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Abstract

We propose TETRIS, a novel method that opti-001
mizes the total throughput of batch speculative002
decoding in multi-request settings. Unlike ex-003
isting methods that optimize for a single request004
or a group of requests as a whole, TETRIS ac-005
tively selects the most promising draft tokens006
(for every request in a batch) to be accepted007
when verified in parallel, resulting in fewer re-008
jected tokens and hence less wasted computing009
resources. Such an effective resource utiliza-010
tion to achieve fast inference in large language011
models (LLMs) is especially important to ser-012
vice providers with limited inference capac-013
ity. Compared to baseline speculative decoding,014
TETRIS yields a consistently higher acceptance015
rate and more effective utilization of the limited016
inference capacity. We show theoretically and017
empirically that TETRIS outperforms baseline018
speculative decoding and existing methods that019
dynamically select draft tokens, leading to a020
more efficient batch inference in LLMs.021

1 Introduction022

Transformer-based large language models (LLMs)023

have shown remarkable abilities to solve different024

tasks across various domains, such as natural lan-025

guage (Zhao et al., 2023), computer vision (Yin026

et al., 2024), robotics (Zeng et al., 2023), code gen-027

eration (Rozière et al., 2024), among others (Maslej028

et al., 2024). However, the autoregressive nature of029

LLMs (i.e., generating one token at a time) leads030

to an increasingly sluggish inference speed as the031

model size increases.032

To address this problem, a recent widely-used033

approach is speculative decoding (SD) (Cai et al.,034

2024; Cheng et al., 2024; Leviathan et al., 2023;035

Li et al., 2024a,b): It achieves faster inference by036

using a small draft model to rapidly generate a se-037

quence of (draft) tokens and then a large target038

model to verify whether to accept or reject them039

in parallel. When a token is rejected, the draft040
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Figure 1: Standard SD (left) uses a fixed draft window
size, while TETRIS (right) generates extra draft tokens
and dynamically optimizes draft token selection for ev-
ery request in a batch, resulting in more accepted tokens.

model generates a new sequence of tokens in the 041

next step, starting from the most recently accepted 042

token. A key aspect of SD is to determine the opti- 043

mal number of draft tokens (i.e., draft window size) 044

to generate and verify in each step. Generating 045

more draft tokens allows the target model to verify 046

a longer sequence at once (given sufficient com- 047

puting resources/capacity for parallel inferences), 048

which can potentially boost inference speed. How- 049

ever, doing so increases the risk of wasting com- 050

puting resources since all tokens following the first 051

rejected token must be discarded. In contrast, gen- 052

erating fewer draft tokens reduces this risk but lim- 053

its the potential benefit of SD since the computing 054

resources are not effectively utilized. Therefore, 055

the optimal selection of draft tokens that would be 056

accepted when verified by the target model in par- 057

allel is critical to improving both inference speed 058

and resource utilization (Liu et al., 2024d). 059

Most existing works have focused on optimiz- 060

ing draft token selection for individual user re- 061

quests (Agrawal et al., 2024; Huang et al., 2024; 062

Liu et al., 2024c; Mamou et al., 2024), but may not 063

work well for profit-driven LLM inference service 064

providers who must manage multiple user requests 065

under a limited inference capacity. Moreover, LLM 066

inference service providers typically charge users 067

based on the number of tokens served (Fireworks 068

AI, 2025; Replicate, 2025). Hence, they are in- 069

centivized to maximize the total number of tokens 070
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served (i.e., throughput) across all user requests071

