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Figure 1: ConceptGraphs builds open-vocabulary 3D scene graphs. We design an object-based mapping system
that (a) only assumes class-agnostic instance masks and fuses them to 3D, (b) extracts language tags for each
mapped instance leveraging large vision-language models, and (c) builds a graph of object spatial relations.
The object-centric nature of ConceptGraphs allows easy map maintenance and promotes scalability, and the
graph structure provides relational information within the scene. Furthermore, our scene graph representations
are easily mapped to natural language formats to interface with LLMs, enabling them to answer complex scene
queries and granting robots access to useful facts about surrounding objects, such as traversability and utility.
We implement and demonstrate ConceptGraphs on a number of real-world robotics tasks across wheeled and
legged mobile robot platforms. (Anonymized project page)

Abstract: For robots to perform a wide variety of tasks, they require a 3D repre-1

sentation of the world that is semantically rich, yet compact and efficient for task-2

driven perception and planning. Recent approaches have attempted to leverage3

features from large vision-language models to encode semantics in 3D represen-4

tations. However, these approaches tend to produce maps with per-point feature5

vectors, which do not scale well in larger environments, nor do they contain se-6

mantic spatial relationships between entities in the environment, which are useful7

for downstream planning. In this work, we propose ConceptGraphs, an open-8

vocabulary graph-structured representation for 3D scenes. ConceptGraphs is built9

by leveraging 2D foundation models and fusing their output to 3D by multi-view10

association. The resulting representations generalize to novel semantic classes,11

without the need to collect large 3D datasets or finetune models. We demon-12

strate the utility of this representation through a number of downstream planning13

tasks that are specified through abstract (language) prompts and require complex14

reasoning over spatial and semantic concepts. To explore the full scope of our15

experiments and results, we encourage visiting our anonymized project webpage.16
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1 Introduction17

Scene representation is one of the key design choices that can facilitate downstream planning for a18

variety of tasks, including mobility and manipulation. Robots need to build these representations19

online from onboard sensors as they navigate through an environment. For efficient execution of20

complex tasks such representations should be: scalable and efficient to maintain, as the volume of21

the scene and the duration of the robot’s operation increases; open-vocabulary, not limited to making22

inferences about a set of concepts that is predefined at training time, but capable of handling new23

objects and concepts at inference time; and with a flexible level of detail to enable planning over a24

range of tasks, from ones that require dense geometric information for mobility and manipulation,25

to ones that need abstract semantic information and object-level affordance information for task26

planning. We propose ConceptGraphs, a 3D scene representation method for robot perception and27

planning that satisfies all the above requirements.28

Closed-vocabulary semantic mapping in 3D. Early works reconstruct the 3D map through online29

algorithms like simultaneous localization and mapping (SLAM) [1, 2, 3, 4, 5] or offline methods30

like structure-from-motion (SfM) [6, 7]. Aside from reconstructing 3D geometry, recent works31

also use deep learning-based object detection and segmentation models to reconstruct the 3D scene32

representations with dense semantic mapping [8, 9, 10, 11] or object-level decomposition [12, 13,33

14, 15]. While these methods achieve impressive results in mapping semantic information to 3D,34

they are closed-vocabulary and their applicability is limited to object categories annotated in their35

training datasets.36

3D scene representations using foundation models. There have been significant recent efforts [16,37

17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30] focused on building 3D representations by38

leveraging foundation models - large, powerful models that capture a diverse set of concepts and39

accomplish a wide range of tasks [31, 32, 33, 34, 35]. Such models have excelled in tackling open-40

vocabulary challenges in 2D vision. However, they require an “internet-scale” of training data, and41

no 3D datasets exist yet of a comparable size. Recent works have therefore attempted to ground42

the 2D representations produced by image and language foundation models to the 3D world and43

show impressive results on open-vocabulary tasks, including language-guided object grounding [17,44

18, 24, 26, 36], 3D reasoning [37, 38], robot manipulation [39, 40] and navigation [41, 42]. These45

approaches project dense per-pixel features from images to 3D to build explicit representations such46

as pointclouds [17, 18, 19, 20, 21] or implicit neural representations [16, 22, 23, 24, 25, 26, 27, 28,47

29, 30].48

However, such methods have two key limitations. First, assigning every point a semantic feature49

vector is highly redundant and consumes more memory than necessary, greatly limiting scalability50

to large scenes. Second, these dense representations do not admit an easy decomposition – this lack51

of structure makes them less amenable to dynamic updates to the map (crucial for robotics).52

3D scene graphs. 3D scene graphs (3DSGs) address the second limitation by compactly and effi-53

ciently describing scenes with graph structures, with nodes representing objects and edges encoding54

inter-object relationships [43, 44, 45, 46, 47]. These approaches have enabled building real-time55

systems that can dynamically build up hierarchical 3D scene representations [48, 49, 50], and more56

recently shown that various robotics planning tasks can benefit from efficiency and compactness of57

3DSGs [51, 52]. However, existing work on building 3D scene graphs has been confined to the58

closed-vocabulary setting, limiting their applicability to a small set of tasks.59

