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Abstract

This paper presents MuCGEC, a multi-001
reference multi-source evaluation dataset002
for Chinese Grammatical Error Correction003
(CGEC), consisting of 7,063 sentences004
from three different Chinese-as-a-Second-005
Language (CSL) learner sources. Each006
sentence has been corrected by three annota-007
tors, and their corrections are meticulously008
reviewed by an expert, resulting in 2.3009
references on average per sentence. We010
conduct experiments with two mainstream011
CGEC models, i.e., the sequence-to-sequence012
(Seq2Seq) model and the sequence-to-edit013
(Seq2Edit) model, both enhanced with large014
pretrained language models, achieving com-015
petitive benchmark performance on previous016
and our datasets.We also discuss the CGEC017
evaluation methodologies, including the effect018
of multiple references and using a char-based019
metric. We will release our annotation020
guidelines, data, and code.021

1 Introduction022

Given a potentially noisy input sentence, gram-023

matical error correction (GEC) aims to detect and024

correct all errors and produce a clean sentence. Re-025

cently, there has been increasing attention to GEC026

for its vital value in various downstream scenarios027

(Grundkiewicz et al., 2020; Wang et al., 2021).028

To support the GEC study, high-quality manu-029

ally labeled evaluation data is indispensable. For030

English GEC (EGEC), such datasets are abundant031

(Yannakoudakis et al., 2011; Dahlmeier et al., 2013;032

Ng et al., 2014; Napoles et al., 2017; Bryant et al.,033

2019; Napoles et al., 2019; Flachs et al., 2020).034

In contrast, such datasets for CGEC are relatively035

scarce. The two publicly available datasets are036

NLPCC18 and CGED, contributed by the NLPCC-037

2018 (Zhao et al., 2018) and CGED-2018&2020038

shared tasks (Rao et al., 2018, 2020), respectively.039

Most influential EGEC evaluation datasets pro-040

vide multiple references for each input sentence,041

Source
我不知道他何时返回回来。
I don’t know when he will return back.

Ref. 1
我不知道他何时返回回来。
I don’t know when he will return.

Ref. 2
我不知道他何时返回回来。
I don’t know when he will be back.

Table 1: A CGEC example with two references.

such as CoNLL14-test (Ng et al., 2014) and 042

BEA19-test (Bryant et al., 2019). Nevertheless, 043

sentences in existing CGEC evaluation datasets 044

always have only one reference (i.e., 87% of the 045

sentences in NLPCC18 and all in CGED). This is 046

possibly due to their adopted annotation workflow, 047

where each sentence is assigned to only one annota- 048

tor and multi-reference submission is not allowed. 049

As strongly suggested by Bryant and Ng (2015), 050

enforcing multi-reference annotation is crucial for 051

both GEC model evaluation and data annotation. 052

Because, obviously, there are usually multiple ac- 053

ceptable references with close meanings for an in- 054

correct sentence, as illustrated by the example in 055

Table 1. On the one hand, if the evaluation data 056

gives only one reference and a GEC model out- 057

puts another valid alternative, then the model will 058

be unfairly underestimated. To mitigate this phe- 059

nomenon, a routine solution is increasing the num- 060

ber of references (Sakaguchi et al., 2016; Choshen 061

and Abend, 2018). On the other hand, imposing a 062

single-reference constraint makes data annotation 063

problematic. If annotators submit different equally 064

acceptable corrections, which is very common, it 065

will be taxing for the senior annotator to solely 066

select the best one as the final golden answer. 067

Besides the lack of multiple references, all exist- 068

ing CGEC datasets collect sentences from a single 069

text source, which may be insufficient for robust 070

model evaluation (Mita et al., 2019). Another flaw 071

of them is the absence of strict quality control strate- 072
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gies, e.g., annotation guidelines and review mecha-073

