)}Bi=1 ∼ D do
// Resample internal randomness once per minibatch (HyCAS

execution protocol)
3 Resample random-projection filters for RPFAN and attention-noise masks for all streams,

collect as Ω. // RS-style training noise at the input
4 for i = 1 to B do
5 Draw εi ∼ N (0, σ2I); set x̃i ← xi + εi.

// Forward through the three streams + convex fusion (each
stream ≤ 2-Lipschitz)

6 Compute per-stream feature maps Gb(x̃i; Ω) for b ∈ {SNCAN,RPFAN, FDPAN}. Fuse
per channel: z(x̃i) ::, c ←

∑
b αb,cGb(x̃i; Ω) ::, c. // Loss: single fused

CE, or the HyCAS-weighted multi-branch objective
7 L ← κL(z(x̃i), yi) + ζ L(GFDPAN, yi) + ϕL(GSNCAN, yi) + ν L(GRPFAN, yi). Up-

date θ ← O
(
θ,∇θ 1

B

∑
i L

)
. // Keep layer-wise operator norms ≤ 1

(SN) to maintain global ≤ 2-Lipschitz envelope
8 Re-apply SN to all conv kernels.

// Final global calibrator (gain) to cap the network Lipschitz
constant by 2

9 Estimate Lnet (product of per-block bounds); scale last linear by γ ← min(1, 2/Lnet).

Algorithm 2 HyCAS Inference and Certification
Input: Trained HyCAS-integrated classifier fθ (globally ≤ 2-Lipschitz); test point x; class set Y of

size K; Gaussian noise level σ; pilot n0 and budget n for RS; significance α (set αRS =
αLip = α/2).

Output: Certified label ŷ and radius R > 0, or ABSTAIN.

10 (A) RS branch (standard randomized smoothing). // Cohen-style certificate;
pilot then CI

11 for i = 1 to n0 do
12 Draw ε ∼ N (0, σ2I) and internal randomness Ω; ci ← fθ(x+ ε; Ω);
13 Let ĉA ← argmaxc∈Y countn0

(c). for i = 1 to n do
14 Draw ε ∼ N (0, σ2I) and Ω; ci ← fθ(x+ ε; Ω);

15 Let m ← countn(ĉA) and p̂ LB
A ← CLOPPERPEARSONLOWER(m,n, 1 − αRS). if p̂ LB

A ≤ 1
2 then

set RRS ← 0

16 else RRS ← σΦ−1
(
p̂ LB
A

)
; ŷRS ← ĉA.

// Φ−1 is the standard normal inverse CDF

17 (B) Lipschitz-margin branch (deterministic certificate). // HyCAS margin
certificate

18 Freeze internal randomness Ω⋆ (fix seeds), and compute logits s(·; Ω⋆). ŷLip ←
argmaxc∈Y sc(x; Ω

⋆); s(1) ← maxc sc(x; Ω
⋆); s(2) ← maxc̸=ŷLip sc(x; Ω

⋆). if s(1) ≤ s(2)

then set RLip ← 0

19 else RLip ←
s(1) − s(2)

4
// Since Lip(fθ) ≤ 2, radius is (margin)/(2 · Lip)

20 (C) Pick the stronger valid certificate. if max(RRS, RLip) = 0 then return ABSTAIN
21 else if RRS ≥ RLip then return (ŷRS, RRS)
22 else return (ŷLip, RLip)
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A.6.2 HYCAS INFERENCE-TIME CERTIFICATION

At test time we provide two independent certificates, both for the exact network we evaluate:

1. RS certificate. We certify the smoothed classifier

gσ(x) ≜ argmax
c∈Y

Pε,Ω[fθ(x+ ε; Ω) = c] .

We follow the standard two–stage Monte-Carlo protocol: draw n0 samples to select the can-
didate class ĉ and then n samples to bound its probability. Let p̂A and p̂B be the empirical
proportions of the top and runner-up classes. Using exact Clopper–Pearson intervals we obtain
a (1− α) lower bound pLBA on the top class and an upper bound pUB

B on the second. If pLBA ≤ 1
2

we abstain; otherwise the certified ℓ2 radius is

rRS
2 (x) =

σ

2

(
Φ−1(pLBA )− Φ−1(pUB

B )
)
,

where Φ−1 is the standard normal quantile. This is the tight Cohen–Rosenfeld–Kolter bound
specialized and re-derived in ARS (via f -DP). In our experiments we mirror DRS sampling
defaults (n0 = 100, n = 105, α = 10−3). When the DRS path is enabled, class probabilities are
estimated branch-wise and fused as in DRS before applying the same formula.

