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Abstract

This paper presents MuCGEC, a multi-
reference multi-source evaluation dataset
for Chinese Grammatical Error Correction
(CGEC), consisting of 7,063 sentences
from three different Chinese-as-a-Second-
Language (CSL) learner sources. Each
sentence has been corrected by three annota-
tors, and their corrections are meticulously
reviewed by an expert, resulting in 2.3
references on average per sentence. We
conduct experiments with two mainstream
CGEC models, i.e., the sequence-to-sequence
(Seq2Seq) model and the sequence-to-edit
(Seq2Edit) model, both enhanced with large
pretrained language models, achieving com-
petitive benchmark performance on previous
and our datasets.We also discuss the CGEC
evaluation methodologies, including the effect
of multiple references and using a char-based
metric. We will release our annotation
guidelines, data, and code.

1 Introduction

Given a potentially noisy input sentence, gram-
matical error correction (GEC) aims to detect and
correct all errors and produce a clean sentence. Re-
cently, there has been increasing attention to GEC
for its vital value in various downstream scenarios
(Grundkiewicz et al., 2020; Wang et al., 2021).

To support the GEC study, high-quality manu-
ally labeled evaluation data is indispensable. For
English GEC (EGEC), such datasets are abundant
(Yannakoudakis et al., 2011; Dahlmeier et al., 2013;
Ng et al., 2014; Napoles et al., 2017; Bryant et al.,
2019; Napoles et al., 2019; Flachs et al., 2020).
In contrast, such datasets for CGEC are relatively
scarce. The two publicly available datasets are
NLPCC18 and CGED, contributed by the NLPCC-
2018 (Zhao et al., 2018) and CGED-2018&2020
shared tasks (Rao et al., 2018, 2020), respectively.

Most influential EGEC evaluation datasets pro-
vide multiple references for each input sentence,

B R BTN REREE £ .

Source I don’t know when he will return back.
Ref. 1 K o 38 AT B IR W R

’ I don’t know when he will return.
Ref. 2 & Fo 18 AT B A & .

I don’t know when he will be back.

Table 1: A CGEC example with two references.

such as CoNLLI14-test (Ng et al., 2014) and
BEA19-test (Bryant et al., 2019). Nevertheless,
sentences in existing CGEC evaluation datasets
always have only one reference (i.e., 87% of the
sentences in NLPCC18 and all in CGED). This is
possibly due to their adopted annotation workflow,
where each sentence is assigned to only one annota-
tor and multi-reference submission is not allowed.
As strongly suggested by Bryant and Ng (2015),
enforcing multi-reference annotation is crucial for
both GEC model evaluation and data annotation.
Because, obviously, there are usually multiple ac-
ceptable references with close meanings for an in-
correct sentence, as illustrated by the example in
Table 1. On the one hand, if the evaluation data
gives only one reference and a GEC model out-
puts another valid alternative, then the model will
be unfairly underestimated. To mitigate this phe-
nomenon, a routine solution is increasing the num-
ber of references (Sakaguchi et al., 2016; Choshen
and Abend, 2018). On the other hand, imposing a
single-reference constraint makes data annotation
problematic. If annotators submit different equally
acceptable corrections, which is very common, it
will be taxing for the senior annotator to solely
select the best one as the final golden answer.

Besides the lack of multiple references, all exist-
ing CGEC datasets collect sentences from a single
text source, which may be insufficient for robust
model evaluation (Mita et al., 2019). Another flaw
of them is the absence of strict quality control strate-



gies, e.g., annotation guidelines and review mecha-
nisms. The above-mentioned problems may cause
the unreliability of evaluation for CGEC models
and hinder the development of this area.

To fill these gaps, this paper aims to build
the first multi-reference multi-source evaluation
dataset for CGEC. We first collect data for annota-
tion from three divergent sources that cover both
formal/informal texts. After investigating previous
work on constructing GEC datasets, we compile
comprehensive annotation guidelines for detailed
illustration. Based on a specially constructed on-
line annotation system, each sentence is assigned
to three annotators for independent correction, and
one senior annotator for final review. An annota-
tor may submit multiple references, and the senior
annotator may also supplement new references be-
sides rejecting incorrect submissions. In this way,
we aim to produce as many references as possible.