while ensuring fast response time to meet service072

level agreement (Wieder et al., 2011). So, they073

would employ computing clusters to process large074

batches of user requests simultaneously and use SD075

to further improve the inference speed.076

Such batch processing of user requests entails a077

fundamentally different optimization objective for078

SD compared to handling individual requests. For079

SD of a single request, supposing a fast draft model080

with negligible runtime, the objective is to maxi-081

mize the draft window size as long as the target082

model can verify all draft tokens in parallel by fully083

utilizing the inference capacity. It can be naively084

extended to batch processing by widening the draft085

window for all requests until the inference capacity086

is reached. This is inefficient as each request may087

require a different optimal draft token selection due088

to varying difficulty in speculation (i.e., generating089

tokens to match the target model’s output).090

This paper presents a theoretical framework that091

dynamically optimizes the draft token selection092

for every user request from the perspective of a093

capacity-limited LLM inference service provider094

who aims to maximize resource utilization. Since095

draft token verification is the most time-consuming096

component of SD, we propose TETRIS, a method097

that greedily selects draft tokens with a high like-098

lihood of acceptance by the target model. The099

name of our method is derived from the shape of100

its selected tokens, as shown in Fig. 1. We demon-101

strate that TETRIS strictly outperforms standard102

SD by achieving higher total throughput. Our work103

bridges a critical yet overlooked gap in current re-104

search, allowing service providers to improve total105

throughput with batch SD. The specific contribu-106

tions of our work here are summarized below:107

• In Sec. 3, we introduce the problem of optimal108

draft token selection in multi-request settings,109

and in Sec. 4.1, we propose TETRIS, a novel110

method that selects optimal draft tokens in log-111

linear time for the target model’s verification.112

• In Sec. 4.2, we theoretically show that TETRIS113

achieves optimal throughput at each decoding114

step and globally in the absence of drafting time115

(i.e., time to generate draft tokens) under reason-116

able token acceptance assumptions.117

• In Sec. 5, our empirical results show that TETRIS118

consistently outperforms standard SD and exist-119

ing methods that use dynamic draft windows for120

a batch in terms of total throughput and end-to-121

end latency (including drafting time), highlight- 122

ing the potential of TETRIS to improve inference 123

speed in real-world model service deployments. 124

2 Related Work 125

Speculative Decoding (SD). By employing a 126

draft-then-verify strategy for lossless accelerations 127

of LLM inference, SD has attracted significant at- 128

tention recently (Ryu and Kim, 2024; Xia et al., 129

2024). Recent advancements based on SD have 130

focused on developing more efficient draft mod- 131

els by producing multiple drafts for the next few 132

tokens (Cai et al., 2024; Cheng et al., 2024; Li 133

et al., 2024b). Additionally, some methods have 134

optimized the speculation accuracy by aligning 135

the draft model with the target model (Liu et al., 136

2024e; Zhou et al., 2024) or leveraging the tar- 137

get model itself to draft via techniques like layer 138

skipping (Zhang et al., 2024). To facilitate more 139

efficient verification, tree attention has been pro- 140

posed for speedy tree-structured candidate verifica- 141

tion (Miao et al., 2024; Spector and Re, 2023). In 142

contrast, our work explores a complementary ap- 143

proach that intervenes between the draft and target 144

models, performing strategic draft token selection 145

to improve throughput over batched requests. Our 146

method can be seamlessly integrated with the above 147

techniques for a more efficient SD system. 148

LLM Scheduling. With the growing popularity 149

of LLM as a service, several works have consid- 150

ered improvements to the scheduling of LLM ser- 151

vices. These works can be broadly categorized into 152

client-side and server-side approaches. Server-side 153

approaches (Fu et al., 2024; Kim et al., 2024; Liu 154

et al., 2024d; Wang et al., 2024a) have focused on 155

increasing the throughput of LLM services, which 156

may lead to an unfair allocation of inference re- 157

sources to users, hence causing starvation. On 158

the other hand, client-side approaches (Liu et al., 159

2024b; Sheng et al., 2024) have focused on improv- 160

ing user satisfaction by improving client-side met- 161

rics (e.g., decreasing maximal waiting time or end- 162

to-end latency). Our work considers the scenario 163

where the LLM inference service provider employs 164

SD to ensure user satisfaction with inference speed 165

while simultaneously aiming to maximize service 166

throughput to optimize profitability. 167

Draft Window Optimization. In the founda- 168

tional paper on SD, the authors have proposed 169

to generate a window of draft tokens (Leviathan 170
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et al., 2023). The optimal draft window is theo-171

