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Abstract
Traditional analytical frameworks often struggle to capture the complexity of business ecosystems, leading to
ecosystem blind spots and missed opportunities. Following a semantic approach, we introduce the Business
Ecosystem Analysis & Representation (BEAR) framework to uncover these blind spots. This approach leverages
domain, seed ontologies, and empirical data to construct insightful knowledge graphs and context-driven
visualizations, enabling question-driven analysis. Furthermore, we applied BEAR to the wind energy ecosystem
to demonstrate its value using data from 35 companies extracted from WindEnergy Hamburg 2024. Guided by co-
developed questions with industry experts from a leading manufacturer, our analysis revealed the BEAR’s ability
to map organizational positioning, interdependencies, and previously hidden wind energy ecosystem supply
chain dynamics. These preliminary results demonstrate BEAR’s effectiveness in unlocking deeper ecosystem
understanding beyond syntactic methods, offering a scalable, semantic toolset that promises to advance strategic
planning and ecosystem knowledge representation in business ecosystem analysis.
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1. Introduction

Ecosystem blind spots—unseen interdependencies among competitors, regulators, and stakeholders—
can cost organizations billions in lost market value and missed opportunities [1, 2]. These blind spots
create existential threats to organizations because we argue that traditional analytical frameworks,
which only skim the surface of ecosystems without exploring deeper, implicit connections, fail to
combine theoretical paradigms of firms (such as their roles or functions) with empirical evidence from
companies in the ecosystem. This disconnect leaves decision-makers with incomplete views of their
competitive landscape, obscuring critical insights through blind spots that could create or break their
strategies [1, 2].

These blind spots persist because, despite the increasing complexity of ecosystems [3, 4], existing
frameworks within the literature remain limited in capturing the full complexity of ecosystem structure.
Current literature approaches this complexity through two distinct streams: (1) conceptual [5, 6, 3] or
mathematical models [7] that lack explicit empirical integration, and informal extensions to these [8],
and (2) data-driven [9], syntactic network models [10, 11, 4] that map direct relationships between
ecosystem stakeholders but fail to capture deeper, implicit connections. The fundamental shortcoming
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of these approaches is their inability to bridge theory and evidence, which results in a gap. This gap
creates analytical blind spots for strategic analysts, obscuring implicit yet strategically significant
connections among ecosystem stakeholders and limiting the organization’s capability to comprehend
their competitive arena and make informed strategic decisions.

Therefore, to fill this gap, an extension of the business ecosystem analysis frameworks is needed.
This new approach should move beyond syntactic to semantic understanding by shifting from purely
structural network relationships (syntactic) [10, 11, 4] to meaningful models that also capture and
integrate the domain knowledge (semantics), effectively amalgamating theory with empirical evidence.
Hence, the authors asked;

How can we extend the business ecosystem frameworks to effectively bridge evidence and theory to derive
meaningful representations for strategic analysts in complex business ecosystems?

To address the limitations of conventional approaches in capturing semantic relationships, we
introduced the Business Ecosystem Analysis & Representation (BEAR) framework [12], which formally
integrates theoretical concepts with empirical evidence. Furthermore, to demonstrate BEAR’s practical
value, we implemented BEAR through a collaboration with an incumbent manufacturer within the
wind energy ecosystem, formulating a specific conceptual question about organizational positioning
and supply chain dynamics. To answer this question, we collected and analyzed data from companies
at WindEnergy Hamburg 2024 [13]. By learning how these semantic relationships occur within real
business contexts, we contribute to the theoretical understanding of business ecosystem structures and
practical tools such as our knowledge graph for strategic analysts facing complex interdependencies.

2. Related Work

BEAR’s semantic approach is fundamentally grounded in dynamic ontological modeling that draws
on philosophical critiques of static formalization [14, 15]. Inspired by Wittgenstein’s later work [14],
which emphasizes language as a contextual problem-solving tool — where meaning emerges from use
— we treat ontologies as evolving approximations rather than fixed theoretical models. This perspective
aligns with Whitehead’s process philosophy [16], which favors adaptive representations over rigid
abstractions. Scholars following similar paradigms have significantly influenced our framework [15, 17]
while contrasting approaches prioritizing logical consistency over adaptability have helped refine our
position [18]. Although iterative empirical validation across different contexts (e.g., different business
ecosystems) remains necessary to validate our framework [19], these philosophical foundations and
other scholarly works strengthen our framework’s foundations.