In summary, this work makes the following con-
tributions:

(1) We construct the first multi-reference multi-
source evaluation dataset for CGEC, named
MuCGEC, consisting of 7,063 sentences from
three representative sources of CSL texts.
Each sentence obtains 2.3 references on aver-
age. Further, we conduct detailed analyses on
our new dataset to gain more insights.

(2) We employ two mainstream and competitive
CGEC models based on large pretrained lan-
guage models (PLMs), i.e., the Seq2Edit and
Seq2Seq models, with an extremely effective
ensemble strategy, to conduct strong bench-
mark experiments on our dataset. We also
investigate the effect of multiple references
and propose to use a char-based evaluation
metric, which is simpler and more suitable
than previous word-based ones for CGEC.

2 Dataset Annotation

2.1 Multi-Source Data Selection

This work focuses on CSL learner texts. In order
to investigate diverse types of Chinese grammati-
cal errors, we select data from the following three
sources.

(1) We re-annotate the NLPCC18 test set (Zhao
et al., 2018), which contains 2,000 sentences
from the Peking University (PKU) Chinese
Learner Corpus.

(2) We select and re-annotate the CGED-
2018&2020 test datasets (Rao et al., 2018,
2020). They are from the writing section of
the HSK exam (Hanyu Shuiping Kaoshi, trans-
lated as the Chinese level exam), which is an
official Chinese proficiency test. After remov-
ing sentences marked as correct from total
5,006 ones, we obtain 3,137 potentially erro-
neous sentences for annotation.

(3) Lang8! is a language learning platform, where
native speakers voluntarily correct jottings
uploaded by second-language learners. The
NLPCC-2018 organizers collect about 717K
Chinese sentence-correction pairs from Lang8
and employ them as the training data. We ran-
domly select 2,000 potentially erroneous sen-
tences with 30 to 60 characters for annotation.

Finally, we have obtained 7,137 sentences. For
simplicity, we discard all original corrections, and
directly perform re-annotation from scratch follow-
ing our new annotation guidelines and workflow.

2.2 Annotation Paradigm: Direct Rewriting

There are mainly two types of annotation
paradigms for constructing GEC data, i.e., error-
coded and direct rewriting. The error-coded
paradigm requires annotators to explicitly mark
the erroneous span in the original sentence, then
choose its error type, and finally make correc-
tions. Ng et al. (2013, 2014) adopt the error-coded
paradigm for constructing data for the CoNLL-
2013/2014 EGEC shared tasks. For CGEC, the
original NLPCC18 and CGED datasets both follow
the error-coded paradigm as well.

As discussed by Sakaguchi et al. (2016), the
error-coded paradigm suffers from two challenges.
First, it is extremely difficult for different anno-
tators to agree upon the boundaries of the erro-
neous spans and their error types, especially when
there are many categories to consider (Bryant et al.,
2017). This inevitably leads to an increase in an-
notation effort and a decrease in annotation qual-
ity. Second, under such a complex annotation
paradigm, annotators would pay less attention to
the fluency of the resulting reference, sometimes
even leading to unnatural expressions.

Instead, the direct rewriting paradigm requires
annotators to directly rewrite the whole sentence,
as long as the resulting sentence does not change

"https://lang-8.com/
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Major Types Minor Types

Punctuation =~ Missing; Redundancy; Misuse

Spelling Phonetic confusion; Glyph confusion;
Character disorder

Word Missing; Redundancy; Misuse

Syntax Word order; Mixing syntax patterns

Pragmatics Logical inconsistency; Ambiguity;

Commonsense mistake

Table 2: The 5 major and 14 minor error types adopted
by our guidelines for organizing the content.

the original meaning and is grammatically correct
and fluent. Edits are extracted automatically from
parallel sentences by additional tools (Bryant et al.,
2017). This annotation paradigm has been proved
to be efficient and cheap (Sakaguchi et al., 2016),
and adopted by many datasets in other languages
(Napoles et al., 2017, 2019; Syvokon and Nahorna,
2021). In this work, we adopt the direct rewriting
paradigm. Besides the above-mentioned advan-
tages, we believe it is beneficial for encouraging
the variety of references since annotators can cor-
rect more freely.