1.1 Overview of Our Contribution60

In this work, we mitigate all the aforementioned limitations and propose ConceptGraphs, an open-61

vocabulary and object-centric 3D representation for robot perception and planning. In Concept-62

Graphs, each object is represented as a node with geometric and semantic features, and relation-63

ships among objects are encoded in the graph edges. At the core of ConceptGraphs is an object-64

centric 3D mapping technique that integrates geometric cues from conventional 3D mapping sys-65
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Figure 2: ConceptGraphs builds an open-vocabulary 3D scene graph from a sequence of posed RGB-D images.
We use generic instance segmentation models to segment regions from RGB images, extract semantic feature
vectors for each, and project them to a 3D point cloud. These regions are incrementally associated and fused
from multiple views, resulting in a set of 3D objects and associated vision (and language) descriptors. Then
large vision and language models are used to caption each mapped 3D objects and derive inter-object relations,
which generates the edges to connect the set of objects and form a graph. The resulting 3D scene graph
provides a structured and comprehensive understanding of the scene and can further be easily translated to a
text description, useful for LLM-based task planning.

tems, and semantic cues from vision and language foundation models [31, 33, 34, 53, 54, 55].66

Objects are assigned language tags by leveraging large language models (LLMs) [32] and large67

vision-language models (LVLMs) [55], which provide semantically rich descriptions and enable68

free-form language querying, all while using off-the-shelf models (no training/finetuning). The 3D69

scene graph [43, 44, 45, 46, 47] structure allows us to efficiently represent large scenes with a low70

memory footprint and makes for efficient task planning.71

In experiments, we demonstrate that ConceptGraphs is able to discover, map, and caption a large72

number of objects in a scene. Further, we conduct real-world trials on multiple robot platforms73

over a wide range of downstream tasks, including manipulation, navigation, localization, and map74

updates. To summarize, our key contributions are:75

• We propose a novel object-centric mapping system that integrates geometric cues from tra-76

ditional 3D mapping systems and semantic cues from 2D foundation models.77

• We construct open-vocabulary 3D scene graphs; efficient and structured semantic abstrac-78

tions for perception and planning.79

• We implement ConceptGraphs on real-world wheeled and legged robotic platforms,80

demonstrating downstream perception and planning for complex/abstract language queries.81

2 Method82

ConceptGraphs builds a compact, semantically rich representation of a 3D environment. Given83

a set of posed RGB-D frames, we run a class-agnostic segmentation model to obtain candidate84

objects, associate them across multiple views using geometric and semantic similarity measures,85

and instantiate nodes in a 3D scene graph. We then use an LVLM to caption each node and an86

LLM to infer relationships between adjoining nodes, which results in edges in the scene graph.87

This resultant scene graph is open-vocabulary, encapsulates object properties, and can be used for a88

multitude of downstream tasks including segmentation, object grounding, navigation, manipulation,89

localization, and remapping. The approach is illustrated in Fig. 2. For implementation details, see90

appendix91
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2.1 Object-based 3D Mapping92

Object-centric 3D representation: Given a sequence of RGB-D observations I = {I1, I2, . . . , It},93

ConceptGraphs constructs a map, a 3D scene graph, Mt = ⟨Ot,Et⟩, where Ot = {oj}j=1...J and94

Et = {ek}k=1...K represent the sets of objects and edges, respectively. Each object oj is charac-95

terized by a 3D point cloud poj and a semantic feature vector foj . This map is built incrementally,96

incorporating each incoming frame It = ⟨I rgb
t , Idepth

t , θt⟩ (color image, depth image, pose) into the97

existing object set Ot−1, by either adding to existing objects or instantiating new ones.98

Class-agnostic 2D Segmentation: When processing frame It, a class-agnostic segmentation model99

Seg(·) is used to obtain a set of masks {mt,i}i=1...M = Seg(I rgb
t ) corresponding to candidate ob-100

jects1. Each extracted mask mt,i is then passed to a visual feature extractor (CLIP [31], DINO [53])101

to obtain a visual descriptor ft,i = Embed(I rgb
t ,mt,i). Each masked region is projected to 3D, de-102

noised using DBSCAN clustering, and transformed to the map frame. This results in a pointcloud103

pt,i and its corresponding unit-normalized semantic feature vector ft,i.104

Object Association: For every newly detected object ⟨pt,i, ft,i⟩, we compute semantic and geo-105

metric similarity with respect to all objects ot-1,j = ⟨poj , foj⟩ in the map that shares any partial106

geometric overlap. The geometric similarity ϕgeo(i, j) = nnratio(pt,i,poj) is the proportion of107

points in point cloud pt,i that have nearest neighbors in point cloud poj , within a distance threshold108

of δnn. The semantic similarity ϕsem(i, j) = fTt,ifoj/2 + 1/2 is the normalized cosine distance be-109

tween the corresponding visual descriptors.2 The overall similarity measure ϕ(i, j) is a sum of both:110

ϕ(i, j) = ϕsem(i, j) + ϕgeo(i, j). We perform object association by a greedy assignment3 strategy111

where each new detection is matched with an existing object with the highest similarity score. If no112

match is found with a similarity higher than δsim, we initialize a new object.113

