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ABSTRACT

We introduce Hybrid Convolutions with Attention Stochasticity (HyCAS), an ad-
versarial defense that narrows the long-standing gap between provable robustness
under /- certificates and empirical robustness against strong /., attacks, while
preserving strong generalization across diverse imaging benchmarks. HyCAS uni-
fies deterministic and randomized principles by coupling 1-Lipschitz, spectrally
normalized convolutions with two stochastic components—spectral normalized
random-projection filters and a randomized attention-noise mechanism—to re-
alize a randomized defense. Injecting smoothing randomness inside the archi-
tecture yields an overall < 2-Lipschitz network with formal certificates. Exten-
sive experiments on diverse imaging benchmarks—including CIFAR-10/100,
ImageNet-1k, NIH Chest X-ray, HAM10000—show that HyCAS sur-
passes prior leading certified and empirical defenses, boosting certified accu-
racy by up to &~ 7.3% (on NIH Chest X-ray) and empirical robustness by
up to &~ 3.1% (on HAM10000), without sacrificing clean accuracy. These re-
sults show that a randomized Lipschitz constrained architecture can simultane-
ously improve both certified {5 and empirical /., adversarial robustness, thereby
supporting safer deployment of deep models in high-stakes applications. Code:
https://github.com/Paper—Submission01/HyCAS

1 INTRODUCTION

Despite their impressive accuracy, deep learning architectures in computer vision remain vulnera-
ble to adversarial attacks. Such vulnerabilities threaten safety-critical deployments in fraud detec-
tion (Pumsirirat & Liul 2018)), autonomous driving (Cao et al.;,|2021), and clinical decision support,
where mistakes carry high costs. In response to these adversarial vulnerabilities, early research fo-
cused on empirical defences, most notably adversarial training Madry et al.| (2018a)); [Ding et al.
(2019); Shafahi et al.| (2019); [Sriramanan et al.| (2021); |Cheng et al.| (2023)). However, these meth-
ods are frequently broken by intricately crafted adversarial attacks |Carlini & Wagner| (2017); [Yuan
et al.[ (2021)); Hendrycks et al.|(2021)); |Duan et al.| (2021); |L1 et al.| (2023). This limitation has fu-
elled interests in certified robustness techniques, which offer provable guarantees that a classifier’s
prediction cannot change within a specified perturbation radius Raghunathan et al.| (2018)); Wong &
Kolter (2018]); [Hao et al.| (2022)).

Randomized Smoothing (RS) (Lécuyer et al.l 2019; (Cohen et al.l [2019) certifies robustness by
averaging a model’s predictions over noise-perturbed inputs at inference, and therefore scales to
modern deep architectures. Yet RS is inherently rigid: large noise budgets erode clean accuracy,
whereas small budgets certify only narrow ¢ radii. Recent baselines seek to bypass this trade-off
with test-time adaptations—both generic (Croce et al.| 2022)) and RS-specific (Alfarra et al.,[2022bj
Sukenik et al., |2022; Hong et al., 2022). These defences, however, are mostly heuristic-based and
they quickly succumb to stronger, tailored attacks (Croce et al.| [2022; [Alfarra et al., |2022a; |Hong
et al.| [2022), rekindling the familiar “cat-and-mouse” cycle of empirical defences (Athalye et al.,
2018} [Tramer et al., [2020). Moreover, they are rarely benchmarked against state-of-the-art empir-
ical attacks—such as APGD (Croce & Hein, 2020b) or AutoAttack (Croce & Hein, [2020a)—or on
domain-specific distributions, such as medical-imaging datasets, thereby leaving their real-world ef-
ficacy uncertain. We move beyond pure test-time fixes and inject fresh, independently drawn noise
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during both training and inference. This two-phase strategy (i) preserves RS’ s formal guaran-
tees, (ii) alleviates the accuracy-robustness trade-off, and (iii) is validated against both certified and
strong empirical attacks across diverse imaging benchmarkss

To bridge the gap between certified and empirical defenses, we introduce Hybrid Convolu-
tions with Attention Stochasticity (HyCAS). HyCAS offers provable /5 adversarial robustness,
boosts empirical adversarial resilience to strong /., attacks, and generalizes across eight di-
verse vision benchmarks. It is a randomized defense whose architecture combines a determinis-
tic Lipschitz-constrained design—implemented via spectrally normalized convolutions—with two
stochastic smoothing modules: (i) spectrally normalized random-projection filters and (ii) random-
ized attention-noise injection. These components inject controlled smoothing noise, thereby incor-
porating stochasticity into the architecture and yielding an overall < 2-Lipschitz network that admits
formal certification while consistently enhancing empirical robustness to strong ¢, attacks.

The key contributions of this paper can be summarized as follows:

1. Hybrid defense. We introduce HyCAS, a randomized Lipschitz-constrained defense that pro-
vides both certified /5 guarantees and strong empirical /., robustness across diverse vision bench-
marks.

2. Theoretical guarantees. We derive a tight /> robustness certificate for HyCAS and show that it
remains competitive in empirical adversarial robustness against state-of-the-art ¢, attacks.

3. Plug-and-play design. HyCAS integrates a 1-Lipschitz deterministic core—implemented via
spectrally normalized convolutions—with two stochastic modules: spectral normalized random-
projection filters and randomized attention noise injection. These components inject controlled
smoothing noise, thereby incorporating refined stochasticity into the network. Together they form
a < 2-Lipschitz network that admits formal certification while boosting empirical robustness.

4. Comprehensive evaluation. Experiments on several benchmarks confirm that HyCAS outper-
forms prior certified and empirical defenses while allowing controllable trade-offs between cer-
tificate and empirical adversarial robustness.

2 RELATED WORK

Deterministic certified defences. Bounding a network’s global Lipschitz constant makes its pre-
dictions provably stable to small ¢5 perturbations. Early studies constrain fully—connected layers
via spectral normalisation or orthogonal parameterisations (Sedghi et al.l [2019b; Miyato et al.,
2018b). Layer-wise Orthogonal Training (LOT) (Xu et al.| 2022)) and the Spectral-Lipschitz Lattice
(SLL) (Araujo et al.l 2023) extend these ideas to CNNs, yet often sacrifice clean accuracy on high-
resolution data. Our deterministic backbone inherits its 1-Lipschitz guarantee while compensating
for the accuracy drop through stochastic branches.

Stochastic certified defences. Randomised smoothing (RS) converts any base classifier into a Gaus-
sian ensemble whose majority vote is certifiably robust (Cohen et all [2019). Subsequent work
enlarges certificates via adversarially trained bases (Salman et al.|[2019), consistency regularisation
(Jeong & Shin, [2020)), and noise-aware denoising (Carlini et al.,|2023)). Mixing multiple noise scales
further tightens guarantees, as shown by Dual RS (DRS) (Xia et al., 2024), Incremental RS (IRS)
(Ugare et al.), and Adaptive RS (ARS) (Lyu et al.||2024). Our HyCAS departs from pure input—noise
smoothing by injecting internal randomness via dual stochastic noise—yet still preserves a global
< 2-Lipschitz certificate.

Empirical defences. Empirical methods drop certificates to maximise robustness against high-
budget /., attacks. PNT (He et al.,[2019) learns layer-wise Gaussian noise during adversarial train-
ing, boosting both clean and robust accuracy. Learn2Perturb (Jeddi et al. |[2020) generalises
this idea by jointly optimising feature-perturbation modules in an EM-like loop. CTRW (Ma et al.,
2023) resamples convolution kernels at inference under learned mean—variance constraints, while
RPF (Dong & Xu, 2023) freezes part of the first convolution layer as Gaussian projections, both
outperforming strong PGD-trained baselines. In contrast, CAP (Xiang et al., [2023) infuses lung-
edge priors, bolstering adversarial robustness in COVID-19 CT prediction. Despite these gains,
these empirical defences provide no certified worst case guarantees (Yang et al., 2022} [Liu et al.,
2021), and many rely on input independent randomization (He et al., 2019} Jeddi et al., [2020; [Dong

'In our experiments, we use natural vision and medical imaging datasets as diverse imaging benchmarks.
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2023); these non-certified randomized defences have often been circumvented by adaptive
attacks that explicitly average over the internal noise (Athalye et al, 2018} [Tramér et al [2020).

Most prior defenses optimize for either certified or empirical robustness and are validated on a
single regime—usually natural images, with only a few addressing specialised medical data. HyCAS
bridges this gap by incorporating a deterministic 1-Lipschitz architecture with stochastic smoothing
modules (e.g., random-projection and attention-noise mechanisms), thereby forming a randomized
defense that robustly generalizes across diverse imaging benchmarks. A modest reduction in clean
accuracy yields simultaneous performance gains in certified £ and empirical £, robustness (Fig.[d).
Consequently, HyCAS aims to surpass the strongest deterministic certifiers and the leading empirical
defences. Further details appear in Appendix [AT] (related work) and Appendix [A.2] (preliminaries).
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Figure 1: Overview of HyCAS mechanism. It consists of three parallel streams—FDPAN, SNCAN, and
RPFAN—each built from 1-Lipschitz cores with Randomized Attention Noise Injection (RANI) residuals.
Per-channel convex gating fuses the streams to form G (; €2). Each stream is < 2-Lipschitz; the fused stream
and the stacked network remain < 2-Lipschitz, enabling a margin-based /2 certificate.

3 HYBRID CONVOLUTIONS WITH ATTENTION STOCHASTICITY

Randomized defenses often incorporate stochasticity into deep network structures by (i) tuning data-
dependent hyper-parameters (e.g. noise scale, sampling rate) or (ii) data-independent architectural
modifications. However, deep networks remain highly vulnerable on vision benchmarks, where im-
perceptible perturbations can sharply degrade accuracy. Randomization alone is often insufficient;
coupling it with a Lipschitz-constrained deterministic architecture yields stronger certified and em-
pirical robustness.

To address these limitations, we propose Hybrid Convolutions with Attention Stochasticity
(HyCAS), which replaces each convolutional layer in standard CNN backbones with Lipschitz-
bounded stochastic streams that inject refined smoothing and controlled randomness into the net-
work via two complementary, data-independent components—i(i) a Lipschitz-constrained determin-
istic architecture and (ii) a dual stochastic design—thereby improving adversarial robustness.

Let z € REXWXC be an input feature map with spatial dimensions (H, W) and C channels with
label y € ¥V = {1,...,K}. We denote by ||-||2 the Euclidean norm over vectorized tensors and
by Lip(h) the (global) £5-Lipschitz constant of a map h (“L-Lipschitz” means ||h(u) — h(v)]2 <
L|ju—wv||2. Our proposed HyCAS—integrated any base classifier fy with parameters 6. The smoothed
classifier induced by HyCAS is:

go(z) = arg Izleaﬁc P57Q[f9($ +&Q) = c]. (1)

where Q = (&,1, M), € ~ N(0,0%I) denotes Gaussian noise with mean 0 and standard devi-
ation o matching the dimensions of x to enable randomized smoothing, ¢ induces deterministic
Lipschitz-constrained structure, 1) integrates implicit structural randomness (first-level stochastic
defense), and M, injects the explicit attention noise (second-level stochastic defense). The classi-
fier gy () returns whichever class fy is most likely to return, taking expectations over the distribu-
tions N'(x + &;2,0%I). An overview is given in Fig. 1} pseudocode is provided in App.
(Algorithms [TH3)..
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HyCAS processes every feature map through three parallel streams: (a) Frequency-aware Determin-
istic Projection with Attention Noise (FDPAN); (b) Spectrally Normalized Convolution with Atten-
tion Noise (SNCAN); and (c) Random Projection Filter with Attention Noise (RPFAN). Their outputs
are fused by a data-independent convex channel gate that down-weights high-sensitivity streams,
thereby weakening naive adversarial attacks.

Specifically, let B = {FDPAN, RPFAN, SNCAN} be the set of streams and for each stream b € B,
let G(+;€2) denote its output feature map and those output feature maps are fused by channel-
wise convex gate oy, .. For learnable, data-independent logits Ay ., we define channel-wise convex

. Ap.o .
weights ap . = %, such that >, o = 1, ap . > 0, thereby we obtain the HyCAS

block output is

2(x). 0= ZOqLC [Gb(x; Q)] e + R(Zab,c [Gb(m; Q)] o Mw) ;oc=1,....C. (2

i R

beB beB
where R denotes RANI module.