BEAR methodologically integrates design science principles, particularly the works of Roel J.
Wieringa [19], which demonstrates how guiding questions can iteratively refine our theoretical un-
derstanding of the domain and its problems. This iterative process reflects Peircian fallibilism [17],
allowing the framework to update its ontological assertions when new data falsifies or refines prior
versions. Unlike earlier business ecosystem frameworks [10, 11, 4, 3], BEAR embraces the fallibalistic
stance [17]and focuses on pragmatic utility to better support strategic analysts.

3. Business Ecosystem Analysis & Representation (BEAR)

To fill the aforementioned gap, we propose a formal and adaptive framework for business ecosystem
analysis that integrates dynamic ontology and knowledge graph development with semantic-driven
network visualizations. Additionally, the framework incorporates a pragmatic, question-based feedback
mechanism to facilitate continuous improvement (see Figure 1).
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Figure 1: This conceptual overview of the BEAR framework represents how the process begins with a guiding
question and concludes with a visualization. The numbers indicate the logical path, while the color-coding
distinguishes different paradigms within our framework: blue signifies the data-driven approach, green represents
the theoretical approach, orange indicates the amalgamation of both, and purple denotes the traditional methods
commonly found in the literature [10, 11, 4, 6].

3.1. Question & Domain of Interest

We begin by formulating guiding questions (see Number 1 in Figure 1) within our framework to ensure
focused and meaningful evidence collection and analysis. These questions should either improve
theoretical understanding or solve pragmatic problems, fundamentally shaping the scope of our inquiry
within the domain of interest. This shaped scope of inquiry, directed by the guiding question, acts as the
primer for our framework, guiding which aspects of the domain are explored, modeled, and ultimately
visualized, drawing inspiration from design science research [19].

In addition to this question’s scope-defining property, we consider it a catalyst for framework
evolution, transitioning it from one state of knowledge about the domain of interest to the next as new
questions are generated from it.

3.2. Business Ecosystem Ontology (BEO)

Our framework incorporates an explicitly defined a-priori ontology (see Number 2 in Figure 1) as a
foundational element to effectively answer the questions, driving framework evolution. This "seed"
ontology is not merely a structural component but a critical catalyst, enabling key functions within
our framework. Firstly, it provides an explicit foundation for data collection and ensures the seam-
less integration of a theory-driven paradigm. This functionality directly enhances the framework’s
adaptability by the possibility of generating new states of knowledge as inquiry progresses. Secondly,
employing such ontology explicitly acknowledges that every scientific or pragmatic question embodies
a theoretical perspective on the domain. This recognition is crucial for grounding our framework, which



makes it trackable from its initial conceptualization.
Also, a computational approach is demanding because of the complexity and dynamism inherent in

business ecosystems [4]. To address this computational demand and enable automated analysis, we
formalized our ontologies using the Web Ontology Language 2 (OWL2) [20]. With OWL2, while we
may sacrifice some of the nuanced expressiveness of natural language, this formalization process is a
deliberate trade-off. This trade-off enables us to leverage the power of automated deductive reasoning
through symbolic artificial intelligence—OWL 2 DL reasoners [20]—a crucial technology for analyzing
complex semantic systems.

3.3. Data & Data Collection Methodology

We treat data as fundamental units of ecosystem theory [21] to ground our business ecosystem frame-
work in empirical evidence and extend our domain understanding. Therefore, data acquisition from the
domain of interest must transition from a passive activity to a structured and theory-driven process,
ensuring relevance and coherence within our framework.

3.4. Knowledge Graph

The knowledge graph is the core model for achieving a deeper semantic understanding of the business
ecosystems within our framework (See Number 7 in Figure 1). This approach moves beyond primary
syntactic analysis, which is limited by its focus on mere word processing [4]. Instead, our approach with
knowledge graphs enables us to grasp the implicit (underlying) meaning and relationships between
ecosystem concepts. We define these knowledge graphs as integrated representations that combine data
with our ontological theory, effectively capturing and modeling the domain of interest in a structured
manner.

3.5. Ontology and Knowledge Graph Development

We selected Protégé as our primary ontology prototyping tool [20] to develop the ontologies and
subsequent knowledge graphs for business ecosystems. Pragmatic factors drove this decision to select
Protégé. These factors [20] included Protégé’s open-source nature, robust reasoner integration for
practical deductive reasoning, and extensive extension suite, making it an efficient and practical choice
for our development needs.

3.6. Query

To effectively query the developed formal knowledge graphs and retrieve answers relevant to our
questions, we utilize SPARQL [20] as our query language. For the execution of SPARQL, we utilize
Apache Fuseki Server. Subsequently, to manage the data structure resulting from this execution, we use
JSON-LD within our framework.