Object Fusion: If a detection ot-1,j is associated with a mapped object oj , we fuse the detection with114

the map. This is achieved by updating the object semantic feature as foj = (noj
foj+ft,i)/(noj

+1),115

where noj
is the number of detections that have been associated to oj so far; and updating the116

pointcloud as pt,i ∪ poj , followed by down-sampling to remove redundant points.117

Node Captioning: Once the entire image sequence has been processed, a vision-language model,118

denoted LVLM(·), is used to generate object captions. For each object, the associated image crops119

from the best4 10 views are passed to the language model with the prompt “describe the central120

object in the image” to generate a set of initial rough captions ĉj = {ĉj,1, ĉj,2, . . . , ĉj,10} for each121

detected object oj . Each set of captions is then refined to the final caption by passing ĉj to another122

language model LLM(·) with a prompt instruction to summarize the initial captions into a coherent123

and accurate final caption cj .124

2.2 Scene Graph Generation125

Given the set of 3D objects OT obtained from the previous step, we estimate their spatial relation-126

ships, i.e., the edges ET , to complete the 3D scene graph. We do this by first estimating potential127

connectivity among object nodes based on their spatial overlaps. We compute the 3D bounding box128

IoU between every pair of object nodes to obtain a similarity matrix (i.e., a dense graph), which we129

prune by estimating a minimum spanning tree (MST), resulting in a refined set of potential edges130

among the objects. To further determine the semantic relationships, for each edge in the MST,131

we input the information about the object pair, consisting of object captions and 3D location, to a132

1Without loss of generality, Seg(·) may be replaced by open-/closed-vocabulary models to build category-
specific mapping systems.

2For the sake of brevity, we only describe the best-performing geometric and semantic similarity measures.
For an exhaustive list of alternatives, please see our project website and code.

3While we also experimented with optimal assignment strategies such as the Hungarian algorithm, we
experimentally determined them to be slower and offer only a minuscule improvement over greedy association.

4We maintain a running index of the number of noise-free points each view contributes to the object point
cloud.
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language model LLM. The prompt instructs the model to describe the likely spatial relationship133

between the objects, such as “a on b” or “b in a”, along with the underlying reasoning. The model134

outputs a relationship label with an explanation detailing the rationale. The use of an LLM allows135

us to extend the nominal edge type defined above to other output relationships a language model can136

interpret, such as “a backpack may be stored in a closet” and “sheets of paper may be recycled in a137

trash can”. This results in an open-vocabulary 3D scene graph MT = (OT ,ET ), a compact and138

efficient representation for use in downstream tasks.139

2.3 Robotic Task Planning through LLMs140

To enable users to carry out tasks described in natural language queries, we interface the scene141

graph MT with an LLM. For each object in OT , we construct JSON-structured text descriptions142

that include information about its 3D location (bounding box) and its node caption. Given a text143

query, we task the LLM to identify the most relevant object in the scene. We then pass the 3D144

pose of this object to the appropriate pipeline for the downstream task (e.g., grasping, navigation).145

This integration of ConceptGraphs with an LLM is easy to implement, and enables a wide range146

of open-vocabulary tasks by giving robots access to the semantic properties of surrounding objects5147

(see Sec. 3).148

2.4 Implementation Details149

The modularity of ConceptGraphs enables any appropriate open/closed-vocabulary segmentation150

model, LLM, or LVLM to be employed. Our experiments use Segment-Anything (SAM) [33] as151

the segmentation model Seg(·), and the CLIP image encoder [31] as the feature extractor Embed(·).152

We use LLaVA [55] as the vision-language model LVLM and GPT-4 [32] (gpt-4-0613) for our153

LLM. The voxel size for point cloud downsampling and nearest neighbor threshold δnn are both154

2.5cm. We use 1.1 for the association threshold δsim.155

We also develop a variant of our system, ConceptGraphs-Detector (CG-D), where we employ an im-156

age tagging model (RAM [54]) to list the object classes present in the image and an open-vocabulary157

2D detector (Grounding DINO [34]) to obtain object bounding boxes6. In this variant, we need to158

separately handle detected background objects (wall, ceiling, floor) by merging them regardless of159

their similarity scores.160

3 Experiments161

3.1 Scene Graph Construction162

scene node prec. valid objects duplicates edge prec.