Convex fusion and expected-logit map are < 2-Lipschitz. If each stream satisfies Lip(Gj)<
2, and the gate is convex (Eq. , then the per-channel fusion has Lip(z — z(z)) <
maxpep Lip(Gy) < 2. (ref. Appendix (Prop. ). Taking the expectation over €2 pre-
serves the Lipschitz constant (ref. Appendix[A.3](Lemma[2)), so the network’s expected logit map
Z(z) == Eq[sg(x; Q)] remains < 2-Lipschitz. Formally:

Theorem 1 (HyCAS block is < 2-Lipschitz). Each constituent stream—SNCAN, RPFAN, and
FDPAN with skip weight § < %—is individually < 2-Lipschitz. Indeed, every stream is the
composition of three maps: (i) a stochastic projection Ty (seeded by 1)), 1-Lipschitz; (ii) a de-
terministic projection D¢ (parameterized by &), 1-Lipschitz; and (iii) a stochastic attention noise
M,,: R?— [0,1]%, 1-Lipschitz. For any input x, the resulting feature map

Gy(x;6,,w) = DeTy(x)) + Mu(De(Ty(x)))

is therefore 2-Lipschitz on each forward pass. The subsequent per-channel convex fusion is non-
expansive, so it cannot increase the Lipschitz constant. Consequently, every HyCAS block is prov-
ably < 2-Lipschitz (see Appendix[A.3|(Prop.[)).

Proof. See proof within the Appendix O

Corollary 1 (Randomized Lipschitz margin certificate for expected logits). Let Z(x) be HyCAS
logits averaged over internal randomness, with Lip(Z) < 2. Let A(x) = Z(1)(x) — Z9)(x) is the

gap between the top-two logits. Then ro(z) = Aff) is is a valid U5 certificate: for all ||6]|2 < r2(x),

we have arg max Z(x + §) = argmax Z(z). This is the HyCAS pointwise U5 certificate (App. [A.4).
Proof. See proof within the Appendix O

The HyCAS—integrated network is optimised with a standard /5 loss as:
Luycas =COLrppan +¢ © Lsncan +v O Lrpran + kO LraNT, 3)

where (, ¢, v, and k denoted by learnable parameters, while ® represents Hadamard product.

All streams are spectrally normalised (][ ||2 < 1) and the stochastic attention noise module is
1-Lipschitz. Hence, by Theorem [[}-Corollary [T} every HyCAS block—and any network built by
stacking them—is < 2-Lipschitz, so attacks with £3-norm < A(z)/4 cannot alter the prediction.

3.1 FREQUENCY-AWARE DETERMINISTIC PROJECTION WITH ATTENTION NOISE (FDPAN)

Under ¢5-bounded attacks, adversaries (i) conceal perturbations in high-frequency DCT coefficients
and (ii) exploit channel-wise gradient regularities that generalize across models. FDPAN counters
both phenomena by weaving frequency truncation, channel scrambling, spectral control, and cali-
brated stochasticity into the architecture.

FDPAN is a four-stage cascade (see Appendices[A.3HA.5|for Lemma [3] and Figure [5), where each
component comprises a deterministic 1-Lipschitz core followed by two randomized residuals, i.e.,
2-Lipschitz: (i) Low-pass DCT mask (1-Lipschitz) — excises fragile high-frequency bands. (ii)
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Table 1: Certified accuracy (%) of HyCAS and prior baselines on CIFAR-10 and ImageNet. Bold value
denotes the best in each column across all noise—radius pairs. All methods are evaluated at two noise levels.

CIFAR-10 ImageNet

Approaches | o Certified accuracy at predetermined /5 radius r (%) | Certified accuracy at predetermined /5 radius 7 (%)
0.00 025 050 075 100 125 150 2.0 |0.00 025 050 0.75 1.00 125 150 2.0

RS 025|753 602 434 261 0 0 0 0 | 671 487 0 0 0 0 0 0

050 | 652 54.1 413 324 232 147 934 0 |573 459 368 287 O 0 0 0

IRS 025|78.6 632 475 308 196 103 572 0 |684 585 462 387 321 193 108 O
050 | 71.3 585 44.1 333 241 157 114 22 624 509 415 347 273 202 13.8 6.31

DRS 025|834 658 502 345 247 158 105 0 |70.6 612 51.8 427 384 326 254

050 | 78.1 62.1 487 358 245 179 129 46 |67.6 582 49.6 428 356 332 298 213

ARS 025|841 673 514 39.1 309 21.1 162 0 |71.1 61.4 527 43.1 39.1 334 267 O
050 | 78.4 63.7 502 389 31.8 233 19.7 847 |68.1 587 503 434 39.1 345 306 224

LOT | 805 647 486 343 236 152 914 0 | 697 60.6 509 422 37.1 305 218 O
76.7 60.4 463 351 249 173 121 625|66.1 574 489 428 384 329 283 19.8

SLL | 814 653 499 331 236 147 994 0 |702 5777 484 418 37.6 319 243 0
779 626 487 345 244 162 137 583|673 555 49.1 428 39.1 345 267 213
HyCAS 025|854 70.1 56.7 443 36.5 29.6 229 852|723 639 556 464 40.7 352 29.7 542
Y 0.50 | 80.7 65.3 548 443 368 30.3 234 12.5|69.2 60.6 539 45.6 41.1 363 327 248

Orthogonal Jacobian 1 x 1 matrix + Randomized Attention Noise Injection (RANI) (2-Lipschitz)
— scrambles channel gradients and injects structured noise. (iii) SNCAN (2-Lipschitz) — keeps the
convolutional kernel spectrum bounded while introducing additional stochasticity. (iv) RANT that
further incorporates refined randomness and is 2-Lipschitz.

Let the deterministic core be H(xz) = Ck, (U @T(AG)(P:L')) , where C'i, be Spectrally normalized

convolution, U denotes Orthogonal Jacobian matrix layer, ® is the orthonormal 2-D DCT and A is
the low-pass mask.

To incorporate richer, refined stochasticity, we apply RANT immediately after the deterministic core.
Given an attention noise M, and a noise—strength parameter w € [0, 1], a RANI module is denoted
by R(z; Mw), and is 1-Lipschitz for every freshly drawn w during both training and inference.
Hence, combining the deterministic path and two independent RANT injections (stochastic) yields
the FDPAN stream output as: Gpppan(z; &, M,,) = H(z;€) + R (H(w;€); My, ), where H(; )
is the deterministic core, and each R (; &, Mw) introduces independent stochastic attention noise
M,, for i € {1 : 2}. Because the two M, terms are cascaded ¢ and the entire stream is at most
2-Lipschitz by the triangle inequality. The skip connection is 1-Lipschitz as well. Notably, more
details about SNCAN module and RANT mechanism are in the following sections. Formally:

Proposition 1 (FDPAN is at most 2-Lipschitz). Assume the deterministic core H(-) is 1-Lipschitz
and that, for every attention noise M.,,,, the RANT R(-;w;) is also 1-Lipschitz; the skip connection is
likewise 1-Lipschitz. Define the FDPAN stream output by Grppan(z; My,) = H(-) + (R(-) o H())
is 4-Lipschitz and therefore satisfies Lipschitz(Grppan) < 2.

Proof. See proof within the Appendix O

Therefore, FDPAN minimises the objective of HyCAS by incorporating refined stochasticity into the
network through all employed modules as mentioned in the above:

Lrppan (9) = mein ]E(;vy) ]EENN(O,UQI)} &M, f(f‘g ($ +&; £a eri)a y) : 4

3.2 SPECTRALLY NORMALIZED CONVOLUTIONS WITH ATTENTION NOISE (SNCAN)

To design SNCAN (see Appendix [A.3] (Figure [f]), we replace every standard convolutional layer
with a spectrally normalized convolution (SNC; see Appendix [A.2.2)). This substitution introduces
controlled gradient variability while preserving the deterministic 1-Lipschitz bound on worst-case
{5 perturbations. However, the resulting stationary gradient fields can still be exploited by ad-
versarial attacks. To mitigate this vulnerability and further strengthen robustness, we incorporate
our data-independent RANT module (Section [3.4) to each SNC layer, thereby injecting fine-grained
stochasticity while preserving a tight Lipschitz envelope.

Let v = Ck,(z), R(v;M,) = D, v, where Ck, is an SNC with kernel K, rescaled to satisfy
|Kellop < 1 and D, = diag(M,,) is a diagonal matrix formed from the attention-noise tensor
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Table 2: Certified accuracy (%) of HyCAS and prior defenses on CelebA, HAM10000, and NIH-CXR.
Boldface denotes the best in each column across all noise—radius pairs. Methods are evaluated at 3 noise levels.

CelebA HAM10000 NIH-CXR
Approaches | o {5 radius r (%) {5 radius r (%) {5 radius r (%)
00 050 1.0 |00 050 10| 00 050 1.0

025]928 457 0 |946 532 105|774 435 157
0.50 | 87.7 47.8 10.5|89.3 52.1 122|733 399 218
1.0 | 814 516 188|847 543 212|664 429 228

025|952 533 274967 574 313|79.1 584 325
0.50 | 91.3 539 304 919 551 328|749 547 333
1.0 | 853 592 31.6 869 574 346|699 529 34.1
025|968 58.1 33.7 972 60.5 354|816 619 38.6
0.50 | 92.7 59.3 34.8 |93.1 60.4 36.6 | 76.2 58.6 40.9
1.0 | 87.7 62.3 369|882 619 385|717 60.6 414

RS

ARS

HyCAS

M, € [0,1)#*WxC Because every diagonal entry of D,, lies in [0, 1], we have || D,, |2 < 1. Hence
Lip(Ck.) <1, Lip(R(-; M,)) < 1, Lip(I + D,,) < 2.

[0’ 1]H><W><C

RANT generates a bounded attention noise M, € and forms the stochastic residual

output as:

Gsnoan(@; &, M) = Ck, (#;€) + R(Ck, (2;€); My,) = (I + Dy,) Ck, (; ). (%)
By incorporating RANT into a deterministic, 1-Lipschitz convolutional block, we obtain a random-
ized defense that is provably 2-Lipschitz, as formalized below.

Ly € REXWXC and every noise

Proposition 2 (2-Lipschitz hybrid block). For every input pair x
sample M,

|Gsnean(x; My,) — Gsnean(y; My)ll2 < 2|z — yl|2-

Proof. See proof within the Appendix O

Each SNCAN block, therefore, multiplies the network’s global Lipschitz constant by at most 2 while
injecting fresh randomness on every forward pass, synchronizing the gradient landscape that an
adversary sees. Therefore, SNCAN minimizes the objective of HyCAS by incorporating refined
stochasticity into the network through SNC and RANT modules:

Lsncan(0) = Hgn E(z.p) Eenn0,021), €0, U folw + €56, M), y). (6)

In summary, spectral normalization (e.g., SNC) complemented by RANT yields a randomized module
built on a deterministic architecture, whose Lipschitz envelope remains tight while its gradients vary
across evaluations.

3.3 RANDOM-PROJECTION CONVOLUTION WITH ATTENTION NOISE (RPFAN)

RPFAN couples a spectrally controlled random projection (1-Lipschitz) with a data-independent
randomized attention residual (2-Lipschitz). It therefore introduces dual stochasticity—(i) from
the random projection itself and (ii) from RANI—while keeping the stream’s Lipschitz constant
at most 2. In practice, both the random projection and attention noise are freshly resampled as
described in §3.5. Network Execution.

The RPFAN module (see Appendix (Figure [7)) inherits the Johnson-Lindenstrauss (JL) em-
bedding guarantee of a random-projection filter (RPF) [Dong et al.| (2023) (see Appendix [A.2.3]for
details) and extends it with three carefully chosen components: (i) two core innovations that render
the module certifiably 1-Lipschitz, and (ii) the RANI module, which raises the Lipschitz constant
to 2 while injecting an additional source of data-independent stochasticity. Combined, these ele-
ments provide dual stochasticity—one arising from the random projection itself and the other from
RANI—thereby strengthening adversarial robustness without exceeding a 2-Lipschitz bound. The
three components are summarized below.

