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ABSTRACT

Remarkable progress in the development of Deep Learning Weather Prediction
(DLWP) models positions them to become competitive with traditional numerical
weather prediction (NWP) models. Indeed, a wide number of DLWP architectures—
based on various backbones, including U-Net, Transformer, Graph Neural Network
(GNN), and Fourier Neural Operator (FNO)—have demonstrated their potential at
forecasting atmospheric states. However, due to differences in training protocols,
forecast horizons, and data choices, it remains unclear which (if any) of these
methods and architectures are most suitable for weather forecasting and for future
model development. Here, we step back and provide a detailed empirical analysis,
under controlled conditions, comparing and contrasting the most prominent DLWP
models, along with their backbones. We accomplish this by predicting synthetic
two-dimensional incompressible Navier-Stokes and real-world global weather
dynamics. In terms of accuracy, memory consumption, and runtime, our results
illustrate various tradeoffs. For example, on synthetic data, we observe favorable
performance of FNO; and on the real-world WeatherBench dataset, our results
demonstrate the suitability of ConvLSTM and SwinTransformer for short-to-mid-
ranged forecasts. For long-ranged weather rollouts of up to 365 days, we observe
superior stability and physical soundness in architectures that formulate a spherical
data representation, i.e., GraphCast and Spherical FNO. In addition, we observe
that all of these model backbones “saturate,” i.e., none of them exhibit so-called
neural scaling, which highlights an important direction for future work on these
and related models. The code is available at https://anonymous.4open.
science/r/dlwp-benchmark-F88C.

1 INTRODUCTION

Deep Learning Weather Prediction (DLWP) models have recently evolved to form a promising and
competitive alternative to numerical weather prediction (NWP) models (Kalnay, 2003; Bauer et al.,
2015; Dueben and Bauer, 2018). In early attempts, Scher and Messori (2018); Weyn et al. (2019)
designed U-Net models (Ronneberger et al., 2015) on a cylinder mesh, learning to predict air pressure
and temperature dynamics on a coarse global resolution of 5.625 ◦. More recently, Pathak et al. (2022)
proposed FourCastNet on basis of the Adaptive Fourier Neural Operator (AFNO) (Guibas et al.,
2021)—an efficient formulation of Li et al. (2020b)’s FNO—deploying the native 0.25 ◦ resolution
of the ERA5 reanalysis dataset (Hersbach et al., 2020), which covers the globe with 721× 1440 data
points. The same dataset finds application in the Vision Transformer (ViT) (Dosovitskiy et al., 2020)
based Pangu-Weather model (Bi et al., 2023) and the message-passing Graph Neural Network (GNN)
(Battaglia et al., 2018; Pfaff et al., 2020; Fortunato et al., 2022) based GraphCast model (Lam et al.,
2022).

In a comparison of state-of-the-art (SOTA) DLWP models, Rasp et al. (2023) find that GraphCast
generates the most accurate weather forecasts on lead times up to ten days. GraphCast was trained on
221 variables from ERA5—substantially more than the 67 and 24 prognostic variables considered in
Pangu-Weather and FourCastNet. The root of GraphCast’s improved performance, though, remains
entangled in details of the architecture type, choice of prognostic variables, and training protocol.
Here, we seek to elucidate the effect of DLWP architectures’ backbones, i.e., GNN, Transformer,
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U-Net, or Fourier Neural Operator (FNO) (Li et al., 2020b). To this end, we first design a benchmark
on two-dimensional Navier-Stokes simulations to train and evaluate various architectures, while
controlling the number of parameters to generate cost-performance tradeoff curves. We then expand
the study from synthetic to real-world weather data provided through WeatherBench (Rasp et al.,
2020). WeatherBench was recently extended to WeatherBench2 (Rasp et al., 2023) and compares
SOTA DLWP. An end-to-end comparison of DLWP architectures controlling for parameter count,
training protocol, and set of prognostic variables, has not been performed. This lack of controlled
experimentation hinders the quality assessment of backbones used in DLWP (and potentially beyond
in other areas of scientific machine learning). Addressing this issue in a systematic manner is a main
goal of our work.

With our analysis, we also seek to motivate architectures that have the greatest potential in addressing
downsides of current DLWP models. To this end, we focus on three aspects: (1) short-to-mid-ranged
forecasts out to 14 days; (2) stability of long rollouts for climate lengthscales; and (3) physically
meaningful predictions. Our aim is to help the community find and agree on a suitable DLWP
backbone and to provide a rigorous benchmarking framework that facilitates a fair model comparison
and supports architecture choices for dedicated forecasting tasks.

We find that FNO reproduces the Navier-Stokes dynamics most accurately, followed by SwinTrans-
former and ConvLSTM. In addition, we make the following observations on WeatherBench:

• Over short-to-mid-ranged lead times—aspect (1) of WeatherBench—we observe a sur-
prising forecast accuracy of ConvLSTM (the only recurrent and oldest architecture in our
comparison), followed by SwinTransformer and FourCastNet.

• In terms of stability (2), explicit model designs tailored to weather forecasting are beneficial,
e.g., Pangu-Weather, GraphCast, and Spherical FNO.

• Similarly, these same three sophisticated DLWP models reproduce characteristic wind
patterns (3) more accurately than pure backbones (U-Net, ConvLSTM, SwinTransformer,
FNO) by better satisfying kinetic energy principles.

While we identify no strict one-fits-all winner model, the strengths and weaknesses of the bench-
marked architectures manifest in different tasks. Also, although targeting neural scaling behavior was
not the main focus of this work, we observe that the performance improvement of all of these models
saturates (as model, data, or compute are scaled). This highlights an important future direction for
making model backbones such as these even more broadly applicable for weather prediction and
beyond.

2 OUR APPROACH, RELATED WORK, AND METHODS

We compare five model classes that form the basis for SOTA DLWP models and include four
established DLWP models in our analysis. In the following, we provide a brief overview of these
nine methods. See Appendix A.1.1 for more details, and see Table 2 in that appendix for how we
modify these methods to vary the number of parameters. As a naïve baseline and upper bound for
our error comparison, we implement Persistence,1 which predicts the last observed value as a
constant over the entire forecast lead time. For short lead times in the nowcasting range (out to 6
hours, depending on the variable), this baseline is considered a decent strategy in atmospheric science
that is not trivial to beat (Murphy, 1992). On WeatherBench, we include Climatology forecasts,
which represent the averaged monthly observations from 1981 to 2010, following the guidelines of
the Copernicus Climate Change Service.2

Starting with early deep learning (DL) methods, we include convolutional long short-term memory
(ConvLSTM) (Shi et al., 2015), which combines spatial and temporal information processing by
replacing the scalar computations of LSTM gates (Hochreiter and Schmidhuber, 1997) with con-
volution operations. ConvLSTM is one of the first DL models for precipitation nowcasting and
other spatiotemporal forecasting tasks, and it finds applications in Google’s MetNet1 and MetNet2
1In the following, we denote models that are included in our benchmark with teletype font.
2https://cds.climate.copernicus.eu/toolbox/doc/how-to/13_how_to_
calculate_climatologies_and_anomalies/13_how_to_calculate_climatologies_
and_anomalies.html.
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(Sønderby et al., 2020; Espeholt et al., 2022). Among early DL methods, we also benchmark U-Net,
which is one of the most prominent and versatile DL architectures. It was originally designed for
biomedical image segmentation (Ronneberger et al., 2015), and it forms the backbone of many DLWP
(and other) models (Weyn et al., 2019; 2020; 2021; Karlbauer et al., 2023; Lopez-Gomez et al., 2023).

We include two more recent architecture backbones, which power SOTA DLWP models based on
Transformers (Bi et al., 2023) and GNNs (Lam et al., 2022). The Transformer architecture (Vaswani
et al., 2017) has found success with image processing (Dosovitskiy et al., 2020), and it has been
applied to weather forecasting, by viewing the atmospheric state as a sequence of three-dimensional
images (Gao et al., 2022). Pangu-Weather (Bi et al., 2023, by Huawei) and FuXi (Chen et al.,
2023) use the SwinTransformer backbone (Liu et al., 2021) and add a Latitude-Longitude
representation. Microsoft also builds on Transformers when designing ClimaX for weather and
climate related downstream tasks (Nguyen et al., 2023). ClimaX introduces a weather-specific
embedding to treat different input variables adequately, which also finds application in Stormer
(Nguyen et al., 2024). Multi-Scale MeshGraphNet (MS MeshGraphNet) (Fortunato et al., 2022)
extends Pfaff et al. (2020)’s MeshGraphNet—a message-passing GNN processing unstructured
meshes—to operate on multiple grids with different resolutions. MS MeshGraphNet forms the
basis of GraphCast (Lam et al., 2022) using a hierarchy of icosahedral meshes on the sphere.