retically determined under an impractical assump-172

tion of identical conditional acceptance rates for173

all draft tokens (Leviathan et al., 2023). Empir-174

ically, such an acceptance rate can be estimated175

by a moving average of past requests (Liu et al.,176

2024d). Other heuristics for finding the optimal177

draft window include stopping the draft generation178

when the draft model’s confidence score falls be-179

low a predetermined threshold (Kim et al., 2023;180

Liu et al., 2024a) or when an entropy-controlled181

criterion is met (Agrawal et al., 2024). Cai et al.182

(2024) have proposed taking the union of these183

two heuristics. These existing works have oper-184

ated at a single-request level, except that of Liu185

et al. (2024d) which adaptively determines a single186

draft window for all requests in a batch. Note that187

considering each request independently or using a188

common draft window for a batch can lead to in-189

efficiencies in allocating verification budgets (i.e.,190

inference capacity) across multiple requests, espe-191

cially when operating under the limited computing192

resources of an LLM inference service provider.193

3 Problem Setup194

This section first introduces speculative decoding195

and then describes the optimal draft token selection196

problem and the performance metrics used.197

3.1 Speculative Decoding (SD)198

SD is an efficient inference method designed to199

accelerate the decoding process in LLMs and in-200

volves two phases: drafting followed by verifica-201

tion. Initially, a lightweight draft model, denoted as202

S , quickly generates candidate draft tokens. Subse-203

quently, these tokens are verified against the gener-204

ations from the target model, denoted asM, which205

is also often referred to as the verification model.206

SD allows parallelized verifications of tokens by207

M, as opposed to the conventional autoregressive208

decoding used in language models. Hence, SD209

yields significant improvement in decoding speed.210

Specifically, the draft model generates k draft to-211

kens d1, . . . , dk in an autoregressive manner where212

k is the draft window size. Given a prompt or213

prefix x, the generation process follows di ∼214

pS(·|x, d1, . . . , di−1). For notational simplicity,215

we denote pS(di) = pS(di|x, d1, . . . , di−1). The216

verification follows a rejection sampling proce-217

dure. If pS(di) ≤ pM(di), the draft token di is218

accepted. Otherwise, we reject the draft token with219

a probability of 1− pM(di)/pS(di) and then out- 220

put a new token sampled from an adjusted distribu- 221

tion pM(d′i) = norm(max(0, pM(d′i)− pS(d
′
i))), 222

where norm(·) normalizes the probability distribu- 223

tion. Hence, the acceptance of draft tokens depends 224

on both pS(·) and pM(·) and plays a vital role in 225

the effectiveness of SD. A higher acceptance sug- 226

gests the possibility of greater speedup gain with a 227

larger k. We defer a more detailed discussion of the 228

acceptance rate estimation in App. B.1. However, 229

we highlight that the effectiveness of SD is lim- 230

ited by the computing resources available. Using 231

a draft window exceeding the capacity for paral- 232

lel inferences that the server can manage degrades 233

the performance, which we show empirically later 234

in Sec. 5. Consequently, it is essential to carefully 235

select the draft window size for each request, lead- 236

ing to our proposed method outlined next. 237

3.2 Optimal Draft Token Selection 238

We first define a set of other notations used through- 239

out our paper. We consider a specific LLM infer- 240

ence service provider with a limited capacity C, 241

which represents the maximum number of paral- 242

lel inferences its computing resources can perform. 243

The capacity depends on the server configurations 244

of the service provider in practice. At each time 245

step, the server processes a batch of N requests 246

r1, r2, · · · , rN , each with a partially complete se- 247

quence Si,ti = (di,1, . . . , di,ti) where ti represents 248

the number of tokens verified/served so far for re- 249

quest ri. We allow a variable draft window size 250

ki for each request ri. The draft model S drafts a 251

set D := {(i, t)|i ∈ [N ], t ∈ [ti + ki]} such that 252

|D| =
∑N

i=1 ki = C. For each (i, t) ∈ D, we send 253

Si,t to have its last token verified byM. We aim 254

to optimally choose the set D at each time step to 255

maximize the performance of the server in terms 256

of generation throughput, which we define below. 257

Per-step Throughput. For each step of SD, we 258

are mainly concerned with maximizing the per- 259

step throughput, i.e., the number of tokens served 260

at each time step. Mathematically, let 1i,t be an 261

indicator variable representing whether the last to- 262

ken of Si,t is accepted, let τstep be the time per step. 263

The per-step throughput is then defined as 264

Gstep := (E[
∑

(i,t)∈D 1i,t] +N)/τstep . 265

Note that at least one token is always generated 266

by SD via the bonus token mechanism (Leviathan 267

et al., 2023). Thus, without considering drafting 268
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time, the throughput of SD is theoretically at least269

as good as that of autoregressive decoding.270

Total Throughput. The total throughput is cal-271

culated as the average per-step throughput over a272

total of T steps with a fixed τstep for each step:273

G := T−1
∑T

i=1 Gstep .274

Note that it is theoretically difficult to find an opti-275

mal draft token selection strategy that maximizes G276

as the relationship between previously verified to-277

kens and the distribution of acceptance rate for the278

remaining tokens is extremely complex. However,279

under a mild assumption on token acceptance rate,280

the optimality of G is equivalent to the optimality281

of Gstep, as explained formally in Sec. 4.2 later.282

4 TETRIS: Optimal Draft Token Selection283

In this section, we introduce the details of the284

TETRIS for batch SD and provide an analysis of its285

time complexity and optimality. Overall, we lever-286

age the insight that SD suffers from a cascading287

failure rate in a single sequence but not across dif-288

ferent sequences. More specifically, we distinguish289

between two types of tokens involved in drafting:290

sequential and parallel. For each request ri, all291

pairs (i, ·) ∈ D are sequential, i.e., for all j < k,292

(i, j) must be accepted for (i, k) to be accepted as293

well, implying a cascade of the failure rate. On the294

other hand, for i ̸= j, (i, ·) and (j, ·) are parallel,295

as the failure rate of (i, ·) does not influence that296

of (j, ·). We highlight that the distinct nature of the297

two modes serves as the fundamental motivation of298

our proposed approach for an improved Gstep, and299

consequently the total throughput G.300

4.1 Our Approach and Design301

We introduce inter-dependencies among requests302

within a batch. We favor parallel tokens when se-303

lecting sequential tokens leads to an excessive cas-304

cading of failure rates, and vice versa. To achieve305

this, we propose to introduce a manager to actively306

select the best draft tokens that are most likely to307

be successfully verified by the target model, thus308

maximizing the expected number of output tokens.309

The manager is integrated into the speculative de-310

coding framework and functions as an intermediary311

between the draft model and the target model. It312

operates on the draft tokens and auxiliary outputs313

(e.g., token distributions, hidden states) from the314

draft model and strategically selects those that will315

be sent for verification by the target model.316

At each step, define pi,j the conditional accep- 317

tance rate of the token at index (i, j) given its corre- 318

sponding prefix. Let Bi,j := (i, j,
∏j

t=1 pi,t) be the 319

tuple containing token indices and the probability 320

of all selected tokens in row i up to j being ac- 321

cepted. Instead of simply selecting a fixed window 322

of draft tokens for verification, we greedily look for 323

tokens with the highest cumulative acceptance rate 324∏j
t=1 pi,t (and not the standalone acceptance rate 325

pi,j). We let the draft model propose the extra draft 326

tokens beyond the server capacity and then select a 327

set D∗ of tokens such that it maximally utilizes the 328

compute resource by ensuring |D∗| = C. This pro- 329

cess dynamically allocates longer draft windows 330

for requests with “easy” tokens and shorter win- 331

dows for “hard” ones, reducing resource wastage 332

while sufficiently leveraging speculation, as illus- 333

trated in Fig. 1. TETRIS is outlined in Alg. 1.