1. Energy-preserving channel pre-mix. Before the random-projection filter is applied, we lever-
age 1x 1 orthogonal Jacobian matrix as channel mixer U with U T U = I Horn & Johnson!|(2013)
to apply x — Uz, which equalises channel energy so that every spatial dimension enters the
projection space with identical energy distribution (see Appendix (Lemma3)).
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2. Batch-aware spectral normalisation for random projection. The random-projection filter W}
is sampled exactly as in|Dong et al.|(2023) (ref. [A.2.3). We then rescale it using a per-sample,
two-step power-iteration (PI) scheme: (i) Draw u ~ N (0, 1) of shape (N, L, W' ); (i) Up-

' s 5 0
T N v, . . .
date twice v <+ %ﬁg’w‘)), u « Lo wiWo) i malising each sample independently; and

(iii) compute the Rayleigh quotient (RQ), thereby to form a spectral normalized random projec-
tion filter Wsy as:

1

RQ = > (i, Conv(vy; Wo)), Wan =

Wo
max(RQ, 1)

n

This batch-aware PI yields a tighter bound on ||Conv(-; Wp)||2 than layer-wise PI while guar-
anteeing that the projection remains 1-Lipschitz (Appendix [A.3).

3. Randomised Attention Noise Injection (RANI). Given the 1-Lipschitz projection output h =
Conv(Uz; Wsn), draw internal randomness w and apply a data-independent bounded mask
M, € [0,1]¢ through the RANT module R(h;M,,). For newly drawn w, ||[[+Dys |l2 <
[ 1]|2-+]|Dar, |2 < 2; therefore the composite map z — R( Conv(Uz; Wsy);w) is 2-Lipschitz.
This couples the spectrally normalised random projection with RANT, injecting refined stochas-
ticity while multiplying the stream’s Lipschitz constant by at most 2 (ref. Proposition 2} see also
App. A.2 for the residual bound). Define the 1-Lip core Hrpran(z) = Conv(Uz; Wsn) and
the stream output as:

Grpran (239, My,) = Hrpran (25 ¢) + R(Hrpran (25 9); My,); (7)
then Lip(Grpran) < 2 (See Proof [5).

Therefore, RPF AN minimises the objective of HyCAS by incorporating refined stochasticity into the
network through RPF and RANT modules:

Lrpran(0) = Hgﬂ E(e.y) Beano,020), 0 A folz +£:9Q),7). 3

3.4 RANI: RANDOMIZED ATTENTION NOISE INJECTION

Motivation. Certified deterministic 1-Lipschitz defenses (e.g., SNC) bound the worst—case {5 per-
turbation but still expose a deterministic gradient field that adversaries can exploit. Classical ran-
domized defenses inject noise only at the input, whereas certified Lipschitz defenses remain deter-
ministic inside the network. RANT closes this gap: it injects a data-independent, stochastic attention
mask M,, € [0,1]? after every spectrally-normalised block in the three streams (FDPAN, RPFAN,
SNCAN) and once more at their fused output, while preserving a global 2-Lipschitz envelope. For-
mally, the deterministic 1-Lipschitz map h € H(z;&, ) is replaced by the stochastic 2-Lipschitz

map he R(h; M,,) via incorporating RANT module (R(; M,,).

Attention noise mechanism. For each forward pass, RANT draws fresh noise w ~ N (0, 1) for
internal randomness and computes a bounded attention noise M, € [0, 1]¢ that is independent of the
current features. For any deterministic feature tensor h € RF*WxC ' we modulate it according to:

h = h o M,, (€))

where © denotes the Hadamard product. This yields a Lipschitz constant of at most 2; hence every
block’s constant grows from 1— Lipschitz deterministic to a randomised defense (see Appendix[A.3)|
(Lemma[3))).

In practice, M, is produced by our RANT module via injecting noise at local and channel information
of the given deterministic feature maps (e.g., h € H(z;£,1)); (See Appendix for more details
of our RANT module. The following lemma states the guarantee formally.

Lemma 1 (RANT module is 2-Lipschitz). Let h € R? and let M (w) € [0, 1]¢ be sampled i.i.d. from
an arbitrary distribution that is independent of h. Define the RANI mapping as shown in Eq. [9

Then, for each randomly drawn w and any h1, ha, the mapping h is 2-Lipschitz with respect to the
Euclidean norm || - ||2; i.e.,

[R(h1; M) = R(hg; Mu)ll2 < 2([ha — hell2-

Proof. See proof within the Appendix O
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Table 3: Robust accuracy (%) against /o, attacks (APGD-20 and AA-20) on NIH-CXR (left) and
NCT-CRC-HE-100K (right) at € € {8/255, 16/255}.

Method NIH-CXR NCT-CRC-HE-100K
Clean | APGD-20 | AA-20 Clean | APGD-20 | AA-20
[ 8/255 16/255 | 8/255 16/255 [ 8/255 16/255 [ 8/255 16/255

AT | 89.1£1.91|7474+£2.52 6694341 |742+£293 64.1+3.70| 92.2+1.82|77.8£2.51 | 68.7+3.12 | 76.3 & 2.83 | 66.2 £ 3.61
RPF | 88.441.82|83.7+£249 71.9+£3.29|825+£2.71 70.8+£3.52| 91.1£1.71 |86.1+£2.33|73.94+3.33|84.24+2.62|72.4%3.41
CTRW | 88.4+1.73 | 85.1 £2.23 73.1+£3.22 | 84.5£2.48 72.6£3.41 || 90.4£1.62 | 87.6 £2.29 | 76.7£3.12 | 86.7 £ 2.44 | 75.2 £ 3.22
DCS |87.2+£2.05|824+£241 71.7+£321|81.7+£2.72 69.64+3.45| 90.3+1.93|84.54+2.72|73.0+£3.25|83.3+£2.74 | 71.6 £ 3.46
ARS [ 84.8+222|751+£3.01 64.7+328|72.8+3.11 62.84+3.72| 86.84+2.14 | 75.94+2.71 | 66.1 +3.52 | 74.6 = 3.11 | 64.5 £ 3.73
DRS [83.9+£2.33|73.14+241 62.9£3.23|71.6+£3.12 61.9+3.81 || 85.94+2.25 | 75.1 £2.61 | 65.24+3.82 | 73.5 £3.21 | 63.7 £ 3.94
HyCAS|89.5 +1.64(88.6 £2.33 77.3£3.14(86.9+242 74.4+3.33|(91.3+2.63(90.4+2.82(79.3+3.52|88.2+2.63|76.7+ 3.34

Table 4: Robust accuracy (%) against £ attacks (APGD-20 and AA-20) on HAM1 0000 (left) and EyePACS
(right) at e € {8/255, 16/255}.

Method HAM10000 EyePACS
Clean | APGD-20 [ AA—20 Clean | APGD-20 [ AA20
[ 8/255 16/255 | 8/255 16/255 [ 8/255 16/255 [ 8/255 16/255

AT 75.24+2.94|56.1+3.49 46.54+3.75 | 54.24+3.93 44.2+3.80 || 78.2+2.91 | 60.0 £2.72 | 50.1 £ 3.52 | 58.3 £2.83 | 48.2+ 3.61
RPF | 74.3+2.86|64.1+341 51.94+342|62.6+3.71 50.4+3.58 | 77.14+2.90 | 67.8+2.57 | 56.1 +3.12 | 66.4 £2.73 | 54.4 £ 3.44
CTRW | 74.3 £2.75 | 64.7 £3.33 52.84+3.32 | 63.3 £3.48 51.2+£3.52 | 76.4+2.84 | 70.1 & 2.53 | 57.7 £3.35 | 69.7 & 2.64 | 56.1 & 3.31
DCS | 73.24+£294|629+348 51.7£3.09|61.4+3.72 49.5+3.45 | 76.4 £2.94 | 66.8 +2.53 | 55.2 £ 3.68 | 65.3 £2.74 | 53.6 & 3.46
ARS |69.8£3.22|53.9£3.88 44.1+£3.13|52.7+£4.10 42.84+3.71 | 72.94+3.97|59.94+2.91 | 48.8 £ 3.61 | 57.6 =2.94 | 46.5 £ 3.73
DRS |68.9+£3.28 |53.4+£3.84 43.2+£343|51.6+4.12 41.84+3.81| 71.9+£3.86 | 58.3+£2.61 | 47.44+3.71 | 56.5 +2.92 | 45.7 & 3.94
HyCAS|74.6 +2.74|/67.8 £3.43 55.3 +3.14|65.8 +3.42 53.1 +3.33|(77.6 £2.79(72.6 +2.72(60.5 + 3.43|71.8 + 2.82|58.3 + 3.32

Therefore, RANT minimises the objective of HyCAS by incorporating refined stochasticity into the
network:

Lrani(0) = ngin E(z.p) Eenn(0,021), M, A fo(z + &3 My,),y), (10)
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Figure 2: Empirical robustness of HyCAS versus leading baselines (RPF, CTRW, DRS, ARS) on CIFAR-10
under strong APGD attacks. We evaluate two settings: (1) perturbation sizes e from 0.01 to 0.08 and (2) iteration
steps from 10 to 100.

4 EXPERIMENT RESULT
4.1 EXPERIMENT SETUP

Evaluation  protocol. We  evaluate HyCAS on eight vision  benchmarks
(CIFAR-10/100 (Krizhevskyl [2009), ImageNet-1k (Deng et al, |2009), CelebA (Liu
et al [2015), NCT-CRC-HE-100K (Kather et all [2018), NIH-CXR (Wang et al) [2017),
EyePACS (EyePACS|2015), and HAM1 0000 (Tschandl et al.,[2018))). We report certified accuracy
at preset ¢ radii r for smoothing noise levels o € {0.25,0.50,1.0,2.0}.

Empirical robustness is measured under /., APGD—-20 (Croce & Hein, 2020b)) E| and AutoAttack
(AA) (Croce & Hein, 2020a) at budgets ¢ € {8/255,16/255}. We also evaluate HyCAS under

>We use the combination of £oo-APGDc g and feo-APGDr_ prr from (Croce & Hein (2020a), each run
for 20 iterations with 5 random restarts; we denote this union as APGD—-20.
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stronger APGD settings with larger € and more attack steps (Figs. 2H4). Baselines span randomized
smoothing methods (RS (Cohen et al.,|2019), IRS (Ugare et al.), DRS (Xia et al.| [2024))), ARS (Lyu
et al.;,2024), and 1-Lipschitz defenses (LOT (Xu et al., [2022), SLL (Araujo et al.,[2023))). All exper-
iments are run with five random seeds, and we report the mean, the standard deviation, or both for
each experiment. Implementation details, certification and empirical settings are in Appendix [A.8]
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Figure 3: Empirical robustness of HyCAS versus leading baselines (RPF, CTRW, DRS, ARS) on CIFAR-100
under strong APGD attacks. We evaluate two settings: (1) perturbation sizes e from 0.01 to 0.08 and (2) iteration
steps from 10 to 100.

4.2 CERTIFIED ADVERSARIAL ROBUSTNESS AT PRESET RADII

CIFAR-10 and ImageNet. Across all baselines in Table[I} HyCAS achieves the best certified accu-
racy for every (r, o) pair. On the CIFAR-10, at the representative medium radius r=0.75, it yields
44.3% certified accuracy for both o € {0.25,0.50 }—an gain of 5.2-18.2% over the prior methods.
Even in the large-radius tail (r=2.0, 0 = 0.50), it retains 12.5%, surpassing the leading baseline by
4.0-12.5%. A similar trend emerges on ImageNet: in the large-radius regime (r =1.5, 0 =0.50),
HyCAS reaches 32.7 % certified accuracy, exceeding every baseline by 2.1-32.7%. HyCAS also de-
livers state-of-the-art clean accuracy—85.4% on CIFAR-10 and 72.3% on ImageNet—modestly
but consistently ahead of all baselines.