Lastly, we benchmark architectures based on FNO (Li et al., 2020b). FNO is a type of operator
learning method (Li et al., 2020a; Lu et al., 2021; Gupta et al., 2021) that learns a function-to-function
mapping by combining pointwise operations in physical space and in the wavenumber/frequency
domain. Along with FNO, Li et al. (2020b) propose a In contrast to the aforementioned architectures,
FNO is a discretization invariant operator method. While FNO can be applied to higher resolutions
than it was trained on, it may not be able to predict processes that unfold on smaller scales than
observed during training (Krishnapriyan et al., 2023). These uncaptured small-scale processes can
be important in turbulence modeling. We implement a two- and a three-dimensional variant of FNO,
as specified in Appendix A.1.1. We also experiment with TFNO, which uses a Tucker-based tensor
decomposition (Tucker, 1966; Kolda and Bader, 2009) to be more parameter efficient. FNO serves as
the basis for LBNL’s and NVIDIA’s FourCastNet series (Pathak et al., 2022; Bonev et al., 2023;
Kurth et al., 2023). In particular, we consider both the original FourCastNet implementation
based on Guibas et al. (2021) and the newer Spherical Fourier Neural Operator (SFNO) (Bonev et al.,
2023), which works with spherical data and is promising for weather prediction on the sphere.

3 EXPERIMENTS AND RESULTS

In the following Section 3.1, we start with controlled experimentation on synthetic Navier-Stokes
data. In Section 3.2, we extend the analysis to real-world weather data from WeatherBench, featuring
a subset of variables from the ERA5 dataset (Hersbach et al., 2020). ERA5 is the reanalysis product
from the European Centre of Medium-Ranged Weather Forecasts (ECMWF), and it is a result of
aggregating observation data into a homogeneous dataset using NWP models.

3.1 SYNTHETIC NAVIER-STOKES SIMULATION

We conduct three series of experiments to explore the ability of the architectures (see Section 2)
to predict the two-dimensional incompressible Navier-Stokes dynamics in a periodic domain. We
choose Navier-Stokes dynamics as they find applications in NWP3 and can provide insights on how
each model may perform on actual weather data.4 Concretely, in the three experiments, we address
the following three questions:

(1) Which DLWP backbone is most suitable for predicting spatiotemporal Navier-Stokes dynamics
with small Reynolds Numbers (less turbulent data), according to the RMSE metric? (Sec-
tion 3.1.1).

3When simulating density and particle propagation in the atmosphere, NWP models solve a system of equations
in each grid cell under consideration of the Navier-Stokes equations, among others, to conserve momentum,
mass, and energy (Bauer et al., 2015).

4A direct transfer of the results from Navier-Stokes to weather dynamics is limited, as our synthetic data only
partially represents rotation or mean flow characteristics and does not encompass the multi-scale complexity
present in true atmospheric flows.
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Table 1: RMSE scores for experiment 1, reported for each model under different number of parameters.
Errors reported in italic correspond to models that were trained with gradient clipping (by norm)
due to stability issues. With OOM and sat, we denote models that ran out of GPU memory and
saturated, respectively. Saturated means that we did not further increase the parameters because the
performance already saturated over smaller parameter ranges. Best results are shown in bold.

#params

Model 5 k 50 k 500 k 1M 2M 4M 8M 16M 32M

Persistence .5993 .5993 .5993 .5993 .5993 .5993 .5993 .5993 .5993
ConvLSTM .1278 .0319 .0102 .0090 .2329 .4443 OOM —- —-
U-Net .5993 .0269 .0157 .0145 .0131 .0126 .0126 sat —-
FNO3D L1-8 .3650 .2159 .1125 .1035 .1050 .0383 .0144 .0095 —-
TFNO3D L1-16 —- —- —- .0873 .0889 .0221 .0083 .0066 .0069
TFNO3D L4 —- .0998 .0173 .0127 .0107 .0091 .0083 sat —-
TFNO2D L4 .0632 .0139 .0055 .0046 .0043 .0054 .0041 .0046 sat
SwinTransformer .1637 .0603 .0107 .0084 .0070 OOM —- —- —-
FourCastNet .1558 .0404 .0201 .0154 .0164 .0153 .0149 sat —-
MS MeshGraphNet .2559 .0976 .5209 OOM —- —- —- —- —-

(2) Do the results of Experiment 1 (the model ranking when predicting Navier-Stokes dynamics)
hold for larger Reynolds Numbers, i.e., on more turbulent data? (Section 3.1.2).

(3) How does the size of the dataset effect each model and the ranking of all models? (Section 3.1.3).

We discretize our data on a two-dimensional 64 × 64 grid, and we design the experiments to
test two levels of difficulties by generating less and more turbulent data, with Reynolds Numbers
Re = 1× 103 (experiment 1) and Re = 1× 104 (experiments 2 and 3), respectively. For experiments
1 and 2, we generate 1 k samples. Experiment 3 repeats experiment 2 with an increased number
of 10 k samples. Our experiments are designed to test: (1) easier vs. harder problems, with the
modification in Re; and (2) the effect of the dataset size.

For comparability, the initial condition and forcing of the data generation process are chosen to be
identical with those in Li et al. (2020b); Gupta et al. (2021) (see Appendix A.1.2). Also, following
Li et al. (2020b), the models receive a context history of h = 10 input frames, on basis of which
they autoregressively generate the remaining 40 (experiment 1) or 20 (experiments 2 and 3) frames.5
Concretely, we apply a rolling window when generating autoregressive forecasts, by feeding the
most recent h frames as input and predicting the next single frame, i.e., ŷt+1 = φθ(xt−h,...,t), where
ŷt+1 denotes the prediction of the next frame generated by model φ with trainable parameters θ,
and xt−h,...,t denotes the most recent h frames provided as input concatenated along the channel
dimension. The three-dimensional (T)FNO models make an exception to the autoregressive rolling
window approach, by receiving the first h frames x0:h as input to directly generate a prediction ŷh+1:T

of the entire remaining sequence in a single step. See Appendix A.1.3 for our training protocol
featuring hyperparameters, learning rate scheduling, and number of weight updates.

3.1.1 EXPERIMENT 1: SMALL REYNOLDS NUMBER, 1 K SAMPLES

In this experiment, we generate less turbulent dynamics with Reynolds Number Re = 1× 103, and
we employ a sequence length of T = 50. The quantitative root mean squared error (RMSE) metric,
reported in Table 1 and Figure 1 (left) shows that TFNO2D performs best, followed by TFNO3D,
SwinTransformer, FNO3D, ConvLSTM, U-Net, FourCastNet, and MS MeshGraphNet
(see qualitative results in Figure 6 in Appendix A.2.1 with the same findings). All models outperform
the naïve Persistence baseline, which predicts the last observed state, i.e., ŷt = xh. This
principally indicates a successful training of all models. We observe substantial differences between
models in the error saturation when increasing the number of parameters, which supports the ordering
of architectures seen in Figure 6. Concretely, with an error of 1 × 10−2, MS MeshGraphNet
does not reach the accuracy level of the other models. Beyond 500 k parameters, the model hits

5Larger Reynolds Numbers lead to more turbulent dynamics that are harder to predict. Thus, Li et al. (2020b)
selects T = 50 and T = 30 for Re = 1e3 and Re = 1e4, respectively. We follow this convention.
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5k 50k 500k 1M 2M 4M 8M 16M 32M
#parameters

10 2

10 1

RM
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Experiment 1

Persistence
ConvLSTM

U-Net
FNO3D L1-8

TFNO3D L1-16
TFNO3D L4

TFNO2D L4
SwinTransformer

FourCastNet
MS MeshGraphNet

5k 50k 500k 1M 2M 4M 8M 16M 32M
#parameters

100

3 × 10 1

4 × 10 1

6 × 10 1

Experiment 2

Figure 1: RMSE vs. number of parameters for models trained on Reynolds Numbers Re = 1× 103

(experiment 1, left) and Re = 1 × 104 (experiment 2, right) with 1k samples. Note the different
y-axis scales. Triangle markers indicate models with instability issues during training, requiring the
application of gradient clipping. In the limit of growing parameters, each model converges to an
individual error score (left), which seems consistent across data complexities (cf. left and right).

the memory constraint and also does not converge.6 When investigating the source of this unstable
training behavior, we identify remarkable effects of the graph design by comparing periodic 4-stencil,
8-stencil, and Delaunay triangulation graphs, where the latter supports a stable convergence most (see
Figure 7 in Appendix A.2.1 for details). Throughout our experiments, we use the 4-stencil graph.

