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ABSTRACT

Spatial transcriptomics (ST) has emerged as a promising technology to bridge
the gap between histology imaging and gene expression profiling. However, its
application to medical diagnosis is limited due to its low throughput and the need
for specialized experimental facilities. To address this issue, we develop STFlow1,
a flow-based generative model to predict spatial transcriptomics from whole-slide
histology images. STFlow is trained with a biologically-informed flow matching
algorithm that iteratively refines predicted gene expression values, where we choose
zero-inflated negative binomial distribution as a prior distribution to incorporate the
inductive bias of gene expression data. Compared to previous methods that predict
the gene expression of each spot independently, STFlow models the interaction of
genes across different spots to account for potential gene regulatory effects. On
a recently curated HEST-1k benchmark, we demonstrate STFlow substantially
outperforms all baselines including pathology foundation models, with over 18%
relative improvement over current state-of-the-art.

1 INTRODUCTION

Compared to the early days of bulk RNA sequencing, recent advancements in spatial transcriptomics
(ST) technology offer a novel approach to molecular profiling within the spatial context of tissues,
providing insights into cellular interactions and the microenvironment (Ståhl et al., 2016; Xiao &
Yu, 2021). One of the promising clinical applications of ST is the prediction of biomarkers in digital
pathology, often visualized in hematoxylin and eosin (H&E)–stained whole-slide images (WSIs), by
analyzing the gene expression levels in relation to the tissue morphology (Levy-Jurgenson et al., 2020;
Zhang et al., 2022). However, the conventional ST methods (Moffitt et al., 2018; Eng et al., 2019;
Ståhl et al., 2016) are low throughput and rely on specialized equipment, limiting their availability
compared to standard histology imaging.

To address this, recent works resort to deep learning to predict spatially-resolved gene expression
from H&E images. As illustrated in Figure 1(a), a histology image is segmented into small spots,
with the objective of predicting the gene expression with the spot image and the coordinate. This line
of research has achieved promising results using either an image foundation model to encode local
spot-level features (Chen et al., 2024; He et al., 2020; Ciga et al., 2022) or an additional slide-level
encoder to incorporate global context (Xu et al., 2024; Chung et al., 2024). However, these methods
predict gene expression of each spot independently, thus overlooking the interaction between different
genes, i.e. certain genes regulating or influencing the expression of others (Li et al., 2022; Biancalani
et al., 2021). To consider such a regulatory effect, we must model the joint distribution over gene
expression of all spots in the image, which cannot be solved by single-step regression.

In light of this, we propose STFlow, a flow matching model that casts the original task as a generative
modeling problem. As shown in Figure 1(b), the denoiser network of STFlow learns a contextual-
ized representation of each spot that models gene interaction via a novel spatial attention module.
Starting from an initial gene expression sampled from the zero-inflated negative binomial (ZINB)
distribution (Virshup et al., 2023; Eraslan et al., 2019), STFlow iteratively refines its prediction with a

1Anonymous codebase: https://anonymous.4open.science/r/Anonymous_STFlow-D420
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Figure 1: An overview of gene expression prediction from histology image with STFlow. (a): The
histology image is segmented into a set of spot images, each associated with a 2D coordinate and
gene expression. Each spot image is then encoded using a pathology foundation model. (b): STFlow
encodes the slide-level context by aggregating the neighboring spots through spatial attention and
the gene-gene interaction is explicitly incorporated within the attention calculation. (c): STFlow
iteratively optimizes the gene expression predictions, starting from a sample drawn from the zero-
inflated negative binomial (ZINB) distribution.

denoising network (Puny et al., 2021), as illustrated in Figure 1(c). In particular, ZINB distribution as
a biologically informed prior allows STFlow to account for the unique nature of gene expression data,
offering a more tailored approach than the Gaussian distribution used in standard flow matching.

To validate the effectiveness of STFlow, we evaluate it on the HEST-1k dataset (Jaume et al., 2024),
a large-scale collection of ST-WSI pairs comprising 10 benchmarks, and compare its performance
against 5 spot-based and 4 slide-based baselines. The experimental results show that STFlow
outperforms all baseline approaches and consistently achieves better performance when using visual
features extracted by different pathology foundation models, with an average relative improvement of
18%. Additionally, we conduct two case studies on biomarker discovery, where STFlow demonstrates
a more significant correlation, highlighting its potential for clinical applications.

2 RELATED WORK

WSI-based spatial gene expression prediction Rapid advances in spatial transcriptomics (ST) (Li
& Wang, 2021) have enabled the detecting of RNA transcript spatial distribution at sub-cellular
resolution. This technology segments hematoxylin and eosin (H&E)–stained whole-slide images
(WSIs) into small spots, each providing a corresponding gene expression profile. Conventional ST
methods rely on in-situ hybridization techniques(Moffitt et al., 2018; Codeluppi et al., 2018; Eng
et al., 2019) or next-generation sequencing approaches (Ståhl et al., 2016; Stickels et al., 2021), which
are both costly and time-consuming.