Skin, Chest Xray, and Face datasets. Table|Z| demonstrates the same dominance beyond CIFAR-
10 and ImageNet datasets. On the CelebA dataset, HyCAS achieves certified accuracies of 62.3%
atr = 0.5 and 36.9% at r = 1.0, outperforming RS and ARS by 5.3-18.1%. For the HAM10000
dataset, it reaches 61.9% (at » = 0.5) and 38.5% (at r = 1.0), leading all baselines by approx-
imately 4%. On the NTH-CXR dataset, certified accuracy spans 61.9% (at r = 0.5, ¢ = 0.25)
to 41.4% (at r = 1.0, o = 1.0), a gain of 3.5-7.3% over the leading baseline (e.g., ARS). Clean
accuracy is likewise higher or on par across the board, ranging from 81.6-97.2%.

Effect of the noise level. Increasing the smoothing noise ¢ consistently trades a negligible drop
at small radii for substantial gains at large radii across every baseline, yielding a tunable accu-
racy—robustness frontier. For example, on CIFAR-10, raising ¢ from 0.25 to 0.50 leaves perfor-
mance at 7 = 0.75 unchanged (44.3%) yet improves r = 2.0 from 8.52% to 12.5%. The same
adjustment on ImageNet elevates r = 2.0 from 5.42% to 24.8%. These monotonic improvements
confirm that HyCAS provides a controllable, rather than fixed, trade-off curve.

4.3 EMPIRICAL ADVERSARIAL ROBUSTNESS

Across our empirical evaluations (Tables BH4), HyCAS achieves the highest robust top-1 accuracy
under APGD-20 and AA-20 at e € {8,16}/255. Specifically, on the NIH-CXR benchmark, HyCAS
retains robust accuracy, outperforming the leading baseline (CTRW) by about +1.8-4.2% across
these attacks while maintaining similar clean-set accuracy (89.5% vs. 88.4%). A similar trend ap-
pears on the NCT-CRC—-HE-100K dataset, where HyCAS records robust accuracies of 76.7-79.3 %
at e = 16/255 against the same attacks, exceeding CTRW by roughly +1.5-2.6 % and leaving earlier
certified defences (e.g., ARS, DRS) more than +12% behind at this stronger perturbation level.
Dermoscopic HAM1 0000 and fundus-image EyePACS exhibit the same hierarchy: HyCAS secures
robust accuracies of 53.1-67.8% against APGD-20 and AA-20 attacks on HAM10000—around
+1.9-3.1% better than the next-best adversarial defence—and widens the margin on EyePACS to



Under review as a conference paper at ICLR 2026

58.3-72.6 %, thereby surpassing the leading baseline CTRW by approximately +2.1-2.8 % . Together,
these results show that HyCAS transfers its randomized Lipschitz strategy from certification to em-
pirical regimes, maintaining clean accuracy while achieving state-of-the-art adversarial robustness.

Under stronger APGD attacks on CIFAR-10/100 (Figs. 2H3), HyCAS outperforms all baselines
and preserves its advantage as attack strength increases. On CIFAR-10, when the perturbation ra-
dius is varied from € = 0.01 to 0.08, HyCAS traces the upper envelope of the robust-accuracy curves,
retaining an ~ 10% advantage at the largest perturbation, where leading methods collapse. A similar
trend holds on CIFAR-100 as the number of APGD iterations increases from 10 to 100: all prior
defenses, including TRADES Zhang et al.|(2019) and HR |[Bennouna et al.|(2023)), degrade monoton-
ically, whereas HyCAS declines more gracefully and remains 7-12% above the closest competitor
at 100 steps, confirming that its internally resampled attention noise and random projections thwart
extended optimization. Thus, this randomized, Lipschitz-constrained design scales gracefully with
both perturbation size and steps, offering adversarial robustness and a broader safety margin.
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Figure 4: Trade-off between certified and empirical adversarial robustness achieved by HyCAS on the
CIFAR-10 (Left) and ImageNet (Right) datasets.

4.4 CERTIFIED-EMPIRICAL ROBUSTNESS TRADE—OFF

Figure[d]plots Hy CAS on a three-axis Pareto frontier that couples certified £5 accuracy (radius r) with
empirical £, robustness (APGD-20 accuracy at perturbation strength €). Across both CIFAR-10
and ImageNet, the frontier is smooth and strictly downward-sloping: as the certified radius widens,
empirical robustness inevitably contracts. Two consistent phenomena stand out: (a) Certificate
conservativeness. For the small perturbation regime (left-most region), the empirical curve lies
markedly above the certified curve, confirming that formal certificates are—by design—pessimistic
relative to observed robustness. (b) Norm mismatch tail-gap. At large radii/perturbation strength
(right-most region), the gap widens further, highlighting the inherent difficulty of translating ¢
guarantees into ¢, performance.

HyCAS achieves this trade-off by increasing the smoothing noise from o = 0.25 to 0.50 (arrow
along each curve) leaves mid-radius performance virtually unchanged, yet extends both certified
and empirical robustness deep into the high-perturbation regime. On CIFAR-10, certified accuracy
at radius r = 2.0 improves from 8.5% to 12.5%, while ImageNet shows an even larger jump—from
5.4% to 24.8%—at the same radius. Crucially, these gains incur minimal loss in clean-accuracy /
small-e robustness, giving this state-of-the-art adversarial defense a knob to dial the desired secu-
rity level without wholesale accuracy sacrifice. See Appendix [A.9)for additional experiments and
Appendices[A-IONAT]for detailed ablations and certified and empirical robustness discussions.

5 CONCLUSION

We presented HyCAS, a randomized adversarial defence whose deterministic 1-Lipschitz archi-
tecture is incorporated with two forms of data-independent internal randomness, yielding a global
< 2-Lipschitz network and a simple margin-based ¢, certificate. Experiments on diverse imaging
benchmarks demonstrate state-of-the-art certified accuracy and strong empirical robustness against
powerful /., attacks. Future work includes deriving tighter /., certificates, designing lighter-weight
certification samplers, and integrating HyCAS into multi-modal clinical pipelines.

10
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A APPENDIX

A.1 ADDITIONAL RELATED STUDY

Note that: in the Table 5} we compare the properties for novel adversarial defense approach for
enhancing adversarial robustness against existing baselines, demonstrating how HyCAS uniquely
overcomes each identified research gap.

A.2 PRELIMINARIES

A.2.1 RANDOMIZED SMOOTHING (RS)

Consider a k-class classification problem with input z € R? and label y € Y = {cy,...,cx}. RS
first corrupts each input o by adding isotropic Gaussian noise N (g; 0, o2I). It then turns an arbitrary
base classifier f into a smoothed version F' that possesses /o certified robustness guarantees. The
smoothed classifier F' returns whichever class the base classifier f is most likely to return under the
distribution N (x + €; x, 021),

F(z) = argmaj{Pr(f(m—&—E):c). (11)

ce
Theorem 2 (Cohen et al.,[2019). Let f: RY = Y be any deterministic or random function, and let
F be the smoothed version defined in Equation equation[I1} Let c and cp be the most probable

and runner-up classes returned by F with smoothed probabilities p 4 and pp, respectively. Then
F(x + 0) = ca for all adversarial perturbations 0 satisfying

16l < R, R = io(® '(pa)— 2 '(pB)),
where ®~1 is the inverse standard-Gaussian CDF.

In Equation 2, ® denotes the Gaussian cumulative distribution function (CDF) and ® ! signifies
its inverse function. Theorem 1 indicates that the /5 certified robustness provided by RS is closely
linked to the base classifier’s performance on the Gaussian distribution; a more consistent predic-
tion within a given Gaussian distribution will return a stronger certified robustness. (The proof of
Theorem 1 can be found in Appendix A.1.) It is not clear how to calculate p4 and pp exactly when
f is a deep neural network, so Monte Carlo sampling is used to estimate the smoothed probability.
The theorem also establishes that, when we assign p4 a lower-bound estimate p " and assign pp an

upper-bound estimate with p , = 1 — p ,, the radius R’ equals
-1
R =097 (p,)

Equation (3) follows from —®~*(1 —p ) = ® *(p,). The smoothed classifier ' is therefore
guaranteed to return the constant prediction ¢4 around x within the ¢5 ball of radius R'.

A.2.2 SPECTRAL NORMALISATION OF CONVOLUTIONS

For a kernel K € RF»*FuwxCinxCout we denote by Cy¢ the induced circular convolution. We follow
the two most widely—used operator-norm estimators:

(a) Exact Fourier bound |Sedghi et al.[(2019a) derived
ou(K) = max [R@)lz2, [ICicllop = (), (12)

which we adopt verbatim in Eq.|[12]to scale kernels whenever an FFT is affordable.

(b) Power-iteration (PI) surrogate [Miyato et al.| (2018a) proposed a light T'-step estimate, also
used by subsequent Lipschitz CNNs. Our implementation in Eq.[T3|mirrors their update:

6K = D), Cx(v™)), (13)

with T'=35 as in their default setting.
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Kernel rescaling. Both estimators feed the same renormalisation rule

~ K
K= =106
max(o(K), 1742 © 0 (14)

which keeps [|Cz|lop < 1. (The clamp max{&, 1} is a minor safety tweak; we note it here for

completeness but do not claim novelty.)
Proposition 3 (Layer-wise 1-Lipschitzness). Egs. ensure ||Cf|lop < 1.

All subsequent sections treat Eq.|14| as a black-box deterministic contraction. Our contribution
begins only after this step, in the following Method section.

Proof. Fix w and let x, y be arbitrary inputs. Define

Step 1: 1-Lipschitz contraction. By construction of K (Eq.|14) we have

22 = zyll2 = [ICx(z) = Cr®ll2 < [lz—yl2. (15)

Step 2: Bounded multiplicative mask. The mask generated by RANT is data-independent for
fixed w, and satisfies the element-wise bound M (w) € [0, 1]7*W ¢ Consequently

1 <1+ Mw) < 2 (clement-wise).
For any tensor a this implies

[+ M(w)) ©allz < 2falls. (16)

Step 3: Lipschitz constant of F'(-,w). Using definition equation@
F(z,w) = F(y,w) = (1+Mw)) ® (22 — 2y),
and therefore, by equation[I6|and equation [I3]
[F(z,w) = F(y,w)llz < 2|2z — 2y[l2 < 2[|a = yll2-

Because the bound holds for every choice of x, y, the mapping F'(-,w) is 2-Lipschitz. O

A.2.3 RANDOM-PROJECTION FILTERS

Random-projection filters (RPF) replace a subset of convolution kernels with i.i.d. Gaussian weights.
Let 2 € REXWxXCin be an input, F € R¥*CinxCou the flattened kernel matrix and z = F' z the pro-
jected feature. When the number of random columns Cy,y = N, satisfies the Johnson—Lindenstrauss
lower bound,
2 2 2
(I —e)llzi =zl < llzi = zills < (L) llws — 255, (17)

local geometry is provably preserved Dong et al|(2023). A standard way to keep the mapping
1-Lipschitz is to rescale the frozen kernel with a spectral-norm estimate obtained by a few power-
iteration (PI) steps after each forward pass.

A.3 PROOEFS

Proof of Theorem[I} By Propositions [2]and [5] SNCAN and RPFAN are < 2-Lipschitz. By Proposi-
tion[I] FDPAN’ s gated output is also < 2-Lipschitz. Finally, Proposition 4] shows the per-channel
convex fusion has Lip(z) < maxpep Lip(Gy) < 2. O

Proposition 4 (Convex fusion retains the max-Lipschitz). Given channel-wise convex fusion z(-)

(see Eq. that satisfies Lipschitz(z) < maxy, Lipschitz(Gy) < 2, if every stream output is
< 2-Lipschitz, then the HyCAS block is also < 2-Lipschitz.
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Proof of Propositionid] Fix a channel c and any z, y. Triangle inequality gives

12@)ise = 2@l = || D2 @0.0(Go@)ive = Golw):ce)|| £ Yo e Go(@) = Gow)ll-
b b

Since [|Gy(z) — Gu(y)|| < Lollz — yll and 32 ape = 1, we have [|z(2)..c — 2(y).,..ll
(maxy Ly) ||z — y||. Taking the maximum over channels yields Lip(z) < maxy Ly, Thus Lip(z)
2.