We see that ConvLSTM is competitive within the low-parameter regime, saturating around a
RMSE of 9 × 10−3; and also that it becomes unstable with large channel sizes (which we could
not compensate even with gradient clipping). It also runs out of memory beyond 4M parame-
ters, and suffers from exponential runtime complexity (see Figure 8, right, in Appendix A.2.1).
Similarly, SwinTransformer generates comparably accurate predictions, reaching an error of
7 × 10−3, before quickly running out of memory when going beyond 2M parameters. U-Net
and FourCastNet exhibit a similar behavior, saturating at the 1M parameter configuration and
reaching error levels of 1.2× 10−2 and 1.5× 10−2, respectively. In FNO3D and the Tucker tensor
decomposed TFNO3D (Kolda and Bader, 2009), we observe a two-staged saturation, where the
models first converge to a poor error regime of 1× 10−1, albeit approaching a remarkably smaller
RMSE of 9 × 10−3 and 6 × 10−3, respectively, when increasing the number of layers from 1 at
#params ≤ 2M to 2, 4, 8, and 16 to obtain the respective larger parameter counts.7 Instead, when
fixing the numbers of layers at l = 4 and varying the number of channels in TFNO3D L4, we
observe better performance compared to the single-layer TFNO3D L1-16 in the low-parameter
regime (until 2M parameters), albeit not competitive with other models. To additionally explore the
effect of the number of layers vs. channels in TFNO3D, we vary the number of parameters either
by increasing the layers over l ∈ [1, 2, 4, 8, 16], while fixing the number of channels at c = 32 in
TFNO3D L1-16, or by increasing the number of channels over c ∈ [2, 8, 11, 16, 22, 32] while fixing
the number of layers at l = 4 in TFNO3D 4L. Consistent with Li et al. (2020b), we observe the
performance saturating at four layers. Finally, the autoregressive TFNO2D performs remarkably
well across all parameter ranges—saturating at an unparalleled RMSE score of 4 × 10−3—while,
at the same time, constituting a reasonable trade-off between memory consumption and runtime
complexity (see Figure 8 in Appendix A.2.1). From this we conclude that, at least for periodic fluid
flow simulation, when one is not interested in neural scaling, FNO2D marks a promising choice,
suggesting its application to real-world weather forecasting scenarios.

3.1.2 EXPERIMENT 2: LARGE REYNOLDS NUMBER, 1 K SAMPLES

In this experiment, we evaluate the consistency of the model order found in experiment 1. To do so,
we generate more turbulent data by increasing the Reynolds Number Re by an order of magnitude,

6Experiments are performed on two AWS g5.12xlarge instances, featuring four NVIDIA A10G GPUs with
23GB RAM each. We use single GPU training throughout our experiments.

7We observe a similar behavior (not shown) when experimenting with the number of blocks vs. layers in
SwinTransformer, suggesting to prioritise more layers per block over more blocks with less layers.
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yielding Re = 1× 104, and reducing the simulation time and sequence length to T = 30 timesteps.
With an interest in the performance of intrinsically stable models, we discard architectures that depend
on gradient clipping and make the same observations as in experiment 1. TFNO2D is confirmed as
the most accurate model, followed by SwinTransformer, TFNO3D, and U-Net on this harder
task. See Figure 1 (right) for quantitative results and Figure 10 in Appendix A.2.2 for qualitative
results.

3.1.3 EXPERIMENT 3: LARGE REYNOLDS NUMBER, 10 K SAMPLES

In this experiment, we aim to understand whether our conclusions still hold when increasing the
dataset size. Note that in experiment 2, the three-dimensional TFNO models with #params ≥ 8M
start to show a tendency to overfit (see Figure 12 in Appendix A.2.2). We repeat this experiment
and increase the number of training samples by an order of magnitude to 10 k, while reducing the
number of epochs from 500 to 50 to preserve the same number of weight updates. Figure 9, Figure 11
and Table 4 in Appendix A.2.2 show that the same findings hold in experiment 3, where TFNO2D is
affirmed as the most accurate model, followed by SwinTransformer, TFNO3D, and U-Net.

3.2 REAL-WORLD WEATHER DATA

We extend our analysis to real-world data from WeatherBench (Rasp et al., 2020). Our goal is to
evaluate the transferability of the results obtained in Section 3.1 on synthetic data to a more realistic
setting. In particular, we seek to provide answers to the following three questions:

(1) Which DLWP model and backbone are most suitable for short- to mid-ranged weather forecast-
ing out to 14 days, according to RMSE and anomaly correlation coefficient (ACC) metrics?
(Section 3.2.1)

(2) How stable and reliable are the different methods for long-ranged rollouts when generating
predictions out to 365 days? (Section 3.2.2)

(3) To what degree do different models adhere to physics and meteorological phenomena by generat-
ing forecasts that exhibit characteristic zonal wind patterns? (Section 3.2.3)

Additionally, with respect to these questions, we investigate the role of data representation by either
training models on the equirectangular latitude-longitude (LatLon) grid, as provided by ERA5, or
on the HEALPix (HPX) mesh (Gorski et al., 2005), which separates the sphere into twelve faces,
effectively dissolving data distortions towards the poles.

Data Selection In order to reduce the problem’s computational complexity and following earlier
DLWP research (Weyn et al., 2020; Karlbauer et al., 2023), we choose a set of 8 expressive core
variables on selected pressure levels among the 17 prognostic variables in WeatherBench. Our
selection includes four constant inputs in the form of latitude and longitude coordinates, topography,
and a land-sea mask. As forcing, we provide the models with precomputed top-of-atmosphere
incident solar radiation as input, which is not the target for prediction. Lastly, a set of 8 prognostic
variables spans from air temperature at 2m above ground (T2m) and at a constant pressure level of
850 hPa (T850), to u- and v-wind components 10m above ground (i.e., east-to-west and north-to-
south, referred to as zonal U10m and meridional V10m winds, respectively), to geopotential8 at the
four pressure levels 1000, 700, 500, and 300 hPa (e.g., Φ500). We choose a resolution of 5.625 ◦,
which translates to 64 × 32 pixels, and operate on a time delta of ∆t = 6h, following common
practice in DLWP research.

Model Setup We vary the parameter counts of all models in the range of 50 k, 500 k, 1M, 2M,
4M, 8M, 16M, 32M, 64M, and 128M, where the two largest counts are only applied to selected
models that did not saturate on fewer parameters. See Table 5 in Appendix B.1 for details about
the specific architecture modifications to obtain the respective parameter counts. In summary, our
benchmark consists of 179 models—each trained three times, yielding 537 models in total—allowing
for a rigorous comparison of DLWP models under controlled conditions on a real-world dataset.

8Geopotential, denoted as Φ with unit m2s−2, differs from geopotential height, denoted as Z = Φ/g with unit
m, where g = 9.81ms−2 denotes standard gravity.
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#parameters
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4 × 102

6 × 102
RM

SE

3 days lead-time

50k 500k 1M 2M 4M 8M 16M 32M 64M128M
#parameters

103

7 × 102

8 × 102

9 × 102

5 days lead-time

Persistence
Climatology

ConvLSTM
U-Net

SwinTransformer
Pangu-Weather

FourCastNet (AFNO) p1x1
SFNO2D

MeshGraphNet
GraphCast

50k 500k 1M 2M 4M 8M 16M 32M 64M128M
#parameters

103

8 × 102

9 × 102

7 days lead-time

Figure 2: RMSE scores on Φ500 (geopotential at a height of 500 hPa atmospheric pressure) at three
different lead times (3 days left, 5 days center, 7 days right) vs. the number of parameters for DLWP
models and backbones trained on a selected set of variables from the WeatherBench dataset.

Optimization To prevent predictions from regressing to the mean—where models approach cli-
matology with increasing lead time by generating smooth and blurry outputs—we follow Karlbauer
et al. (2023) and constrain the optimization cycle to 24 h, resulting in four autoregressive model calls
during training. That is, after receiving the initial condition at time 00:00, the models iteratively
unroll predictions for 06:00, 12:00, 18:00, and 24:00. All models are trained on data from 1979
through 2014, evaluated on data from 2015-2016, and tested on the period from 2017 to 2018. We
train each model for 30 epochs with three different random seeds to capture outliers, at least to a
minimal degree, using gradient-clipping (by norm) and an initial learning rate of η = 1 × 10−3

(unless specified differently) that decays to zero according to a cosine scheduling.