Machine learning-based approaches have recently shown promising results in this domain (Lee et al.,
2023). The previous studies fall into two categories: (1) spot-based approaches which solely encode
the spot and predict the gene expression individually, i.e., modeling p(Yi|Ii)2 (He et al., 2020; Pang
et al., 2021; Chen et al., 2024; Ciga et al., 2022; Xie et al., 2024). Some of these methods leverage
foundation models pretrained on large-scale digital pathology datasets, achieving promising results
in gene expression prediction (Jaume et al., 2024). (2) slide-based approaches which incorporate
the slide-level context and predict the gene expression of each spot individually, i.e., modeling

2We here ignore the time step t and Yi indicates i-th spot’s gene expression.
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p(Yi|I0, · · · , IN ) (Pang et al., 2021; Zeng et al., 2021; Jia et al., 2024; Xu et al., 2024; Chung et al.,
2024). The main idea of these methods is to aggregate the representations of other spots after the
image encoders extract each spot’s features. The key difference between our proposed STFlow and
previous methods is that STFlow explicitly utilizes gene-gene dependency for prediction using a
generative model, i.e., modeling joint distribution p(Y0, · · · ,YN |I0, · · · , IN ).

Flow matching Flow matching is a generative modeling paradigm (Lipman et al., 2022; Albergo &
Vanden-Eijnden, 2022; Liu et al., 2022; Jing et al., 2024; Nori & Jin, 2024) that has shown impressive
results across various modalities, including images and biomolecules. It defines a sequence of time-
dependent probability paths that transform data points from the real distribution to an interpolated
sample with a prior distribution. The objective is to approximate the marginal vector field of this path
using a neural network. In this work, we repurpose the gene expression regression as a generative task
and apply the flow matching since (1) its iterative denoising scheme allows us to incorporate the gene
expression within the modeling, and (2) it offers flexibility in selecting a gene expression-specific
prior distribution, i.e., zero-inflated negative binomial distribution.

Geometric deep learning Geometric deep learning has achieved significant success in chemistry,
physics, and biology (Bronstein et al., 2021; Zhang et al., 2023; Liu et al., 2023). The key to this
success lies in generating invariant representations for 3D structures, such as molecular conformations,
that remain consistent under E(n) transformations, where n represents the dimension of the Euclidean
space. E(n) transformations include translations, rotations, and reflections. Previous methods achieve
invariance by leveraging invariant features (Satorras et al., 2021; Schütt et al., 2018; Gasteiger et al.,
2021) or employing equivariant transformations, such as irreducible representations (Fuchs et al.,
2020; Liao & Smidt, 2022; Weiler & Cesa, 2019) and frame averaging (FA) (Puny et al., 2021; Huang
et al., 2024). The architecture of the denoiser encodes the spatial context of whole-slide images
(WSIs) using an FA-based Transformer architecture, designed to produce invariant representations
for each spot, regardless of any E(2) transformations.

3 METHOD

In this section, we introduce STFlow, with a biologically informed flow matching denoising frame-
work for leveraging gene interaction and an E(2)-invariant denoiser for capturing spatial dependency.
We first introduce the necessary background in Section 3.1 and elaborate on the learning framework
in Section 3.2. The introduction of architecture is provided in Section 3.3.

3.1 PRELIMINARIES

Problem Formulation An H&E-stained WSI is segmented into a set of patches, which can be
represented as (C, I,Y ), with coordinates C ∈ RN×2, spot images I ∈ RN×3×H×W , and gene
expression levels Y ∈ RN×G, where N is the number of spots, G is the number of genes, and H,W
indicate the image dimensions. Each element in Y is the count of detected RNA transcripts for a
particular gene (starting from 0), representing the gene’s expression level. In this study, the goal of
STFlow aims to predict the gene expression Y among spots with the input of (C, I), which can be
formulated as a regression task.

Pathology Foundation Model We define fPFM(·) as a pathology foundation model, which aims
to extract general-purpose embeddings for digital pathology after being pretrained on large-scale
histology slides, such as Ciga (Ciga et al., 2022), UNI (Chen et al., 2024), and Gigapath (Xu et al.,
2024). They receive a patch of the slide as input and produce the embedding for downstream tasks:

{Z0, · · · ,ZN} = fPFM
(
{I0, · · · , IN}

)
(1)

where Zi, Ii represent the i-th spot’s encoded representation and H&E image. In particular, Gigapath
includes a slide encoder that captures the whole-slide context, which we refer to as Gigapath-slide.

In our study, we leverage these foundation models to extract visual features for each spot image
instead of training an individual image encoder. The key motivation is that, after being pretrained on
large-scale histology slides, these foundation models exhibit strong generalization abilities across
different samples and help mitigate batch effects (Jaume et al., 2024).

3
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Algorithm 1 STFlow: Train
Require: Training WSIs (C, I,Y )

Sample prior Y0 ∼ Z(µ, ϕ, π)
Sample timestep t ∼ Uniform[0, 1]

Interpolate Yt ← t ∗ Y + (1− t) ∗ Y0

Predict Ŷ ← fθ (C, I,Yt, t)

Minimize objective MSE(Y , Ŷ )

Algorithms 1 and 2 represent the training and infer-
ence frameworks of STFlow. The definition of each
symbol can be found in the Method section.

Algorithm 2 STFlow: Inference
Require: Testing WSIs (C, I)

Sample prior Y0 ∼ Z(µ, ϕ, π)
for s← 0 to S − 1

Let t1 ← s/S and t2 ← (s+ 1)/S

Predict Ŷ ← fθ (C, I,Yt1 , t1)

if s = S − 1 then
return Ŷ

end if
Interpolate Yt2 ← Yt1 +

(Ŷ −Yt1
)

(1−t1)
∗ (t2 − t1)

end for

3.2 LEARNING WITH FLOW MATCHING

Gene interaction is essential for determining the gene expression level. Our key hypothesis is that
the expression levels of certain genes in neighboring regions can strongly indicate the target spot’s
expression (Li et al., 2022; Biancalani et al., 2021; Cordell, 2009). However, this poses a "chicken-
and-egg" challenge: the gene-gene dependency we aim to incorporate relies on gene expression as
context, which is also what we seek to predict. To address this, we repurpose the gene expression
regression model into a generative model, using samples from a prior distribution as input, which is
then iteratively optimized instead of performing a one-step prediction.