CHIAIA

Lemma 2 (Expectation preserves Lipschitz constant). If x — s(x,Q) is L-Lipschitz for all ), then
the expected logits Z(x) = E,[s(x,w)] are L-Lipschitz. (By Jensen’s inequality and linearity of
expectation|Dong et al.|(2023).) Hence, HyCAS’ s expected classifier inherits the same constant.
Proof of Lemma[2] For any z, v,

1Z(z) = Z(y)|| = ||Eu[s(z,w) = s(y,w)]|| < Eulls(z,w)—s(y,w)|| < Eu[L]lz—yll] = Lllz—yl,

using Jensen’s inequality [|EX|| < E||X||. O
Proof of Corollary[I} By Lemma[2} Z is 2-Lipschitz. Hence for any coordinate c,

|Ze(x +0) = Ze(@)| < [[Z2(2+0) = Z(2)lloc < [[Z(x+0) = Z(2)]l2 < 2[d]l2 <

A(x)
5

Thus the top logit can decrease by at most A/2 and the runner-up can increase by at most A /2; their
order cannot swap. O

Proof of Proposition[I] By the triangle inequality and the chain rule for Lipschitz maps,
|Grppan(z;w) — Gropan(y;w)|| = [[H(z) — H(y) + R(H (z);w) — R(H (y);w)||
< [H(z) — H(y)ll + [ R(H (z);w) — R(H(y); )|
< Lip(H) ||z — yl| + Lip(R) | H (x) — H(y)|
<Teflz—yl+1-1-flz —yll = 2[lz -yl

Thus Lip(GFDpAN) < 2. O]

Proof of Proposition2] Letx,y € REXWXC and set 2y = Ck, (z) and 29 = Ck., (y). Using equa-
tion[5]and the sub-multiplicativity of operator norms,

|Gsnean(z; My,) — Gsnean(y; Mu)ll2 = |(I + Dy,) (21 — 22) |2
<+ Dyll2 21 — 22ll2

<2[|Ck. (%) = Cr. ()2
<2z =yl

which establishes the claim. O

Proposition 5 (RPFAN is 2-Lipschitz). Let U be an orthogonal 1 x 1 channel mixer (||U||op = 1).
Let Ws N be a spectrally normalized random-projection filter so that the linear map Hrppan () :=
Conv(Uxz; Wsy) satisfies Lip(Hrpran) < 1. Let D, = diag(M,,) with M,, € [0, 1]¢ and define

Grpran(2; M,,) = Hrpran(2) + Dy Hrpran () = (I + Do) Hrpran ().
Then Lip(GRpFAN) S 2.

Proof of PropositionP] ||G(z) — G(y)|| = ||[(I + Dw)(HRPFAN(l') — HRPFAN(y))H < I+
Dy |l2 Lip(Hrpran) |z =yl <2-1-[lz — y]|. O
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Proof of Lemmall} Fix any realisation of the noise w and set D, = diag(M,,) € R4, By
Eq. equation [9]the RANT transformation satisfies

R(h;M,) = h+Dyh = (I+D,)h.

Step 1: bound the operator norm of / + D,,. Because every coordinate of M, lies in [0, 1], each
diagonal entry of D,, is in the same interval. Hence all singular values of D,, are < 1 and

I+ Dol < Hllz+[[Doll2 = 141 = 2.

Step 2: translate the norm bound into a Lipschitz constant. For arbitrary hy, hy € RY,
[R(h1; My,) — R(ho; My)|[2 = [[(I + Dw)(h1 — h2)|l2
< | + Dyllz |1 — h2l|2
< 2{|h1 = haf2.

Therefore R(-; M,,) is 2-Lipschitz with respect to the Euclidean norm for every draw of w, complet-
ing the proof. O

Lemma 3 (Orthogonal transforms are 1-Lipschitz). If U € R%*? is orthonormal then Lip(U) = 1.
In particular, 2-D DCT/IDCT and any frozen orthogonal 1x1 convolution satisfy Lip = 1.

For amap h : R? — R? the fo—Lipschitz constant is
h(u) —h
i) = anp 10 =B
uFv Hu - 1)||2

Throughout we use the vectorised /2 norm over N x H x W x C' tensors. We make repeated use
of: Triangle inequality. ||a + b||2 < |la|l2 + [|b]|2. Convex combination bound. If ", A\; = 1 and

Ai > 0then ||, Xiai ||, < 32, Aillailz. Jensen. | E[X] |2 < E[||X|2].

Proof of Lemma 3]
|0z - Tyl = [UG@-g)l = |lz—y| forallzy.
O

Lemma 4 (Spectral normalisation). Rescaling a convolutional kernel W by W/ max(||W||2,1)
enforces Lip(Convy ) < 1 (Gouk et al} |2021).

Proof of Lemmald] By construction,

Okl max{Cilop e} _
P max{c®) 1} — max{c(¥) 1} -

CKk,

A.4 CERTIFIED PREDICTION UNDER HYCAS

Each HyCAS stream comprises a 1-Lipschitz deterministic core followed by a data-independent
RANT module. Conditioning on the internal noise w, each stream is therefore 2-Lipschitz (see
Lemma [3), and the composite core remains 2-Lipschitz (ref. Lemma [I)). Specifically, the FDPAN
stream is the only exception: it contains two residual blocks (SNCAN + RANTI), giving a naive
4—Lipschitz upper bound. We tighten this to < 2-Lipschitz by scaling the skip connection (Propo-
sition [I). A convex channel gate then fuses the streams without increasing the Lipschitz constant
(Proposition . Finally, stacking modules and applying a global calibrator with gain ¢ < 2/ L
ensures the entire network is at most 2—Lipschitz.
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Table 5: Scope of representative certified, empirical, and hybrid defences. A v indicates that the property is
explicitly addressed, or the domain is reported, in the original paper.

Method Certified Empirical Natural images Medical images

RS|Cohen et al.|(2019
IRS|Ugare et al.
DRSXia et al.|(2024
ARS Cyu et al. (
LOT Xu et al.|(2022)

SLL |Araujo et al.[(2023)

PNIHe et
Learn2Perturb

\

NN NN

AN NN AR NN NN

AN ENENENENEN

AN
AN

e J SEEEEEELEEELLEEE : N
Orthogonal

Lipschitz- \\l
Image-Net ||
‘—»DCT/IDCT—» Jacobian —>

' H(z; E) Contrained
:

i Matrix

'

Input x

1-Lipschitz

2-Lipschitz

FDPAN
- J

Figure 5: Overview of FDPAN stream. A four-stage cascade: (i) low-pass DCT masking and orthogonal
1x1 channel mix (both 1-Lipschitz); (ii) SNCAN block (spectrally normalized convolution) with RANI; (iii)
additional RANI; and (iv) skip/gating. The stream remains <2-Lipschitz.
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Figure 6: Overview of SNCAN block. A spectrally normalized convolution (C'k, ) ensures operator norm < 1;
RANI applies a bounded, data-independent attention mask M., so the block output equals (I + D.,) Ck. (z),
which is < 2-Lipschitz.

Margin certificate. Define the expected logits, averaged only over the model’s internal random-
ness, be

Z(z) = Eu[s(z;w)], Lip(Z) < 2 (Lemmal).

Let Az(x) = Z1y(x) — Z(2)(x) denote the gap between the top two logits. The certified /5 radius
at x is then,

ro(x) = AZ4($) ,
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which guarantees argmax Z(z + J) = argmax Z(z) for every perturbation |||z < 72(z)
(Corollary . For /., the norm inequality ||§]s < v/d||6]|s yields the conservative certificate

_ o) B

Too() = N

Estimation under internal randomness. At test time we approximate Z through Monte Carlo
sampling over w. Draw ng pilot samples to identify the top class, then take n additional samples;
compute one-sided confidence bounds for Z(y(x) and Z5)(x) and certify with

TLCB (CU) = 4 )

at confidence 1 — «.

A.5 EXTENDED DETAILS FOR FDPAN, SNCAN, AND RPFAN STREAMS

Detailed overviews of the three parallel streams—FDPAN, SNCAN, and RPFAN—are illustrated in
Figs.[5H7| respectively.

A.6 EXTENDED DETAILS FOR RANI MODULE

Deterministic attentions. We design two deterministic attentions—Ilocal (LA) and channel
(CA)—that highlight informative local and inter-channel dependencies, respectively. Specifically,
we leverage GAP and 1*1 convolution followed by leveraging dense layer and sigmoid to learn
these attention maps:

LA(z) = U(Convglil(z)), CA(z) = U(Denseél)(ReLU(Densegl)(GAP(z))))), (18)

Injecting stochasticity. We these deterministic attention maps into randomized attention maps
(’y;] and fyl') via injecting feature lay/er noises 7 Iy € R, therfaby incorporating stochasticity. We
formulate this as: Yo =1, +9, n=n,+, (19)
where 04,0, € R are trainable scale vectors and ¥(u) = min{1, max{0,u}} clips the maps into
[0,1].

Noise parameterization and iterative refinement. To realise heteroscedastic, yet data-
independent, stochasticity at minimal cost we employ a two-step self-modulation loop

ni, :770@(00+77-®UO>> e c{g,1},

This yields two potential benefits: (a) Richer expressivity—because o, is trainable, the model
learns which channels benefit from strong noise and which should stay nearly deterministic; and (b)
Negligible overhead—only 2C' extra scalars per branch.

Iterative noise fusion. We propagate the stochastic smoothing through the backbone in four stages.
At each stage j € {1,...,4} the current feature tensor x} is modulated by the noisy randomized

the deterministic attention maps, (v, ); and W(v;); followed by fuse them as

4
w o= 2% o [[[(0), © ¥, (20)
j=1

Each stage injects a freshly resampled attention noise yielding a progressively smoother—stochastic
feature tensor. This cascade progressively smooths the feature tensor and presents a continually
shifting optimisation landscape to an adversary, thereby enhancing robustness while preserving the
global 2-Lipschitz guarantee. Thus RANTI converts every deterministic 1-Lipschitz block into a
randomised counterpart that keeps the certified /o margin while impeding adversarial attacks by
presenting a moving optimisation landscape.
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A.7 DETAILS ABOUT THE HYCAS CERTIFIED ALGORITHM

This section illustrates the details of the certified algorithm of HyCAS, as shown in the following
subsections:

A.7.1 HYCAS TRAINING

Our base network couples a deterministic, Lipschitz—constrained backbone with stochastic smooth-
ing branches. Concretely, let fy(-;€2) denote the hybrid classifier with parameters 6 and internal
randomness §2 = (v, M,,), where 1) parametrizes implicit randomness (e.g., random projection fil-
ters) and M, injects explicit attention noise. Following randomized smoothing (RS), we expose the
input to isotropic Gaussian noise € ~ A (0, 1) during training and minimize the expected loss

mein IE(ac,y) EENN(O,J2I), Q E(f@ (*T +¢& Q)7 y) ,

which is the same objective used to train the stochastic component in our hybrid architecture (cf.
Eq. [I0] for RANT in HyCAS). To make RS effective at scale while retaining deterministic control,
the backbone is constrained to be L. < 2-Lipschitz; our implementation mirrors the HyCAS con-
struction where residual blocks are scaled so the stacked network remains < 2-Lipschitz and thus
amenable to margin certification.

To mitigate the curse of dimensionality inherent to RS, we optionally activate a DRS (Dual Random-
ized Smoothing) path that partitions = into two lower-dimensional sub-inputs and smooths them
separately before fusion. This preserves most information while tightening the /5 certificate upper
bound from O(1/v/d) to O(1/+/m + 1/+/n) with m +n = d. Our training simply shares the same
6 and minimizes the same expectation, with the forward pass executing the two DRS branches in
parallel.

Algorithm [I| summarizes one epoch: for each minibatch we (i) sample (e, 2) once per forward;
(i1) run the deterministic Lipschitz backbone and the stochastic streams; (iii) backpropagate the
Monte-Carlo estimate of the RS objective; and (iv) apply the Lipschitz constraints (spectral normal-
ization / calibrated residual scaling) to keep Lye < 2.

Algorithm 1 HyCAS Training

Requires: Dataset D; epochs E; batch size B; noise level o; HyCAS-integrated network fy
with streams {SNCAN, RPFAN, FDPAN}, convex channel gate ap . (3, o, = 1), and
1-Lipschitz building blocks; optimizer O; (optional) stream loss weights ¢, ¢, v, &.