2. Deterministic Lipschitz (margin) certificate. Independently of input noise, we certify the
backbone + internal randomness by averaging logits only over Ω:

Z(x) ≜ EΩ [ s(x; Ω) ], with Lip(Z) ≤ 2.

Let ∆Z(x)=Z(1)(x)−Z(2)(x) be the gap between the top-two expected logits. Then for every
perturbation ∥δ∥2 < ∆Z(x)/4, the argmax of Z(·) is invariant; i.e., the model’s prediction is
certifiably robust within radius

rLip
2 (x) =

∆Z(x)

4
, rLip

∞ (x) =
rLip
2 (x)√
d

.

We estimate Z via Monte-Carlo over Ω (no input noise), exactly as recommended in HyCAS.

Algorithm 2 implements both procedures. In reporting, we return two radii
(
rRS
2 (x), rLip

2 (x)
)

for the
same input x. Both are valid and interpretable: the first certifies the RS/DRS-smoothed classifier,
the second certifies the Lipschitz hybrid backbone averaged over internal noise. This mirrors the
practice in ARS/RS (majority-vote certificate) and HyCAS (margin certificate) while respecting their
assumptions.

A.7 EXTENDED EVALUATION SETUP

Network Execution. At the start of every mini-batch we resample, for each forward pass, (i) the
attention-noiseMω for {FDPAN,SNCAN,RPFAN} and (ii) the random projection filters for RPFAN.
These samples stay fixed while adversarial examples are generated. At inference stage, for each test
image, we draw one fresh set (ψ, ω), and evaluate HyCAS against adversarial attacks to ensure
adversarial robustness.

Implementation details. Following Cohen et al. (2019); Lyu et al. (2024); Xia et al. (2024), we
use ResNet-110 (He et al., 2016) on CIFAR-10/100 and ResNet-50 on remaining natural
and medical imaging datasets (e.g., ImageNet (Deng et al., 2009), CelebA (Liu et al., 2015)),
NCT-CRC-HE-100K Kather et al. (2018) etc.), as base classifiers for all training strategies. We
report the best performance separately for a more comprehensive and fair comparison. We evaluate
on CIFAR-10/100, ImageNet-1k, CelebA (unaligned, cropped attribute), and four medical
datasets: NCT-CRC-HE-100K, NIH CXR, EyePACS, and HAM10000.

For Certified Defense. HyCAS certifies via a margin bound under an at-most 2-Lipschitz network.
Let Z(x) = Eω[z(x)] denote the classifier averaged over the model’s internal randomness; since
Lip(Z) ≤ 2, a pointwise certificate is r(x) = ∆Z(x)

4 , ∆Z(x) = Z(1)(x) − Z(2)(x). To estimate
Z(x) we Monte Carlo sample only the model’s internal noise at inference. Unless noted otherwise,
we take a pilot of n0 = 100 samples to select the top class, then draw n = 100,000 additional
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samples to form one-sided confidence bounds and report rLCB(x) =
LCB

(
Z(1)(x)

)
−UCB

(
Z(2)(x)

)
4 at

confidence 1 − α with α = 0.001. During inference we draw a fresh ω on each forward pass. To
control runtime for Monte Carlo estimation, we use a fixed rule per dataset:

• CIFAR-10: certify every 5th test image (default settings n0=100, n=100,000, α=0.001).
• ImageNet-1k: certify every 100th test image (default settings n0=100, n=100,000, α=0.001).
• CelebA (ARS-style): certify a uniform, label-stratified subset of 200 test images using n0=100,
n=50,000, and failure probability 0.05 (i.e., 95% confidence).

• NCT-CRC-HE-100K, NIH ChestX-ray14, EyePACS: certify a uniform, label-stratified sub-
sample per dataset sized to yield ≈2,000 certified examples each (default settings n0=100,
n=100,000, α=0.001; exact counts in the appendix).

• HAM10: certify the full test split when feasible; otherwise a uniform, label-stratified subsample
(default settings n0=100, n=100,000, α=0.001; exact count in the appendix).

We sweep σ ∈ {0.25, 0.50, 1.0} for comparability across settings.

For Empirical Defense. We follow the protocol of SOTA adversarial training strategy Rice et al.
(2020) to set up our experiments on our diverse datasets. For Adversarial Evaluation—HyCAS is
tested under white-box attacks—PGD Madry et al. (2018b) and AutoAttack (AA) Croce &
Hein (2020) using ϵ = { 8

255 ,
16
255}, step size α = 20

255 , and 10–100 iterations.