nisms. The above-mentioned problems may cause074

the unreliability of evaluation for CGEC models075

and hinder the development of this area.076

To fill these gaps, this paper aims to build077

the first multi-reference multi-source evaluation078

dataset for CGEC. We first collect data for annota-079

tion from three divergent sources that cover both080

formal/informal texts. After investigating previous081

work on constructing GEC datasets, we compile082

comprehensive annotation guidelines for detailed083

illustration. Based on a specially constructed on-084

line annotation system, each sentence is assigned085

to three annotators for independent correction, and086

one senior annotator for final review. An annota-087

tor may submit multiple references, and the senior088

annotator may also supplement new references be-089

sides rejecting incorrect submissions. In this way,090

we aim to produce as many references as possible.091

In summary, this work makes the following con-092

tributions:093

(1) We construct the first multi-reference multi-094

source evaluation dataset for CGEC, named095

MuCGEC, consisting of 7,063 sentences from096

three representative sources of CSL texts.097

Each sentence obtains 2.3 references on aver-098

age. Further, we conduct detailed analyses on099

our new dataset to gain more insights.100

(2) We employ two mainstream and competitive101

CGEC models based on large pretrained lan-102

guage models (PLMs), i.e., the Seq2Edit and103

Seq2Seq models, with an extremely effective104

ensemble strategy, to conduct strong bench-105

mark experiments on our dataset. We also106

investigate the effect of multiple references107

and propose to use a char-based evaluation108

metric, which is simpler and more suitable109

than previous word-based ones for CGEC.110

2 Dataset Annotation111

2.1 Multi-Source Data Selection112

This work focuses on CSL learner texts. In order113

to investigate diverse types of Chinese grammati-114

cal errors, we select data from the following three115

sources.116

(1) We re-annotate the NLPCC18 test set (Zhao117

et al., 2018), which contains 2,000 sentences118

from the Peking University (PKU) Chinese119

Learner Corpus.120

(2) We select and re-annotate the CGED- 121

2018&2020 test datasets (Rao et al., 2018, 122

2020). They are from the writing section of 123

the HSK exam (Hanyu Shuiping Kaoshi, trans- 124

lated as the Chinese level exam), which is an 125

official Chinese proficiency test. After remov- 126

ing sentences marked as correct from total 127

5,006 ones, we obtain 3,137 potentially erro- 128

neous sentences for annotation. 129

(3) Lang81 is a language learning platform, where 130

native speakers voluntarily correct jottings 131

uploaded by second-language learners. The 132

NLPCC-2018 organizers collect about 717K 133

Chinese sentence-correction pairs from Lang8 134

and employ them as the training data. We ran- 135

domly select 2,000 potentially erroneous sen- 136

tences with 30 to 60 characters for annotation. 137

Finally, we have obtained 7,137 sentences. For 138

simplicity, we discard all original corrections, and 139

directly perform re-annotation from scratch follow- 140

ing our new annotation guidelines and workflow. 141

2.2 Annotation Paradigm: Direct Rewriting 142

There are mainly two types of annotation 143

paradigms for constructing GEC data, i.e., error- 144

coded and direct rewriting. The error-coded 145

paradigm requires annotators to explicitly mark 146

the erroneous span in the original sentence, then 147

choose its error type, and finally make correc- 148

tions. Ng et al. (2013, 2014) adopt the error-coded 149

paradigm for constructing data for the CoNLL- 150

2013/2014 EGEC shared tasks. For CGEC, the 151

original NLPCC18 and CGED datasets both follow 152

the error-coded paradigm as well. 153

As discussed by Sakaguchi et al. (2016), the 154

error-coded paradigm suffers from two challenges. 155

First, it is extremely difficult for different anno- 156

tators to agree upon the boundaries of the erro- 157

neous spans and their error types, especially when 158

there are many categories to consider (Bryant et al., 159

2017). This inevitably leads to an increase in an- 160

notation effort and a decrease in annotation qual- 161

ity. Second, under such a complex annotation 162

paradigm, annotators would pay less attention to 163

the fluency of the resulting reference, sometimes 164

even leading to unnatural expressions. 165

Instead, the direct rewriting paradigm requires 166

annotators to directly rewrite the whole sentence, 167

as long as the resulting sentence does not change 168

1https://lang-8.com/
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Major Types Minor Types

Punctuation Missing; Redundancy; Misuse

Spelling Phonetic confusion; Glyph confusion;
Character disorder

Word Missing; Redundancy; Misuse

Syntax Word order; Mixing syntax patterns

Pragmatics Logical inconsistency; Ambiguity;
Commonsense mistake

Table 2: The 5 major and 14 minor error types adopted
by our guidelines for organizing the content.