1 Init: Initialize 6; set spectral normalisation (SN) for all convs (operator norm < 1); fore = 1to
do

2 | foreach minibatch {(x;,y;)}E., ~ D do

// Resample internal randomness once per minibatch (HyCAS
execution protocol)

3 Resample random-projection filters for RPFAN and attention-noise masks for all streams,

collectas ). // RS-style training noise at the input

4 for i =1to B do

5 | Draw &; ~ N(0,0%1); set Z; < x; + &;.

// Forward through the three streams + convex fusion (each
stream < 2-Lipschitz)

6 Compute per-stream feature maps Gp(Z;; 2) for b € {SNCAN, RPFAN, FDPAN}. Fuse

per channel: 2(Z;) ¢ « >, apcGy(Zi39Q) ¢ // Loss: single fused

CE, or the HyCAS-weighted multi-branch objective

7 L «— kL(2(Z;),y;)) + ¢L(Grppran,¥i) + ¢ L(Gsnean,yi) + v L(Greran,yi). Up-

date 6 + (’)(9, V@% > L). // Keep layer-wise operator norms < 1

(SN) to maintain global < 2-Lipschitz envelope

8 Re-apply SN to all conv kernels.

// Final global calibrator (gain) to cap the network Lipschitz
constant by 2
9 Estimate Ly (product of per-block bounds); scale last linear by v <~ min(1, 2/ Lye).
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Algorithm 2 HyCAS Inference and Certification
Input: Trained HyCAS-integrated classifier fy (globally < 2-Lipschitz); test point x; class set ) of
size K; Gaussian noise level o; pilot ng and budget n for RS; significance « (set ars =
QLip = 04/2)
Qutput: Certified label § and radius R > 0, or ABSTAIN.
(A) RS branch (standard randomized smoothing). // Cohen-style certificate;
pilot then CI
for : = 1 to ng do
| Draw ¢ ~ N(0,0°I) and internal randomness ; ¢; < fo(x + £;Q);
Let ¢4 < argmax.cy count,,(c). fori =1ton do
| Draw e ~ N'(0,0°I) and Q; ¢; + fo(z +£;Q);
Let m < count,,(¢4) and pP < CLOPPERPEARSONLOWER(m,n,1 — ags). if p5¥ < 1 then
set Rrg <+ 0
else Rrs < o @7 (p5P);  grs « éa.
// ®! is the standard normal inverse CDF

(B) Lipschitz-margin branch (deterministic certificate). // HyCAS margin
certificate
Freeze internal randomness * (fix seeds), and compute logits s(-;*). JLip

argmax.cy sc(z; %); s« max, s.(z;Q%); 53 maxcxg. Sc(r; Q). if s < 5@
then set RLip +~0
s _ 42

else Ry < )

// Since Lip(fy) <2, radius is (margin)/(2-Lip)

(C) Pick the stronger valid certificate. if max(Rgs, Rrip) = 0 then return ABSTAIN
else if Rrs > Ry, then return (yrs, Rgrs)
else return ({rip, Rrip)

A.7.2 HYCAS INFERENCE-TIME CERTIFICATION
At test time we provide two independent certificates, both for the exact network we evaluate:
1. RS certificate. We certify the smoothed classifier
go(r) = arg max P.alfo(z+6;,Q) =].

We follow the standard two—stage Monte-Carlo protocol: draw ng samples to select the can-
didate class ¢ and then n samples to bound its probability. Let p4 and pp be the empirical
proportions of the top and runner-up classes. Using exact Clopper—Pearson intervals we obtain
a (1 — «) lower bound p%P on the top class and an upper bound p%E on the second. If p%B < %
we abstain; otherwise the certified /5 radius is
g
@) = 2 (o7 0E) - o7 0B,

where @1 is the standard normal quantile. This is the tight Cohen—Rosenfeld—Kolter bound
specialized and re-derived in ARS (via f-DP). In our experiments we mirror DRS sampling
defaults (ng = 100, n = 10°, @ = 10~3). When the DRS path is enabled, class probabilities are
estimated branch-wise and fused as in DRS before applying the same formula.

2. Deterministic Lipschitz (margin) certificate. Independently of input noise, we certify the
backbone + internal randomness by averaging logits only over €:

Z(z) £ Eqls(x;Q)],  with Lip(Z) <2.
Let AZ(x)=Z1)(x) — Z(2)(x) be the gap between the top-two expected logits. Then for every

perturbation ||d|j2 < AZ(x)/4, the argmax of Z(-) is invariant; i.e., the model’s prediction is
certifiably robust within radius

AZ(J") TLip(Z‘) — TIZJP(J:)
4 e N

ry"(x) =
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We estimate Z via Monte-Carlo over 2 (no input noise), exactly as recommended in HyCAS.

Algorithmlmplements both procedures. In reporting, we return rwo radii (r§(z), 75" (2:)) for the
same input z. Both are valid and interpretable: the first certifies the RS/DRS— smoothed classifier,
the second certifies the Lipschitz hybrid backbone averaged over internal noise. This mirrors the
practice in ARS /RS (majority-vote certificate) and HyCAS (margin certificate) while respecting their
assumptions.

A.8 EXTENDED EVALUATION SETUP

Network Execution. At the start of every mini-batch we resample, for each forward pass, (i) the
attention-noise M, for {FDPAN, SNCAN, RPFAN} and (ii) the random projection filters for RPFAN.
These samples stay fixed while adversarial examples are generated. At inference stage, for each test
image, we draw one fresh set (¢),w), and evaluate HyCAS against adversarial attacks to ensure
adversarial robustness.

Implementation details. Following [Cohen et al.[(2019); [Lyu et al.| (2024); |Xia et al.| (2024)), we
use ResNet—-110 (He et al.,|2016) on CIFAR-10/100 and ResNet-50 on remaining imaging
datasets (e.g., ImageNet (Deng et al.,|2009), CelebA (Liu et al.| 2015)), NCT-CRC-HE-100K
Kather et al.| (2018) etc.), as base classifiers for all training strategies. We report the best perfor-
mance separately for a more comprehensive and fair comparison. We evaluate on CIFAR-10/100,
ImageNet-1k, CelebA (unaligned, cropped attribute), NCT-CRC-HE-100K, NIH CXR,
EyePACS, and HAM10000.

For Certified Defense. HyCAS certifies via a margin bound under an at-most 2-Lipschitz network.
Let Z(z) = E,[z(z)] denote the classifier averaged over the model’s internal randomness; since
Lip(Z) < 2, a pointwise certificate is r(z) = AZT('”), Az(r) = Zay(w) — Zg)(x). To estimate
Z(x) we Monte Carlo sample only the model’s internal noise at inference. Unless noted otherwise,
we take a pilot of ng = 100 samples to select the top class, then draw n = 100,000 additional
LCB(Z1) (2)) - UCB(Z(Q)(ac))

samples to form one-sided confidence bounds and report 7 cg(z) = at
confidence 1 — a with « = 0.001. During inference we draw a fresh w on each forward pass. To
control runtime for Monte Carlo estimation, we use a fixed rule per dataset:

e CIFAR-10: certify every 5" test image (default settings 170=100, n=100,000, «=0.001).

e ImageNet-1k: certify every 100" test image (default settings no=100, n=100,000, a=0.001).

e CelebA (ARS-style): certify a uniform, label-stratified subset of 200 test images using ng=100,
n=>50,000, and failure probability 0.05 (i.e., 95% confidence).

e NCT-CRC-HE-100K, NIH ChestX-rayl4, EyePACS: certify a uniform, label-stratified sub-
sample per dataset sized to yield ~2,000 certified examples each (default settings ny=100,
n=100,000, «=0.001; exact counts in the appendix).

e HAMI0: certify the full test split when feasible; otherwise a uniform, label-stratified subsample
(default settings no=100, n=100,000, «=0.001; exact count in the appendix).

We sweep o € {0.25,0.50, 1.0} for comparability across settings.

For Empirical Defense. We follow the protocol of SOTA adversarial training strategy [Rice et al.
(2020) to set up our experiments on our diverse datasets. For Adversarial Evaluation—HyCAS
is tested under white-box attacks—PGD |[Madry et al.| (2018b), APGD |Croce & Hem (2020b|), and
AutoAttack (AA)|Croce & Hein|(2020a) using € = {55=, 3}, step size a = and 10-100
iterations.

255 ’

Training Details for Certified Robustness. Following ARS, we use a single recipe per dataset
and train all HyCAS-integrated backbones. Inputs are perturbed during training only with i.i.d.
Gaussian noise N'(0,02) (the same o as at certification). For CIFAR-10, we train for 200
epochs with a batch size of 256 using AdamW as the optimizer with learning rate 10~2 and
weight decay 10™*. A step scheduler is used with step size 30 and decay factor v = 0.1. For
CelebA, NCT-CRC-HE-100K, NIH CXR, EyePACS, and HAMI10000, we train for 200
epochs with a batch size of 64 using SGD as the optimizer with learning rate 5 x 10~2. A step sched-
uler is used with step size 3 and decay factor v = 0.8. For ImageNet -1k, we train for 200 epochs
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Figure 7: Overview of RPFAN stream. (i) Orthogonal 1x1 pre-mix (1-Lipschitz). (ii) Batch-aware spectral
normalization of a random-projection convolution (1-Lipschitz core). (iii) RANI residual, yielding a < 2-
Lipschitz stochastic block.

Table 6: Robust accuracy (%) against £ attacks (PGD-20 and AA-20) on NIH-CXR (left) and
NCT-CRC-HE-100K (right) at € € {8/255, 16/255}.

Method NIH-CXR NCT-CRC-HE-100K
Clean | PGD-20 [ AA-20 Clean | PGD-20 [ AA-20
| 8/255 16/255 | 8/255 16/255 | 8/255 16/255 | 8/255 16/255

AT [89.1+£1.91|7834+£282 68.443.62|74.24293 64.1+£3.70 || 92.24+1.82 | 80.4+2.72 | 70.8 £ 3.52 | 76.3 = 2.83 | 66.2 £ 3.61
RPF |88.44+1.82|84.6+2.62 732+£3.42|825+271 70.8+£3.52| 91.1+£1.71 |87.5+2.51 |76.64+3.33|84.24+2.62|724+3.41
CTRW | 8844+ 1.73 | 85.7+2.41 744+3.22|845+248 72.6+3.41 | 90.4+1.62|89.6+2.33|77.5+3.12|86.7+2.44 7524322
DCS |[87.2+£2.05|83.5+£2.65 72.3+3.30|81.7+£2.72 69.64+3.45| 90.34+1.93|86.54+2.62|752+3.35|83.3+£2.74|71.6+3.46
ARS | 84.84+2.22|77.2£295 66.5+3.62|72.8+3.11 62.8+£3.72| 86.8+2.14 | 78.9+2.92 | 68.3 £3.61 | 74.6 = 3.11 | 64.5 £ 3.73
DRS [839+£233|762+£2.84 65.8+£3.74|71.6+£3.12 61.94+3.81| 85.9+£2.25|77.5+£2.82|67.643.82|73.54+3.21 |63.743.94
HyCAS|89.5 +1.64(88.6 £2.33 77.3 £3.14(86.9 242 74.4+3.33|(91.3 +£2.63(90.4+2.82(79.3 +3.52|88.21+2.63|76.7 1+ 3.34

(10490 warm-up and main training), with a batch size of 300 using SGD as the optimizer with
learning rate 10~!, momentum 0.9, and weight decay 10~%. A step scheduler is used with step
size 30 and decay factor v = 0.1. HyCAS injects internal spatial and channel attention noise on
each forward pass; convolutions are regularized with spectral scaling (via FF'T or power iteration)
combined with GroupSort activations and convex residual gating, ensuring the network remains at
most 2-Lipschitz. We optimize using categorical cross-entropy loss and report top-1 accuracy.