 Jacobian
Orthogonal

Batch-aware
Spectral

Normalization

Image-Net

1-Lipschitz

Spectral Normalized
Random Projection

Convolution  Output

Random
Projection

2-Lipschitz

1-Lipschitz

RANI

Deterministic-
Stocahastic
Constrained

Deterministic-
Stocahastic
Constrained

Input x

Deterministic-
Stocahastic
Constrained

RPFAN

Figure 7: Overview of RPFAN stream. (i) Orthogonal 1×1 pre-mix (1-Lipschitz). (ii) Batch-aware spectral
normalization of a random-projection convolution (1-Lipschitz core). (iii) RANI residual, yielding a ≤ 2-
Lipschitz stochastic block.

Training Details for Certified Robustness. Following ARS, we use a single recipe per dataset and
train all HyCAS-integrated backbones. Inputs are perturbed during training only with i.i.d. Gaussian
noise N (0, σ2) (the same σ as at certification). For CIFAR-10, we train for 200 epochs with a
batch size of 256 using AdamW as the optimizer with learning rate 10−2 and weight decay 10−4.
A step scheduler is used with step size 30 and decay factor γ = 0.1. For CelebA, we train for
200 epochs with a batch size of 64 using SGD as the optimizer with learning rate 5 × 10−2. A step
scheduler is used with step size 3 and decay factor γ = 0.8. For ImageNet-1k, we train for 200
epochs (10+90 warm-up and main training), with a batch size of 300 using SGD as the optimizer
with learning rate 10−1, momentum 0.9, and weight decay 10−4. A step scheduler is used with step
size 30 and decay factor γ = 0.1. For the medical datasets, we use a ResNet-18 backbone trained
with SGD and the same scheduler configuration as for CelebA. HyCAS injects internal spatial and
channel attention noise on each forward pass; convolutions are regularized with spectral scaling (via
FFT or power iteration) combined with GroupSort activations and convex residual gating, ensuring
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Table 4: Robust accuracy (%) against ℓ∞ attacks (PGD-20 and AA-20) on NIH-CXR (left) and
NCT-CRC-HE-100K (right) at ϵ ∈ {8/255, 16/255}.

Method
NIH-CXR NCT-CRC-HE-100K

Clean PGD–20 AA–20 Clean PGD–20 AA–20
8/255 16/255 8/255 16/255 8/255 16/255 8/255 16/255

AT 89.1± 1.91 78.3± 2.82 68.4± 3.62 74.2± 2.93 64.1± 3.70 92.2± 1.82 80.4± 2.72 70.8± 3.52 76.3± 2.83 66.2± 3.61

RPF 88.4± 1.82 84.6± 2.62 73.2± 3.42 82.5± 2.71 70.8± 3.52 91.1± 1.71 87.5± 2.51 76.6± 3.33 84.2± 2.62 72.4± 3.41

CTRW 88.4± 1.73 85.7± 2.41 74.4± 3.22 84.5± 2.48 72.6± 3.41 90.4± 1.62 89.6± 2.33 77.5± 3.12 86.7± 2.44 75.2± 3.22

DCS 87.2± 2.05 83.5± 2.65 72.3± 3.30 81.7± 2.72 69.6± 3.45 90.3± 1.93 86.5± 2.62 75.2± 3.35 83.3± 2.74 71.6± 3.46

ARS 84.8± 2.22 77.2± 2.95 66.5± 3.62 72.8± 3.11 62.8± 3.72 86.8± 2.14 78.9± 2.92 68.3± 3.61 74.6± 3.11 64.5± 3.73

DRS 83.9± 2.33 76.2± 2.84 65.8± 3.74 71.6± 3.12 61.9± 3.81 85.9± 2.25 77.5± 2.82 67.6± 3.82 73.5± 3.21 63.7± 3.94

HyCAS 89.5± 1.64 88.6± 2.33 77.3± 3.14 86.9± 2.42 74.4± 3.33 91.3± 2.63 90.4± 2.82 79.3± 3.52 88.2± 2.63 76.7± 3.34

Table 5: Robust accuracy (%) against ℓ∞ attacks (PGD-20 and AA-20) on HAM10000 (left) and EyePACS
(right) at ϵ ∈ {8/255, 16/255}.