Specifically, we apply flow matching (Lipman et al., 2022; Albergo & Vanden-Eijnden, 2022) as the
optimization framework, which aims to learn a denoised model fθ(·):

min
θ

MSE
(
Y , fθ (Yt, I,C, t)

)
(2)

where t is a time step sampled uniformly from [0, 1], and Yt is a linear interpolation between Y and
a sample Y0 drawn from a prior distribution p0(·), i.e., Yt = tY + (1 − t)Y0. Technically, fθ(·)
approximates the marginal vector field of the time-dependent conditional probability paths pt(Yt|Y ),
allowing it to generate the data Y given the noisy sample from p0(·).

Prior Distribution One of the advantages of flow matching over the diffusion model is its compati-
bility with different prior distributions. For gene expression data, we apply zero-inflated negative
binomial (ZINB) distribution Z(µ, ϕ, π), defined by the following probability mass function:

p(y | µ, ϕ, π) =

π + (1− π)
(

Γ(y+ϕ)
Γ(ϕ) y!

)(
ϕ

ϕ+µ

)ϕ (
µ

ϕ+µ

)y

if y = 0,

(1− π)
(

Γ(y+ϕ)
Γ(ϕ) y!

)(
ϕ

ϕ+µ

)ϕ (
µ

ϕ+µ

)y

if y > 0,
(3)

where y is the count outcome, µ is the mean of the distribution, ϕ denotes the number of failures until
stopped, and π is the zero-inflation probability. ZINB distribution accounts for the overdispersion
and excess zero commonly observed in gene expression data (Virshup et al., 2023; Gayoso et al.,
2022; Eraslan et al., 2019).

Training As shown in Algo.1, during training, we sample a time step t from the uniform distribution
and interpolate the ground-truth gene expression Y with the sampled noise Y0 to obtain noisy sample
Yt. The denoiser predicts the denoised gene expression with the inputs of image features, coordinates,
noisy samples, and time steps. The model is then optimized by minimizing the difference between
the prediction and the ground-truth expression.

Sampling As shown in Algo.2, we begin with an initial "expression guess" Y0 sampled from
the ZINB distribution and iteratively refine it using the trained denoiser. The model interpolates
between the noisy input Yt and the predicted denoised expression Ŷ over multiple steps, with a decay
coefficient that gradually increases as the time steps increase. This process ultimately converges to
the optimal gene expression in the final step.

4
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3.3 DENOISER ARCHITECTURE fθ

The STFlow’s denoiser receives visual features Z, coordinates I , and gene expression Yt at time
step t as input. The backbone is based on the Transformer architecture (Vaswani, 2017), achieving
E(2)-invariance to the coordinates by incorporating frame averaging (FA) within each layer and
explicitly encoding spatial dependencies by conducting attention to each spot’s local neighbors.

Local Spatial Context Cells within the tissues can interact and influence each other’s gene expression,
thereby forming a spatial context with spot-to-spot dependencies. To efficiently leverage such
dependencies, we encode the local spatial context around each spot i and limit the attention to its
k-nearest neighbors, i.e., N (i), in the WSI. Long-range context information can be captured through
multi-layer attention within the local neighbors of every spot.

E(2)-Invariant Spatial Attention We introduce a spatial attention mechanism that generates
spot representations invariant to E(2) operations, i.e., rotation, translation, and reflection, of the
coordinates. To achieve this, we adapt frame averaging (FA), an E(2)-invariant transformation for
point cloud (Puny et al., 2021), to the attention scheme. The flexibility of FA provides a recipe for
encoding the coordinates with minimal modification to Transformer. Specifically, for i-th spot, we
first construct the local context with the direction vectors from it to its neighbors:

Ci = {Ci→j | j ∈ N (i)} (4)

where Ci→j = Ci −Cj denotes the direction vector and represents the orientation between spots.
Such a geometric context is then projected into multiple frames extracted by PCA:

F(Ci) := {(U , ĉ) | U = [α1u1, α2u2], α1,2 ∈ {−1, 1}}, (5)
fF (Ci) := {(Ci→j − ĉ)U | (U , ĉ) ∈ F(Ci),Ci→j ∈ Ci}

:= {C(g)
i→j | Ci→j ∈ Ci, 1 ≤ g ≤ 4}

(6)

where F(·) denotes four extracted frames with the two principal components (u1,u2) and centroid c,
fF (·) represents the projection of each coordinate using the four extracted frames, and C

(g)
i→j denotes

the projected direction vector from i-th to j-th spot using g-th frames. Building on top of them, we
embed these spatial spot-spot dependencies with linear layers and achieve invariance by averaging
the representations in different frames:

C ′
i→j =

1

|F(Ci)|
∑
g

MLP(C(g)
i→j) (7)

where C ′
i→j ∈ Rd is the encoded representation of the spatial relationship between i-th spot and its

neighbor j at l-th layer. With such pairwise encoding, the spatial information sent from one source
spot depends on the target spot, which is compatible with the attention mechanism. The encoded
spatial representation is then incorporated into the attention module.