CG

room0 0.78 54 3 0.91
room1 0.77 43 4 0.93
room2 0.66 47 4 1.0
office0 0.65 44 2 0.88
office1 0.65 23 0 0.9
office2 0.75 44 3 0.82
office3 0.68 60 5 0.79
Average 0.71 - - 0.88

CG-D

room0 0.56 60 4 0.87
room1 0.70 40 3 0.93
room2 0.54 49 2 0.93
office0 0.59 35 0 1.0
office1 0.49 24 2 0.9
office2 0.67 47 3 0.88
office3 0.71 59 1 0.83
Average 0.61 - - 0.91

Table 1: Accuracy of constructed scene graphs:
node precision indicates the accuracy of the la-
bel for each node (as measured by a human eval-
uator); valid objects is the number of human-
recognizable objects (mturkers used) discovered
by our system; duplicates are the number of re-
dundant detections; edge precision indicates the
accuracy of each estimated spatial relationship
(again, as evaluated by an mturker)

We first evaluate the accuracy of the 3D scene graphs163

output by the ConceptGraphs system in Table 1.164

For each scene in the Replica dataset [56], we re-165

port scene graph accuracy metrics for both CG and166

the detector-variant CG-D. The open-vocabulary na-167

ture of our system makes automated evaluation of168

the quality of nodes and edges in the scene graph169

challenging. We instead evaluate the scene graph by170

engaging human evaluators on Amazon Mechanical171

Turk (AMT). For each node, we compute precision172

as the fraction of nodes for which at least 2 of 3 hu-173

man evaluators deem the node caption correct. We174

also report the number of valid objects retrieved by175

5For large scenes where the description length of the scene graph exceeds the context length of the LLM,
one can easily substitute in alternative (concurrent) LLM planners [52].

6We discard the (often noisy) tags produced by the image tagging model, relying instead on our node
captions.
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each variant by asking evaluators whether they deem each node a valid object. Both CG and CG-D176

identify a number of valid objects in each scene, and incur only a small number (0-5) of duplicate177

detections. The node labels are accurate about 70% of the time; most of the errors are incurred due178

to errors made by the LVLM employed (LLaVA [55]). The edges (spatial relationships) are labeled179

with a high degree of accuracy (90% on average).180

3.2 3D Semantic Segmentation181

Method mAcc F-mIoU

Privileged
CLIPSeg (rd64-uni) [57] 28.21 39.84
LSeg [58] 33.39 51.54
OpenSeg [59] 41.19 53.74

Zero-shot

MaskCLIP [60] 4.53 0.94
Mask2former + Global CLIP feat 10.42 13.11
ConceptFusion [17] 24.16 31.31
ConceptFusion [17] + SAM [33] 31.53 38.70
ConceptGraphs (Ours) 40.63 35.95
ConceptGraphs-Detector (Ours) 38.72 35.82

Table 2: Open-vocabulary semantic segmen-
tation on the Replica [56] dataset. Privi-
leged methods specifically finetune the pre-
trained models for semantic segmentation.
Zero-shot approaches do not need any fine-
tuning and are evaluated off the shelf.

ConceptGraphs focuses on the construction of the open-182

vocabulary 3D scene graphs for scene understanding and183

planning. For completeness, in this section, we also use184

an open-vocabulary 3D semantic segmentation task to185

evaluate the quality of the obtained 3D maps. To generate186

the semantic segmentation, given a set of class names,187

we compute the similarity between the fused semantic188

feature of each object node and the CLIP text embed-189

dings of the phrase an image of {class}. Then190

the points associated with each object are assigned to the191

class with the highest similarity, which gives a point cloud192

with dense class labels. In Table 2, we report the semantic193

segmentation results on the Replica [56] dataset, follow-194

ing the evaluation protocol used in ConceptFusion [17]. We also provide an additional baseline,195

ConceptFusion+SAM, by replacing the Mask2Former used in ConceptFusion with the more perfor-196

mant SAM [33] model. As shown in Table 2, the proposed ConceptGraphs performs comparably197

with or better than ConceptFusion, which has a much larger memory footprint.198

3.3 Object Retrieval based on Text Queries199
Dataset Query Type Model R@1 R@2 R@3 # Queries

Replica

Descriptive CLIP 0.59 0.82 0.86 20LLM 0.61 0.64 0.64

Affordance CLIP 0.43 0.57 0.63 5LLM 0.57 0.63 0.66

Negation CLIP 0.26 0.60 0.71 5LLM 0.80 0.89 0.97

Lab

Descriptive CLIP 1.00 – – 10LLM 1.00 – –

Affordance CLIP 0.40 0.60 0.60 10LLM 1.00 – –

Negation CLIP 0.00 – – 10LLM 1.00 – –

Table 3: Object retrieval from text queries
on the Replica and REAL Lab scenes. We
measure the top-1, top-2, and top-3 recall.
CLIP refers to object retrieval using cosine
similarity, whereas LLM refers to having an
LLM parse the scene graph and return the
most relevant object.

We assess the capability of ConceptGraphs to handle200

complex semantic queries, focusing on three key types.201

• Descriptive: E.g., A potted plant.202

• Affordance: E.g., Something to use for tem-203

porarily securing a broken zipper.204

• Negation: E.g., Something to drink but not soda.205

We evaluate on the Replica dataset [56] and a real-world206

scan of a lab, where we staged a number of items includ-207

ing clothes, tools, and toys. For Replica, human evalua-208

tors on AMT annotate captions for SAM mask proposals,209

which serve as both ground truth labels and descriptive queries. We created 5 affordance and nega-210

tion queries for each scene type (office & room) in Replica and 10 queries of each type for the211

lab scan, ensuring that each query corresponds to at least one relevant object. We manually select212

relevant objects as ground truth for each query.213

We use two object retrieval strategies: CLIP-based and LLM-based. CLIP selects the object with214