Adversarial Training with HyCAS for Empirical Robustness. Let {5: R? — R be the HyCAS -
integrated base classifier with parameters 6, mapping an input z to its logits fp(x). For a given clean
sample (z,y) and perturbation budget €, an adversarial example z* is obtained by maximizing the
loss inside the e-ball around x:

¥ = argmax £HYCAs(f9(CU*§Q[A])ay)» @D

z* ||l —z]|<e
where Lyycas is the task loss and Q[A] emphasizes that gradients are taken in the attack phase.
Adpversarial training then solves the following classical min—-max problem:

EHyCAS(f@ (z*; Q[A]), y)a (22)

min max
O[] x*:||z*—=z| <e
where 6[I] denotes the parameters updated during the inference phase.

As detailed in Algorithm [3] combining this min—max optimization with all integrated streams en-
ables HyCAS to maintain strong adversarial resilience at inference time.
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Table 7: Robust accuracy (%) against £, attacks (PGD-20 and AA-20) on HAM10000 (left) and EyePACS
(right) at € € {8/255, 16/255}.

Method HAM10000 EyePACS
Clean | PGD-20 | AA-20 Clean | PGD-20 | AA-20
[ 8/255 16/255 | 8/255 16/255 [ 8/255 16/255 | 8/255 16/255

AT | 75.2£294|583+3.81 484+3.75|54.2+£3.93 442+3.80| 78.24+2.91|62.4£2.72|52.8+3.52|58.3+2.83|48.2+£3.61
RPF | 74.34+2.86 | 64.6 £3.62 53.3 £3.52 | 62.6 £3.71 50.4£3.58 || 77.1 £2.90 | 68.5 £ 2.61 | 57.6 &= 3.53 | 66.4 = 2.73 | 54.4 & 3.44
CTRW | 74.3 £ 2.75 | 64.7£3.42 54.2+£3.43 | 63.3£3.48 51.2+£3.52 | 76.4£2.84 |70.1£2.53 |585+3.43|69.71+2.64|56.1%3.31
DCS | 732+£294|63.5+£3.65 524+330|61.4+£3.72 49.54+3.45 | 76.44+2.94 | 67.5+2.62 | 56.2 = 3.35 | 65.3 £2.74 | 53.6 £ 3.46
ARS |69.8+£3.22|56.2+3.95 46.5+3.62|52.7+4.10 42.84+3.71| 72.94+3.97|61.94+2.91 | 50.3+3.61 | 57.6 £2.94 | 46.5 £ 3.73
DRS | 68.9+3.28|55.34+3.84 45.7£3.75|51.6+4.12 41.84+3.81 || 71.9 £ 3.86 | 60.5 £ 2.81 | 49.6 & 3.82 | 56.5 £ 2.92 | 45.7 £ 3.94
HyCAS|74.6 +2.74/67.8 £3.43 55.3 £3.14|65.8 +3.42 53.1 +3.33|(77.6 £2.79(72.6 +2.72(60.5 + 3.43|71.8 - 2.82|58.3 + 3.32

Table 8: RS/DRS vs HyCAS certified accuracy on EyePacs NCT-CRC—-HE-100K benchmarks.
The best performance under each training strategy is bold.

EyePacs NCT-CRC-HE-100K
Approach‘ o {5 radius r (%) {5 radius r (%)
‘ 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.25]81.3+1.92 60.1 +2.83 50.1 £1.53 40.9 £2.04 26.2 +2.69(89.5 + 2.78 67.6 £ 2.63 56.7 £ 3.35 45.3 +2.27 30.5+3.54
0.5|78.9+0.91 57.7+2.82 51.8 £ 1.34 42.1 +£0.96 30.4 +3.74|85.2 £ 1.67 65.6 = 1.89 56.2 +1.23 48.2 +£1.67 33.1 £1.20
0.25]83.1 £ 1.35 62.9+2.93 47.9 +£1.94 40.7 +2.32 36.2+3.73|91.7 = 1.84 69.3 £ 2.07 59.4 £ 2.37 48.3 +3.91 31.9 4+ 2.63
0.5 [80.9+1.14 60.7£2.27 51.54+1.42 42.2 4+ 2.68 37.5£0.98(87.8 £2.25 68.4+1.91 60.1 +1.01 50.7 £ 0.53 34.2 £ 1.39
0.25|86.7 £0.97 66.1 +1.62 51.4 +2.74 45.7 £1.27 39.2 +2.61 | 95.4 +2.02 72.9 £1.63 63.1 £1.59 51.7 +3.11 33.2 +1.84
0.5 [82.6 £1.89 63.9 £1.74 53.242.81 46.3+1.45 41.5+£1.67 | 92.3 £0.61 71.7 £1.11 63.4 £1.36 52.2 +1.21 36.9 +2.57

DRS

ARS

HyCAS

Algorithm 3 : Adversarial Training with HyCAS

1: Require: HyCAS integrated base classifier {¢(-) with learning parameter ¢; Perturbation size e;
Attack step size a; Number of attack iterations k; Training set {x, y}; Generated attention noise
M,, by RANT module.
Procedure:
while not converged do

Sample a batch {bx, by}, from {x,y};

Apply HyCAS for Attack phase:

2@)e = D ane [Gi(2:9)] .C+R(Zab,6 [Gb(:c;sz)]:,:yc;Mw) ; e=1,...,C.

EERS)

beB beB

6:  Compute the HyCAS—integrated network is optimised with a standard ¢ loss:
Luycas =CO Lrppan +¢ © Lsncan + v O LrRpran + KO LRANT
minmax (Cayere(lo(™ Q). 9) st [lo" —af < e

7:  Generate Adversarial Examples:
Randomly initialize adversarial perturbation &;
9: fori=1tokdo

(o]

§ < 6+ a-sign (Ve Luyens({6(bz™;2),by))  ba™ « Clip;, (bz + 9)
10:  end for

11:  Apply HyCAS for Inference phase:
2(x):e = Z Qe [Gb(:p; Q)]C + R( Z Qb,c [Gb(:c; Q)] i) Mw) ;oe=1,...,C.

beB beB
minmax (Cuess (6@ 2A).9)) st " — 2] e

12:  Adversarial Training Optimization:
0=60—-Vy (»CHyCAS({@('r*7 Q)7 y))

13: end while
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Table 9: Computational cost comparison between vanilla backbones and their HyCAS-integrated
counterparts. We report the number of parameters (M), FLOPs (G), activation memory (MB), and
inference time (ms) for ResNet-110 on CIFAR-10 (32 x 32 x 3) and ResNet-50 on ImageNet-1K
(224 x 224 x 3).

Backbone Variant Inputs Parameters FLOPs Memory Inference Time
M) (&) (MB) (ms)
Vanilla 27.6 8.10 105.33 0.33
ResNet-110 - pycpg  32x 323 57.8 1265 220.5 5.14
Vanilla 23.3 113.8 88.89 4.62
ResNet-30  pycas 224X 224%3  qpo7 16825 3919 68.3

A.9 ADDITIONAL EXPERIMENTAL RESULTS

Empirical robustness on Chest Xray, Histopathology, Dermoscopy, Funduscopy modalities.
Across our empirical evaluations (Tables [6H7), HyCAS achieves the highest robust top-1 accu-
racy under PGD-20 and AA-20 at € € {8,16}/255. Specifically, on the NIH-CXR benchmark,
HyCAS retains robust accuracy, outperforming the leading baseline (CTRW) by up to +1.0-2.2%
while competitive clean-set accuracy (89.5% vs. 89.1%) vs. AT. A similar trend appears on the
NCT-CRC-HE-100K dataset, where HyCAS records robust accuracies of 76.7-79.3% against the
same attacks, edging past CTRW by ~ +1% and leaving earlier certified defences (e.g., ARS, DRS)
more than +7% behind at the larger perturbation strength. Dermoscopic HAM10000 and fundus-
image EyePACS exhibit the same hierarchy: HyCAS secures robust accuracies of 53.1-67.8 %
against PGD-20 and AA-20 attacks on HAM10000—roughly +1.1-7.4% better than the next-best
adversarial defence—and widens the margin on EyePACS to 58.3-72.6 %, thereby surpassing the
leading baseline CTRW by +2.0-3.3%. Together, these results show that HyCAS transfers its ran-
domized Lipschitz-based strategy from certified to empirical settings, preserving clean accuracy
while preserving adversarial robustness against strong first-order attacks.

Evaluation under stronger PGD attacks on other vision benchmarks (Figs. [BH9) reveals that HyCAS
not only wins at standard PGD-20 settings (App. [A.8) but also sustains its lead as the adversary
grows stronger. When the perturbation strength is swept from € = 0.01 — 0.08 on CIFAR-10,
HyCAS traces the upper envelope of robust-accuracy curves, preserving a &~ 10% gap ar the maxi-
mum perturbation strength, where all baselines collapse sharply. An analogous pattern emerges on
CIFAR-100 as the number of PGD iterations climbs from 10 — 100: while every defense degrades
monotonically, HyCAS declines more gracefully and ends 7-12% above the closest competitor at
100 steps, confirming that its internally resampled attention noise and random projections thwart
extended optimization. Thus, this randomized, Lipschitz-constrained design scales gracefully with
both perturbation size and steps, offering adversarial robustness and a broader safety margin.

Certified adversarial robustness on EyePacs and NCT-CRC-HE-100K. Across the complete
set of baselines in Table [8] HyCAS delivers the strongest certified accuracy for every inspected
radius—noise pair. On the EyePacs benchmark, at the representative medium radius r=0.75 it
reaches 45.7% certified accuracy for 0 = 0.25 and 46.3% for o = 0.50, outpacing the best com-
peting method (DRS/ARS) by 4.1-4.8%. Even in the large-radius tail (r=1.0), HyCAS maintains
39.2% (0 = 0.25) and 41.5% (0 = 0.50), widening the gap over the strongest baseline by up to
4.0%.

A comparable pattern emerges on the NCT-CRC-HE-100K histopathology dataset. At r=0.75,
HyCAS secures 51.7% (o0 = 0.25) and 52.2% (o = 0.50), improving on the best baseline by
1.5-3.4%. In the challenging 7=1.0 regime it still records 33.2% (o = 0.25) and 36.9% (o = 0.50),
extending the lead to as much as 2.7%.
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Besides robustness, HyCAS achieves the highest clean accuracy on both datasets—=86.7% on Eye-
Pacs and 95.4% on NCT-CRC-HE-100K for 0 = 0.25—underscoring that its certified gains do
not come at the exnense of nominal nerformance.

74
e —e— RPF .- A
N CTRW B g e SR e
—— DRS e
ARS
-4- HyCAS 70

v

o
o
EY

Accuracy (%)
Accuracy (%)

IS

S
3
g

w

S
o
9]

Y
)

N
o

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 10 20 30 40 50 60 70 80 90 100
PGD Sizes PGD Steps

CIFAR-10 PGD Sizes CIFAR-10 PGD Steps

Figure 8: Empirical robustness of HyCAS versus leading baselines (RPF, CTRW, DRS, ARS) on CIFAR-10
under strong PGD attacks. We evaluate two settings: (1) perturbation sizes € from 0.01 to 0.08 and (2) iteration
steps from 10 to 100.
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Figure 9: Empirical robustness of HyCAS versus leading baselines (RPF, CTRW, DRS, ARS) on CIFAR-100
under strong PGD attacks. We evaluate two settings: (1) perturbation sizes e from 0.01 to 0.08 and (2) iteration
steps from 10 to 100.

Computational cost analysis. Table [0] quantifies the computational overhead of integrating Hy-
CAS into standard CNN backbones. On CIFAR-10 with ResNet-110, replacing the vanilla back-
bone with its HyCAS counterpart roughly doubles the parameter count and activation memory
(27.6M — 57.8M and 105.33MB — 220.5MB, i.e., = 2.1x in both cases). In contrast, FLOPs
and inference time increase by about an order of magnitude: 8.10G — 126.5G FLOPs and
0.33ms — 5.14ms i.e., = 15.6x. A similar pattern is observed on ImageNet-1K with ResNet-
50, where HyCAS induces a 4.4x increase in parameters and memory (23.3M — 102.7M and
88.89MB — 391.9MB), while FLOPs and inference time grow by ~ 14.8x (113.8G — 1682.5G
and 4.62ms — 68.3ms).