Algorithm 1 TETRIS

1: Input: draft B, batch size N , capacity C
2: Initialize D∗ ← {},H ← Heap()
3: Z ← InitArray(size = N, value = −1)
4: for i ∈ [N ] do
5: H.insert(Bi,0)
6: end for
7: repeat
8: // Dequeue the most probable
9: (i, j, pij) = H.extractMax()

10: D∗ = D∗ ∪ {(i, j)}
11: // Record the row-wise frontier
12: Z[i] = j
13: // Enqueue new candidates
14: H.insert(Bi,j+1)
15: until |D∗| = C
16: return D∗

334

4.2 Analysis 335

We now present our theoretical results, which show 336

the per-step and global optimality of TETRIS. 337

Theorem 1 (Per-step Optimality of TETRIS). In the 338

absence of drafting time, given the true acceptance 339

rate αi,j of each draft token (i, j), Alg. 1 produces 340

the optimal per-step throughput defined in Sec. 3. 341

The proof is delayed to App. A.1. While we 342

have established the local optimality of TETRIS in 343

Theorem 1, such local optimality does not trivially 344

generalize to maximizing total throughput. Nev- 345

ertheless, we show, in Theorem 2, that TETRIS is 346

optimal in a slightly simpler scenario that retains 347

sufficient complexity of interest. 348

4



Assumption 1. ∀j, all tokens in the j-th sequence349

have an identical acceptance rate denoted as αj .350

Theorem 2 (Global Optimality of TETRIS under351

Assumption). Under Assumption 1, in the absence352

of drafting time, TETRIS searches for the optimal353

G under the same capacity. Morever, if α1 = α2 =354

· · · = αN , TETRIS has the same G as standard355

batched speculative decoding.356

The proof is delayed to App. A.3. Overall, we357

established both per-step and global optimality of358

TETRIS under theoretical assumptions. In practice,359

the drafting time can be hidden with appropriately360

designed pipeline (Liu et al., 2024c; Wang et al.,361

2024b) which parallelizes the execution of the draft362

model and the target model.1 The true acceptance363

rates are inaccessible in practice, we thus rely on364

surrogate measures and show their empirical effec-365

tiveness, which we will discuss next.366

4.3 Practical Implementations367

The acceptance rate of a draft token depends on368

max(pM(di)/pS(di), 1). However, the TETRIS369

manager does not have access to pM(·) before ver-370

ification. In practice, we use the draft model’s371

output probability as a surrogate of the token ac-372

ceptance rate (Kim et al., 2023; Zhang et al., 2024).373

We show in Sec. 5 that this surrogate empirically374

results in strong performance. Additionally, while375

we theoretically show that Alg. 1 achieves a time376

complexity of O(C logN) (see App. A.2), we377

can additionally leverage the parallelism of GPU378

to achieve empirical negligible overhead of using379

TETRIS (< 0.3ms compared to the average draft380

time per token of > 2.5ms) via the scatter_max381

operation directly implemented on GPU. Lastly,382

the autoregressive token drafting can also be paral-383

lelized across requests. Hence, drafting a batch of384

requests with a common window size of k tokens385

takes the same time as a single request in practice.386

5 Experiments387

We evaluate the effectiveness and efficiency of388

TETRIS against baseline methods. We first vali-389

date the necessity of dynamic draft token selection390

and improvement of token acceptance with TETRIS391

in Sections 5.1 and 5.2. Then, we show the empiri-392

cal end-to-end speedup in Sec. 5.3. We also discuss393

1Although, they have yet been integrated in popular battle-
tested model serving frameworks such as vLLM (Kwon et al.,
2023) and SGLang (Zheng et al., 2024) as of this writing.

the potential further improvement in empirical re- 394

sults with the future implementation of speculative 395

decoding pipelines in Sec. 5.4. 396

Settings. We perform experiments on target mod- 397

els of various parameter sizes, including Vicuna- 398

33B-v1.3, Llama-3.1-70B-Instruct, and Llama-3.1- 399

405B-Instruct. We use Vicuna-68M and Llama- 400

3.2-1B-Instruct as their respective draft models. 401

Depending on the size of the models, different 402

server configurations and tensor parallel sizes are 403

adopted, detailed in Tab. 1. TETRIS is evaluated 404

for generation of answer completion for questions 405

extracted from ShareGPT (Anon, 2023), Chatbot 406

Arena (Zheng et al., 2023), Domain Tough Ques- 407

tions (YAV-AI, 2024), and synthetic tasks gener- 408

ated from Shakespeare’s The Sonnet. The standard 409

speculative decoding (SD) (Leviathan et al., 2023) 410

and dynamic speculative decoding (DSD) (Liu 411

et al., 2024d) are baseline methods that we compare 412

to. We vary the drafting window sizes, allowing up 413

to 3 extra draft tokens for TETRIS while keeping 414

the same number of tokens sent for verification by 415

the target model for fair comparison. TETRIS is 416

implemented in vLLM (Kwon et al., 2023).

Table 1: Server and model configurations. TP indicates
the tensor parallel size used for model serving.