the highest similarity to the query’s embedding, while the LLM goes through the scenegraph nodes215

to identify the object with the most relevant caption. Table 3 shows that CLIP excels with descrip-216

tive queries but struggles with complex affordance and negation queries [61]. For example, CLIP217

inaccurately retrieves a backpack for the broken zipper query, whereas the LLM correctly identifies218

a roll of tape. The LLM performs well across the board, but is limited by the accuracy of the node219

captions, as discussed in Section 3.1. Since the lab has a larger variety of objects to choose from,220

the LLM finds compatible objects for complex queries more reliably there.221
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Figure 4: A Jackal robot answering user queries using the ConceptGraphs representation of a lab environment.
We first query an LLM to identify the most relevant object given the user query, then validate with an LVLM
if the target object if is at the expected location. If not, we query the LLM again to find a likely location
or container for the missing object. (Blue) When prompted with something to wear for a space
party, the Jackal attempts to find a grey shirt with a NASA logo. After failing to detect the shirt at the
expected location, the LLM reasons that it could likely be in the laundry bag. (Red) The Jackal searches for
red and white sneakers after receiving the user query footwear for a Ronald McDonald outfit.
The LLM redirects the robot to a shoe rack after failing to detect the sneakers at their initial mapped potision.

3.4 Complex Visual-Language Queries222

To assess the performance of ConceptGraphs in a real-world environment, we carry out navigation223

experiments in a lab environment with a Clearpath Jackal UGV. The robot is equipped with a VLP-224

16 LiDAR and a forward-facing Realsense D435i camera.225

The Jackal needs to respond to abstract user queries and navigate to the most relevant object (Fig-226

ure 1). By using an LVLM [55] to add a description of the current camera image to the text prompt,227

the robot can also answer visual queries. For example, when shown a picture of Michael Jordan and228

prompted with Something this guy would play with, the robot finds a basketball.229

3.5 Object Search and Traversability Estimation230

In this section, we showcase how the interaction between the ConceptGraphs representation and an231

LLM can enable a mobile robot to access a vast knowledge base of everyday objects. Specifically,232

we prompt an LLM to infer two additional object properties from ConceptGraphs captions: i) the233

location where a given object is typically found, and ii) if the object can be safely pushed or traversed234

by the Jackal robot. We design two tasks around the LLM predictions.235

Figure 3: The Jackal robot solving a
traversability challenge. All paths to the
goal are obstructed by objects. We query an
LLM to identify which objects can be safely
pushed or traversed by the robot (green) and
which objects would be too heavy or hin-
der the robot’s movement (red). The LLM
relies on the ConceptGraphs node captions
to make traversability predictions and we
add the non-traversable objects to the Jackal
costmap for path planning. The Jackal suc-
cessfully reaches the goal by going through a
curtain and pushing a basketball, while also
avoiding contact with bricks, an iron dumb-
bell, and a flower pot.

Object search: The robot receives an abstract user query236

and must navigate to the most relevant object in the Con-237

ceptGraphs map. Using an LVLM [55], the robot then238

checks if the object is at the expected location. If not, it239

queries an LLM to find a new plausible location given the240

captions of the other objects in the representation. In our241

prompt, we nudge the LLM to consider typical containers242

or storage locations. We illustrate two such queries where243

the target object is moved in Figure 4.244

Traversability estimation: As shown in Fig. 3, we de-245

sign a real-world scenario where the robot finds itself en-246

claved by objects. In this scenario, the robot must push247

around multiple objects and create a path to the goal248

state. While traversability can be learned through expe-249

rience [62], we show that grounding LLM knowledge in250

a 3D map can grant similar capabilities to robotic agents.251
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3.6 Open-Vocabulary Pick and Place252

To illustrate how ConceptGraphs can act as the perception backbone for open-vocabulary mobile253

manipulation, we conducted a series of experiments with a Boston Dynamics Spot Arm robot. Us-254

ing an onboard RGBD camera and a ConceptGraphs representation of the scene, the Spot robot255

responds to the query cuddly quacker by grabbing a duck plush toy and placing it in a nearby256

box (Figure 1). In the supplementary video, Spot completes a similar grasping maneuver with a257

mango when prompted with the query something healthy to eat.258

3.7 Localization and Map Updates259

ConceptGraphs can also be used for object-based localization and map updates. We showcase this260

with a 3-DoF (x, y and yaw) localization and remapping task in the AI2Thor [63, 64] simulation261

environment, where a mobile robot uses a particle filter to localize in a pre-built ConceptGraphs map262

of the environment. During the observation update step of particle filtering, the robot’s detections263

are matched against the objects in the map based on the hypothesized pose, in a similar way as264

described in Section 2.1. Refer to our video explainer for a demonstration.265

3.8 Limitations266

Despite its impressive performance, ConceptGraphs has failure modes that remain to be addressed267

in future work. First, node captioning incurs errors due to the current limitations of LVLMs like268

