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Abstract

Generative Flow Networks (GFlowNets) are amortized samplers of unnormalized
distributions over compositional objects with applications to causal discovery, NLP,
and drug design. Recently, it was shown that GFlowNets can be framed as a
hierarchical variational inference (HVI) method for discrete distributions. Despite
this equivalence, attempts to train GFlowNets using traditional divergence measures
as learning objectives were unsuccessful. Instead, current approaches for training
these models rely on minimizing the log-squared difference between a proposal
(forward policy) and a target (backward policy) distributions. In this work, we
first formally extend the relationship between GFlowNets and HVI to distributions
on arbitrary measurable topological spaces. Then, we empirically show that the
ineffectiveness of divergence-based learning of GFlowNets is due to large gradient
variance of the corresponding stochastic objectives. To address this issue, we
devise a collection of provably variance-reducing control variates for gradient
estimation based on the REINFORCE leave-one-out estimator. Our experimental
results suggest that the resulting algorithms often accelerate training convergence
when compared against previous approaches. All in all, our work contributes
by narrowing the gap between GFlowNet training and HVI, paving the way for
algorithmic advancements inspired by the divergence minimization viewpoint.

1 Introduction
The approximation of intractable distributions is one of the central issues in probabilistic machine
learning and modern statistics [5, 14]. Bayesian inference, for instance, relies on the assessment of
intractable posterior distributions [15, 35, 42]. Variational inference (VI) methods circumvent this in-
tractability by approximating the target distribution with a tractable parametric model. Conventionally,
the problem reduces to minimizing a divergence measure, e.g., Kullback-Leibler (KL) divergence [5,
15, 39] or Renyi-α divergence [19, 30], between the variational approximation and the target.

In this context, Generative Flow Networks (GFlowNets) [3, 4, 17] were recently proposed as a family
of variational approximations well-suited for distributions over compositional objects such as graphs.
Notably, GFlowNets have found empirical success within various applications from causal discovery
[7, 8], NLP [12], and biochemical modeling [3, 13]. In a nutshell, a GFlowNet learns an iterative
generative process (IGP) [11] over an extension of the target’s support that yields independent samples
[3, 17] from the target distribution. Remarkably, training GFlowNets typically consists of minimizing
the log-squared difference between a proposal and target distributions over the extended space via
SGD [4, 23], contrasting with divergence-minimizing algorithms commonly used in VI [5, 32].

Indeed, Malkin et al. [24] suggests that trajectory balance (TB) loss training for GFlowNets leads to
better approximations of the target distribution than directly minimizing the reverse and forward KL
divergences, particularly in setups with sparser rewards. Nevertheless, as we highlight in Section 3,
these results are a potential consequence of biased and high variance estimation of the divergence’s
gradients. Therefore, in Section 5, we present a comprehensive empirical investigation of the
minimization of well-known divergence measures (including reverse and forward KL), showing they
are an effective procedure that often accelerate the training convergence of GFlowNets relative to
alternatives. To achieve these results, we develop in Section 4 a collection of control variates (CVs)
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[26, 31] to reduce the variance without introducing bias on the estimated gradients, improving the
efficiency of the optimization algorithms [34, 37]. In summary, our main contributions are:

1. We evaluate the performance of forward and reverse KL- [16], Renyi-α [33], and Tsallis-α [38]
divergences as learning objectives for GFlowNets through an extensive empirical campaign and
highlight that they frequently outperform traditional loss functions in terms of convergence speed.

2. We design CVs for the gradients of GFlowNets’ divergence-based objectives that can be easily
evaluated within automatic differentiation frameworks [29]. We demonstrate that these CVs
drastically reduce the variance of the gradient estimators.

3. We developed a theoretical connection between GFlowNets and VI beyond the setup of finitely
supported measures [24, 46], establishing results for arbitrary measurable topological spaces.

2 Revisiting the relationship between GFlowNets and VI
We start reviewing Lahlou et al. [17]’s work on continuous GFlowNets. Then, we extend Malkin
et al. [24]’s results on the equivalence between GFlowNets and HVI for to the context of continuous
state spaces. Finally, we describe variance reduction techniques for stochastic optimization.