Setting Draft Model (TP) Target Model (TP) GPU (VRAM)

1 Vicuna-68M (1) Vicuna-33B (4) 4×L40 (180G)
2 Llama-1B-FP8 (1) Llama-70B (8) 8×L40 (360G)
3 Llama-1B-FP8 (1) Llama-405B-FP8 (8) 8×H100 (640G)

417

5.1 Variations in Draft Quality 418

We begin by emphasizing the importance of set- 419

ting an appropriate draft window size. Using Set- 420

ting 2, we collect the oracle optimal draft window 421

size to adopt for each SD step. Notably, the re- 422

sults in Fig. 2 show flat curves with long-tail distri- 423

butions for various datasets, revealing significant 424

variations in optimal window size per step. This 425

diversity highlights the potential suboptimality of a 426

fixed draft window, as it fails to adapt to the inher- 427

ent characteristics of the draft-target model com- 428

bination or a batch of sequences. By tailoring the 429

draft token selection in a batch, TETRIS is expected 430

to achieve higher efficiency and better alignment 431

with the model’s token acceptance patterns, hence 432

improving overall performance. 433

5.2 Effect of Extra Draft Tokens 434

Having extra draft tokens provides TETRIS with 435

greater flexibility in selecting which draft tokens to 436
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Figure 2: The distribution of the number of accepted
tokens per speculative decoding step.

send for verification. To empirically show this ef-437

fect, we define the verification success rate (VSR),438

VSR = Accepted tokens
Tokens sent for verification , (1)439

which measures the quality of the draft tokens se-440

lected by TETRIS. We show in Fig. 3 that increas-441

ing the number of extra draft tokens consistently442

increases the VSR metric across all settings. This443

finding confirms the effectiveness of TETRIS’s strat-444

egy for draft token selection utilizing extra draft445

tokens. It also validates the empirical usefulness of446

the draft model’s output probabilities as a surrogate447

of the selection criteria, as stated in Sec. 4.3.448
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Figure 3: Change in VSR as the number of extra draft
tokens increases. Base draft length k = 4.

5.3 Evaluation of TETRIS449

To evaluate the effectiveness of TETRIS, we450

perform comprehensive experiments on various451

datasets and report metrics, including the total452

throughput and end-to-end latency. We compare453

to standard SD and DSD. Throughout the exper-454

iments, we maintain a consistent system load of455

64 batched requests to ensure consistency, repro-456

ducibility, and fairness in comparisons. Note that457

all experiments include drafting time.458

Total Throughput. We measure the performance459

of a speculative decoding method using the total460

throughput, which includes both accepted draft to-461

kens by the target model and the bonus tokens,462

which make up the final completion. As shown463

in Fig. 4, TETRIS achieves up to approximately464

5.25% improvement in terms of total throughput 465

compared to the best baseline, depending on the 466

draft-target setting and the nature of the task per- 467

formed. The maximum gap between TETRIS and 468

standard SD is up to 9.27%. Importantly, TETRIS 469

consistently outperforms the standard SD and DSD 470

across all settings of the draft window sizes. This 471

shows the robustness of TETRIS to different hyper- 472

parameter choices. Additionally, it is evident that 473

having more speculative tokens (i.e., a larger draft 474

window size) does not always improve the perfor- 475

mance, as having too many parallel executions of 476

the target model exceeding the servers’ parallel 477

inference capacity degrades performance. 478

Empirically, we observe that TETRIS achieves 479

optimal performance when the number of extra 480

draft tokens is set to 1 or 2. These results are partly 481

attributed to the current sequential draft-target im- 482

plementation for the speculative decoding pipeline, 483

as more extra draft tokens take time to generate 484

autoregressively. Remarkably, this pipeline can be 485

better designed to amplify the benefit of TETRIS, 486

which we defer the discussion to Sec. 5.4. More- 487

over, while DSD is expected to outperform stan- 488

dard SD, we note that it is not always the case in 489

empirical experiments. This behavior may result 490

from the difficulty of accurately estimating the con- 491

ditional token acceptance rate in practice2 and the 492

quality of the fitted latency prediction model. 493

End-to-end Latency. We also measure the end- 494

to-end latency of each request. This metric mea- 495

sures the average latency of the speculative decod- 496

ing system in finishing completions, which can 497

affect user satisfaction. We summarize the results 498

in Tab. 2 and defer the figures to App. C.2. Over- 499

all, TETRIS achieves up to 6.13% improvement in 500

latency as compared to the best baseline and up to 501

9.32% improvement against standard SD.

Table 2: Improvement in end-to-end latency. Refer
to Fig. 4 for definitions of ↑ and ∆. The reported num-
bers reflect the mean over 3 independent trials.

Setting
ShareGPT Arena Tough
↑ ∆ ↑ ∆ ↑ ∆

1 3.42% 6.05% 5.30% 6.30% 5.47% 9.32%

2 2.65% 2.70% 3.86% 3.86% 3.65% 3.65%

3 3.51% 4.52% 6.13% 6.13% 4.49% 4.68%

502

2Inaccurate conditional acceptance rate estimation results
in inaccurate calculation of expected generation token counts.
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Figure 4: Throughput comparison for various methods across experimental settings. ↑ indicates the improvement
over the best baseline method. ∆ indicates the maximum gap between TETRIS and standard SD. The reported
numbers reflect the mean and standard deviation over 3 independent trials.