Evaluation Typically, DLWP models are evaluated on two leading metrics, i.e., RMSE and ACC,
which we also use in our study. The ACC ∈ [−1, 1] denotes how well the model captures anomalies
in the data. A forecast is called skillful in the range 1.0 ≤ ACC ≤ 0.6, whereas an ACC < 0.6
is considered imprecise and useless. For long-ranged rollouts, different methods find application,
e.g., qualitatively inspecting the raw output fields at long lead times (Weyn et al., 2021; Bonev et al.,
2023), comparing spatial spectra of model outputs (Karlbauer et al., 2023; McCabe et al., 2023), or
computing averages over time periods of months, years, or more (Watt-Meyer et al., 2023). Since
the resolution in our benchmark counts 32× 64 pixels (limiting the expressiveness of spectra), we
inspect the soundness of raw output fields and quantitatively compare monthly averages for assessing
performance at long lead times.

3.2.1 SHORT- TO MID-RANGED FORECASTS

Useful weather forecasts (called ‘skillful’ in meteorological terms) can be expected on lead times out
to at most 14 days (Bauer et al., 2015). Afterwards, the chaotic nature of the planet’s atmosphere
prevents the determination of an accurate estimate of weather dynamics (Lorenz, 1963; Palmer et al.,
2014). We quantify and compare the forecast quality of the benchmarked DLWP models from 0-14
days via RMSE and ACC scores to assess how different models perform on lead times that are
relevant for end users on a daily basis.

50k 500k 1M 2M 4M 8M 16M 32M 64M128M
#parameters

103

4 × 102

6 × 102

RM
SE

3 days lead-time

50k 500k 1M 2M 4M 8M 16M 32M 64M128M
#parameters

103

7 × 102

8 × 102

9 × 102

5 days lead-time

Persistence
Climatology

ConvLSTM
ConvLSTM HPX8

U-Net
U-Net HPX8

SwinTransformer
SwinTransformer HPX8

50k 500k 1M 2M 4M 8M 16M 32M 64M128M
#parameters

103

8 × 102

9 × 102

7 days lead-time

Figure 3: RMSE on Φ500 for different models trained on the LatLon (solid lines) or on the HEALPix
(HPX, dashed lines) mesh. When operating on the distortion-reducing HEALPix mesh, all three
benchmarked methods improve their forecast performance at longer lead times.
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Figure 4: Zonally averaged Z500 (geopotential height at an atmospheric pressure of 500 hPa) forecasts
of selected models initialized on Jan. 01, 2017, and run forward for 365 days. The verification panel
(left) illustrates the seasonal cycle, where lower air pressures are observed on the northern hemisphere
in Jan., Feb., Nov., Dec., and higher pressures in Jul., Aug., Sep. (and vice versa on the southern
hemisphere). The black line indicates the 540 dem (in decameters) progress and is added to each
panel to showcase how each model’s forecast captures the seasonal trend.

Our evaluation of Φ500 forecasts at lead times up to 14 days reveals a consistent reduction of forecast
error when increasing the number of parameters across models, as shown as point-wise results at three,
five, and seven days lead time in Figure 2. The scaling behavior9 differs substantially between models,
featuring U-Net to stand out as the only model that keeps improving monotonically with more
parameters. In contrast, all other models exhibit a point, individually differing for each architecture,
beyond which a further increase of parameters leads to an increase in forecast error, deteriorating
model performance. Beyond this parameter count, the models no longer exhibit converging training
curves, but stall at a constant error level. This demonstrates difficulties in optimizing the models
when having more degrees of freedom, which lead to more complex error landscapes with more
local minima where the algorithm can get stuck (Geiger et al., 2021; Krishnapriyan et al., 2021).
Intriguingly, the recurrent ConvLSTM with 16M parameters yields accurate predictions on short
lead times, even though it is trained and tested on sequence lengths of 4 and 56, respectively. It
eventually falls behind the other models at a lead time of seven days. While SwinTransformer
and FourCastNet challenge ConvLSTM on their best parameter counts, GraphCast is superior
in the low-parameter regime albeit exhibiting less improvements with more parameters. Inter-
estingly, we observe Pangu-Weather scoring worse than the backbone it is based on, namely
SwinTransformer, at least in short- to mid-ranged horizons.10 Due to the unexpectedly11 good
performance of FourCastNet and poor results for Spherical FNO (SFNO), we explore and contrast
these architectures, along with their (T)FNO backbones, more rigorously in Appendix B.3. Additional
results on air temperature (cf. Figure 18 in Appendix B.4), demonstrate similar trends and model
rankings (SFNO ranking higher) across target variables on RMSE and also on anomaly correlation
coefficient (ACC) metrics.

To investigate the role of data representations, i.e., differentiating between a naïve rectangular
and a sophisticated spherical grid, we project the LatLon data to the HEALPix mesh and modify
ConvLSTM, U-Net, and SwinTransformer accordingly to train them on the distortion-reduced
mesh. In Figure 3, we observe that all models benefit from the data preprocessing, likely due to
reduced data distortions, which relieves the models from having to learn a correction of area with
respect to latitude. Improvements are consistent across architecture and parameter count, being more
evident on larger lead times. Given that the HEALPix mesh used here only counts 8× 8× 12 = 768
pixels, the improvement over the LatLon mesh with 64× 32 = 2048 pixels is even more significant.
This underlines the benefit of explicit spherical data representations, which also find applications in
sophisticated DLWP models, e.g., Pangu-Weather, SFNO, and GraphCast.

3.2.2 LONG-RANGED ROLLOUTS

The stability of weather models is key for long-range projections on climate scales. We investigate
the stability of the trained DLWP models by running them in a closed loop out to 365 days. Models

9Not “neural scaling” behavior, as we do not observe that, to be clear.
10Admittedly, we cannot guarantee that we optimized each model in the most suitable way for the respective

architecture. An exhaustive exploration of hyperparameters for each model—beyond a directed search when
our results did not match with those in the literature— would be nearly intractable.

11Compared to Bonev et al. (2023), where SFNO is reported to outperform FourCastNet at five-days lead time.
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Figure 5: Zonally averaged U10 winds over 365 days lead time displayed for verification (first
row), ConvLSTM with 16M parameters (second row), and SFNO with 128M parameters (third
row). Left and center showcase single rollouts initialized in January and June, respectively, while
the right-most panel provides an average computed over all 104 forecasts, initialized from January
through December 2017. While SFNO (third row) neatly reproduces the annual distribution of winds,
showing the importance of spherical representation, ConvLSTM (second row) fails at capturing these
dynamics on long forecast ranges.

that produce realistic states on that horizon—which we assess by inspecting the divergence from
monthly averaged Φ500 predictions—are considered promising starting points for model development
on climate scales.

We evaluate the suitability of models for long-range predictions in two ways. First, we inspect the state
produced by selected models at a lead time of 365 days. This provides the first insights into the stability
of different models, where only a subset of models produces an appealing realization of the Z500 field.
This subset includes SwinTransformer HPX (on the HEALPix mesh), FourCastNet with
different patch sizes, SFNO, Pangu-Weather, and GraphCast (see Figure 13 in Appendix B.2).
Other methods blow up and disqualify for long-ranged forecasts. Second, zonally averaged predictions
of Z500 over 365 days in the forecasts (see Figure 4) indicate points in time where the models blow
up if they do. For example, ConvLSTM Cyl (on the cylinder mesh) predicts implausibly high
pressures in high latitudes near the north pole already after a few days, whereas ConvLSTM HPX
begins to loose the high pressure signature in the tropics after 40 days into the forecast. See Figure 14
in Appendix B.2 for more examples.

To expand beyond one year, we run selected models out to 50 years and observe a similar behavior,
supporting SwinTransformer, FourCastNet, SFNO, Pangu-Weather, and GraphCast
as stable models (see Appendix B.2 and Figure 16 for details).

3.2.3 PHYSICAL SOUNDNESS

Here, we seek to elucidate whether and to which degree the models replicate physical processes.
To this end, we compare how each model generates zonal surface wind patterns, known as Trade
Winds (or Easterlies) and Westerlies. Easterlies (west-to-east propagating winds) are pronounced in
the tropics, from 0 to 30 degrees north and south of the equator, whereas Westerlies (east-to-west
propagating winds) appear in the extratropics of both hemispheres at around 30 to 60 ◦. Westerlies are
more emphasized in the southern hemisphere, where the winds are not slowed down as much by land
masses. For visualizations and details about global wind patterns and circulations, see encyclopedias
for atmospheric sciences.1213 Figure 5 illustrates these winds when observed in the individual
forecasts of ConvLSTM (second row) and SFNO (third row) and compared to the verification (first
row). When averaging over the entire lead time out to 365 days and over 104 forecasts (initialized

12http://ww2010.atmos.uiuc.edu/(Gh)/wwhlpr/global_winds.rxml.
13https://www.eoas.ubc.ca/courses/atsc113/sailing/met_concepts/
09-met-winds/9a-global-wind-circulations/.
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bi-weekly from January through December 2017), the wind patterns are shown clearly and we
investigate how accurately each model reproduces these patterns. SFNO most accurately generates
Easterlies and Trade Winds, likely due to its physically motivated inductive bias in the form of
spherical harmonics. This allows SFNO to adhere to physical principles, whereas ConvLSTM misses
such an inductive bias, resulting in physically implausible predictions on longer lead times.