2.3 Annotation Guidelines

After several months’ survey on previous GEC
data construction work, we have compiled 30-page
comprehensive guidelines for CGEC annotation.
During the annotation, our guidelines are gradu-
ally improved according to the feedback from our
annotators.

To facilitate illustration, our guidelines adopt a
two-tier hierarchical error taxonomy, including 5
major error types and 14 minor types, as shown in
Table 2. The 5 major error types are decided by
both referring to previous work and considering
frequencies of error occurrences. Our guidelines
describe in detail how to handle each minor er-
ror type and provide abundant typical examples.
We will release our guidelines along with the data,
which we hope can benefit future research.

2.4 Annotation Workflow and Tool

In order to encourage more diverse and high-quality
references, we assign each sentence to three ran-
dom annotators for independent annotation. Their
submissions are then aggregated and sent to a ran-
dom senior annotator for review. During annota-
tion, an annotator may submit multiple references

for one sentence if he/she thinks they are correct
according to the guidelines. During the review, the
job of the senior annotator includes 1) modifying
incorrect references into correct ones (sometimes
just rejecting them); 2) adding other correct refer-
ences according to the guidelines. After review, the
accepted references are defined as Final Golden
References, which are ultimately used to evaluate
CGEC models.

For the sake of self-improvement, we employ
a self-study mechanism that allows annotators to
learn from their mistakes if they submit an incor-
rect reference. Concretely, the annotator has to
modify her/his submission by referring to the final
golden references. Moreover, annotators can make
complaints if they disapprove of the final golden
references, which can trigger helpful discussions.

To improve annotation efficiency, we have de-
veloped a browser-based online annotation tool to
support the above workflow and mechanisms. Due
to the space limitation, we show the visual inter-
faces for annotation and review in Appendix A.

2.5 Annotation Process

We employed 21 undergraduate students who are
native speakers of Chinese and familiar with Chi-
nese grammar as part-time annotators. Annotators
received intensive training about our guidelines
before the real annotation. In the beginning, two
co-authors who were in charge of compiling the
guidelines served as senior annotators for review.
After one month, when the annotators were familiar
with the job, we selected 5 outstanding annotators
as senior annotators to join the review.

All participants were asked to annotate for at
least 1 hour every day. The whole annotation pro-
cess lasted for about 3 months.

2.6 Ethical Issues

All annotators and reviewers were paid for their
work. The salary is determined by both submission
numbers and annotation quality. The average salary
of annotators and reviewers is 24 and 35 RMB per
hour respectively.

All the data of the three sources are publicly
available. Meanwhile, we have obtained permis-
sion from organizers of the NLPCC-2018 and
CGED shared tasks to release our newly annotated
references in a proper way.



Dataset #sent #err. sent (perc.) chars/sent edits/ref ref/sent
NLPCC18 (orig) 2000 1983 (99.2%) 29.7 2.0 1.1
MuCGEC (NLPCC18) 1996 (4) 1904 (95.4%) 29.7 2.5 2.5
MuCGEC (CGED) 3125 (12) 2988 (95.6%) 44.8 4.0 2.3
MuCGEC (Lang8) 1942 (58) 1652 (85.1%) 37.5 2.8 2.1
MuCGEC 7063 (74) 6544 (92.7%) 38.5 32 2.3

Table 3: Data statistics, including sentence numbers, numbers (proportion) of erroneous sentences, averaged char-
acter numbers per sentence, averaged edit numbers per reference, and averaged reference numbers per sentence.
Some sentences in our source data are thrown away since annotators cannot understand their meaning and thus are
unable to correct them. Numbers in the parenthesis of the “#sent” row refer to such sentences.

3 Analysis of Our Annotated Data

This section presents a detailed analysis of the pro-
posed MuCGEC dataset.

Overall statistics of our new dataset are shown
in Table 3. We also include the original NLPCC18
dataset (Zhao et al., 2018) for comparison.2

First, regarding the proportion of erroneous sen-
tences, most of the sentences are considered to con-
tain grammatical errors in the previous annotation,
but a considerable part of them are not corrected
in our annotation. We attribute this to our strict
control of the over-correction phenomenon.

Second, regarding sentence lengths, NLPCC18
is the shortest, whereas CGED is much longer. This
is possibly because, since HSK is an official Chi-
nese proficiency test, candidates tend to use long
sentences to show their ability in Chinese use.