Method
HAM10000 EyePACS

Clean PGD–20 AA–20 Clean PGD–20 AA–20
8/255 16/255 8/255 16/255 8/255 16/255 8/255 16/255

AT 75.2± 2.94 58.3± 3.81 48.4± 3.75 54.2± 3.93 44.2± 3.80 78.2± 2.91 62.4± 2.72 52.8± 3.52 58.3± 2.83 48.2± 3.61

RPF 74.3± 2.86 64.6± 3.62 53.3± 3.52 62.6± 3.71 50.4± 3.58 77.1± 2.90 68.5± 2.61 57.6± 3.53 66.4± 2.73 54.4± 3.44

CTRW 74.3± 2.75 64.7± 3.42 54.2± 3.43 63.3± 3.48 51.2± 3.52 76.4± 2.84 70.1± 2.53 58.5± 3.43 69.7± 2.64 56.1± 3.31

DCS 73.2± 2.94 63.5± 3.65 52.4± 3.30 61.4± 3.72 49.5± 3.45 76.4± 2.94 67.5± 2.62 56.2± 3.35 65.3± 2.74 53.6± 3.46

ARS 69.8± 3.22 56.2± 3.95 46.5± 3.62 52.7± 4.10 42.8± 3.71 72.9± 3.97 61.9± 2.91 50.3± 3.61 57.6± 2.94 46.5± 3.73

DRS 68.9± 3.28 55.3± 3.84 45.7± 3.75 51.6± 4.12 41.8± 3.81 71.9± 3.86 60.5± 2.81 49.6± 3.82 56.5± 2.92 45.7± 3.94

HyCAS 74.6± 2.74 67.8± 3.43 55.3± 3.14 65.8± 3.42 53.1± 3.33 77.6± 2.79 72.6± 2.72 60.5± 3.43 71.8± 2.82 58.3± 3.32

the network remains at most 2-Lipschitz. We optimize using categorical cross-entropy loss and
report top-1 accuracy.

Adversarial Training with HyCAS for Empirical Robustness. Let {θ : Rd→RC be the HyCAS -
integrated base classifier with parameters θ, mapping an input x to its logits fθ(x). For a given clean
sample (x, y) and perturbation budget ϵ, an adversarial example x∗ is obtained by maximizing the
loss inside the ϵ-ball around x:

x∗ = argmax
x∗ : ∥x∗−x∥≤ϵ

LHyCAS
(
fθ(x

∗; Ω[A]), y
)
, (21)

where LHyCAS is the task loss and Ω[A] emphasizes that gradients are taken in the attack phase.

Adversarial training then solves the following classical min–max problem:

min
θ[I]

max
x∗ : ∥x∗−x∥≤ϵ

LHyCAS
(
fθ(x

∗; Ω[A]), y
)
, (22)

where θ[I] denotes the parameters updated during the inference phase.

As detailed in Algorithm 3, combining this min–max optimization with all integrated streams en-
ables HyCAS to maintain strong adversarial resilience at inference time.
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Table 6: RS/DRS vs HyCAS certified accuracy on EyePacs NCT-CRC-HE-100K benchmarks.
The best performance under each training strategy is bold.

EyePacs NCT-CRC-HE-100K
Approach σ ℓ2 radius r (%) ℓ2 radius r (%)

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

DRS 0.25 81.3± 1.92 60.1± 2.83 50.1± 1.53 40.9± 2.04 26.2± 2.69 89.5± 2.78 67.6± 2.63 56.7± 3.35 45.3± 2.27 30.5± 3.54
0.5 78.9± 0.91 57.7± 2.82 51.8± 1.34 42.1± 0.96 30.4± 3.74 85.2± 1.67 65.6± 1.89 56.2± 1.23 48.2± 1.67 33.1± 1.20

ARS 0.25 83.1± 1.35 62.9± 2.93 47.9± 1.94 40.7± 2.32 36.2± 3.73 91.7± 1.84 69.3± 2.07 59.4± 2.37 48.3± 3.91 31.9± 2.63
0.5 80.9± 1.14 60.7± 2.27 51.5± 1.42 42.2± 2.68 37.5± 0.98 87.8± 2.25 68.4± 1.91 60.1± 1.01 50.7± 0.53 34.2± 1.39

HyCAS 0.25 86.7 ±0.97 66.1 ±1.62 51.4 ±2.74 45.7 ±1.27 39.2 ±2.61 95.4 ±2.02 72.9 ±1.63 63.1 ±1.59 51.7 ±3.11 33.2 ±1.84
0.5 82.6 ±1.89 63.9 ±1.74 53.2±2.81 46.3±1.45 41.5±1.67 92.3 ±0.61 71.7 ±1.11 63.4 ±1.36 52.2 ±1.21 36.9 ±2.57

Algorithm 3 : Adversarial Training with HyCAS

1: Require: HyCAS integrated base classifier {θ(·) with learning parameter θ; Perturbation size ϵ;
Attack step size a; Number of attack iterations k; Training set {x, y}; Generated attention noise
Mω by RANI module.