the original meaning and is grammatically correct169

and fluent. Edits are extracted automatically from170

parallel sentences by additional tools (Bryant et al.,171

2017). This annotation paradigm has been proved172

to be efficient and cheap (Sakaguchi et al., 2016),173

and adopted by many datasets in other languages174

(Napoles et al., 2017, 2019; Syvokon and Nahorna,175

2021). In this work, we adopt the direct rewriting176

paradigm. Besides the above-mentioned advan-177

tages, we believe it is beneficial for encouraging178

the variety of references since annotators can cor-179

rect more freely.180

2.3 Annotation Guidelines181182

After several months’ survey on previous GEC183

data construction work, we have compiled 30-page184

comprehensive guidelines for CGEC annotation.185

During the annotation, our guidelines are gradu-186

ally improved according to the feedback from our187

annotators.188

To facilitate illustration, our guidelines adopt a189

two-tier hierarchical error taxonomy, including 5190

major error types and 14 minor types, as shown in191

Table 2. The 5 major error types are decided by192

both referring to previous work and considering193

frequencies of error occurrences. Our guidelines194

describe in detail how to handle each minor er-195

ror type and provide abundant typical examples.196

We will release our guidelines along with the data,197

which we hope can benefit future research.198

2.4 Annotation Workflow and Tool199

In order to encourage more diverse and high-quality200

references, we assign each sentence to three ran-201

dom annotators for independent annotation. Their202

submissions are then aggregated and sent to a ran-203

dom senior annotator for review. During annota-204

tion, an annotator may submit multiple references205

for one sentence if he/she thinks they are correct 206

according to the guidelines. During the review, the 207

job of the senior annotator includes 1) modifying 208

incorrect references into correct ones (sometimes 209

just rejecting them); 2) adding other correct refer- 210

ences according to the guidelines. After review, the 211

accepted references are defined as Final Golden 212

References, which are ultimately used to evaluate 213

CGEC models. 214

For the sake of self-improvement, we employ 215

a self-study mechanism that allows annotators to 216

learn from their mistakes if they submit an incor- 217

rect reference. Concretely, the annotator has to 218

modify her/his submission by referring to the final 219

golden references. Moreover, annotators can make 220

complaints if they disapprove of the final golden 221

references, which can trigger helpful discussions. 222

To improve annotation efficiency, we have de- 223

veloped a browser-based online annotation tool to 224

support the above workflow and mechanisms. Due 225

to the space limitation, we show the visual inter- 226

faces for annotation and review in Appendix A. 227

2.5 Annotation Process 228

We employed 21 undergraduate students who are 229

native speakers of Chinese and familiar with Chi- 230

nese grammar as part-time annotators. Annotators 231

received intensive training about our guidelines 232

before the real annotation. In the beginning, two 233

co-authors who were in charge of compiling the 234

guidelines served as senior annotators for review. 235

After one month, when the annotators were familiar 236

with the job, we selected 5 outstanding annotators 237

as senior annotators to join the review. 238

All participants were asked to annotate for at 239

least 1 hour every day. The whole annotation pro- 240

cess lasted for about 3 months. 241
242

2.6 Ethical Issues 243

All annotators and reviewers were paid for their 244

work. The salary is determined by both submission 245

numbers and annotation quality. The average salary 246

of annotators and reviewers is 24 and 35 RMB per 247

hour respectively. 248

All the data of the three sources are publicly 249

available. Meanwhile, we have obtained permis- 250

sion from organizers of the NLPCC-2018 and 251

CGED shared tasks to release our newly annotated 252

references in a proper way. 253
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Dataset #sent #err. sent (perc.) chars/sent edits/ref ref/sent
NLPCC18 (orig) 2000 1983 (99.2%) 29.7 2.0 1.1
MuCGEC (NLPCC18) 1996 ( 4) 1904 (95.4%) 29.7 2.5 2.5
MuCGEC (CGED) 3125 (12) 2988 (95.6%) 44.8 4.0 2.3
MuCGEC (Lang8) 1942 (58) 1652 (85.1%) 37.5 2.8 2.1
MuCGEC 7063 (74) 6544 (92.7%) 38.5 3.2 2.3

Table 3: Data statistics, including sentence numbers, numbers (proportion) of erroneous sentences, averaged char-
acter numbers per sentence, averaged edit numbers per reference, and averaged reference numbers per sentence.
Some sentences in our source data are thrown away since annotators cannot understand their meaning and thus are
unable to correct them. Numbers in the parenthesis of the “#sent” row refer to such sentences.

3 Analysis of Our Annotated Data254

This section presents a detailed analysis of the pro-255

posed MuCGEC dataset.256

Overall statistics of our new dataset are shown257

in Table 3. We also include the original NLPCC18258

dataset (Zhao et al., 2018) for comparison.2259

First, regarding the proportion of erroneous sen-260

tences, most of the sentences are considered to con-261

tain grammatical errors in the previous annotation,262

but a considerable part of them are not corrected263

in our annotation. We attribute this to our strict264

control of the over-correction phenomenon.265

Second, regarding sentence lengths, NLPCC18266

is the shortest, whereas CGED is much longer. This267

is possibly because, since HSK is an official Chi-268

nese proficiency test, candidates tend to use long269

sentences to show their ability in Chinese use.270

Third, each sentence in re-annotated NLPCC18271

receives 2.5 references on average, which is more272

than twice of that in the original NLPCC18 data.273

Overall, each sentence obtains 2.3 references. We274

believe the multi-reference characteristic makes our275

dataset more reliable for model evaluation, which276

is further discussed in Section 6.2.277

Finally, we compare the number of char-based278

edits per reference in different datasets. We de-279

scribe how to derive such edits in detail in Section280

6.2. We can see that the edit number is tightly cor-281

related with the sentence length. The difference282

in averaged sentence length and numbers of edits283

indicates that the three data sources may have a sys-284

tematic discrepancy in quality and difficulty, which285

we believe is helpful for evaluating the generaliza-286

tion ability of models. Moreover, compared with287

2Here we do not compare with the original CGED and
Lang8 datasets since: 1) the CGED-orig mainly focuses on
error detection annotation and does not provide corrections
for word-order errors; 2) the Lang8-orig is collected from the
internet, and its correction is quite noisy.

NLPCC18-orig, we annotate 25% more edits (2.0 288

vs. 2.5) in each reference. We believe the major 289

reason is that the original NLPCC18 data are an- 290

notated under the minimal edit distance principle 291

(Nagata and Sakaguchi, 2016), which requires an- 292

notators to select a reference with fewer edits when 293

correcting. 294

Distribution regarding numbers of refer- 295

ences. In Figure 1, we analyze the distribution 296

of sentences regarding the numbers of references. 297

Here, we only consider erroneous sentences. Same 298

references from different annotators are calculated 299

as one reference. Overall, most sentences have 2 300

references, and sentences having 3 references take 301

a slightly lower proportion. There are 21.8% of 302

sentences with only one reference. Most of them 303

are short and easy to correct. 304

We believe that the average reference number 305

should be further increased if more annotators are 306

assigned for each sentence. Despite the fact that 307

our annotation tool allows annotators to submit 308

multiple answers, we find that most annotators tend 309

to submit a single correction. Since it is usually 310

easy to come up with the most suitable correction, 311

but is more time-consuming to provide alternatives. 312

Human annotation performance. In order to 313

know the annotation ability of our annotators and 314

human performance for the CGEC task, we calcu- 315

late char-based F0.5 scores by evaluating the an- 316

notation submissions against the final golden ref- 317

erences picked by senior annotators after review. 318

We describe how to compute char-based metrics 319

in detail in Section 6.2. Each reference submitted 320

by an annotator is considered as a sample. Over- 321

all, the average F0.5 is 72.12, which we believe 322

can be further improved if our annotators are more 323

experienced and more familiar with our guidelines. 324

Figure 2 shows F0.5 scores of 15 annotators who 325

annotated the most sentences, in the descending 326
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Figure 1: The proportion of sentences with the different
number of references in MuCGEC.