We complement these results by quantitative RMSE scores in Figure 15 in Appendix B.2. Most promi-
nently, SFNO, FourCastNet (featuring 1×1 patches), and Pangu-Weather reliably exhibit the
wind patterns of interest, mostly achieving errors below Persistence. Other methods either score
worse than Persistence or even exceed an error threshold of 100m/s. Models exceeding this
threshold are discarded from the plot and considered inappropriate—given Persistence produces
an RMSE of 1.16, 1.41, and 1.56m/s for Trade Winds, South Westerlies, and global wind averages,
respectively.

4 DISCUSSION

In this work, we obtain insights into which DLWP models are more suitable for weather forecasting
by devising controlled experiments. In particular, we fix the input data and training protocol, and we
vary the architecture and number of parameters. First, in a limited setup on synthetic periodic Navier-
Stokes data, we find that TFNO2D performs the best at predicting the dynamics, followed by TFNO3D,
SwinTransformer, FNO3D, ConvLSTM, U-Net, FourCastNet, and MS MeshGraphNet.
Although we enable circular padding in the compared architectures, the periodic nature of the
Navier-Stokes data likely favors the inductive bias of FNO. Second, when extending our analysis
to real-world data, we observe that FNO backbones fall behind ConvLSTM, SwinTransformer,
and FourCastNet on lead times up to 14 days. We attribute this drop in accuracy of FNO to the
non-periodic equirectangular weather data, which connects to the finding in Saad et al. (2023) that
FNO does not satisfy boundary conditions. On lead times out to 365 days, SFNO, Pangu-Weather,
and GraphCast generate physically adequate outputs. This encourages the implementation of
appropriate inductive biases—e.g., periodicity in FNO for Navier-Stokes, spherical representation
in SFNO, or the HEALPix mesh on WeatherBench—to facilitate stable model rollouts. In our
experiments, GraphCast outperforms other methods in the small parameter regime, but it does not
keep up with other models when increasing the parameter count. This underlines GraphCast’s
potential, but it also highlights the challenges of training graph-based methods.

Our results also show that all methods (with accompanying training protocols, etc.) saturate or
deteriorate (with increasing parameters, data, or compute), demonstrating that further work is
needed to understand the possibilities of neural scaling in these (and other) classes of scientific
machine learning models. From an applicability viewpoint, our results provide insights into the
ease or difficulties, potentially arising during model training, that users should be aware of when
choosing a respective architecture. We sparingly explore hyperparameters in selected cases on
WeatherBench, where our results deviate substantially from the literature, i.e., for GraphCast,
SFNO, and FourCastNet.

In summary, our results suggest the consideration of ConvLSTM blocks when aiming for short-to-
mid-ranged forecasts. Due to the recurrent nature of ConvLSTM cells, these models may benefit
from longer training horizons—i.e., sequence lengths beyond the four prediction steps intentionally
used for the deterministic models in this work. This stands in conflict with the phenomenon of
approaching climatology when training on longer lead times. We also find SwinTransformer
to be an accurate model that is amenable to straightforward training. It is a more expensive model,
though, in terms of memory and inference time (see Figure 19 in Appendix B.4 for a thorough runtime
and memory comparison). For long lead times, the sophisticated designs of SFNO, FourCastNet,
Pangu-Weather, and GraphCast prove to be advantageous. The design of recurrent probabilis-
tic DLWP models (that provide an uncertainty estimation as output) is a promising direction for
future research (Gao et al., 2023; Cachay et al., 2023; Price et al., 2023) as well as the incorporation
of established physical relations such as conservation laws (Hansen et al., 2023).
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A NAVIER-STOKES EXPERIMENTS

A.1 MODEL, DATA, AND TRAINING SPECIFICATIONS

In this section, we discuss the model configurations and how we vary the number of parameters in
our experiments. In addition, we detail the dataset generation and training protocols.

A.1.1 MODEL CONFIGURATIONS

We compare six model classes that form the basis for SOTA DLWP models. We provide details about
each model and how we modify them in order to vary the number of parameters below. Table 2
provides an overview and summary of the parameters and model configurations.

ConvLSTM We first implement an encoder—to increase the model’s receptive field—consisting
of three convolutions with kernel size k = 3, stride s = 1, padding p = 1, set
padding_mode = circular to match the periodic nature of our data, and implement tanh activation

Table 2: Model configurations partitioned by model and number of parameters (which amount
to the trainable weights). For configurations that are not specified here, the default settings
from the respective model config files are applied, e.g., ConvLSTM employs the default from
configs/model/convlstm.yaml, while overriding hidden_sizes by the content of the
“Dim.” column of this table. Details are also reported in the respective model paragraphs of Ap-
pendix A.1.1.

Model #params Model-specific configurations

C
o
n
v
L
S
T
M

Enc. Dim. Dec.

5 k

3
×
C
o
n
v
2
D

w
ith

t
a
n
h
(
) 4× 4

1
×
C
o
n
v
2
D

50 k 4× 13
500 k 4× 40
1M 4× 57
2M 4× 81
4M 4× 114
8M — — —

(
T
)
F
N
O
3
D
L
1
-
1
6

#modes Dim. #layers

5 k 3× 3 11 1
50 k 3× 3 32 1

500 k 3× 7 32 1
1M 3× 10 32 1
2M 3× 12 32 1
4M 3× 12 32 2
8M 3× 12 32 4

16M 3× 12 32 8
32M 3× 12 32 16

T
F
N
O
3
D
L
4

#modes Dim. #layers

5 k — — —
50 k 3× 12 2 4

500 k 3× 12 8 4
1M 3× 12 11 4
2M 3× 12 16 4
4M 3× 12 22 4
8M 3× 12 32 4

S
w
i
n
-

T
r
a
n
s
f
o
r
m
e
r #heads Dim. #blocks #lrs/blck

5 k 1 8 1 1
50 k 2 8 2 2

500 k 4 40 2 4
1M 4 60 2 4
2M 4 88 2 4

Model Model-specific configurations

U
-
N
e
t

Dim. (hidden sizes)

[1, 2, 4, 8, 8]
[3, 6, 12, 24, 48]

[8, 16, 32, 64, 128]
[12, 24, 48, 96, 192]
[16, 32, 64, 128, 256]
[23, 46, 92, 184, 368]
[33, 66, 132, 264, 528]

T
F
N
O
2
D
L
4

#modes Dim. #layers

2× 12 2 4
2× 12 8 4
2× 12 27 4
2× 12 38 4
2× 12 54 4
2× 12 77 4
2× 12 108 4
2× 12 154 4

— — —

F
o
u
r
C
a
s
t
N
e
t

Dim. #layers

12 1
64 1
112 4
160 4
232 4
326 4
468 4

M
S
M
e
s
h
-

G
r
a
p
h
N
e
t

Dprocessor Dother

8 8
34 32
116 32
— —
— —
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functions. We add four ConvLSTM cells, also with circular padding and varying channel depth (see
Table 2 for details), followed by a linear output layer. Being the only recurrent model, we perform
ten steps of teacher forcing before switching to closed loop to autoregressively unroll a prediction
into the future.

U-Net We implement a five-layer encoder-decoder architecture with avgpool and transposed convo-
lution operations for down and up-sampling, respectively. On each layer, we employ two consecutive
convolutions with ReLU activations (Fukushima, 1975) and apply the same parameters described
above in the encoder for ConvLSTM. See Table 2 for the numbers of channels hyperparameter setting.

SwinTransformer Enabling circular padding and setting patch size p = 2, we benchmark the
shifted window transformer (Liu et al., 2021) by varying the number of channels, heads, layers, and
blocks, as detailed in Table 2, while keeping remaining parameters at their defaults.

MS MeshGraphNet We formulate a periodically connected graph to apply Multi-Scale Mesh-
GraphNet (MS MeshGraphNet) with two stages, featuring 1-hop and 2-hop neighborhoods, and
follow Fortunato et al. (2022) by encoding the distance and angle to neighbors in the edges. We
employ four processor and two node/edge encoding and decoding layers and set hidden_dim = 32
for processor, node encoder, and edge encoder, unless overridden (see Table 2).