2: Procedure:
3: while not converged do
4: Sample a batch {bx, by}ni=1 from {x, y};
5: Apply HyCAS for Attack phase:

z(x):,:,c =
∑
b∈B

αb,c

[
Gb(x; Ω)

]
:,:,c

+R
(∑

b∈B

αb,c

[
Gb(x; Ω)

]
:,:,c

;Mω

)
; c = 1, . . . , C.

6: Compute the HyCAS–integrated network is optimised with a standard ℓ∞ loss:

LHyCAS = ζ ⊙ LFDPAN + φ⊙ LSNCAN + ν ⊙ LRPFAN + κ⊙ LRANI

min
θ

max
x∗

(LHyCAS({θ(x∗; Ω[A]), y)) s.t. ∥x∗ − x∥ ≤ ϵ

7: Generate Adversarial Examples:
8: Randomly initialize adversarial perturbation δ;
9: for i = 1 to k do

δ ← δ + a · sign (∇bxLHyCAS({θ(bx∗; Ω), by)) bx∗ ← Clipϵ
bx(bx+ δ)

10: end for
11: Apply HyCAS for Inference phase:

z(x):,:,c =
∑
b∈B

αb,c

[
Gb(x; Ω)

]
:,:,c

+R
(∑

b∈B

αb,c

[
Gb(x; Ω)

]
:,:,c

;Mω

)
; c = 1, . . . , C.

min
θ[I]

max
x∗

(LHyCAS({θ(x∗; Ω[A]), y)) s.t. ∥x∗ − x∥ ≤ ϵ

12: Adversarial Training Optimization:

θ = θ −∇θ

(
LHyCAS({θ(x∗,Ω), y)

)
13: end while

A.8 ADDITIONAL EXPERIMENTAL RESULTS

Certified adversarial robustness on EyePacs and NCT-CRC-HE-100K. Across the complete
set of baselines in Table 6, HyCAS delivers the strongest certified accuracy for every inspected
radius–noise pair. On the EyePacs benchmark, at the representative medium radius r=0.75 it
reaches 45.7% certified accuracy for σ = 0.25 and 46.3% for σ = 0.50, outpacing the best com-
peting method (DRS/ARS) by4.1–4.8%. Even in the large-radius tail (r=1.0), HyCAS maintains
39.2% (σ = 0.25) and 41.5% (σ = 0.50), widening the gap over the strongest baseline by up to
4.0%.

A comparable pattern emerges on the NCT-CRC-HE-100K histopathology dataset. At r=0.75,
HyCAS secures 51.7% (σ = 0.25) and 52.2% (σ = 0.50), improving on the best baseline by
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1.5–3.4%. In the challenging r=1.0 regime it still records 33.2% (σ = 0.25) and 36.9% (σ = 0.50),
extending the lead to as much as 2.7%.

Besides robustness, HyCAS achieves the highest clean accuracy on both datasets—86.7% on Eye-
Pacs and 95.4% on NCT-CRC-HE-100K for σ = 0.25—underscoring that its certified gains do
not come at the expense of nominal performance.

A.9 ABLATION STUDY

Table 7: Module–wise contribution for cer-
tified and empirical adversarial robustness on
CIFAR-10 benchmark. Here, we have used σ =
0.50.

Variant Accuracy (%)
Certified (r=0.75) PGD-20 (ϵ=8/255)

RS 32.4 57.5
+ SNCAN 36.9 61.2
+ RPFAN 40.2 64.8
+ FDPAN 42.3 66.7
+ RANI 44.3 70.1

Table 7 traces a controlled progression from
the regularized-smoothing (RS) baseline to the
full HyCAS model, revealing how each block
incrementally strengthens robustness. Replac-
ing ordinary convolutions with the spectrally-
normalized SNCAN backbone already raises
certified accuracy at the medium radius
(r=0.75) from 32.4% to 36.9% and improves
PGD-20 robustness by 3.7%, indicating that
spectral control alone substantially smooths
the gradient landscape. When the orthogonal
RPFAN branch is introduced next, certified and
empirical accuracies climb further to 40.2% and 64.8%, respectively, showing that de-correlated
projections supply complementary features beyond spectral stabilization. Extending the spectrum
through FDPAN yields another gain—42.3% certified and 66.7% empirical—confirming that high-
frequency cues remain valuable even under ℓ2 certification. Finally, injecting data-independent at-
tention noise via RANI closes the gap between certified and empirical metrics, culminating in 44.3%
certified accuracy and 70.1% PGD-20 robustness, which exactly matches the performance of the
complete HyCAS system. Altogether, these sequential additions deliver an aggregate improvement
of +11.9% certified and +12.6% empirical robustness over the RS baseline, underscoring that each
module contributes a distinct yet additive benefit to adversarial defense.
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