5.4 Potentially Parallelized Pipeline503

We implement TETRIS to work with the vLLM li-504

brary, one of the most efficient frameworks for505

LLM inference (Kwon et al., 2023). vLLM adopts a506

sequential pipeline for speculative decoding, where507

the target model runs sequentially after the draft508

model finishes generating draft tokens. As illus-509

trated in Fig. 5, TETRIS is integrated between the510

draft and target models. However, in such a se-511

quential pipeline, TETRIS cannot fully realize its512

potential as the extra draft tokens incur additional513

computational time.514

Recent works such as Minions (Wang et al.,515

2024b) and PEARL (Liu et al., 2024c) have started516

exploring the benefits of a parallelized pipeline517

with two processes concurrently running the draft518

and target models as illustrated in Fig. 5. Given that519

the draft model runs significantly faster than the520

target model, the draft time, as well as the time to521

run our TETRIS, can be hidden entirely in the par-522

allelized pipeline. Moreover, the idle time (marked523

in green) of Process 2 between steps can be utilized524

Figure 5: Parallelized pipeline for speculative decoding,
where the draft model and TETRIS runtime can be hid-
den entirely through parallelization.

to draft more extra tokens of TETRIS or to run more 525

complex algorithms. 526

Under the constraint of sequential pipelines in 527

vLLM, we instead adopt an alternative performance 528

metric that better captures the potential advantages 529

of TETRIS in parallelized pipelines. We use the 530

target efficiency rate (TER) defined as follows, 531

TER = Accepted tokens + Bonus tokens
Max possible number of tokens if all accepted . (2) 532

As TER measures the efficiency of target model 533
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Table 3: Projected throughput Ĝ(TER) improvement
based on TER metric improvement, realizable under
a parallelized speculative decoding pipeline.

Setting Dataset G↑ Ĝ(TER)↑

1
ShareGPT 3.50% 9.70%
Arena 5.17% 7.79%
Tough 4.85% 8.92%

2
ShareGPT 2.01% 11.70%
Arena 2.71% 11.17%
Tough 3.43% 11.91%

3
ShareGPT 3.93% 11.67%
Arena 5.15% 10.53%
Tough 5.25% 12.04%

verifications and is unaffected by the drafting pro-534

cess and TETRIS runtime, it provides an accurate535

indication of the net benefit of TETRIS. In Fig. 6,536

we demonstrate a case study for Setting 3 on Tough537

dataset: The improvement of TER is first calculated538

from the left figure, and is then used to compute539

the projected throughput Ĝ(TER)
k , following540

Ĝ(TER)
k = GSD,k ×

(TERTETRIS,k−TERSD,k)
TERSD,k

,541

where k is the number of speculative tokens (i.e.,542

draft window size) and G represents throughput.543

Consequently, using TETRIS is projected (i.e., not544

realized in the current implementation) to achieve545

12.04% improvement for this setting under paral-546

lelized pipeline. The full results are shown in Tab. 3547

and the figures are shown in App. C.3.548
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Figure 6: Left: Baseline comparisons for TER in differ-
ent speculative configurations. Right: Projected Ĝ(TER)

k

plot for TETRIS with baselines.

5.5 Ablation Study549

Robustness to Variations in Draft Quality. We550

artificially introduce additional variations in draft551

quality by mixing datasets of different difficulty552

levels. We create synthetic prompts designed for553

models to repeat lines from a poem named Son-554

net. Since Sonnet is relatively easy for the small555

draft model, it achieves a high rate of successful556

Table 4: TETRIS improvement in throughput for abla-
tion study of robustness to variations in draft quality.

Setting Sonnet Tough Mix

1 2.46% 4.85% 4.12%
2 -0.81% 3.43% 3.48%
3 2.07% 5.25% 4.24%

verification by the target model. We then construct 557

a new dataset, Mix, by randomly mixing Sonnet 558

and a more challenging dataset, Tough, in equal 559

proportions. As shown Tab. 4, the performance 560

improvement of TETRIS over the best baseline suf- 561

fers only a marginal or no decline, indicating its 562

robustness to substantial variations in draft quality. 563

Extension to Medusa. The Medusa model gen- 564

erates multiple subsequent draft tokens using a 565

single forward pass (as opposed to autoregressive 566

generation) through multiple decoding heads (Cai 567

et al., 2024). Leveraging Medusa, it is possi- 568

ble to generate extra draft tokens for TETRIS at 569

minimal marginal computational cost. We show 570

in App. C.4 that integrating TETRIS to Medusa 571

achieves a 3.19% improvement in total throughput. 572

Other Ablations. We also include ablations on 573

TETRIS’s improvement in verification success rate 574

(VFS) in App. C.5, and the effect of batch size on 575

the performance in App. C.6. 576

6 Conclusion and Future Work 577

In this paper, we study the problem of optimizing 578

batch speculative decoding to maximize through- 579

put in multi-request settings, such as those faced by 580

model service providers. To this end, we propose 581

TETRIS, a novel method that efficiently selects op- 582

timal draft tokens for the LLM verification in log- 583

linear time. We have theoretically shown that, in 584

the absence of drafting time, TETRIS achieves op- 585

timal throughput both at each decoding step and 586

globally under reasonable assumptions about to- 587

ken acceptance rates. Our empirical results further 588

validate that TETRIS consistently outperforms stan- 589

dard speculative decoding and existing dynamic 590

draft window selection methods, even when ac- 591

counting for the extra time required for drafting 592

extra tokens. These results highlight the potential 593

of TETRIS to improve inference efficiency in real- 594

world model service deployments. A key future 595

direction is adapting TETRIS to tree decoding, a no- 596

table feature in recent advancements in speculative 597

decoding (Cai et al., 2024; Li et al., 2024a,b). 598
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7 Limitations599