(b) Biased MLP Attn Module

∑ ∑

∑

FA-based function

∑

∑ ∑

Figure 2: The attention
scheme of denoiser.

As shown in Figure 2, the attention module first transforms the image
features Zi into query, key, and value representations:

ZQ,i = ZiWQ, ZK,i = ZiWK , ZV,i = ZiWV (8)

where WQ,WK ,WV ∈ Rd×d are the learnable projections. We
adopt MLP attention (Brody et al., 2021) to derive the attention
weight between spots, which incorporates the spatial information and
the gene expression difference between spots within the calculation:

Aij = Softmaxi

(
MLP

(
ZQ,i || ZK,j || C ′

i→j || (Yt,i − Yt,j)
))

(9)

where Aij denotes the attention score between i-th and j-th spots, and
Softmaxi(·) is the softmax function operated on the attention scores
of spot i’s neighbors. The spatial representation is then aggregated
as the context for updating the spot representation, and the gene

5
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expression is iteratively updated at each layer, which progressively denoises the gene expression data
across different receptive fields:

Z ′
i = MLP

 ∑
j∈N (i)

AijZV,j ||
∑

j∈N (i)

AijCi→j

+Zi and Y ′
t,i = MLP

(
Z ′

i

)
(10)

where Z ′
i and Y ′

t,i represent the updated i-th spot’s representation and gene expression from the
spatial attention module. This process is repeated across each layer, with the gene expression updates
from each layer averaged to produce the final gene expression prediction.

3.4 DISCUSSION

Notes on invariance The Equ.7 demonstrates E(2)-invariance to the coordinates as it encodes and
averages the coordinates across different frames, which is guaranteed by frame averaging framework.
Consequently, the spatial attention mechanism (Equ.9 and Equ.10) that relies on the output of Equ.7
is E(2)-invariant. However, our proposed attention scheme doesn’t guarantee the invariance of
transformations applied directly to the raw H&E images since we use the embeddings learned by
pathology foundation models that are not E(2)-invariant.

Computational Complexity For spatial attention, FA is efficient due to the low dimensionality of
the coordinates (only 2) and the accelerated PCA algorithm, thus we ignore its complexity. The
attention calculation involves neighboring spots and linear transformations, resulting in a complexity
of O(Nkd + Nkd2), where d is the embedding size, and is efficient since k ≪ N . With flow
matching, the computation scales linearly with the number of refinement steps S. In practice, this
remains efficient as flow matching requires relatively few steps, a key advantage over diffusion models.
In our experiments, we set S to 5. A wall-clock time comparison can be found in Appendix B.

4 EXPERIMENT

In this section, we evaluate our proposed STFlow for gene expression prediction across ten bench-
marks and compare its performance against nine baselines. The implementation details can be found
in Appendix A, and the dataset statistics can be found in Appendix C.

4.1 GENE EXPRESSION PREDICTION

Datasets We employ the HEST-1k dataset (Jaume et al., 2024), a large-scale collection comprising
spatial transcriptomics data paired with H&E-stained WSIs. Specifically, the dataset includes ten
benchmarks3 covering 48 patients and 74 samples. To prevent data leakage, a patient-stratified split
is employed, which results in a k-fold cross-validation setup. Following HEST-1k, performance is
evaluated using the Pearson correlation between the predicted and measured gene expressions for the
top 50 highly variable genes after log1p normalization. We perform cross-validation and report both
the mean and standard deviation across the folds.

Baselines We compare STFlow with two categories of methods:

• Spot-based approaches, including Ciga (Ciga et al., 2022), UNI (Chen et al., 2024), Gigapath (Xu
et al., 2024), STNet (He et al., 2020), and BLEEP (Xie et al., 2024), predict the gene expression
solely based on the input spot image. Specifically, BLEEP retrieves the gene expression of spots
with similar visual features as prediction. For pathology foundation models, we use a Random
Forest model as the regression head, utilizing the visual features extracted by these models,
following the setup of HEST-1k.

• Slide-based approaches, including Gigapath-slide, Hist2ST (Zeng et al., 2021), HisToGene (Pang
et al., 2021), and TRIPLEX (Chung et al., 2024), incorporate the whole-slide information by

3Note that the COAD dataset was updated after the paper’s release, leading to a significant difference in the
performance reported in the HEST-1k manuscript.

6
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aggregating the local or global context around each spot. The coordinates are embedded using a
linear layer or a convolution layer, serving as position encoding.

Results The comparison results are presented in Table 1, where we also list the image encoder used
by each method. It can be observed that, even with a simple linear head, the pathology foundation
models demonstrate a significant advantage over most ST-based baselines, which train their image
encoders from scratch. However, building on these foundation models, our proposed STFlow can
reach better performance and achieve 18% improvement on average, highlighting its compatibility
with the pathology foundation models and demonstrating the effectiveness of leveraging spatial
context and gene interaction.

Additionally, some ST-based approaches fail to predict significantly correlated gene expression, even
with dedicated training on the dataset. We attribute this to the patient-level split, which introduces
a more challenging scenario than previous splits, making it difficult for these methods to capture
the meaningful semantics of the spot images. This observation is consistent with the findings in
Chung et al. (2024). Furthermore, Gigapath-slide, which aggregates whole-slide information, does
not outperform Gigapath in these tasks. This may be because the slide encoder’s pretrained objective
is tailored for slide-level tasks rather than spot-level tasks.

Table 1: Results of gene expression prediction. The image encoder used in each ST-based baseline
is listed below each method. The best result is marked in bold, and the best baseline is underlined.
OOM indicates an out-of-memory error.