order of annotated sentence numbers. We can see327

that human performance varies across different an-328

notators. The best annotator achieves an 82.34 F0.5329

score, while the annotator who completes the most330

tasks only gets a score of 68.32. It indicates that331

we should pay more attention to annotation quality332

when calculating salaries and prevent annotators333

from focusing too much on annotation speed.334

4 Benchmark Models335

To understand how well cutting-edge GEC mod-336

els perform on our data, we adopt two mainstream337

GEC approaches, i.e., Seq2Edit and Seq2Seq. Both338

models are enhanced with PLMs. We also at-339

tempt to combine them after observing their com-340

plementary power in dealing with different error341

types. This section briefly describes these bench-342

mark models. Due to the space limitation, please343

kindly refer to Appendix B for more model details.344

The Seq2Edit model treats GEC as a sequence345

labeling task and performs error corrections via346

a sequence of token-level edits, including inser-347

tion, deletion, and substitution (Malmi et al., 2019).348

A token corresponds to a word or a subword in349

English, and to a character in Chinese. With mi-350

nor modifications to accommodate Chinese, we351

adopt GECToR (Omelianchuk et al., 2020), which352

achieves the SOTA performance on EGEC datasets.353

Following recent Seq2Edit work like Awasthi et al.354

(2019) and Omelianchuk et al. (2020), we enhance355

GECToR by using PLMs as its encoder. After com-356

paring several popular PLMs, we choose Struct-357

BERT (Wang et al., 2019) 3 due to its superior358

performance after fine-tuning (see Table 4).359

3https://github.com/alibaba/AliceMind/
tree/main/StructBERT
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Figure 2: The human performance of the 15 annotators
who annotate the most sentences.

The Seq2Seq model straightforwardly treats 360

GEC as a monolingual translation task (Yuan and 361

Briscoe, 2016). Recent work proposes to enhance 362

Transformer-based (Vaswani et al., 2017) Seq2Seq 363

EGEC models with PLMs like T5 (Rothe et al., 364

2021) or BART (Katsumata and Komachi, 2020). 365

Unlike BERT (Devlin et al., 2019), T5 and BART 366

are specifically designed for text generation. There- 367

fore, it is straightforward to continue training them 368

on GEC data. We follow these work and utilize the 369

recently proposed Chinese BART from Shao et al. 370

(2021) to initialize our Seq2Seq model. 371

The ensemble model. Several previous works 372

have proved the effectiveness of model ensemble 373

for CGEC (Liang et al., 2020; Hinson et al., 2020). 374

In this work, we clearly observe the complemen- 375

tary power of the above two models in fixing dif- 376

ferent error types (see Table 6), and thus attempt 377

to combine them. We adopt a simple edit-wise 378

vote mechanism: aggregating edits from the re- 379

sults of each model, and only preserving edits that 380

appear more than N/2 times, where N is the num- 381

ber of models. We experiment with two ensem- 382

ble settings: 1) one Seq2Edit and one Seq2Seq, 383

denoted as “1×Seq2Edit+1×Seq2Seq” , and 2) 384

three Seq2Edit and three Seq2Seq, denoted as 385

“3×Seq2Edit+3×Seq2Seq”. The three Seq2Edit 386

models are obtained by replacing the random seed, 387

the same goes for the Seq2Seq. 388

5 Experiments on Original NLPCC18 389

In order to show that our benchmark models are 390

competitive among existing CGEC models, we 391

conduct comparison experiments on the original 392

NLPCC18 test set, where most previous CGEC 393

systems are tested. 394

5
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P R F0.5

Trained on Lang8
YouDao (Fu et al., 2018)♦ 35.24 18.64 29.91
AliGM (Zhou et al., 2018)♦ 41.00 13.75 29.36
BLCU (Ren et al., 2018)♦ 47.63 12.56 30.57
HRG (Hinson et al., 2020)♦ 36.79 27.82 34.56
MaskGEC (Zhao and Wang, 2020)♥ 44.36 22.18 36.97
Our Seq2Edit 39.83 23.01 34.75
Our Seq2Seq 37.67 29.88 35.80
1×Seq2Edit+1×Seq2Seq♦ 58.15 18.35 40.55
3×Seq2Edit+3×Seq2Seq♦ 55.58 19.78 40.81

Trained on Lang8+HSK
TEA (Wang et al., 2020)♥ 39.43 22.80 34.41
WCDA (Tang et al., 2021)♥ 47.41 23.72 39.51
Our Seq2Edit (BERT) 39.61 28.53 36.76
Our Seq2Edit (RoBERTa) 39.74 30.44 37.54
Our Seq2Edit (MacBERT) 40.46 30.73 38.05
Our Seq2Edit (StructBERT) 42.88 30.19 39.55
Our Seq2Seq 41.44 32.89 39.39
1×Seq2Edit+1×Seq2Seq♦ 60.72 22.48 45.31
3×Seq2Edit+3×Seq2Seq♦ 59.38 24.18 45.99

Table 4: Performance comparison on the original
NLPCC18 dataset (Zhao et al., 2018) using the offi-
cial word-based evaluation script. The first group lists
models that use only Lang8 for training, whereas the
second group shows those using both Lang8 and HSK
data. Models marked by ♦ use model ensemble, and
those marked by ♥ use data augmentation.