In this paper, our empirical experiments only600

demonstrate results using the current sequential601

speculative decoding pipeline implemented on602

vLLM. That is, the target model stays idle while wait-603

ing for draft tokens from the draft model. Conse-604

quently, the performance improvement of TETRIS605

is heavily dependent on the trade-off between the606

additional runtime required to generate extra draft607

tokens and the gain in token acceptance achieved608

through TETRIS. Such trade-off limits the practical609

effectiveness of TETRIS, especially when a slow610

draft model is required. We anticipate that future611

implementations of a parallelized pipeline could612

potentially reveal greater speedups with TETRIS.613

However, we have not yet integrated such features614

into vLLM for testing in empirical experiments.615
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A Leftover Proofs 806

A.1 Proof of Theorem 1. 807

Theorem 1 (Per-step Optimality of TETRIS). In the absence of drafting time, given the true acceptance 808

rate αi,j of each draft token (i, j), Alg. 1 produces the optimal per-step throughput defined in Sec. 3. 809

Proof. We prove it by contradiction. Let the selection of Alg. 1 be D∗. Suppose the actual optimal 810

solution is D′ ̸= D∗. Let D̃ = D′ ∩ D∗ be the overlapping tokens selected by both Alg. 1 and the actual 811

optimal solution. Note that the tokens in each row are selected sequentially (i.e., tokens cannot be skipped 812

in a row). 813

Case 1: TETRIS selects some token d ∈ D∗ \ D̃ before selecting D̃. In this case, the E[1] of the token 814

d is higher than the token last selected in D̃. This suggests that the optimal selection should include d. 815

However, it can be observed that d /∈ D′ since otherwise d ∈ D̃. This contradicts the fact that D′ is 816

optimal. 817

Case 2: TETRIS selects D̃ first before selecting other tokens. Since Alg. 1 always selects the token 818

with the highest E[1], every element in D∗ \ D̃ is larger than or equal to that in D′ \ D̃. As such, we have 819

E[
∑

p∈D′ 1p] ≤ E[
∑

p∈D∗ 1p]. However, this contradicts the fact that D′ is optimal as Alg. 1 has a higher 820

number of accepted tokens. Therefore, Alg. 1 must be optimal. 821

Combining the two cases finishes the proof. 822

A.2 Running Time of TETRIS 823

Lemma 1. Alg. 1 achieves a time complexity of O(C logN). 824

Proof. Note that Alg. 1 maintains a heap. The heap is initialized with N items. Since only C pairs are 825

selected, there are 2C operations of enqueue and dequeue. Following classic results of heap operation, 826

each enqueue of dequeue operation requires O(logC) time. As such, the overall time complexity of 827

TETRIS is O(C logN). 828

A.3 Proof of Theorem 2. 829

Theorem 2 (Global Optimality of TETRIS under Assumption). Under Assumption 1, in the absence of 830

drafting time, TETRIS searches for the optimal G under the same capacity. Morever, if α1 = α2 = · · · = 831

αN , TETRIS has the same G as standard batched speculative decoding. 832

Proof. The proof of global optimality is established on Theorem 1. Since all tokens in each row have 833

the same acceptance rate. After each step, we have the same distribution of 1 no matter what tokens 834

are accepted, where 1 is the indicator variable of whether the token is accepted. As such, at each step, 835

performing TETRIS is per-step optimal by Theorem 1. Moreover, since the state at each step is identical, a 836

per-step optimal strategy is also globally optimal. 837

B Additional Related Work 838

B.1 Acceptance Rate 839

The acceptance rate plays a vital role in the effectiveness of speculative decoding. A higher acceptance 840

rate should be paired with a larger draft window size k to achieve optimal speedup. In the typical rejection 841

sampling setting of speculative decoding, the acceptance of draft tokens depends on the probability 842

distributions of both the draft and target models. When the probability distribution of the draft model, 843

pS(·), closely approximates that of the target model, pM(·), a higher number of tokens are accepted on 844

average. Since the value of k is chosen in the drafting process, we do not have access to pM(·) and have 845

to rely on pS(·) to estimate the acceptance rate. 846

Leviathan et al. (2023) derive that the expected acceptance rate is 1 minus the KL divergence between 847

the token distributions of the draft and the target model. Hence, the acceptance rates for all draft tokens are 848

considered constant. Liu et al. (2024d) assume uniform token acceptance behavior across diverse requests. 849

It proposes SmartSpec, which calculates the average acceptance rate from past generation steps. Li et al. 850
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Figure 7: Mean end-to-end latency comparison for various methods across experimental settings. ↑ indicates the
improvement from best baseline method. ∆ indicates the maximum gap between TETRIS and standard SD. The
reported numbers reflect the mean and standard deviation over 3 independent trials.

(2024a) and Wang et al. (2024a) utilize the draft model’s confidence score (i.e., the output probability of851

each token) to estimate the acceptance rate. Chen et al. (2024) make the positional acceptance assumption852

so that the acceptance rate of tokens is determined solely by their position (i.e., number of tokens away)853

relative to the already accepted tokens. Agrawal et al. (2024) instead consider an approximate lower bound854

on the expected acceptance rate of a token that depends on the entropy of prediction probabilities of the855

draft model pS(·). Noting the acceptability of diverse tokens, especially in the real world with a high value856

of temperature hyperparameter, Medusa proposes to use both a hard threshold and an entropy-dependent857

threshold as a criterion to accept draft tokens (Cai et al., 2024). In Medusa, the first token is always858

accepted using greedy decoding to ensure at least one token is generated in each step.859