Spot-based Slide-based

Ciga UNI Gigapath STNet BLEEP Gigapath-slide Hist2ST HisToGene TRIPLEX STFlow
DenseNet121 ResNet50 ViT ViT Ciga Ciga UNI Gigapath

IDC 0.423.002 0.502.050 0.514.064 0.380.048 0.346.094 OOM 0.052.032 0.350.063 0.492.042 0.460.028 0.589.063 0.565.055
PRAD 0.343.001 0.357.000 0.386.008 0.346.006 0.303.004 0.386.006 0.065.038 0.253.005 0.351.023 0.380.001 0.420.005 0.415.013
PAAD 0.406.008 0.424.060 0.436.054 0.370.047 0.347.059 0.394.041 0.111.004 0.303.007 0.429.045 0.440.047 0.506.078 0.513.063
SKCM 0.492.003 0.613.020 0.578.001 0.385.054 0.407.130 0.543.014 0.195.010 0.321.028 0.576.091 0.608.072 0.707.028 0.651.089
COAD 0.275.054 0.287.005 0.287.008 0.249.063 0.172.014 OOM 0.071.006 0.266.015 0.305.004 0.344.023 0.328.013 0.325.023
READ 0.051.005 0.162.080 0.151.081 0.116.032 0.098.063 0.188.048 0.034.025 −0.006.013 0.129.062 0.137.075 0.243.002 0.260.023

CCRCC 0.136.005 0.186.050 0.187.062 0.213.071 0.107.023 0.183.052 0.100.053 0.112.036 0.229.036 0.250.054 0.335.070 0.326.065
HCC 0.042.001 0.051.000 0.054.002 0.078.034 0.066.021 0.026.005 0.015.001 0.028.015 0.044.022 0.105.030 0.128.017 0.125.019

LUNG 0.544.001 0.511.030 0.568.038 0.526.025 0.476.021 0.530.025 0.302.063 0.477.057 0.563.036 0.584.027 0.608.021 0.602.013
LYMPH 0.235.006 0.234.050 0.275.049 0.237.063 0.204.061 0.284.042 0.096.079 0.238.062 0.286.055 0.307.052 0.305.056 0.305.053

Average 0.305 0.347 0.344 0.290 0.252 / 0.104 0.234 0.340 0.361 0.419 0.409

4.2 FURTHER ANALYSIS ON STFLOW

Prior distribution comparison We conduct an experiment to investigate the influence of differ-
ent prior distributions used in STFlow. Specifically, we replace the ZINB distribution with two
alternatives: zero distribution, where all samples are zero, and standard Gaussian distribution.

The results are summarized in Table 2, from which we can observe that the ZINB distribution
consistently achieves the best performance across all cases. This demonstrates its effectiveness, as it
is better suited to represent gene expression data, which is often sparse and overdispersed. In contrast,
the Gaussian distribution fails in certain cases, such as the READ and HCC tasks using Ciga, as it
cannot effectively capture the meaningful variation in the non-zero data.

Table 2: Prior distribution comparison on STFlow.

IDC PRAD PAAD SKCM COAD READ CCRCC HCC LUNG LYMPH Avg.

Ciga
ZINB 0.460.028 0.380.001 0.440.047 0.608.072 0.344.023 0.137.075 0.250.054 0.105.030 0.584.027 0.307.052 0.361
Zero 0.454.025 0.352.001 0.420.071 0.592.105 0.320.008 0.133.072 0.237.038 0.096.043 0.577.031 0.295.052 0.347

Gaussian 0.446.035 0.370.003 0.426.048 0.593.077 0.337.016 0.043.028 0.245.052 0.042.027 0.575.023 0.300.053 0.337

Gigapath
ZINB 0.565.055 0.415.013 0.513.063 0.651.089 0.325.023 0.260.023 0.326.065 0.125.019 0.602.013 0.305.053 0.409
Zero 0.564.056 0.411.014 0.506.056 0.651.098 0.323.009 0.261.017 0.328.063 0.115.020 0.593.011 0.301.057 0.405

Gaussian 0.559.058 0.403.008 0.507.059 0.643.103 0.320.025 0.252.021 0.320.059 0.115.020 0.594.011 0.297.056 0.401

UNI
ZINB 0.589.063 0.420.005 0.506.078 0.707.028 0.328.013 0.243.002 0.335.070 0.128.017 0.608.021 0.305.056 0.419
Zero 0.585.063 0.397.011 0.494.080 0.686.063 0.321.025 0.234.044 0.324.047 0.103.026 0.608.012 0.291.047 0.404

Gaussian 0.580.064 0.409.001 0.498.084 0.677.038 0.309.031 0.213.054 0.316.050 0.116.014 0.600.019 0.288.049 0.400

E(2)-Invariant Architecture Comparison To demonstrate the effectiveness of our proposed E(2)-
invariant denoiser, we implement two representative E(n)-invariant architectures and replace our
proposed architecture with them individually:
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• EGNN (Satorras et al., 2021) is a representative E(n) graph neural network that leverages invariant
geometric feature distance between coordinates to ensure representation invariance. The model
conducts representation aggregation among the k-nearest neighbors for each spot. For a fair
comparison, EGNN also receives the input of extracted image features as spot features.

• E2CNN (Weiler & Cesa, 2019) is a representative framework for E(n) convolutional neural
networks that utilizes irreducible representations. In our implementation, we use the extracted
features as input channels and construct a tensor of neighboring spots centered around the target
spots. This tensor is then fed into a ResNet model built using E2CNN.