Training data. For the sake of easy replica-395

bility, we limit our training data strictly to public396

resources, i.e., the Lang8 (Zhao et al., 2018) 4 data397

and the HSK (Xun, 2018) 5 data. We filter dupli-398

cate sentences that appear in our dataset, and only399

use the erroneous part for training. The final Lang8400

and HSK data contains 1,092,285 and 95,320 sen-401

tences, respectively. The HSK data is cleaner and402

of higher quality than Lang8, but is much smaller.403

Following the re-weighting procedure of Junczys-404

Dowmunt et al. (2018), we duplicate the HSK data405

five times, and merge them with Lang8 data.406

Comparison with previous work. Table 4407

shows the results. For a fair comparison, we408

follow the official setting of the shared task, in-409

cluding using the word-based MaxMatch scorer410

(Dahlmeier and Ng, 2012) for calculating the P/R/F411

values. We segment model outputs by adopting the412

PKUNLP word segmentation (WS) tool provided413

by the shared task organizers (Zhao et al., 2018).414

When using only Lang8 for training, our single415

Seq2Seq model is already quite competitive. It416

only underperforms MaskGEC (Zhao and Wang,417

2020) by 1 F0.5 score, which additionally uses data418

4http://tcci.ccf.org.cn/conference/2018/
taskdata.php

5http://hsk.blcu.edu.cn

augmentation. After adding the HSK data, all our 419

models achieve further performance-boosting by 420

about 4 points. Both of our single benchmark mod- 421

els achieve SOTA performance under this setting. 422

The model ensemble technique leads to obvious 423

performance gains (more than 5 points) over single 424

models. However, the gains from increasing the 425

number of component models seem rather small. 426

For Seq2Edit, we additionally present results 427

with other PLMs besides StructBERT, including 428

BERT (Devlin et al., 2019), RoBERTa (Liu et al., 429

2019), and MacBERT (Cui et al., 2020) from the 430

hugging face 6 website. All PLMs are under the 431

large configuration. 432

6 Experiments on MuCGEC 433

6.1 Data Splits 434

For hyperparameter tuning or model selection, pre- 435

vious work on other CGEC datasets often randomly 436

sample some sentence pairs from training data as 437

the dev set (Wang et al., 2020; Zhao and Wang, 438

2020; Hinson et al., 2020), which is problematic 439

for replicability and complicated for comparison. 440

In this work, we propose to provide a fixed dev 441

set for our newly annotated dataset, by randomly 442

selecting 1,125 sentences from the CGED source, 443

denoted as CGED-dev. The remaining 5,938 sen- 444

tences are used as the test set, in which each data 445

source has a roughly equal amount of sentences, 446

i.e., 1,996 sentences for NLPCC18-test, 2,000 for 447

CGED-test, and 1,942 for Lang8-test. 448

6.2 Evaluation Metrics 449

Problems with the word-based metric. As dis- 450

cussed in Section 5, previous CGEC datasets are an- 451

notated upon word sequences and thus adopt word- 452

based metrics for evaluation. Therefore, before 453

annotation and evaluation, each sentence should 454

be segmented into words using a Chinese word 455

segmentation (CWS) model. This introduces un- 456

necessary uncertainty in the evaluation procedure. 457

Sometimes, a correct edit may be judged as wrong 458

due to word boundary mismatch. Different from 459

English whose words are separated naturally, Chi- 460

nese sentences are written without any word de- 461

limiters, so WS models perform much worse for 462

Chinese than for English (Fu et al., 2020). 463

In view of these, we believe it is more suitable 464

to abandon such word-based metrics in CGEC. 465

6https://huggingface.co/

6

http://tcci.ccf.org.cn/conference/2018/taskdata.php
http://tcci.ccf.org.cn/conference/2018/taskdata.php
http://hsk.blcu.edu.cn
https://huggingface.co/


NLPCC18-test CGED-test Lang8-test All-test
P R F0.5 P R F0.5 P R F0.5 P R F0.5

Seq2Edit 50.09 32.09 45.04 42.87 27.69 38.64 39.65 21.62 33.98 44.11 27.18 39.22
Seq2Seq 47.99 35.12 44.71 46.04 26.97 40.34 36.10 25.01 33.16 43.81 28.56 39.58

1×Seq2Edit+1×Seq2Seq 74.13 24.11 52.39 68.59 20.35 46.53 62.25 14.23 37.17 68.92 19.68 45.94
3×Seq2Edit+3×Seq2Seq 72.82 26.38 53.81 67.95 21.58 47.52 60.65 16.39 39.38 67.76 21.42 47.29

Human 75.77 66.15 73.63 74.14 64.84 72.00 72.31 62.26 70.05 73.47 63.75 71.25

Table 5: Performance of models and our annotators on MuCGEC, using the char-based metric. For calculating
the human performance, each submitted result is considered as a sample if an annotator submits multiple results.

Seq2Edit Seq2Seq Ensemble Human
Missing (29.2%) 41.09 40.93 42.25 69.72
Redundant (16.1%) 43.11 37.65 54.18 72.78
Substitution (48.9%) 35.99 39.98 47.37 71.69
Word-order (5.8%) 28.28 40.33 42.44 72.58

Table 6: F0.5 scores regarding error types on All-
test. The blackened numbers in parentheses show the
proportion of each error type. “Ensemble” refers to
“3×Seq2Edit+3×Seq2Seq”.