FNO We compare three variants of FNO: Two three-dimensional formulations, which process the
temporal and both spatial dimensions simultaneously to generate a three-dimensional output of shape
[T,H,W ] in one call, and a two-dimensional version, which only operates on the spatial dimensions
of the input and autoregressively unrolls a prediction into the future. While fixing the lifting and
projection channels at 256, we vary the number of Fourier modes, channel depth, and number of
layers according to Table 2.

FourCastNet We choose a patch size of p = 4, fix num_blocks = 4, enable periodic padding in
both spatial dimensions, and keep the remaining parameters at their default values while varying the
number of layers and channels as specified in Table 2.

A.1.2 DATA GENERATION

We provide additional information about the data generation process in Table 3, which we keep as
close as possible to that reported in Li et al. (2020b) and Gupta et al. (2021).

A.1.3 TRAINING PROTOCOL

In the experiments, we use the Adam optimizer with learning rate η = 1× 10−3 (except for MS
MeshGraphNet, which only converged with a smaller learning rate of η = 1× 10−4) and cosine
learning rate scheduling to train all models with a batch size of B = 4, effectively realizing 125 k

Table 3: Settings for training, validation, and test data generation in the experiments, where f , T , δt,
and ν denote the dynamic forcing, sequence length (corresponding to the simulation time, which, in
our case, matches the number of frames, i.e., ∆t = 1), time step size for the simulation, and viscosity
(which is the inverse of the Reynolds Number, i.e., Re = 1/ν), respectively. The parameters α and
τ parameterize the Gaussian random field to sample an initial condition (IC) resembling the first
timestep.

Simulation parameters IC #samples

Experiment f T δt ν α τ Train Val. Test

1 ∗ 50 1× 10−2 1× 10−3 2.5 7 1000 50 200
2 ∗ 30 1× 10−4 1× 10−4 2.5 7 1000 50 200
3 ∗ 30 1× 10−4 1× 10−4 2.5 7 10000 50 200

∗f = 0.1(sin(2π(x+ y)) + cos(2π(x+ y))), with x, y ∈ [0, 1, . . . , 63].
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weight update steps, relating to 500 and 50 epochs, respectively, for 1 k and 10 k samples.14 For the
training objective and loss function, we choose the mean squared error (MSE) between the model
outputs and respective ground truth frames, that is L = MSE(ŷh+1:T , yh+1:T ). Note that, to stabilize
training, we have to employ gradient clipping (by norm) for selected models, indicated by italic
numbers in tables and triangle markers in figures.

A.2 ADDITIONAL RESULTS AND MATERIALS

In this section, we provide additional empirical results for the three experiments on Navier-Stokes
dynamics.

A.2.1 RESULTS FROM EXPERIMENT 1: LARGE REYNOLDS NUMBER, 1 K SAMPLES

Figure 6 illustrates the initial and end conditions along with the respective predictions of all models.
Qualitatively, we find there exist parameter settings for all models to successfully unroll a plausible
prediction of the Navier-Stokes dynamics over 40 frames into the future, as showcased by the last
predicted frame, i.e., ŷt=T (see the third and fifth row of Figure 6). When computing the difference
between the prediction and ground truth, i.e., d = ŷ − y, we observe clear variations in the accuracy
of the model outputs, denoted by the saturation of the difference plots in the second and fourth
row of Figure 6. Interestingly, this difference plot also reveals artifacts in the outputs of selected
models: SwinTransformer and FourCastNet generate undesired patterns that resemble their
windowing and patching mechanisms, whereas the 2-hop neighborhood, which was chosen as the
resolution of the coarser grid, is baked into the output of MS MeshGraphNet. According to

Table 4: RMSE scores partitioned by experiments and reported for each model under different
numbers of parameters. Errors reported in italic correspond to models that had to be retrained with
gradient clipping (by norm) due to stability issues. With OOM and sat, we denote models that ran out
of GPU memory and saturated, meaning that we did not train models with more parameters because
the performance already saturated over smaller parameter ranges. Best results are shown in bold.
More details about architecture specifications are reported in Appendix A.1.1 and Table 2.

#params

Model 5 k 50 k 500 k 1M 2M 4M 8M 16M 32M

E
xp

er
im

en
t1

Persistence .5993 .5993 .5993 .5993 .5993 .5993 .5993 .5993 .5993
ConvLSTM .1278 .0319 .0102 .0090 .2329 .4443 OOM —- —-
U-Net .5993 .0269 .0157 .0145 .0131 .0126 .0126 sat —-
FNO3D L1-8 .3650 .2159 .1125 .1035 .1050 .0383 .0144 .0095 —-
TFNO3D L1-16 —- —- —- .0873 .0889 .0221 .0083 .0066 .0069
TFNO3D L4 —- .0998 .0173 .0127 .0107 .0091 .0083 sat —-
TFNO2D L4 .0632 .0139 .0055 .0046 .0043 .0054 .0041 .0046 sat
SwinTransformer .1637 .0603 .0107 .0084 .0070 OOM —- —- —-
FourCastNet .1558 .0404 .0201 .0154 .0164 .0153 .0149 sat —-
MS MeshGraphNet .2559 .0976 .5209 OOM —- —- —- —- —-

E
xp

er
im

en
t2

Persistence 1.202 1.202 1.202 1.202 1.202 1.202 1.202 1.202 1.202
U-Net —- .3874 .3217 .3117 .3239 .3085 sat —- —-
TFNO3D L1-8 —- —- —- —- .5407 .3811 .3105 .3219 sat
TFNO3D L4 —- .5038 .3444 .3261 .3224 .3155 .3105 sat —-
TFNO2D L4 .4955 .3091 .2322 .2322 .2236 .2349 .2358 sat —-
SwinTransformer .6266 .4799 .2678 .2552 .2518 OOM —- —- —-

E
xp

er
im

en
t3

Persistence 1.202 1.202 1.202 1.202 1.202 1.202 1.202 1.202 1.202
U-Net —- .3837 .3681 .2497 .3162 .2350 .2383 sat —-
TFNO3D L1-16 —- —- —- —- .5146 .2805 .1814 .1570 .1709
TFNO3D L4 —- .4799 .2754 .2438 .2197 .2028 .1814 .1740 sat
TFNO2D L4 .4846 .2897 .1778 .1585 .1449 .1322 .1248 .1210 sat
SwinTransformer .6187 .4698 .2374 .2078 .1910 OOM —- —- —-

14With an exception for MS MeshGraphNet, which only supports a batch size of B = 1, resulting in 500 k
weight update steps.
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Figure 6: Qualitative results on the Navier-Stokes dataset with Reynolds Number Re = 1 × 103

trained on 1 k samples (experiment 1). The first row shows the ground truth at four different points in
time. The remaining rows show the difference between the predicted- and ground-truth at final time
(row two and four), as well as the predicted final frame (row three and five). All models receive the
first 10 frames of the sequence to predict the remaining 40 frames. The last frame of the predicted
sequence from the best models are visualized and respective parameter counts are displayed in
parenthesis.
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10 20 30 40
Time step

10 1RM
SE

Persistence
MGN 4-stencil
MGN 8-stencil
MGN Delaunay
End of teacher forcing

Comparing different graphs for MeshGraphNet

Figure 7: RMSE evolving over forecast time for three different underlying graphs (meshes) that are
used in the single scale MeshGraphNet (MGN) (Pfaff et al., 2020).

the lowest error scores reported in Table 4, we only visualize the best performing model among all
parameter ranges in Figure 6 and observe the trend that TFNO2D performs best, followed by TFNO3D,
SwinTransformer, FNO3D, ConvLSTM, U-Net, FourCastNet, and MS MeshGraphNet.

Next, we study the effect of the underlying graph in GNNs. Observing the poor behavior of MS
MeshGraphNet in Figure 6, we investigate the effect of three different periodic graph designs to
represent the neighborhoods in the GNN. First, the 4-stencil graph connects each node’s perpendicular
four direct neighbors (i.e., north, east, south, and west) in a standard square Cartesian mesh. Second,
the 8-stencil graph adds the direct diagonal neighbors to the 4-stencil graph. Third, the Delaunay
graph connects all nodes in the graph by means of triangles, resulting in a hybrid of the 4-stencil and
8-stencil graph, where only some diagonal edges are added. To simplify the problem, we conduct
this analysis on the single-scale MeshGraphNet (Pfaff et al., 2020) instead of using the hierarchical
MS MeshGraphNet (Fortunato et al., 2022). While the graphs have the same number of nodes
|N | = 4096, their edge counts differ to |E4| = 16384, |E8| = 32768, and |ED| = 24576 for the
4-stencil, 8-stencil, and Delaunay graph, respectively. The results reported in this paper are based on
the 4-stencil graph.