3.7. Business Ecosystem Visualizer (BEV)

We developed a dedicated Business Ecosystem Visualizer (BEV) [22], to effectively answer the question
by revealing implicit insights within the business ecosystem, leveraging the rich semantic information
gathered through our knowledge graph. We specifically designed this semantic-driven visualization
software to generate network visualizations driven by semantics, going beyond pure structural repre-
sentations. Furthermore, by integrating semantic information from the knowledge graph, our visualizer
aims to unlock a richer understanding of ecosystem dynamics and relationships.



4. Results of the Application of BEAR to Wind Energy Ecosystem

In this section, we revealed how BEAR effectively uncovered hidden insights within the complex wind
energy ecosystem. To guide the reader through this discovery process, we detailed a logical path
undertaken by BEAR, from our initial question to the final insightful visualization generated with BEV.

To effectively analyze the dynamics of the wind energy ecosystem, we began by formulating guiding
questions as the role of strategic analyst. This process involved collaborative video meetings with three
key managers from a leading incumbent manufacturer: a business development manager, an innovation
manager, and a digital business manager. Their insights ensured that our questions were practically
relevant and theoretically significant, contributing to the advancement of business ecosystem analysis.
A representative question that guided the BEAR was:

How do specific companies establish their positions through product&service delivery interactions within
the wind energy ecosystem?

Even though a sampled question inherently introduces a limitation of this paper, as the complete set
of questions would undoubtedly provide a much deeper and richer understanding of the domain, this
representative question effectively served as a starting point for our framework. However, to enable
readers to gain a fuller perspective and facilitate further investigations, we provide an anonymized
dataset, and our data collection methodology is publicly available on our GitHub page [12].

4.1. Building the Foundation: A Seed Ontology for Wind Energy

Based on our guided question, we began by developing a foundational seed ontology. While recognizing
the potential benefits of automated approaches, we manually extracted implicit and explicit core
concepts and their relationships. Later, we formalized these using OWL2 [20], which resulted in
an explicit seed ontology including two classes—Company and Organization—and two fundamental
relation types—deliversTo and receivesFrom. This initial ontological structure served as a foundation
for understanding the wind energy ecosystem, directly addressing our guiding question.

Table 1
Mapping of Natural Language to OWL2 Formalization

Natural Language OWL2 Formalization

Company

<owl:Class rdf:about="https://purl.org/beo#Company">
<rdfs:subClassOf rdf:resource="https://purl.org/beo#

Organization"/>
</owl:Class>

Delivers to

<owl:ObjectProperty rdf:about="https://purl.org/beo#deliversTo">
<rdfs:subPropertyOf rdf:resource="http://www.w3.org/2002/07/

owl#topObjectProperty"/>
<owl:inverseOf rdf:resource="https://purl.org/beo#receivesFrom

"/>
</owl:ObjectProperty>

4.2. Collecting Empirical Evidence: Surveying at WindEnergy Hamburg 2024

To gather evidence for the concepts derived through our seed ontology, we strategically chose WindEn-
ergy Hamburg 2024 [13], one of the largest wind energy expositions, as our data collection area. This
event provided an opportunity to engage directly with a broad spectrum of wind energy organizations.
Even though further details about our survey methodology will be provided in a future publication (See
GitHub page for the survey [12]), our survey efforts resulted in a robust 32% participation rate. Of the
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Figure 2: We divided the figure into parts A, B, C, and D, illustrating the formalization of symbols derived
from data collected from an anonymized organization, referred to as Organization 0. In this visualization,
symbols such as Organization0 are denoted with underlines or distinct color codes: orange highlights individual
companies, red designates sets of companies, and blue marks the relationships, which are depicted in parts
A and C. Part B represents our interpretation of these symbols through Peircian semiotic theory [23], with a
semiotic triangle [24] illustrating the case of the symbol wind turbine manufacturers. Finally, part D presents the
punning technique informally, leveraging color-coding by representing classes as individuals, and one example
of techniques resulting in necessary deductive inference.

120 organizations we approached at the exposition, 35 actively participated, contributing to 37 valuable
survey responses, with two responses originating from the same company.

4.3. Inductive Expansion and Deductive Inference: Evolving the Ontology

Building upon the survey evidence, we significantly expanded our seed ontology to represent the wind
energy domain. This expansion process, leveraging semiotic interpretations (See Figure 2) of survey
responses, significantly grew the ontology. Specifically, we inserted 134 new classes, each with varying
levels of granularity.