Notations. Let (S, T ) be a topological space with topology T and Σ be the corresponding Borel
σ-algebra. Also, let ν : Σ → R+ be a measure over Σ and κf , κb : S × Σ → R+ be transition
kernels over S. For each (B1, B2) ∈ Σ × Σ, we denote by ν ⊗ κ(B1, B2) :=

∫
B1

ν(ds)k(s,B2).
Likewise, we recursively define the product kernel as κ⊗0(s, ·) = κ(s, ·) and, for n ≥ 1, κ⊗n(s, ·) =
κ⊗n−1(s, ·)⊗ κ for a transition kernel κ and s ∈ S. Note, in particular, that κ⊗n is a function from
S ×Σ⊗n+1 to R+, with Σ⊗n+1 representing the product σ-algebra of Σ [2, 40]. Moreover, if µ is an
absolutely continuous measure relatively to ν, denoted µ ≪ ν, we write dµ/dν for the corresponding
density (Radom-Nikodym derivative) [2]. Readers may consult the original work [1] for a thorough
analysis of the concepts, theories, proofs, and methods discussed below.

GFlowNets. A GFlowNet is, in its most general form, built upon the concept of a measurable pointed
directed acyclic graph (MPDAG) [17, Definition 1], which extends the concept of a flow network to
measurable topological spaces, replacing the DAG with transition kernels specifying how the states
are conencted. Formally, we denote by G = (S, κf , κb, ν) a measurable pointed DAG with reference
forward and backward kernels κf and κb and reference measure ν on the space S. We assume the
reader is familiar with these notions and refer to [17] for a more thorough discussion.

Definition 1 (GFlowNets [17]). A GFlowNet (G,PF ,PB ,µ) is composed of a MPDAG G, a measure
µ ≪ ν, and σ-finite Markov kernels PF ≪ κf and PB ≪ κb, called forward and backward policies.

Training GFlowNets. In practice, we denote by pFθ
: S × S → R+ (resp. pB) the density of PF

(resp. PB) relative to κf (resp. κb), which we parameterize using a neural network with weigths θ.
Our objective is, for a given target measure R ≪ µ on X with r = dR/dµ, estimate the θ for which
the distribution over X induced by PF (so, ·) matches R, i.e., for every B ∈ Σ,

∑
n≥0

∫
Sn

p⊗n
Fθ

(so, s1:n, sf )1sn∈Bκ
⊗n
f (so,ds1:n) =

R(B)

R(X )
.

Importantly, the above sum contains only finitely many non-zero terms due to the finite absorption
property of κf [17, Definition 1]. To ensure that pFθ

abides by this equation, Lahlou et al. [17] showed
it suffices that the trajectory balance condition is concomitantly satisfied by PF and PB .

Definition 2 (Trajectory balance condition). For all n ≥ 0 and µ⊗n-almost surely ∀s1:n ∈ Sn,
p⊗n
Fθ

(so, s1:n, sf )=
r(sn)
Zθ

p⊗n
B (sn, sn:1, so), with Zθ denoting the target’s partition function.

To enforce the trajectory balance (TB) condition, we conventionally define a stochastic optimization
problem to minimize the expected log-squared difference between its left- and right-hand members
under a probability measure ξ supported on an appropriate space [4, 7, 17, 18, 21, 23, 28].

GFlowNets and VI. GFlowNets can be interpreted as HVI models by framing the forward policy
pFθ

(τ |so; θ) as a proposal to r(x)
Z pB(τ |x). Malkin et al. [24] demonstrated that, for discrete targets,

the TB loss [17, page 6] aligns with the KL divergence in terms of expected gradients. Proposition 1 es-
tablishes that this relationship also holds for distributions over measurable topological spaces.

2



Proposition 1 (TB loss- and KL divergence gradients for topological spaces). Let LTB(τ ; θ) =

(log ZpFθ
(τ |so;θ)/r(x)pB(τ |x))

2 and pB(τ) =
r(x)
Z pB(sn−1:o|x) for τ = (so, . . . , sn−1, x, sf ). Then,

∇θEτ∼PF (so,·) [LTB(τ ; θ)] = 2∇θDKL[PF ||PB ], (1)
where DKL[pFθ

||pB ] = Eτ∼PF (so,·) [log pFθ
(τ |so;θ)/pB(τ)] is the KL divergence between PF and PB .