More details regarding the hyperparameters and implementation can be found in Appendix A. The
comparison results are presented in Table 3, where we observe that STFlow’s performance decreases
to varying degrees when using EGNN or E2CNN as replacements in most cases. We attribute this to
the fact that the geometric features used in these models are either simple, as in the case of distances
in EGNN, or extracted through constrained functions, such as group steerable kernels in E2CNN.
In contrast, FA-based transformation directly leverages the direction vectors, allowing the model to
automatically learn relevant geometric features in the latent space.

Table 3: E(2)-invariant architecture comparison.

IDC PRAD PAAD SKCM COAD READ CCRCC HCC LUNG LYMPH Avg.

Ciga
STFlow 0.460.028 0.380.001 0.440.047 0.608.072 0.344.023 0.137.075 0.250.054 0.105.030 0.584.027 0.307.052 0.361

w/ EGNN 0.450.041 0.193.153 0.416.060 0.566.098 0.342.020 0.118.094 0.091.065 0.095.027 0.558.045 0.307.049 0.313
w/ E2CNN 0.450.042 0.301.027 0.440.046 0.574.049 0.337.022 0.121.079 0.270.078 0.059.020 0.504.005 0.293.047 0.334

Gigapath
STFlow 0.565.055 0.415.013 0.513.063 0.651.089 0.325.023 0.260.023 0.326.065 0.125.019 0.602.013 0.305.053 0.409

w/ EGNN 0.565.067 0.410.012 0.505.054 0.602.069 0.325.021 0.233.046 0.295.043 0.106.014 0.586.018 0.294.066 0.392
w/ E2CNN 0.544.068 0.376.013 0.470.052 0.623.042 0.304.002 0.225.055 0.294.098 0.102.007 0.549.022 0.271.051 0.375

UNI
STFlow 0.589.063 0.420.005 0.506.078 0.707.028 0.328.013 0.243.002 0.335.070 0.128.017 0.608.021 0.305.056 0.419

w/ EGNN 0.578.069 0.410.002 0.495.076 0.662.028 0.321.041 0.239.016 0.319.052 0.109.026 0.590.019 0.290.051 0.401
w/ E2CNN 0.562.077 0.236.091 0.454.065 0.670.033 0.327.007 0.220.041 0.302.140 0.094.009 0.498.032 0.263.055 0.362

Ablation study In this experiment, we perform an ablation study to evaluate the impact of STFlow’s
core modules. Specifically, we individually disable the flow matching learning framework (w/o
FM) and the frame averaging-related transformations (w/o FA). The experimental results are present
in Table 4. As shown in the table, we can observe that removing any of the core modules leads
to performance degradation to varying degrees, and this trend remains consistent across different
pathology foundation models.

Table 4: Ablation study.

IDC PRAD PAAD SKCM COAD READ CCRCC HCC LUNG LYMPH Avg.

Ciga
STFlow 0.460.028 0.380.001 0.440.047 0.608.072 0.344.023 0.137.075 0.250.054 0.105.030 0.584.027 0.307.052 0.361
w/o FM 0.436.021 0.380.003 0.419.040 0.593.054 0.336.028 0.126.107 0.240.043 0.095.040 0.585.025 0.296.051 0.350
w/o FA 0.450.040 0.375.003 0.436.074 0.580.092 0.323.017 0.125.097 0.239.060 0.093.034 0.579.030 0.290.054 0.349

Gigapath
STFlow 0.565.055 0.415.013 0.513.063 0.651.089 0.325.023 0.260.023 0.326.065 0.125.019 0.602.013 0.305.053 0.409
w/o FM 0.563.056 0.411.004 0.506.063 0.650.065 0.300.028 0.228.046 0.325.064 0.117.014 0.598.009 0.281.058 0.398
w/o FA 0.560.056 0.418.007 0.506.066 0.616.090 0.328.005 0.251.028 0.301.053 0.112.020 0.592.014 0.290.053 0.397

UNI
STFlow 0.589.063 0.420.005 0.506.078 0.707.028 0.328.013 0.243.002 0.335.070 0.128.017 0.608.021 0.305.056 0.419
w/o FM 0.580.065 0.420.008 0.488.080 0.705.039 0.316.028 0.235.029 0.322.041 0.116.028 0.606.010 0.277.057 0.404
w/o FA 0.583.059 0.419.011 0.500.083 0.670.046 0.322.032 0.240.005 0.307.036 0.111.024 0.599.018 0.300.058 0.405

4.3 BIOMARKER DISCOVERY

One of the important applications of spatial gene expression prediction is to understand disease
progression in relation to tissue morphology. In this section, we present a case study on two invasive
ductal carcinoma (IDC) samples imaged with Xenium. We visualize the expression levels of two
genes: GATA3 and ERBB2, which are both known prognostic markers in breast cancer (Mehra et al.,
2005; Revillion et al., 1998). For a clear visualization, the ground-truth and predicted gene expression
levels are normalized, as shown in Figure 3.