To further enhance the ontology’s capabilities, we employed punning [20] within the OWL2. This
technique allowed us to treat key concepts in our ontology, simultaneously representing them as
individuals using the same Internationalized Resource Identifier (IRI) [20]. As a result of this technique,
our ontology reinforced the indented semantics with a more robust structure. More crucially, punning
also unlocked the reasoning abilities within the ontology, enabling us to perform more sophisticated
automated checks and deductions, leading to a more reliable and insightful knowledge graph (See
Figure 2.

4.4. Knowledge Graph: Theory and Evidence into a Unified Model

After integrating all survey data and the expanded ontology, a knowledge graph integrating theory and
evidence emerged. Even though punning blurred the borders, the T-box (terminological component)
provided the theoretical business ecosystem understanding. On the other hand, the A-box (assertional
component) contained the evidence gathered from WindEnergy Hamburg, grounding our T-box asser-
tions in empirical data. Consequently, the resulting knowledge graph offered a holistic and semantically
rich ecosystem model, surpassing the sum of its parts. Finally, with all its inferred assertions, this
knowledge graph was saved and uploaded to a Fuseki server, ready for querying.
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Figure 3: Subgraph visualizations show the wind energy ecosystem segment with a comparative analysis of
implementations with and without the BEAR framework. This visualization maps organizational positioning
and supply chain relationships based on products and services. Dashed orange lines represent meta-reasoning
inferred relationships; blue dashed lines represent combined inference and knowledge graph assertions (a),
and green dashed lines (b) denote specifically "receivesfrom" relationships. Solid blue and orange lines in the
non-BEAR implementation (c) highlight the reasons for structural sparsity, demonstrating the framework’s
capability to reveal hidden ecosystem dependencies.

4.5. Extracting answers from Knowledge Graph

To answer our initial guiding question, we moved beyond simple knowledge graph visualization and
formulated two SPARQL queries with specific purposes [12]. The first query aimed to capture the
theoretical structure by targeting the T-box, while the second query focused on the A-box to analyze
the enriched data through deductive inference.

Executing both queries on the Fuseki server and saving the results in JSON-LD format enabled
seamless integration with our BEV, ensuring a direct pathway from guiding question to answer. For
transparency and reproducibility, both SPARQL queries are available in our GitHub repository [12].

4.6. Meta-Reasoning: Overcoming OWL2 DL Inference Limitations

In our wind energy knowledge graph analysis, we encountered a limitation in standard OWL2 DL
reasoners [20] when processing punned classes. While punning effectively linked our ontology’s classes
and individuals, the reasoners failed to infer subclass inheritance between the class types. For example, if
"WindTurbineManufacturer" is a subclass of "Manufacturer" and both are pruned, the reasoner could not
deduce that any property which is asserted to WindTurbineManufacturer also true for the Manufacturer.

We tested this behavior further by applying property chains to chain the subclass with object
properties, but OWL2 DL does not support such inferences, unlike the OWL2 RL profile [20]. To address
this limitation, we developed a custom script (available on our GitHub page) that manually infers
subclass inheritance for punned classes. Additionally, we explored the use of the OWL2 RL profile,
which supports the necessary inferences, which can be seen in our Python tests (also available on
GitHub [12]).

4.7. Answering the question: Wind Energy Ecosystem Visualization

Using our BEV [22], we transformed the query results into intuitive network visualizations that reveal
complex relationships within the wind energy ecosystem (See Figure 1). Unlike traditional visualizations
that focus solely on direct connections, BEV incorporated inferred relationships—such as emerged
intermediary roles (See Figure 3) between the organizations—and varying levels of granularity derived
from the BEAR framework.



Even though we will provide explicit details on the development process of our visualization system
in a future publication, it evidently (See Figure 3) extends traditional business ecosystem visualizations
by incorporating inferred relationships and varying levels of granularity derived from the embedded
theory.

5. Discussion

Conventional business ecosystem analysis frameworks often fail to capture the complex relationships
that define business ecosystems. This limitation, particularly their tendency to overlook implicit
connections and deeper semantic meanings, as highlighted in our introduction, can lead to significant
consequences, such as missed strategic insights [3, 4]. The BEAR framework (See Figure 1) directly
addresses these limitations by bridging the gap between the theory and empirical data through precise
semantic representation.