C Additional Results860

C.1 Dataset License861

ShareGPT (Anon, 2023): Apache license 2.0; Arena (Zheng et al., 2023): CC; Domain-specific Tough862

Questions (YAV-AI, 2024): MIT.863

C.2 Plots for End-to-end Latency864

We provide an extended discussion on the improvement of end-of-end latency from Sec. 5.3. In Fig. 7,865

we show the plots for the end-to-end latency over all speculative decoding configurations and settings866

used in the paper. TETRIS consistently outperforms the existing baselines and achieves up to 6.13%867

improvement over the best baseline and up to 9.32% maximum gap over standard SD. Therefore, TETRIS868

has demonstrated to effectively reduce end-to-end request latency, which is also essential for enhancing869

the user experience with LLM inference service providers.870
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C.3 Plots for Projected Improvement based on TER 871

Complementary to Tab. 3, which contains the numerical results for the projected improvement of TETRIS 872

in terms of the projected throughput Ĝ(TER), we also show the plots in Fig. 8 to visually illustrate the 873

effectiveness of our method. The dotted lines for TETRIS (drawn in blue, orange, and green) represent 874

the projected throughput calculated based on the throughput of the standard SD and also the TETRIS’s 875

improvement in terms of target efficiency rate (TER, as defined in Eq. (2)). We note that these improvement 876

numbers are theoretically computed and are not yet realizable in empirical settings due to the lack of 877

parallelized pipeline implementations of speculative decoding in vLLM. 878
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Figure 8: Mean projected throughput Ĝ(TER) comparison for various methods across experimental settings. ↑
indicates the improvement from the best baseline method. The reported numbers reflect the mean over 3 independent
trials.

C.4 Extension to Medusa 879

We evaluate the top-1 proposal version (i.e., only draft the most likely token for each position) of Medusa 880

and its integration with TETRIS. As the Medusa model outputs multiple subsequent tokens in a single 881

forward pass,3 we leverage this feature to produce extra draft tokens for TETRIS. We show the results 882

in Tab. 5. We achieved a throughput improvement of 3.19% as compared to the baseline Medusa. The 883

development of such multi-token prediction models, including models like EAGLE (Li et al., 2024b) 884

and DeepSeek-V3 (DeepSeek-AI et al., 2024) presents further potential for TETRIS to achieve greater 885

speedups. Other improvements in engineering, including using tree-decoding and using a larger target 886

model also potentially further boost the speedup. 887

3We use a modified implementation of Medusa in vLLM to ensure a fixed forward pass time.
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Table 5: Mean total throughput (± standard deviation) for the ablation study of TETRIS extension to Medusa over
three independent trials. The integration of TETRIS with Medusa further improves the total throughput.

No. Speculative Tokens TETRIS (extra=1) TETRIS (extra=2) TETRIS (extra=3) Baseline Medusa

1 591.26±0.46 590.83±8.30 586.47±3.66 572.97±1.79
2 571.05±0.80 568.82±6.52 571.95±1.06 563.94±2.95

Best 591.26 590.83 586.47 572.97

C.5 Improvement in Verification Success Rate888

As an ablation study, we also illustrate the improvement of TETRIS in terms of VSR (as defined in Eq. (1)),889

which is an important measure of the effectiveness of speculative decoding. We show in Fig. 9 that the890

maximum gap between TETRIS and standard SD in terms of VSR is consistently above 20% and reaching891

over 30% in some instances. This validates the significant effect of TETRIS in selecting draft tokens that892

are most likely to be accepted by the target model without exceeding the system capacity of the server.893

However, it is worth noting that this improvement in VSR does not translate entirely to an increment894

in total throughput or a reduction in end-to-end latency. This is because the throughput in practice also895

depends on the running time of the draft model (especially when the speculative decoding pipeline is896

sequential, as discussed in Sec. 5.4), and VSR does not account for the generation of the bonus token897

(which takes up a portion of the generated tokens).898
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Figure 9: The verification success rate comparison for various methods across experimental settings. ∆ indicates the
maximum gap between TETRIS and standard SD. The reported numbers reflect the mean over 3 independent trials.

C.6 The Effect of Batch Size on TETRIS Performance899

Theoretically speaking, a larger batch size creates more possible combinations for draft token selection by900

TETRIS. Therefore, TETRIS is likely to perform better in a speculative decoding server that processes a901
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larger batch of requests concurrently. In Fig. 10, we show a visual illustration of the verification success 902

rate (VSR) and target efficiency rate (TER) (as defined in Eq. (1) and Eq. (2), respectively). 903

In setting 2 (draft model: Llama-1B-Instruct-FP8, target model: Llama-70B-Instruct), we observe a 904

significant increase in VSR and TER when the batch size is increased to 64. However, batch sizes of 16 905

and 32 have similar VSR and TER values. 906

In setting 3 (draft model: Llama-1B-Instruct-FP8, target model: Llama-405B-Instruct-FP8), we do 907

not observe a significant change in VSR and TER, suggesting that the way that the batch size affects 908

performance is highly dependent on the specific draft-target combination, too. 909

Overall, we expect a more significant improvement in the performance of adopting TETRIS by LLM 910

inference service providers with larger capacities to handle a larger number of concurrent requests. 911
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Figure 10: The change in the verification success rate (VSR) and target efficiency rate (TER) when we vary the
batch size (BS) from 64 to 32 and 16. The reported numbers reflect the mean over 3 independent trials.
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