The char-based evaluation metric is adopted466

in this work instead. First, given an input sentence467

and a correction, we obtain an optimal sequence of468

char-based edits that corresponds to the minimal469

edit distance. There are three types of char-based470

edits, including deleting a char for a redundant471

error, inserting a char for a missing error, or sub-472

stituting a char with another one for a substitution473

error. Secondly, following the standard practice in474

both EGEC and CGEC, we merge consecutive edits475

of the same type as one span-level edit (Felice et al.,476

2016; Hinson et al., 2020). The above two steps are477

applied to both the system output sequence and all478

gold-standard references, transforming them into479

sets of span-level edits. Finally, we utilize the eval-480

uation script from ERRANT (Bryant et al., 2017)481

to calculate the P/R/F values which does not need482

error-coded annotation.483

6.3 Results and Analysis484

Main results. Table 5 shows the char-based per-485

formance of the benchmark models and our an-486

notators on MuCGEC. All models are trained on487

Lang8+HSK, as described in Section 4. Please488

kindly note that we cannot present results of pre-489

vious work in Table 4, since most of them did not490

release their code.7491

The overall trend of performance is basically492

consistent with those on the original NLPCC18493

7BLCU (Ren et al., 2018) did release code, but its perfor-
mance is much lower than the SOTA.

1 2 3 All
20

40

60

80

Maximum Number of References

F
0
.5

Human
Seq2Edit
Seq2Seq
1×S2E+1×S2S
3×S2E+3×S2S

Figure 3: Effect of reference number on F0.5.