A critical contribution of the BEAR lies in its semantic precision for network-driven analysis. Tradi-
tional network-driven ecosystem analysis often fails to consider data semantics [10, 11, 4], which could
lead to significant misinterpretations. For example, consider the statement, "Gearbox manufacturer
AG (the company from which we gathered data) is delivering to wind turbine manufacturer." Without
semantic understanding, "wind turbine manufacturer" could be interpreted as referring either to a
specific company that manufactures wind turbines or the entire set of wind turbine manufacturers.
Treating these semantically distinct relationships as equivalent in a network analysis can result in
misapplied graph-theoretic measures (such as centrality), ultimately leading to flawed insights that
misinform strategic decision-making.

To overcome these semantic misinterpretations, BEAR introduces a refined approach to relationship
modeling, interpreting the connections as quantified relationships between the sets and members
of the set rather than mere links. This suggested perspective, partially enabled by the OWL2 DL’s
capabilities [20], allows BEAR to distinguish between fundamentally different types of relationships
beyond basic network relationships. For example, consider the same statement above. Traditional
approaches might treat this "delivery" as a simple link. However, BEAR interprets this relationship
as existential quantification: "There exists at least one wind turbine manufacturer to whom Gearbox
manufacturer AG delivers," even if we cannot identify the specific receiver. By explicitly modeling such
relationships as existential quantifications, BEAR achieves a semantic precision previously absent in
business ecosystem literature to our knowledge, offering a more accurate and insightful representation
of complex interdependencies.

Beyond simply preventing semantic misinterpretations, BEAR’s semantic awareness, combined with
consideration of granular ecosystem levels, introduces a more profound benefit: uncovering implicit
ecosystem dynamics. This capability allows strategic analysts to see beyond surface-level connections
and uncover crucial yet hidden interdependencies. For example, in our analysis, leveraging BEAR, we
uncovered the intermediary role of consulting companies between certain organizations(See Figure
3), a dynamic that would remain hidden in traditional analyses. This underscores the neccesity of our
discussion and the paradigm of BEAR: reasoned and synergistic amalgamation of theoretical frameworks
with rich empirical evidence.

While some approaches rely only on natural language processing (NLP) for inductive analysis [4],
this often results in what John Sowa termed a "knowledge soup" - a disorganized and opaque mass
of information lacking clear structure or meaning [25]. Instead of cooking this knowledge soup, our
BEAR framework leverages formally defined ontologies to provide a backbone, creating meaningful and
transparent knowledge structures. However, we acknowledge the initial labor involved in our approach.
Therefore, rather than rejecting the NLP techniques [4] and Large Language Models, we view them as
valuable assistants in our future efforts to semi-automate this labor-intensive process.

Beyond its semantic precision in data representation, another aspect of BEAR is its visualization
capabilities. Visualizing relationships with quantifications presents significant challenges and needs
further research [26]. However, through BEV [22], we aim to overcome this limitation by capturing the



semantics of business ecosystem relationships by implementing distinct interaction types. In this work,
we introduced two such types — extending the current business ecosystem visualization literature,
where such semantics distinctions are not typically present:

1. Some company within a set delivers to a specific company
2. A specific company delivers to some company within a set

These distinctions enable strategic analysts to interpret complex relationship patterns with greater
semantic accuracy, exceeding conventional visualization approaches [4, 11], leading to deeper and more
insightful ecosystem understanding.

An additional advantage of our framework emerges from its foundation in semantic web technologies,
making BEAR inherently suitable for integration with other domain ontologies such as SWOTONT [27].
This capability opens up the possibility of conducting a SWOT analysis directly within the business
ecosystem analysis, which demonstrates BEAR’s adaptability for addressing diverse analytical questions
spanning multiple business analysis domains.

6. Conclusion

The Business Ecosystem Analysis and Representation Framework (BEAR) advances traditional business
ecosystem analysis by directly addressing a critical challenge: the inherent complexity that hides
insightful ecosystem dynamics [4, 3, 1]. BEAR addresses this challenge by bridging theoretical assertions
with empirical evidence through a semantic approach. When utilized in the wind energy ecosystem,
this semantic approach unlocked previously hidden insights, revealing relationships that conventional
methodologies would miss. Therefore, by revealing these hidden insights and formalizing complex
relationships, BEAR [12]demonstrates a more accurate and transparent foundation for strategic analysis,
offering organizations an advantage.

As organizations increasingly recognize the complexity of their ecosystems [4, 3], BEAR emerges
as the analytical structure needed to avoid ecosystem blind spots [1], particularly those important yet
hidden dependencies. Furthermore, BEAR transforms complex ecosystems into sources of sustainable
competitive advantage. This capability ultimately empowers organizations not only to survive but also
to thrive, dynamically adapt, and succeed within their dynamic business ecosystems.
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