LLaVA [55]. Second, our 3D scene graph occasionally misses small or thin objects and makes269

duplicate detections. This impacts downstream planning, particularly when the incorrect detection270

is crucial to planning success. Additionally, the computational and economic costs of our system271

include multiple LVLM (LLaVA [55]) and one or more proprietary LLM inference(s) when building272

and querying the scenegraph, which may be significant.273

4 Concurrent Work274

We briefly review recent and unpublished pre-prints that are exploring themes related to open-275

vocabulary object-based factorization of 3D scenes. Concurrently to us, [65, 66] have explored276

open-vocabulary object-based factorization of 3D scenes. Where [65] assumes a pre-built point277

cloud map of the scene, [66] builds a map on the go. Both approaches associate CLIP descriptors to278

the reconstruction, resulting in performance comparable to our system’s CLIP variant, which strug-279

gles with queries involving complex affordances and negation, as shown in Table 3. OGSV [67]280

is closer to our setting, building an open-vocabulary 3D scene graph from RGB-D images. How-281

ever, [67] relies on a (closed-set) graph neural network to predict object relationships; whereas282

ConceptGraphs relies on LLMs, eliminating the need to train an object relation model.283

5 Conclusion284

In this paper, we introduced ConceptGraphs, a novel approach to open-vocab object-centric 3D285

scene representation that addresses key limitations in the existing landscape of dense and implicit286

representations. Through effective integration of foundational 2D models, ConceptGraphs signifi-287

cantly mitigates memory constraints, provides relational information among objects, and allows for288

dynamic updates to the scene—three pervasive challenges in current methods. Experimental ev-289

idence underscores ConceptGraphs’ robustness and extensibility, highlighting its superiority over290

existing baselines for a variety of real-world tasks including manipulation and navigation. The ver-291

satility of our framework also accommodates a broad range of downstream applications, thereby292

opening new avenues for innovation in robot perception and planning. Future work may delve into293

integrating temporal dynamics into the model and assessing its performance in less structured, more294

challenging environments.295
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Appendix494

A1 3D Scene Graph: Generating Node Captions495

Once we build an object-level map of the scene using the methodology described in Sec. 2.1, we ex-496

tract and summarize captions for each object. We first extract upto the 10 most-informative views for497

each object, by tracking the number of (noise-free) 3D points that each image segment contributes498

to an object in the map7. Intuitively, these views offer the best image views for the object. We run499

each view through an LVLM, here LLaVA-7B [55], to generate an image caption. We use the same500

prompt across all images: describe the central object in this image.501

We found the captions generated by LLaVA-7B to be incoherent or unreliable across all viewpoints.502

To alleviate this, we employed GPT-4 as a caption summarizer, to map all of the LLaVA-7B cap-503

tions to a coherent object tag (or optionally, declare the object as an invalid detection). We use the504

following GPT-4 system prompt:505

7We track these statistics throughout the mapping lifecycle; meaning that we do not impose any additional
computational overhead to determine the 10 best views per object
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Identify and describe objects in scenes. Input and output must
be in JSON format. The input field ’captions’ contains a list of
image captions aiming to identify objects. Output ’summary’ as a
concise description of the identified object(s). An object mentioned
multiple times is likely accurate. If various objects are repeated
and a container/surface is noted such as a shelf or table, assume
the (repeated) objects are on that container/surface. For unrelated,
non-repeating (or empty) captions, summarize as ’conflicting (or empty)
captions about [objects]’ and set ’object tag’ to ’invalid’. Output
’possible tags’ listing potential object categories. Set ’object tag’
as the conclusive identification. Focus on indoor object types, as the
input captions are from indoor scans.

506

Listing 1: GPT-4 system prompt used for caption summarization

A2 LLM Planner: Implementation details507

For task planning over 3D scene graphs, we use GPT-4 (gpt-4-0613) with a context length of508

8K tokens8. We first convert each node in the 3D scene graph into a structured text format (here, a509

JSON string). Each entry in the JSON list corresponds to one object in the scene, and contains the510

following attributes:511

1. object id: a unique (numerical) object identifier512

2. bounding box extents: dimensions of each side of the bounding cuboid513

3. bounding box center: centroid of the object bounding cuboid514

4. object tag: a brief tag describing the object515

5. caption: a one-sentence caption (possibly encoding mode details than present in the object516

tag517

Here is a sample snippet from the scene graph for the room0 scene of the Replica [56] dataset.518

[519

{520

id: 2,521

bbox_extent: [2.0, 0.7, 0.6],522

bbox_center: [-0.6, 1.1, -1.2],523

object_tag: wooden dresser or chest of drawers,524

caption: A wooden dresser or chest of drawers525

},526

{527

id: 3,528

bbox_extent: [0.6, 0.5, 0.4],529

bbox_center: [2.8, -0.4, -0.8],530

object_tag: vase,531

caption: a white, floral-patterned vase (or possibly a ceramic bowl)532

},533

...534

...535

{536

id: 110,537

bbox_extent: [1.2, 0.6, 0.0],538

bbox_center: [2.2, 2.1, 1.2],539

object_tag: light fixture,540

caption: a light fixture hanging from the ceiling541

}542

]543

Listing 2: Sample text entries in the 3D scene graph

8We also prototyped variants of this approach on off-the-shelf LLMs with larger context lengths, such as
Claude-2 with a context length of 32K tokens, and found it to work reliably.
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For planning using the above text description of the scene, we instantiate the system prompt for544