dataset in Table 4. First, the Seq2Seq and Seq2Edit 494

models perform quite closely on F0.5, but clearly 495

exhibit divergent strength in precision and recall, 496

giving a strong motivation for combining them. 497

Secondly, the model ensemble approach improves 498

performance by a very large margin, as expected. 499

One interesting observation is that on MuCGEC, 500

“3×Seq2Edit+3×Seq2Seq” substantially outper- 501

forms “1×Seq2Edit+1×Seq2Seq” on All-test and 502

all three subsets. In contrast, the improvement is 503

only modest on the original NLPCC18 test data. 504

We suspect this may indicate that a multi-reference 505

dataset can more accurately evaluate model per- 506

formance. However, it may require further human 507

investigation for more insights. 508

Finally, there is still a huge performance gap 509

between models and humans, indicating that the 510

CGEC research still has a long way to go. 511

Performance on four error types. Table 6 512

shows more fine-grained evaluation results on four 513

error types. The word-order errors can be identified 514

by heuristic rules following Hinson et al. (2020). 515

It is clear that the Seq2Edit model is better at 516

handling redundant errors, whereas the Seq2Seq 517

model is superior in dealing with substitution and 518

word-order errors. For missing errors, the two per- 519

form similarly well. 520

These phenomena are quite interesting and can 521

7



be understood after considering the underlying522

model architectures. On the one hand, to correct523

redundant errors, the Seq2Edit model only needs524

to perform a fixed deletion operation, which is a525

much more implicit choice for the Seq2Seq model,526

since its goal is to rewrite the whole sentence. On527

the other hand, the Seq2Seq is suitable to substitute528

or reorder words due to its natural capability of uti-529

lizing language model information, especially with530

the enhancement of BART (Lewis et al., 2020).531

Again, the model ensemble approach substan-532

tially improves performance on all error types. The533

ensemble model is closest to the human on redun-534

dant errors, probably because they are the easiest535

to correct. The largest gap occurs in word-order536

errors, which require global structure knowledge537

to correct and are extremely challenging.538

Influence of the number of references. To un-539

derstand the impact of the number of references540

on performance evaluation, we deliberately reduce541

the available reference number in our dataset. For542

example, when the maximum number of references543

is limited to 2, we remove all extra references if a544

sentence has more than 2 gold-standard references.545

The results on MuCGEC are shown in Figure 3.546

When the maximum number of references in-547

creases, the performance of both models and hu-548

mans increases continuously, especially for hu-549

mans. As only a few sentences have more than550

3 references, the improvement is quite slight when551

the maximum number of references increases from552

3 to All. This trend suggests that compared with553

single-reference datasets, a multi-reference dataset554

reduces the risk of underestimating performance,555

and thus is more reliable for model evaluation.556

7 Related Work557

EGEC resources. There is a lot of work on558

EGEC data construction. As the two earliest EGEC559

datasets, FCE (Yannakoudakis et al., 2011) and NU-560

CLE (Dahlmeier et al., 2013) adopt the error-coded561

annotation paradigm. In contrast, JFLEG (Napoles562

et al., 2017) collects sentences from TOFEL exams563

and adopts the direct rewriting paradigm. W&I564

(Bryant et al., 2019) also chooses the direct rewrit-565

ing paradigm, and for each original sentence addi-566

tionally provides the language proficiency level of567

the writer. All four datasets are composed of es-568

says from non-native English speakers and provide569

multiple references.570

Recently, researchers start to annotate small-571

scale EGEC data for texts written by native English 572

speakers, including AESW (Daudaravicius et al., 573

2016), LOCNESS (Bryant et al., 2019), GMEG 574

(Napoles et al., 2019) and CWEB (Flachs et al., 575

2020). In the future, we plan to extend this work to 576

texts written by native Chinese speakers. 577

CGEC resources. Compared with EGEC, 578

progress in CGEC data construction largely lags 579

behind. As thoroughly discussed in Section 1, 580

NLPCC18 (Zhao et al., 2018) and CGED (Rao 581

et al., 2018, 2020) are the only two evaluation 582

datasets for CGEC research. Besides them, there 583

are also a few resources for training CGEC models, 584

e.g., Lang8 corpus (Zhao et al., 2018) and HSK 585

corpus (Xun, 2018). 586

Recent progress in CGEC. In the NLPCC- 587

2018 shared task (Zhao et al., 2018), many systems 588

adopt Seq2Seq models, based on RNN/CNN. Re- 589

cent work mainly utilizes Transformer (Wang et al., 590

2020; Zhao and Wang, 2020; Tang et al., 2021). 591

Hinson et al. (2020) first employ a Seq2Edit model 592

for CGEC, and achieve comparable performance 593

with the Seq2Seq counterparts. Some systems in 594

the CGED-2020 shared task (Rao et al., 2020) di- 595

rectly employ the open-source Seq2Edit model, i.e., 596

GECToR (Liang et al., 2020; Fang et al., 2020). Be- 597

sides the above two mainstream models, Li and Shi 598

(2021) for the first time apply a non-autoregressive 599

neural machine translation model to CGEC. 600

Besides modeling optimization, techniques like 601

data augmentation (Zhao and Wang, 2020; Tang 602

et al., 2021) and model ensemble (Hinson et al., 603

2020) have also been proved very useful for CGEC. 604

8 Conclusions 605

This paper presents our newly annotated evaluation 606

dataset for CGEC, consisting of 7,063 sentences 607

written by CSL learners. Compared with existing 608

CGEC datasets, ours can support more reliable eval- 609

uation due to three important features: 1) providing 610

multiple references; 2) covering three different text 611

sources; 3) adopting more strict quality control (i.e., 612

annotation guidelines and workflow). 613

After describing the data construction process, 614

we perform detailed analyses of our data. Then, 615

we adopt two mainstream and competitive CGEC 616

models, i.e., Seq2Seq and Seq2Edit, and carry out 617

benchmark experiments. We also propose to adopt 618

char-based evaluation metrics, which are more suit- 619

able than word-based ones. In summary, we believe 620

this work will promote future research in CGEC. 621
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Courtney Napoles, Maria Nădejde, and Joel Tetreault.743
2019. Enabling robust grammatical error correction744
in new domains: Data sets, metrics, and analyses.745
TACL, 7:551–566.746

Courtney Napoles, Keisuke Sakaguchi, and Joel747
Tetreault. 2017. Jfleg: A fluency corpus and bench-748
mark for grammatical error correction. In Proceed-749
ings of EACL, pages 229–234.750

Hwee Tou Ng, Siew Mei Wu, Ted Briscoe, Christian751
Hadiwinoto, Raymond Hendy Susanto, and Christo-752
pher Bryant. 2014. The conll-2014 shared task on753
grammatical error correction. In Proceedings of754
CoNLL: Shared Task, pages 1–14.755

Hwee Tou Ng, Siew Mei Wu, Yuanbin Wu, Christian756
Hadiwinoto, and Joel Tetreault. 2013. The conll-757
2013 shared task on grammatical error correction. In758
Proceedings of CoNLL: Shared Task, pages 1–12.759

Kostiantyn Omelianchuk, Vitaliy Atrasevych, Artem760
Chernodub, and Oleksandr Skurzhanskyi. 2020.761
Gector–grammatical error correction: Tag, not762
rewrite. In Proceedings of BEA@ACL, pages 163–763
170.764

Gaoqi Rao, Qi Gong, Baolin Zhang, and Endong Xun.765
2018. Overview of nlptea-2018 share task chinese766
grammatical error diagnosis. In Proceedings of767
NLPTEA@ACL, pages 42–51.768

Gaoqi Rao, Erhong Yang, and Baolin Zhang. 2020.769
Overview of nlptea-2020 shared task for chinese770
grammatical error diagnosis. In Proceedings of771
NLPTEA@AACL, pages 25–35.772

Hongkai Ren, Liner Yang, and Endong Xun. 2018. A773
sequence to sequence learning for chinese grammat-774
ical error correction. In CCF International Confer-775
ence on Natural Language Processing and Chinese776
Computing (NLPCC), pages 401–410.777

Sascha Rothe, Jonathan Mallinson, Eric Malmi, Sebas-778
tian Krause, and Aliaksei Severyn. 2021. A simple779
recipe for multilingual grammatical error correction.780
In Proceedings of ACL-IJCNLP, pages 702–707.781

Keisuke Sakaguchi, Courtney Napoles, Matt Post, and 782
Joel Tetreault. 2016. Reassessing the goals of gram- 783
matical error correction: Fluency instead of gram- 784
maticality. TACL, 4:169–182. 785

Yunfan Shao, Zhichao Geng, Yitao Liu, Junqi Dai, 786
Fei Yang, Li Zhe, Hujun Bao, and Xipeng Qiu. 787
2021. Cpt: A pre-trained unbalanced transformer 788
for both chinese language understanding and gener- 789
ation. arXiv preprint arXiv:2109.05729. 790

Oleksiy Syvokon and Olena Nahorna. 2021. Ua- 791
gec: Grammatical error correction and fluency cor- 792
pus for the ukrainian language. arXiv preprint 793
arXiv:2103.16997. 794