The results demonstrate a strong correlation between STFlow’s predictions and the ground-truth gene
expression. For instance, compared to the state-of-the-art baseline TRIPLEX on sample TENX95,
STFlow achieves a correlation of 0.891 vs 0.86 for GATA3 and 0.913 vs 0.887 for ERBB2. Based on
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(a) Expression of GATA3 (top) and ERBB2 (bottom) at TENX95

(b) Expression of GATA3 (top) and ERBB2 (bottom) at TENX99

Figure 3: STFlow for Biomarker Discovery in Breast Samples: (a) TENX95 and (b) TENX99. The
top row of subfigures shows gene GATA3, while the bottom row shows gene ERBB2. The Pearson
correlation between ground truth and predictions is provided in each subfigure’s title.

the heatmap visualizations, we can observe a great alignment of STFlow’s predictions with the ground-
truth gene expression patterns. Another interesting observation is that building on top of the visual
features extracted by UNI, STFlow achieves a higher correlation due to its more accurate prediction
of low expression levels, i.e., the blue area shown in the figures. We attribute this improvement to the
iterative refinement process which can progressively adjust the predictions, better capturing subtle
gene expression patterns.

5 CONCLUSION

In this paper, we study the problem of gene expression prediction from histology images. Despite the
promising results achieved by the previous methods, we argue that gene interaction which is a key
factor regulating gene expression has been overlooked. Motivated by this, we propose STFlow, a
flow matching framework incorporating gene-gene dependency with an iterative refinement paradigm.
The zero-inflated negative binomial distribution is applied as the prior distribution for utilizing the
inductive bias of the gene expression data. Specifically, the denoiser architecture is a frame-averaging
Transformer that integrates spatial context and gene interactions within the attention mechanism. Our
experimental results across 10 benchmarks show that STFlow consistently outperforms the SOTA
baseline methods.

Limitation Our learning framework does not currently include the estimation of the hyperparameters
for the ZINB distribution; instead, we use a grid search to identify the optimal hyperparameter
combination. A potential improvement would be to initially employ the empirical distribution or
a distribution estimation model, such as a Variational Autoencoder (VAE), to estimate the ZINB
hyperparameters based on the training set.

Reproducibility The implementation details, including hyperparameters and the GitHub repositories
for each method, are provided in Appendix A. Additionally, the implementation of STFlow and the
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experimental pipelines are available in an anonymous repository, linked in the footnote on the first
page.

Ethics Statement This paper presents work whose goal is to advance the field of spatial transcrip-
tomics prediction on histology images. All the datasets used in this study are publicly available. There
are some potential societal consequences of our work, none of which we feel must be specifically
highlighted here.
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A IMPLEMENTATION

Running environment The experiments are conducted on a single Linux server with The AMD
EPYC 7763 64-Core Processor, 1024G RAM, and 8 RTX A6000-48GB. Our method is implemented
on PyTorch 2.3.0 and Python 3.10.14.

Training details For all the models, we fix the optimizer as Adam (Kingma & Ba, 2014) and MSE
loss as the loss function. The gradient norm is clipped to 1.0 in each training step to ensure learning
stability. The learning rate is tuned within {1e-3, 5e-4, 1e-4} and is set to 5e-4 by default, as it
generally yields the best performance. Following HEST-1k, all performance metrics are reported
using a cross-validation setup, with the mean and standard deviation calculated across the different
splits. Besides, all the weights of pathology foundation models are frozen.

For each model, we search the hyperparameters in the following ranges: the dropout rate in {0, 0.2,
0.5}, the number of nearest neighbors for the slide-based methods in {4, 8, 25}, and the number of
attention heads in {1, 2, 4, 8}. All models are trained for 100 epochs, with early stopping applied if
no performance improvement is observed for 20 epochs. The implementation and hyperparameters
used in each method are shown below:

• STFlow: The number of layers, attention heads, and neighbors are 4, 4, and 8, respectively. Besides,
dropout and hidden sizes are set at 0.2 and 128. The number of sampling steps for flow matching is
set as 5. For the ZINB distribution, zero-inflation probability is fixed as 0.5, the mean is searched
{0.1,0.2,0.4}, and the number of failures is searched in {1,2,4}. For efficient training, each sample
is a randomly selected continuous region from the WSI, with its size determined by a proportion
sampled from a uniform distribution ranging from 0 to 1. In each training step, we will sample a
region from WSI.

• Ciga4, UNI5, and Gigapath6: We download the pretrained weight from the official repository and
normalize the input images using the ImageNet mean and standard deviation. The Random Forest
model with 70 trees serves as the linear head. Additionally, Gigapath offers three different pretrained
versions; we selected the one with the largest hidden size, i.e., "gigapath_slide_enc12l1536d". For
the Gigapath-slide, all the spot images of a WSI are input for global attention.

• STNet7: Following the official implementation, we use a pretrained DenseNet121 as the image
encoder and an MLP as the linear head. The input spot images are randomly augmented with
horizontal flips and rotations and are then normalized using the ImageNet mean and standard
deviation. The batch size, i.e., the number of spot images in each training step, is 128.

• BLEEP8: This method trains an image encoder and a gene expression encoder using contrastive
loss. For a given spot image, it retrieves the gene expressions of similar spots from a reference
set, using the average expression of these spots as the prediction. We use a pretrained ResNet50
as the image encoder and MLPs as linear heads to project the extracted visual features and gene
expressions. The temperature for the contrastive loss is set to 1, and the number of retrieved spots
is 50. For a fair comparison, we directly use the training WSI as the reference set, as there are no
additional splits in HEST-1k. The batch size is set as 128.

• Hist2ST9: The architecture of Hist2ST includes a convolution network, a Transformer, and a GNN.
The coordinates are embedded with a linear layer. The final representation is aggregated across
each GNN layer’s output with an LSTM. The number of layers for each model is 2, 4, and 8.
The input spot images are randomly augmented with horizontal flips and rotations and are then
normalized using the ImageNet mean and standard deviation. Similar to STFlow, each training
sample is a sampled region of WSI.