Interestingly, as indicated in Figure 7, the results favor the Delaunay graph over the 8- and 4-stencil
graphs, respectively. Apparently, the increased connectedness is beneficial for the task. At the same
time, though, the irregularity introduced by the Delaunay triangulation potentially forces the model to
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Figure 8: RMSE (left), memory consumption (center), and runtime complexity in seconds per epoch
(right) over different parameter counts for models trained on Reynolds Number Re = 1× 103 with
1 k samples for experiment 1. In Figure 19, we repeat this analysis more thoroughly on real-world
data.
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develop more informative codes for the edges to represent direction and distance of neighbors more
meaningfully.

Lastly, Figure 8 compares the RMSE, memory consumption and computational cost in seconds per
epoch as a function of the number of parameters. We see that TFNO2D L4 performs the best in
terms of the RMSE and also scales well with respect to memory and runtime.

A.2.2 RESULTS FROM EXPERIMENT 2 AND EXPERIMENT 3: LARGE REYNOLDS NUMBER

Table 4 shows the quantitative error scores of all the experiments (for an easier comparability).
We see that the same trend occurs across all three experiments with TFNO2D performing the best.
Figure 9 illustrates the similar trends of these RMSE results from experiments 2 and 3. Figure 10
and Figure 11 provide the qualitative visualizations for experiments 2 and 3, respectively. Figure 9
(right) and Figure 11 for experiment 3 show that, while all models consistently improve their scores

5k 50k 500k 1M 2M 4M 8M 16M 32M
#parameters

100

3 × 10 1

4 × 10 1

6 × 10 1

RM
SE

Experiment 2

Persistence
U-Net

FNO3D L4
TFNO3D L1-16

TFNO3D L4 TFNO2D L4 SwinTransformer

5k 50k 500k 1M 2M 4M 8M 16M 32M
#parameters

100

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

Experiment 3

Figure 9: RMSE vs. parameters for models trained on Reynolds Number Re = 1 × 104 with 1 k
(experiment 2, left) and 10 k (experiment 3, right) samples. Note the different y-axis scales. Main
observation: As expected, model performance correlates with the number of samples. The number of
samples, though, does not affect the model ranking.

Initial condition

Ground truth U-Net (8M) TFNO3D (8M) TFNO2D (1M) SwinTransformer (2M)

2

0

2

2

0

2

Figure 10: Qualitative results on Navier-Stokes data with Reynolds Number 1× 104 trained on 1 k
samples (experiment 2). The top left shows the initial condition. The remaining columns in the top
row show the differences between the predicted and ground-truth at the final time for the various
models. The bottom left shows the ground truth at the final time. The remaining columns in the
bottom row show the final predictions from the various models to visually compare to the ground
truth. All models face difficulties at resolving the yellow vortex, resulting in blurry predictions around
the turbulent structure at this higher Reynolds Number. Among the parameter ranges, the best models
are selected for visualizations (parameter count in brackets).
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Initial condition
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Figure 11: Qualitative results on Navier-Stokes data with Reynolds Number 1× 104 trained on 10 k
samples (experiment 3). In comparison to Figure 10, the yellow vortex is captured more accurately
by TFNO2D as a consequence of the larger training set. See plot description in Figure 10 for details.
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Figure 12: Training (top) and validation (bottom) error curves for TFNO2D with 16M and TFNO3D
with 8M parameters in experiment 2 and 3 (left and right, respectively). Around iteration 20 k,
TFNO3D starts to overfit to the training data, as the training error keeps improving, while the
validation error stagnates and deteriorates.

due to the larger training set, the results from experiments 1-2 still hold. That is, when comparing
the convergence levels in Figure 9 (right) and Table 4, we see that all models saturate at lower
error regimes, while the ordering of the model performance from experiment 1 remains unchanged.
Figure 10 and Figure 11 illustrate qualitatively that the models benefit from the increase of training
samples in experiment 3 since the yellow vortex at this higher Reynolds Number is resolved more
accurately when the models are trained on more data. Figure 12, which compares the training and
validation curves for TFNO3D from both experiments, also shows the benefit of more training data in
experiment 3. While the model overfits with 1 k samples (experiment 2, left), the validation curve
does not deteriorate with 10 k samples (experiment 3, right), which indicates that the increase of
training data prevents TFNO3D from overfitting. We also see that the two-dimensional TFNO2D
variant does not overfit in experiment 2.
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B REAL-WORLD WEATHER DATA

B.1 MODEL SPECIFICATIONS

In this section, we discuss the model configurations and how we vary the number of parameters in
our experiments on WeatherBench.

ConvLSTM Similarly to our experiment on Navier-Stokes data, we implement an encoder con-
sisting of three convolutions with kernel size k = 3, stride s = 1, padding p = 1, set the horizontal
padding_mode = circular, and the vertical to zero-padding to match the periodic nature of our data
along lines of latitudes, and implement tanh activation functions. We add four ConvLSTM layers,
employing the identical padding mechanism and varying channel depth (see Table 5 for details),
followed by a linear output layer.

U-Net On rectangular data, we implement a five-layer encoder-decoder architecture with avgpool
and transposed convolution operations for down and up-sampling, respectively. When training on
HEALPix data, we only employ four layers due to resolution conflicts in the synoptic (bottom-most)
layer of the U-Net while controlling for parameters. Irrespective of the mesh, we employ two
consecutive convolutions on each layer with ReLU activations (Fukushima, 1975) and apply the same
parameters described above in the encoder for ConvLSTM. See Table 5 for the numbers of channels
hyperparameter setting.

SwinTransformer Also enabling circular padding along the east-west dimension and setting patch
size to p = 1, we benchmark the shifted window transformer (Liu et al., 2021) by varying the number
of channels, heads, layers, and blocks, as detailed in Table 5, while keeping remaining parameters at
their defaults.

Pangu-Weather While based on SwinTransformer, Pangu-Weather implements earth-
specific transformer layers to inform the model about position on the sphere (via injected latitude-
longitude codes) and to be aware of the atmosphere’s vertical slicing on respective three-dimensional
variables. Since we do not provide fine-grained vertical information across different input channels,
we only employ the 2D earth-specific block, using a patch size of p = 1, the default window sizes of
(2, 6, 12), and varying embed_dim and num_heads as reported in Table 5.

MeshGraphNet We formulate a periodically connected graph in east-west direction to apply
MeshGraphNet and follow Fortunato et al. (2022) by encoding the distance and angle to neighbors
in the edges. We employ four processor and two node/edge encoding and decoding layers and set
hidden_dim = 32 for processor, node encoder, and edge encoder, unless overridden (see Table 5).

GraphCast The original GraphCast model operates on a 0.25 ◦ resolution and implements six
hierarchical icosahedral layers. As we run on a much coarser 5.625 ◦ resolution, we can only employ
a three-layered hierarchy and employ three- and four-dimensional mesh and edge input nodes in four
processor layers while varying the hidden channel size of all internal nodes according to the values
reported in Table 5. Taking NVIDIA’s Modulus implementation of GraphCast in PyTorch,15 we
are constrained to use a batch size of b = 1. For a comparable training process, we tried gradient
accumulation over 16 iterations (simulating b = 16 as used in all other experiments), but obtained
much worse results compared to using b = 1. We train GraphCast models with b = 1 and report
the better results.

FNO With FNO2D and TFNO2D we compare two autoregressive FNO variants, which perform
Fourier operations on the spatial dimensions of the input and iteratively unroll a prediction along time
into the future. While fixing the lifting and projection channels at 256, we vary the number of Fourier
modes, channel depth, and number of layers according to Table 5.

FourCastNet To diminish patching artifacts, we choose a patch size of p = 1 (see Appendix B.3 for
an ablation with larger patch sizes), fix num_blocks = 4, enable periodic padding in the horizontal

15https://github.com/NVIDIA/modulus/tree/main/modulus/models/graphcast.
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Table 5: Model configurations for WeatherBench experiments partitioned by model and number of
parameters (trainable weights). For configurations that are not specified here, the default settings
from the respective model config files are applied, e.g., ConvLSTM employs the default from
configs/model/convlstm.yaml, while overriding hidden_sizes by the content of the
“Dim.” column of this table. Details are also reported in the respective model paragraphs of
Appendix B.1.
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spatial dimensions, and keep the remaining parameters at their default values while varying the
number of layers and channels as specified in Table 5.

SFNO Our first attempts of training SFNO yielded disencouraging results and we found the
following working parameter configuration. The internal grid is set to equiangular, the number
of layers counts four, while scale_factor, rank, and hard_thresholding_fraction
are all set to 1.0 (to prevent further internal downsampling of the already coarse data). We discard
position encoding and do not use any layer normalization, eventually only varying the model’s
embedding dimension according to Table 5.