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, 795
Jon Shlens, and Zbigniew Wojna. 2016. Rethinking 796
the inception architecture for computer vision. In 797
Proceedings of ICCV, pages 2818–2826. 798

Zecheng Tang, Yixin Ji, Yibo Zhao, and Junhui Li. 799
2021. Chinese grammatical error correction en- 800
hanced by data augmentation from word and char- 801
acter levels. In Proceedings of the 20th Chinese 802
National Conference on Computational Linguistics 803
(CCL), pages 813–824. 804

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 805
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz 806
Kaiser, and Illia Polosukhin. 2017. Attention is all 807
you need. In Proceedings of NIPS, pages 5998– 808
6008. 809

Chencheng Wang, Liner Yang, Yingying Wang, Yong- 810
ping Du, and Erhong Yang. 2020. Chinese grammat- 811
ical error correction method based on transformer 812
enhanced architecture. Journal of Chinese Informa- 813
tion Processing, 34(6):106–114. 814

Wei Wang, Bin Bi, Ming Yan, Chen Wu, Jiangnan Xia, 815
Zuyi Bao, Liwei Peng, and Luo Si. 2019. Structbert: 816
Incorporating language structures into pre-training 817
for deep language understanding. In Proceedings of 818
ICLR. 819

Yu Wang, Yuelin Wang, Kai Dang, Jie Liu, and Zhuo 820
Liu. 2021. A comprehensive survey of grammatical 821
error correction. ACM Transactions on Intelligent 822
Systems and Technology (TIST), 12(5):1–51. 823

Endong Xun. 2018. Hsk dynamic composition corpus. 824
http://hsk.blcu.edu.cn/. 825

Helen Yannakoudakis, Ted Briscoe, and Ben Medlock. 826
2011. A new dataset and method for automatically 827
grading esol texts. In Proceedings of ACL, pages 828
180–189. 829

Zheng Yuan and Ted Briscoe. 2016. Grammatical er- 830
ror correction using neural machine translation. In 831
Proceedings of NAACL-HLT, pages 380–386. 832

Yuanyuan Zhao, Nan Jiang, Weiwei Sun, and Xiao- 833
jun Wan. 2018. Overview of the nlpcc 2018 shared 834

10

http://hsk.blcu.edu.cn/


task: Grammatical error correction. In CCF Interna-835
tional Conference on Natural Language Processing836
and Chinese Computing (NLPCC), pages 439–445.837

Zewei Zhao and Houfeng Wang. 2020. Maskgec: Im-838
proving neural grammatical error correction via dy-839
namic masking. In Proceedings of AAAI, pages840
1226–1233.841

Junpei Zhou, Chen Li, Hengyou Liu, Zuyi Bao, Guang-842
wei Xu, and Linlin Li. 2018. Chinese grammati-843
cal error correction using statistical and neural mod-844
els. In CCF International Conference on Natu-845
ral Language Processing and Chinese Computing846
(NLPCC), pages 117–128.847

A Interface848

The annotation interface is shown in Figure 4. An-849

notators can use it to correct assigned sentences.850

Given an annotation task, this interface presents851

a potentially wrong sentence and a text input box.852

The original sentence is copied into the text in-853

put box, and the annotator can directly modify it.854

Considering the existence of multiple acceptable855

corrections, we also provide a button to allow an-856

notators to add additional text input boxes. For857

exceptional cases, some special tags can be used,858

such as ERROR FREE and NOT ANNOTATABLE.859

The review interface is shown in Figure 5. It is860

used by expert annotators to judge whether a cor-861

rection is acceptable. All corrections of a sentence862

will be shown on the screen, and reviewers can863

click a check box to mark each of them as correct864

or false. The text input box in the annotation inter-865

face is also available here, thus allowing reviewers866

to supplement extra valid corrections.867

B Hyperparameters868

Table 7 shows the detailed hyperparameters for869

training our two benchmark models. The results of870

all single models are averaged over 3 runs, and the871

results of the ensemble models are just calculated872

from a single run.873

874

875

876
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Figure 4: The screenshot of the annotation interface.

Figure 5: The screenshot of the review interface.
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Configurations Values
Seq2Seq

Model architecture BART (Lewis et al., 2020)
Pretrained model Chinese-BART-Large (Shao et al., 2021)

Number of epochs 20
Devices 8 Nvidia V100 GPU (32GB)

Batch size per GPU 32
Optimizer Adam (β1 = 0.9, β2 = 0.999, ε = 1× 10−8) (Kingma and Ba, 2014)

Learning rate 3× 10−5

Learning rate scheduler Polynomial
Gradient accumulation steps 4

Warmup updates 1000
Warmup init learning rate 1× 10−7

Dropout 0.3
Gradient clipping 1.0

Loss function Label smoothed cross entropy (label-smoothing=0.1) (Szegedy et al., 2016)
Beam size 12
GPU hours About 20 hours

Seq2Edit
Model architecture GECToR (Omelianchuk et al., 2020)
Pretrained model Chinese-Struct-Bert-Large (Wang et al., 2019)

Number of max epochs 20
Number of cold epochs 2

Devices 1 Nvidia V100 GPU (32GB)
Optimizer Adam (β1 = 0.9, β2 = 0.999, ε = 1× 10−8) (Kingma and Ba, 2014)

Cold learning rate 1× 10−3

Learning rate 1× 10−5

Batch size 128
Loss function Cross entropy
GPU hours About 10 hours

Table 7: Hyperparameter values of our benchmark models.
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