Variance reduction. A naive Monte Carlo estimator for the gradient in Equation 1 has high variance
[10], impacting the efficiency of stochastic gradient descent [41]. To mitigate this, we use control
variates—random variables with zero expectation added to reduce the estimator’s variance without
bias [26, 31]. This method, detailed in Section 4, significantly reduces noise in gradient estimates
and pragmatically improves training convergence, as shown in the experiments in Section 5.

3 Divergence measures for learning GFlowNets
We present four divergence measures to train GFlowNets along with gradient estimators for stochastic
optimization. Regardless of the learning objective, recall that our goal is to estimate θ by minimizing
a discrepancy measure D between PFθ

and PB that is globally minimized when PFθ]
= PB .

3.1 Renyi-α and Tsallis-α divergences
Renyi-α [33] and Tsallis-α [38] are families of statistical divergences including, as limiting cases, the
KL divergence (Section 3.2) [25]; see Definition 3. Notably, these divergences have been successfully
applied to both variational inference [19] and policy search for reinforcement learning [9].

Definition 3 (Renyi-α and Tsallis-α divergences). Let α ∈ R. Also, let pFθ
and pB be GFlowNet’s

forward and backward policies, respectively. Then, the Renyi-α divergence between PF and PB is

Rα(PF ||PB) =
1

α− 1
log

∫
PS

pFθ
(τ |so)αpB(τ)1−ακf (so,dτ).

Similarly, the Tsallis-α divergence between PF and PB is

Tα(PF ||PB) =
1

α− 1

(∫
PS

pFθ
(τ |so)αpB(τ)1−ακf (so,dτ)− 1

)
.

From Definition 3, we see that both Renyi-α and Tsallis-α divergences transition from a mass-
covering to a mode-seeking behavior as α ranges from −∞ to ∞. Importantly, we need only the gradi-
ents of Rα and Tα to learn PF . Lemma 1 provides unbiased estimators for ∇θRα and ∇θTα.

Lemma 1 (Gradients for Rα and Tα). Let θ be the parameters of pFθ
in Definition 3 and, for τ ∈ PS ,

g(τ, θ) = (pB(τ |x)r(x)/pFθ
(τ |so;θ))

1−α. The gradient of Rα wrt θ is

∇θRα(pFθ
||pB) =

E[∇θg(τ, θ) + g(τ, θ)∇θ log pFθ
(τ |so; θ)]

(α− 1)E[g(τ, θ)]
;

the expectations are computed under PF . Analogously, the gradient of Tα wrt θ is

∇θTα(pFθ
||pB) C

=
E[∇θg(τ, θ) + g(τ, θ)∇θ log pFθ

(τ |so; θ)]
(α− 1)

,

in which C
= denotes equality up to a multiplicative constant.

3.2 Kullback-Leibler divergence
As mentioned earlier, the KL divergence [16] is a limiting member of the Renyi-α and Tsallis-α fam-
ilies of divergences, derived when α → 1 [30], and is the most widely deployed divergence measure
in statistics and machine learning. To conduct variational inference, one regularly considers both the
forward and reverse KL divergences. Similarly to Lemma 1, Lemma 2 lays out unbiased estimators
for both DKL[PB ||PF ] and DKL[PF ||PB ] based on the REINFORCE method [41].

Lemma 2 (Gradients for the KL divergence). Let θ be the parameters of PF and s(τ ; θ) =
log pFθ

(τ |so; θ). Then, the gradient of DKL[PF ||PB ] relatively to θ satisfies

∇θDKL [PF ||PB ] = Eτ∼PF (so,·)

[
∇θs(τ ; θ) + log

pFθ
(τ |so)

pB(τ |x)r(x)
∇θs(τ ; θ)

]
Correspondingly, the gradient of DKL[PB ||PF ] wrt θ is

∇θDKL[PB ||PF ]
C
= −Eτ∼PF (so,·)

[
pFθ

(τ |so)
pB(τ |x)r(x)

∇θs(τ ; θ)

]
.
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Figure 1: Variance of the estimated gradients as a function of the trajectories’ batch size. Our
control variates greatly reduce the estimator’s variance, even for relatively small batch sizes.