GPT-4 as follows:545

The input to the model is a 3D scene described in a JSON format. Each546

entry in the JSON describes one object in the scene, with the547

following five fields:548

1. "id": a unique object id549

2. "bbox_extent": extents of the 3D bounding box for the object550

3. "bbox_center": centroid of the 3D bounding box for the object551

4. "object_tag": a brief (but sometimes inaccurate) tag categorizing the552

object553

5. "caption": a brief caption for the object554

555

Once you have parsed the JSON and are ready to answer questions about the556

scene, say "I'm ready".557

558

The user will then begin to ask questions, and the task is to answer559

various user queries about the 3D scene. For each user question,560

respond with a JSON dictionary with the following fields:561

1. "inferred_query": your interpretaion of the user query in a succinct562

form563

2. "relevant_objects": list of relevant object ids for the user query (if564

applicable)565

3. "query_achievable": whether or not the user-specified query is566

achievable using the objects and descriptions provided in the 3D567

scene.568

4. "final_relevant_objects": A final list of objects relevant to the user569

-specified task. As much as possible, sort all objects in this list570

such that the most relevant object is listed first, followed by the571

second most relevant, and so on.572

5. "explanation": A brief explanation of what the most relevant object(s)573

is(are), and how they achieve the user-specified task.574

Listing 3: System prompt for the LLM Planner interface

Here are some example GPT-4 responses on our queries575

User: I need a quick gift. Help!576

577

LLM-Planner: {578

inferred_query: Find suitable object for a gift.,579

relevant_objects: [0, 6, 7, 23, 25, 31],580

query_achievable: true,581

final_relevant_objects: [6],582

explanation: The most suitable object for a gift could be the ceramic583

vase (id 6). Vases are commonly gifted items and this one could584

potentially be filled with a plant or flower arrangement, making a585

lovely present.586

}587

588

User: Need something to use as a paperweight589

590

LLM-Planner: {591

inferred_query: Find object to use as a paperweight.,592

relevant_objects: [0, 6, 7, 8, 15, 23, 29, 31],593

query_achievable: true,594

final_relevant_objects: [6],595

explanation: The ceramic vase (id 6) could potentially be used as a596

paperweight due to its small size and assumed weight.597

}598

Listing 4: Sample queries and raw outputs from the LLM Planner
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A3 Example Text Queries599

Here we provide some of the text queries used in our experiments.600

Replica Dataset Descriptive Queries: For each room, we randomly selected 20 ground truth annota-601

tions collected via Amazon Mechanical Turk (AMT). Here is a sample from room0 and office0.602

office0 Descriptive Queries:603

1. This is a trash can against the wall next to a sofa.604

2. A chaise lounge right next to a small table.605

3. This is a television.606

4. This is a dropped, tiled ceiling in what appears to be a classroom for children.607

5. This is a plant and it is next to the screens.608

6. This is the back of a chair in front of a screen.609

7. A small table in front of a large gray sectional couch.610

8. This is an armless chair and it’s opposite a coffee table by the sofa.611

9. This is a plug-in and it is on the floor.612

10. These are table legs and they are underneath the table.613

11. These are chairs and they are next to a table.614

12. A diner style table in front of two chairs.615

13. These are rocks and they are on the wall.616

14. This is the right panel of a lighted display screen.617

15. This is a planet and it is on the wall.618

16. This is an electronic display screen showing a map, on the wall.619

17. This is a couch and it is between a table and the wall.620

18. This is a garbage can and it is in front of the wall.621

19. This is a rug and it is on the floor.622

20. This is a table that is above the floor.623

room0 Descriptive Queries:624

1. This is a pillow and this is on top of a couch.625

2. A pillow on top of a white couch.626

3. This is a couch and it is under a window.627

4. This is a stool and it is on top of a rug.628

5. This is a side table under a lamp.629

6. This is a ceiling light next to the window.630

7. This is an end table and it is below a lamp.631

8. These are books and they are on the table.632

9. This is a couch and it is in front of the wall.633

10. White horizontal blinds in a well lit room.634

11. This is a striped throw pillow on the loveseat.635

12. The pillow is on top of the chair.636

13. This is a window and it is next to a door.637
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14. This is a hurricane candle and it is on top of a cabinet.638