B.2 PROJECTIONS ON CLIMATE SCALES

Here, we share investigations on how stable the different architectures operate on long-ranged rollouts
up to 365 days and beyond.

365 Days Rollout In Figure 13, we visualize the geopotential height Z500 states generated by
different models after running in closed loop for 365 days. For each model family, one candidate is
selected for visualization (among three trained models over all parameter counts), based on the small-
est RMSE score in Φ500, averaged over the twelfth month into the forecast. SwinTransformer,
FourCastNet, SFNO, Pangu-Weather, MeshGraphNet, and GraphCast produce qualita-
tively reasonable states. The predictions of ConvLSTM, U-Net, FNO, and TFNO contain severe
artifacts, indicating that these models are not stable over long-time horizons and blow up during
the autoregressive operation. This is also reflected in the geopotential height progression over one
year (Figure 14), where unstable models deviate from the verification data with increasing lead time.
Figure 14 also reveals undesired behavior of MeshGraphNet, seemingly imitating Persistence,
which results in a reasonable state after 365 days, but represents a useless forecast that does neither
exhibit atmospheric dynamics nor seasonal trends.

In accordance with the qualitative evaluation of zonal wind patterns in Figure 5, we provide
a quantitative RMSE comparison of how different models predict Trade Wind, South West-
erlies, and Global wind dynamics in Figure 15. Only SFNO, GraphCast, FourCastNet,

Verification ConvLSTM Cyl (16M) U-Net Cyl (128M) SwinTransformer Cyl (2M)

FNO (64M) ConvLSTM HPX (16M) U-Net HPX (16M) SwinTransformer HPX (16M)

TFNO (128M) FourCastNet 1x1 (4M) SFNO (128M) Pangu-Weather (32M)

FourCastNet 2x4 (8M) FourCastNet 4x4 (64M) MeshGraphNet (32M) GraphCast (16M)
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Figure 13: Snapshots of Z500 predictions of different models at a lead time of 365 days, giving rise
to a first differentiation between stable and unstable models.
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Figure 14: Zonally averaged Z500 forecasts of different models initialized on Jan. 01, 2017, and run
forward for 365 days. The verification panel (top left) illustrates the seasonal cycle, where lower air
pressures are observed on the northern hemisphere in Jan., Feb., Nov., Dec., and higher pressures in
Jul., Aug., Sep. (and vice versa on the southern hemisphere). The black line indicates the 540 dam
(in decameters) progress and is added to each panel to showcase how each model’s forecast captures
the seasonal trend.
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Figure 15: RMSE scores of different models predicting one-year averages of U10 wind in three
regions for various parameter configurations. From left to right: Trade Winds north and south of the
equator, South Westerlies in the southern mid-latitudes, and an average over the entire globe. Errors
are calculated after averaging predictions and verification over the entire year and the respective
region. Diamond-shaped markers indicate that either one or two out of three trained models exceed a
threshold of 100ms−1 wind speed RMSE, and are then ignored in the average RMSE computation.
Missing entries relate to situations, where none of the three trained models score below the threshold.

Pangu-Weather, and SwinTransformer outperform the Persistance baseline, yet with-
out beating Climatology.

50 Year Rollouts To investigate model drifts on climate time scales and further examine the
stability of DLWP models, we run the best candidate per model family from the previous section
for 73,000 autoregressive steps, resulting in forecasts out to 50 years. In Figure 16, we visualize
longitude-latitude-averaged geopotential (left) and South Westerlies (right) predictions. Already
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Figure 16: Top: Spatially averaged geopotential (Φ500, left) and South Westerlies (U10m, right)
predictions of selected candidates over 50 years. Shaded-areas depict intervals of ±0.2 (for Φ500) and
±0.4 (for U10m) standard-deviations from the mean. Bottom: Annually averaged standard deviation
progression over time of the statistics in the top panels. Lines are terminated once they exceed the
y-limits in the top panels.

in the very first prediction steps (not visualized), all models drop to underestimate the average
geopotential of the verification (black dotted line), which leads to large annually-averaged standard
deviations in the first year. In line with previous findings, SwinTransformer, FourCastNet,
SFNO, Pangu-Weather, and GraphCast prove their stability, now also on climate scale, without
exhibiting model drifts (lines in the top panels of Figure 16 oscillate around a model-individual
constant). Although suggested by the top panels, the models do not show an increase of standard
deviation, as emphasized in the bottom panels, where σ of the stable models also does not exhibit
drifts.

B.3 IN DEPTH ANALYSIS OF FOURCASTNET AND SFNO

Surprised by the competitive results of FourCastNet and comparably poor performance of SFNO,
we take a deeper look into these architectures to understand the difference in their performance. We
would have expected SFNO to easily outperform its predecessor FourCastNet, since the former
model implements a sophisticated spherical representation, naturally matching the source of the
weather data. When replacing the core processing unit in FourCastNet with FNO and SFNO
variants, we again observe best results for vanilla FourCastNet with its AFNO block as core unit,
as reported in the top row of Figure 17.

In subsequent analyses, we vary FourCastNet’s patch size and observe two main effects, reflecting
the resolution available in FourCastNet and the aspect ratio that ideally should match the aspect
ratio of the data. When employing a patch size of p = 1× 2, for example, we observe best results,
even outscoring the finer resolved FourCastNet with p = 1× 1. Respective results are provided
in the bottom row of Figure 17.

B.4 ADDITIONAL RESULTS

Evaluating Air Temperature and ACC Metric To verify our results that were mostly obtained
from statistics on the geopotential field, we provide a RMSE-over-parameters plot in the second row
of Figure 18 for air temperature two meter above ground (T2m), analogously to Figure 2. We include
a similar plot in the first row of Figure 18 that shows the anomaly correlation coefficient (ACC)-
over-parameters plot. Both the results on T2m and on the ACC metric support our findings, showing
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Figure 17: RMSE scores of selected FNO-based models on Z500 vs. the number of parameters. Panels
in the top row show results for FourCastNet when replacing the core AFNO forecasting-block
with alternatives such as FNO and SFNO. The bottom row showcases the model error resulting for
different patch sizes employed in the standard FourCastNet implementation. Triangle markers
indicate statistics that were computed from less then three model seeds.

50k 500k 1M 2M 4M 8M 16M 32M 64M128M
#parameters

0.2

0.4

0.6

0.8

1.0

AC
C

3 days lead-time

50k 500k 1M 2M 4M 8M 16M 32M 64M128M
#parameters

0.2

0.4

0.6

0.8

1.0
5 days lead-time

50k 500k 1M 2M 4M 8M 16M 32M 64M128M
#parameters

0.2

0.4

0.6

0.8

1.0
7 days lead-time

50k 500k 1M 2M 4M 8M 16M 32M 64M128M
#parameters

2 × 100

3 × 100

4 × 100

RM
SE

3 days lead-time

50k 500k 1M 2M 4M 8M 16M 32M 64M128M
#parameters

3 × 100

4 × 100

5 × 100

5 days lead-time

Persistence
Climatology

ConvLSTM
U-Net

SwinTransformer
Pangu-Weather

FourCastNet (AFNO) p1x1
SFNO2D

MeshGraphNet
GraphCast

50k 500k 1M 2M 4M 8M 16M 32M 64M128M
#parameters

3 × 100

4 × 100

5 × 100

6 × 100
7 days lead-time

Figure 18: ACC (top) and RMSE (bottom) scores of all models on T2m vs. the numbers of parameters.
Triangle markers indicate statistics that were computed from less then three model seeds.
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Figure 19: Memory consumption (center) and runtime (right), along with RMSE scores on Φ500 for
the core models in our WeatherBench comparison. Log-scale on all axes.

the superiority of ConvLSTM, FourCastNet, and SwinTransformer on short-to-mid-ranged
forecasts. While the model ranking on the T2m variable follows the ranking on Φ500 in Figure 2, we
particularly observe better results for SFNO, now being on par with other methods, especially on
larger lead times.

Runtime and Memory Similarly to our runtime and memory consumption analysis for the Navier-
Stokes experiments (cf. Figure 8), we record the time in seconds for each model to train for one
epoch with a batch size of b = 1. At the same time, we track the memory consumption in MB and
report results, along with the five-day RMSE on Φ500 in Figure 19.

ConvLSTM Training Progress To understand whether ConvLSTM models overfit in the high
parameter count (as suggested in Figure 2), we inspect and visualize the training and validation curves
of a 16M and a 64M parameter model in Figure 20. Seeing that both the validation and the training
curves of the ConvLSTM 64M parameter model show a similarly stalling behavior, we conclude
that these models do not overfit, and instead fail to find a reasonable optimization minimum during
training.
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Figure 20: Training and validation error convergence curves of ConvLSTM with 16 and 64 million
parameters.
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