4 Control variates for low-variance gradient estimation
Control variates. Let f : PS → Rd be a function on the space of trajectories PS in G and π be
a probability measure on the Borel σ-algebra of PS . We recall that a control variate is a function
g : PS → Rd with zero mean under π and for which the Monte Carlo estimate of Eπ[f(τ)−a·g(τ)] for
a baseline a has smaller variance than that of Eπ[f(τ)]. Proposition 2 shows how to choose a.

Proposition 2 (Control variate for gradients). Let f, g : PS → Rd be vector-valued functions and π
be a probability measure on PS . Consider a baseline a ∈ R and assume Eπ[g(τ)] = 0. Then,

argmin
a∈R

Tr Covπ[f(τ)− a · g(τ)]=Eπ[g(τ)
T (f(τ)− Eπ[f(τ

′)])]

Eπ[g(τ)T g(τ)]
. (2)

When implementing the REINFORCE gradient estimator, the expectation we wish to estimate may be
generally written as EPF (so,·) [∇θf(τ) + f(τ)∇θ log pFθ

(τ)]. For the second term, we use a leave-
one-out estimator [37]. For the first term, we use ∇θ log pFθ

as a control variate and approximate both
the numerator and denominator of Equation 2 with the delta method [36, Sec. 7.1.3]. Importantly,
the resulting estimators can be efficiently implemented in an autodiff framework [6, 29] and add a
negligible overhead to the GFlowNet training process. Figure 1 shows the drastic reduction in gradient
variance for the problem of generating 16-sized subsets of {1, . . . , 32} [4, Section 5.1].

5 Training GFlowNet via divergence minimization
Experimental setup. We compare the convergence speed in terms of the rate of decrease of a measure
of distributional error when using different learning objectives for a GFlowNet trained on the tasks of
Bayesian phylogenetic inference [45, BPI], autoregressive sequence design [23], set generation [4],
and mixture of Gaussians [17]. If the target is finitely supported, we adopt the evaluation protocols
of [3, 22, 23, 27] and compute the L1 distance between the learned pT and target r. Otherwise, we
follow [17, 43] and measure the Jensen-Shannon divergence (DJS , [20]) between pT and r.

Table 1: Divergence minimization achieves better
than or similar results relatively to minimizing TB.

BPI Sequences Sets GMs
TB 0.22±0.04 0.28±0.06 0.07±0.00 0.31±0.08

Rev. KL 0.21±0.04 0.16±0.06 0.03±0.00 0.31±0.09

For. KL 0.22±0.04 0.23±0.12 0.03±0.00 0.09±0.10

Renyi-0.5 0.22±0.03 0.23±0.10 0.03±0.00 0.19±0.13

Tsallis-0.5 0.21±0.04 0.22±0.09 0.03±0.00 0.21±0.11

Results. Table 1 shows that the minimization
of divergence-based objectives for GFlowNet
training leads to significantly faster convergence
when compared against minimizing the TB loss
[23] in three-out-of-four problems. For the task
of BPI, the results were not statistically distin-
guishable. We refer the reader to [1] for a more
extensive experimental campaign encompassing
a broader set of problems and a larger number of baselines [22, 44]. Remarkably, our conclusions
regarding the efficacy of divergence-based objectives are preserved in this expanded analysis.

6 Conclusions
In a comprehensive range of experiments, we showed that divergence measures are effective learning
objectives for training GFlowNets, achieving competitive performance to flow-based training ob-
jectives when appropriate variance reduction techniques for gradient estimation are implemented.
Additionally, we established a theoretical connection between GFlowNets and HVI beyond the setting
of finitely supported measures. Overall, our work highlights the potential of the once-dismissed
VI-inspired schemes for training GFlowNets, paving the way for further research on the algorithmic
improvement of these models based on principled approaches from the VI literature.
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