15. This is a vase and it is on top of the table.639

16. This is a vent in the ceiling.640

17. This is a fish and it is on top of a cabinet.641

18. This is a window behind a chair.642

19. This is a trash can against a wall.643

20. Two cream colored cushioned chairs with blue pillows adjacent to each other.644

Replica Dataset Affordance Queries for Office Scenes:645

1. Something to watch the news on646

2. Something to tell the time647

3. Something comfortable to sit on648

4. Something to dispose of wastepaper in649

5. Something to add light into the room650

Replica Dataset Affordance Queries for Room Scenes:651

1. Somewhere to store decorative cups652

2. Something to add light into the room653

3. Somewhere to set food for dinner654

4. Something I can open with my keys655

5. Somewhere to sit upright for a work call656

Replica Dataset Negation Queries for Office Scenes:657

1. Something to sit on other than a chair658

2. Something very heavy, unlike a clock659

3. Something rigid, unlike a cushion660

4. Something small, unlike a couch661

5. Something light, unlike a table662

Replica Dataset Negation Queries for Room Scenes:663

1. Something small, unlike a cabinet664

2. Something light, unlike a table665

3. Something soft, unlike a table666

4. Something not transparent, unlike a window667

5. Something rigid, unlike a rug668

REAL Lab Scan Descriptive queries:669

1. A pair of red and white sneakers670

2. A NASA t-shirt671

3. A Rubik’s cube672

4. A basketball673

5. A toy car674

6. A backpack675
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7. An office chair676

8. A pair of headphones677

9. A yellow jacket678

10. A laundry bag679

REAL Lab Affordance Queries:680

1. Something to use to disassemble or take apart a laptop681

2. Something to use for cooling a CPU682

3. Something to use for carrying books day to day683

4. Something to use for temporarily securing a broken zipper684

5. Something to use to help a student understand how a computer works685

6. An object that is used in a sport involving rims and nets686

7. Something to keep myself from getting distracted by loud noises687

8. Something to help explain math proofs to a student688

9. Something I can use to protect myself from the harsh winter in Canada689

10. Something fun to pass the time with690

REAL Lab Negation Queries:691

1. A toy for someone who dislikes basketball692

2. Shoes that you wouldn’t wear to something formal693

3. Something to protect me from the rain that’s not an umbrella694

4. Shoes that are not red and white695

5. Something to make a cape with that’s not green696

6. Something to drink other than soda697

7. Something to use for exercise other than weights698

8. Something to wear unrelated to space or science699

9. Something light to store belongings, not a backpack700

10. Something to play with that’s not a puzzle or colorful701

A4 Navigation Experiments702

For our navigation experiments with the Jackal robot. Our robot is equipped with a VLP-16 lidar703

and a foward-facing Realsense D435i camera. We begin by building a pointcloud of a lab space704

using the onboard VLP-16 and Open3d SLAM [68]. The initial Jackal pointcloud does not include705

task-relevant objects and is downprojected to a 2D costmap for navigation using the base Jackal706

ROS stack.707

We then stage two separate scenes with different objects: one for object search and another for708

traversability estimation. In both cases, we map the scene with an Azure Kinect Camera and rely709

on RTAB-Map [69] to obtain camera poses and the scene point cloud. We proceed to build a Con-710

ceptGraphs representation and register the scene point cloud with the initial Jackal map. For our711

navigation experiments, we only use the objects OT .712

For object search queries, we use the LLM Planner described in Section A2 as part of a simple713

state machine. The robot first attempts to go look at the 3D coordinates of the most relevant object714

identified in OT by the LLM Planner. We then pass the onboard camera image to LLaVA [55] and715

ask if the target object is in view. If not, we remove the target object from the scene graph and716

18



ask the LLM Planner to provide a new likely location for the object in the scene with the following717

GPT-4 system prompt:718

The object described as ‘description’ is not in the scene. Perhaps
someone has moved it, or put it away. Let’s try to find the object by
visiting the likely places, storage or containers that are appropriate
for the missing object (eg: a a cabinet for a wineglass, or closet for a
broom). The new query is: find a likely container or storage space
where someone typically would have moved the object described as
‘description’?

719

Listing 5: GPT system prompt for object localization.

For traversability estimation, we task GPT to classify a given object as traversable or non-traversable720

based on its description and possible tags. The system prompt is:721

You are a wheeled robot that can push a maximum of 5 pounds or 2.27 kg.
Can you traverse through or push an object identified as ‘description’
with possible tags ‘possible tags’? Specifically, is it possible for you
to push the object out of its path without damaging yourself?

722

Listing 6: GPT-4 system prompt for traversability estimation.

We then take the pointclouds of each non-traversable objects and downproject them in the Jackal723

costmap before launching the navigation episode. The goal is provided in this case as a specific pose724

in the room.725

For all experiments in this section, we run a local instance of LLaVA offboard on a desktop when726

needed and otherwise use the GPT-4 API for LLM queries.727

A5 Limitations728

As indicated in Sec. 3.8, there are a few failure modes of ConceptGraphs that remain to be addressed729

in subsequent work. In particular, the LLaVA-7B [55] model used for node captioning misclassifies730

a non-negligible number of small objects as toothbrushes or pairs of scissors. We believe that using731

more performant vision-language models, including instruction-finetuned variants of LLaVA [70]732

can alleviate this issue to a large extent. This will, in turn, improve the node and edge precisions of733

3D scene graphs beyond what we report in Table 1.734

In this work, we do not explicitly focus on improving LLM-based planning over 3D scene graphs.735

We refer the interested reader to concurrent work, SayPlan [52], for insights into how one might736

leverage the hierarchy inherent in 3D scene graphs, for efficient planning.737
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