• HisToGene10: This model includes a ViT for encoding spot images within the WSI. The number of
layers, the number of attention heads, the dropout rate, and the hidden size are set as 4, 16, 0.1,

4https://github.com/ozanciga/self-supervised-histopathology
5https://huggingface.co/MahmoodLab/UNI
6https://huggingface.co/prov-gigapath/prov-gigapath
7https://github.com/bryanhe/ST-Net/tree/master
8https://github.com/bowang-lab/BLEEP/tree/main
9https://github.com/biomed-AI/Hist2ST/tree/main

10https://github.com/maxpmx/HisToGene
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and 128. The coordinates are embedded with a linear layer. The input spot images are randomly
augmented with horizontal flips and rotations and are then normalized using the ImageNet mean
and standard deviation. For efficient training, we sample a continuous region from WSI in each
training step, similar to STFlow.

• TRIPLEX11: This model comprises a target encoder for the target spot, a local encoder for the
neighboring spots, a global encoder for WSI, and a fusion encoder for combining all these repre-
sentations. In line with the official implementation, the spot images are first embedded using Ciga
before being fed into the model. Each encoder is configured with 2 layers, 8 attention heads, and a
dropout rate of 0.1. The local encoder considers 25 neighboring spots. Additionally, the coordinates
are embedded using a proposed atypical position encoding generator based on a convolutional
network. A continuous region from WSI is sampled for each training step, using the same strategy
as STFlow.

Here we also provide the implementation of the E(2)-invariant encoder baselines:

• EGNN12: Similar to a standard GNN, EGNN propagates representations from neighboring spots to
the target spots and uses MLPs for transformation, incorporating the distances between them in
the calculations. The number of layers and neighbors is set to 4 and 8, respectively, with a hidden
size of 128 and a dropout rate of 0.2. For a fair comparison, EGNN leverages the visual features
extracted by the pathology foundation model and is integrated with the flow matching framework.

• E2CNN13: E2CNN is an E(n) convolution framework that implements various equivariant op-
erations, such as convolution layers, batchnorm, and pooling layers. Here, we use the 10-layer
ResNet from the official codebase as the backbone. To construct the input batch, each spot and its
surrounding neighbors are arranged into a 5× 5 grid with the target spot at the center. The visual
features extracted by the foundation models are then stacked as channels, resulting in a tensor of
dimensions d× 5× 5.

B RUNNING TIME COMPARISON

To demonstrate the efficiency of STFlow, we present the average inference time on the test set of each
dataset across splits, as shown in Table 5. Since STFlow does not require training an image encoder,
we separate the time spent on the pathology foundation model from the multi-step denoising (STFlow
w/o fpfm) for a fair comparison. The reported times for other methods include the time required for
image encoding.

Notably, our proposed architecture is highly efficient due to its use of local neighbors, but the primary
inference bottleneck lies in the pathology foundation models. This bottleneck could be alleviated
through acceleration techniques, such as mixed precision inference and model quantization.

Table 5: Inference time comparison.

IDC PRAD PAAD SKCM COAD READ CCRCC HCC LUNG LYMPH

STNet 29.61s 87.12s 6.11s 2.37s 43.82s 5.46s 18.13s 10.33s 6.53s 15.00s
BLEEP 27.72s 112.43s 7.78s 10.77s 14.76s 27.78s 220.06s 3.79s 4.69s 15.46s
Hist2ST 16.41s 110.01s 6.89s 3.01s 10.80s 15.41s 30.04s 2.86s 7.65s 14.14s

HisToGene 12.03s 95.91s 12.85s 5.46s 12.30s 13.04s 36.93s 2.37s 4.19s 11.01s
TRIPLEX 39.67s 131.99s 6.80s 2.88s 44.17s 11.07s 42.26s 10.09s 11.35s 16.19s

STFlow w/o fpfm 0.51s 1.50s 0.16s 0.14s 0.41s 0.26s 0.64s 0.15s 0.78s 0.25s
Ciga 10.27s 38.20s 3.02s 1.95s 9.11s 5.03s 14.91s 2.45s 3.17s 5.64s
UNI 64.35s 237.87s 20.59s 9.77s 56.47s 30.01s 92.49s 12.98s 17.37s 33.04s

Gigapath 233.09s 867.29s 50.13s 30.62s 203.92s 106.13s 336.47s 44.63s 59.69s 117.25s

11https://github.com/NEXGEM/TRIPLEX/tree/main
12https://github.com/vgsatorras/egnn
13https://github.com/QUVA-Lab/e2cnn/tree/master
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C DATASET

Table 6 lists the statistics of the benchmark datasets. Further details about these datasets can be found
in Jaume et al. (2024). Note that the COAD dataset differs from the version in Jaume et al. (2024), as
it was updated two month after the paper’s release.

Table 6: Dataset statistics.

IDC PRAD PAAD SKCM COAD READ CCRCC HCC LUNG LYMPH

Organ Breast Prostate Pancreas Skin Colon Rectum Kidney Liver Lung Axillary Lymph Nodes
Technology Xenium Visium Xenium Xenium Visium Visium Visium Visium Xenium Visium

#Patients 4 2 3 2 3 2 24 2 2 4
#Samples 4 23 3 2 6 4 24 2 2 4

#Splits 4 2 3 2 2 2 6 2 2 4
Avg. spots 4925 2454 2780 1741 5079 1909 2792 1941 1944 4990
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