To better localize this overhead, we also compare HyCAS with a single intermediate 3 X 3 convo-
lutional block of 256 channels in ResNet-110. Substituting this standard convolution with a Hy-
CAS block increases the number of parameters by 5.09x, whereas the corresponding FLOPs rise
by 14.05x, indicating that most of the extra cost stems from repeated stochastic operations rather
than weight storage. These block-level ratios are consistent with the backbone-level trends above,
where HyCAS trades only ~ 2—4x more parameters and memory for roughly a ~ 15X increase in
arithmetic and runtime.

Overall, HyCAS is best characterized as a parameter-moderate but compute-heavy defense: the
three Lipschitz-constrained stochastic streams (FDPAN, SNCAN, and RPFAN) together with the
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RANI module primarily inflate FLOPs and inference time, while absolute inference times remain
in a practical range (a few milliseconds on CIFAR-10 and tens of milliseconds on ImageNet per
image on an A100-class GPU). In return, HyCAS consistently delivers state-of-the-art certified and
empirical robustness across CIFAR-10, ImageNet, and the medical-imaging benchmarks reported in
Tables([T}-@]and [6}-[8] making this overhead acceptable for many offline or near real-time deployment
scenarios.

A.10 ABLATION STUDY

Table [10] traces a controll'ed progression  Table 10: Module-wise contribution for cer-
from the regularized-smoothing (RS) base- tified and empirical adversarial robustness on

line to the full HyCAS model, revealing how cIFAR-10 benchmark. Here, we have used o =
each block incrementally strengthens robust- () 50.

ness. Replacing ordinary convolutions with

Accuracy (%)

the spectrally-normalized SNCAN backbone al- Variant } Certified (7=0.75) | PGD-20 (c=8/255)
ready raises certified accuracy at the medium RS 324 575
.radius (r=0.75) from 32.4% to 36.9%.an.d +SNCAN 36.9 612
improves PGD—20 robustness by 3.7%, indi- +RPFAN 40.2 64.8
cating that spectral control alone substantially +FDPAN 42.3 66.7
+RANI 44.3 70.1

smooths the gradient landscape. When the or-
thogonal RPFAN branch is introduced next, cer-
tified and empirical accuracies climb further to 40.2% and 64.8%, respectively, showing that de-
correlated projections supply complementary features beyond spectral stabilization. Extending the
spectrum through FDPAN yields another gain—42.3% certified and 66.7% empirical—confirming
that high-frequency cues remain valuable even under /o certification. Finally, injecting data-
independent attention noise via RANI closes the gap between certified and empirical metrics, cul-
minating in 44.3% certified accuracy and 70.1% PGD-20 robustness, which exactly matches the
performance of the complete HyCAS system. Altogether, these sequential additions deliver an ag-
gregate improvement of +11.9% certified and +12.6% empirical robustness over the RS baseline,
underscoring that each module contributes a distinct yet additive benefit to adversarial defense.

A.11 DISCUSSION

HyCAS is designed to reduce the gap between provable /5 robustness and empirical /., robust-
ness by combining a globally Lipschitz design with carefully structured internal stochasticity. This
section focuses on why this design yields strong certified guarantees and how it simultaneously
improves empirical robustness across natural and medical imaging benchmarksﬂ

Certified robustness from a randomized Lipschitz network. The certified guarantee provided
by HyCAS is margin-based: if

Z(z) =Ealse(z;Q)],  AZ(z) = Z1)(2) — Zz) (),

denote respectively the logits averaged over the internal randomness and their top-two gap, and if
Lip(Z) < 2, then

_ AZ(x)

4

is a valid pointwise /o certificate (Corollary 1). This guarantee acts on the expected logits of a
globally < 2-Lipschitz network obtained by stacking HyCAS blocks, each of which combines
a 1-Lipschitz deterministic core (spectrally normalized convolutions, orthogonal channel mixing,
low-pass DCT, and spectrally normalized random projections) with a 2-Lipschitz attention-noise
residual. The convex fusion of the three streams and the expectation over €2 preserve the global
< 2-Lipschitz constant.

ro(x)

3See Sections 3—4 and Appendix A for full details of the architecture, certification scheme, and experimental
setup.
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This certificate is qualitatively different from the randomized smoothing (RS) radius of Cohen et al.
based on smoothed class probabilities and Gaussian concentration. It is not a relaxed or “looser”
version of the RS bound: RS certifies the majority vote of a noise-perturbed classifier, whereas
HyCAS certifies the margin of a Lipschitz-constrained expected-logit map. Which radius is larger
in practice therefore depends on how training shapes the margin distribution under each mechanism,
not on a direct comparison of constants in the formulas.

Empirically, HyCAS consistently achieves higher certified accuracy than RS, IRS, DRS, ARS and
deterministic Lipschitz baselines (LOT, SLL) at all reported radii on CIFAR-10/100, ImageNet
and the medical datasets (Tables [T} 2} [B). For example, on CIFAR-10 at radius r = 0.75 and
o € {0.25,0.50}, HyCAS attains 44.3% certified accuracy, which is 5.2-18.2 points above prior
methods; at = 2.0 and o = 0.50, it still retains 12.5%, exceeding the strongest baseline by 4.0—
12.5 points. Similar gains appear on ImageNet, CelebA, HAM10000, NIH-CXR, EyePACS and
NCT-CRC-HE-100K. These improvements cannot be explained by small fluctuations in clean accu-
racy alone, indicating that the architecture and training jointly enlarge AZ () for many points while
respecting the conservative Lip(Z) < 2 envelope. For example, on CIFAR-10 with 0 = 0.25, RS
attains 75.3% smoothed clean accuracy at r = 0 and 26.1% certified accuracy at r = 0.75, whereas
HyCAS reaches 85.4% at r = 0 and 44.3% at r = 0.75 (Table . Thus, the gain at a non-zero
radius (+18.2 points at » = 0.75) is substantially larger than the gain at » = 0 (+10.1 points),
indicating that HyCAS’s Lipschitz-constrained hybrid architecture enlarges robust margins around
inputs rather than merely improving accuracy on unperturbed data.

The ablation in Table [10] illustrates this mechanism: starting from an RS-style baseline, replacing
standard convolutions by SNCAN, then adding RPFAN, FDPAN and finally RANI, monotonically
increases certified accuracy at r = 0.75 on CIFAR-10 from 32.4% to 44.3%. Each variant uses
the same backbone, noise level and objective; the only changes are architectural. This progression
shows that the larger certified radii arise from reshaping the margin distribution under a Lipschitz
constraint, rather than from a fundamentally stronger analytical bound.

From a theoretical perspective, the contribution is to extend margin-based /5 certification to net-
works with internal stochasticity and to demonstrate that such networks can be trained at scale. The
analysis proves that the expected logits of a HyCAS network remain < 2-Lipschitz despite random
projections and stochastic attention, and that this property can be enforced layerwise (via spec-
tral normalization and calibrated residual scaling) in standard CNN backbones while still achieving
competitive clean accuracy on large benchmarks.

Mechanisms underlying empirical /., robustness. The same ingredients that support the cer-
tificate also improve robustness against strong ¢, attacks such as APGD, PGD and AutoAttack.
Several aspects of the design are central:

* Spectral control. SNCAN replaces standard convolutions by spectrally normalised ones,
constraining the operator norm of each kernel and smoothing the loss landscape. This
reduces the ability of first-order attacks to exploit sharp directions in the input space.

* Random projections. RPFAN combines an orthogonal 1 x 1 channel pre-mix with batch-
aware spectral normalisation of random projection filters. This decorrelates channels
and redistributes energy while preserving local geometry, making adversarial search less
aligned with a single vulnerable feature direction.

* Frequency-aware filtering. FDPAN uses low-pass DCT masking and orthogonal mixing
to suppress brittle high-frequency content where small /., perturbations can hide, without
discarding all high-frequency information that remains useful for classification.

* Randomized Attention Noise Injection (RANI). RANI injects a bounded, data-
independent attention mask after each Lipschitz core and at the fused output. For each
fixed noise realization, the module is 2-Lipschitz, but across evaluations it presents a shift-
ing, yet certifiably bounded, optimisation landscape.

Combined with adversarial training (Algorithm [3), these components yield strong empirical ro-

bustness. Across all four medical benchmarks, HyCAS attains the highest robust accuracy under
APGD-20 and AA-20 at e € {8/255,16/255} while maintaining clean accuracy that is on par with
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or slightly better than existing adversarially trained and randomized baselines (Tables[3}F] [} [7). On
CIFAR-10/100, HyCAS dominates the robust-accuracy curves across perturbation sizes and attack
steps (Figures 2} B} BF[O): as e increases from 0.01 to 0.08 or the number of PGD/APGD iterations
grows from 10 to 100, all baselines degrade sharply, whereas HyCAS declines more gradually and
preserves a 7—12 point margin at the strongest settings.

Importantly, during attack generation the internal noise is held fixed per adversarial example, so
gradients remain well-defined; stochasticity is only exploited across examples, not within the op-
timisation path. Together with the global Lipschitz control, this suggests that the improved /.,
robustness comes from genuinely harder optimisation and smoother gradients rather than from gra-
dient masking.

The ablation in Table 10| again mirrors this: each successive module added to the RS baseline im-
proves both certified accuracy and PGD-20 robustness on CIFAR-10 at » = 0.75 and ¢ = 8/255,
culminating in a total gain of +11.9% certified and +12.6% empirical robustness. This tight cou-
pling supports the view that HyCAS does not trade certified and empirical robustness against each
other, but instead uses a shared Lipschitz—randomized structure to improve both.

Certified—empirical trade-offs. Figure ] summarizes HyCAS as a three-way Pareto frontier that
trades clean accuracy, certified ¢» accuracy at radius r, and empirical /., robustness at perturbation
strength €. The frontier is smooth and strictly decreasing: enlarging the certified radius inevitably
reduces empirical robustness. Two systematic gaps appear.

First, in the small-perturbation regime, empirical ¢, robustness lies well above the certified /5
accuracy at comparable scales, reflecting the inherent pessimism of worst-case Lipschitz bounds.
Many points are robust in practice beyond what a global constant can certify. Second, for large
radii and perturbations, the gap widens further due to the norm mismatch: the inequality ||6]|2 <

V/d |6]| s is loose at image scale, so a model that is provably stable to moderate ¢, perturbations can
empirically withstand much stronger £, attacks than suggested by the /5 certificate.

Adjusting the smoothing noise o provides a practical knob along this frontier. Increasing o from 0.25
to 0.50 leaves performance at intermediate radii (e.g., 7 = 0.75) almost unchanged, yet substantially
boosts certified accuracy in the high-radius tail: on CIFAR-10, accuracy at » = 2.0 increases from
8.5% to 12.5%, and on ImageNet from 5.4% to 24.8%, while small-e APGD-20 robustness remains
competitive. This behaviour shows that, despite the conservative constant 1/4 in the margin bound,
training under a global Lip < 2 constraint can still produce margin distributions that deliver non-
trivial certified radii without destroying empirical robustness.

Limitations. The theoretical guarantees in this work are derived from a global < 2 Lipschitz enve-
lope and a margin bound 7o (x) = AZ(x)/4 on the expected logits. This certificate is based on dif-
ferent assumptions than randomized-smoothing bounds, which operate on smoothed class probabili-
ties, and the two guarantees are therefore not directly ordered in terms of tightness. Our analysis does
not attempt to prove that the resulting radius is universally stronger than the randomized-smoothing
radius; instead, it shows that, for the randomized, Lipschitz-constrained HyCAS architecture, shap-
ing the margin distribution under a global < 2-Lipschitz constraint yields practically useful /5 radii
that empirically improve on RS-style baselines using the same backbones. The present theory is
restricted to /o perturbations, while robustness to ¢, attacks is assessed empirically, and extending
the framework to tighter, norm-adaptive or direct /., certificates is left for future work. Finally,
HyCAS is compute—heavy: integrating three stochastic streams and the RANI module into standard
CNN backbones roughly doubles parameters and memory but increases FLOPs and inference time
by about an order of magnitude (Table ). Consequently, our method is most suitable for offline
or near real-time scenarios where this overhead is acceptable, and designing lighter-weight HyCAS
variants is an important direction for future work.
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