Third, each sentence in re-annotated NLPCC18
receives 2.5 references on average, which is more
than twice of that in the original NLPCC18 data.
Overall, each sentence obtains 2.3 references. We
believe the multi-reference characteristic makes our
dataset more reliable for model evaluation, which
is further discussed in Section 6.2.

Finally, we compare the number of char-based
edits per reference in different datasets. We de-
scribe how to derive such edits in detail in Section
6.2. We can see that the edit number is tightly cor-
related with the sentence length. The difference
in averaged sentence length and numbers of edits
indicates that the three data sources may have a sys-
tematic discrepancy in quality and difficulty, which
we believe is helpful for evaluating the generaliza-
tion ability of models. Moreover, compared with

"Here we do not compare with the original CGED and
Lang8 datasets since: 1) the CGED-orig mainly focuses on
error detection annotation and does not provide corrections
for word-order errors; 2) the Lang8-orig is collected from the
internet, and its correction is quite noisy.

NLPCC18-orig, we annotate 25% more edits (2.0
vs. 2.5) in each reference. We believe the major
reason is that the original NLPCC18 data are an-
notated under the minimal edit distance principle
(Nagata and Sakaguchi, 2016), which requires an-
notators to select a reference with fewer edits when
correcting.

Distribution regarding numbers of refer-
ences. In Figure 1, we analyze the distribution
of sentences regarding the numbers of references.
Here, we only consider erroneous sentences. Same
references from different annotators are calculated
as one reference. Overall, most sentences have 2
references, and sentences having 3 references take
a slightly lower proportion. There are 21.8% of
sentences with only one reference. Most of them
are short and easy to correct.

We believe that the average reference number
should be further increased if more annotators are
assigned for each sentence. Despite the fact that
our annotation tool allows annotators to submit
multiple answers, we find that most annotators tend
to submit a single correction. Since it is usually
easy to come up with the most suitable correction,
but is more time-consuming to provide alternatives.

Human annotation performance. In order to
know the annotation ability of our annotators and
human performance for the CGEC task, we calcu-
late char-based Fjy 5 scores by evaluating the an-
notation submissions against the final golden ref-
erences picked by senior annotators after review.
We describe how to compute char-based metrics
in detail in Section 6.2. Each reference submitted
by an annotator is considered as a sample. Over-
all, the average Fj 5 is 72.12, which we believe
can be further improved if our annotators are more
experienced and more familiar with our guidelines.

Figure 2 shows Fjy 5 scores of 15 annotators who
annotated the most sentences, in the descending
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Figure 1: The proportion of sentences with the different
number of references in MuCGEC.

order of annotated sentence numbers. We can see
that human performance varies across different an-
notators. The best annotator achieves an 82.34 Fj 5
score, while the annotator who completes the most
tasks only gets a score of 68.32. It indicates that
we should pay more attention to annotation quality
when calculating salaries and prevent annotators
from focusing too much on annotation speed.

4 Benchmark Models

To understand how well cutting-edge GEC mod-
els perform on our data, we adopt two mainstream
GEC approaches, i.e., Seq2Edit and Seq2Seq. Both
models are enhanced with PLMs. We also at-
tempt to combine them after observing their com-
plementary power in dealing with different error
types. This section briefly describes these bench-
mark models. Due to the space limitation, please
kindly refer to Appendix B for more model details.
The Seq2Edit model treats GEC as a sequence
labeling task and performs error corrections via
a sequence of token-level edits, including inser-
tion, deletion, and substitution (Malmi et al., 2019).
A token corresponds to a word or a subword in
English, and to a character in Chinese. With mi-
nor modifications to accommodate Chinese, we
adopt GECToR (Omelianchuk et al., 2020), which
achieves the SOTA performance on EGEC datasets.
Following recent Seq2Edit work like Awasthi et al.
(2019) and Omelianchuk et al. (2020), we enhance
GECToR by using PLMs as its encoder. After com-
paring several popular PLMs, we choose Struct-
BERT (Wang et al., 2019) 3 due to its superior
performance after fine-tuning (see Table 4).

*https://github.com/alibaba/AliceMind/
tree/main/StructBERT
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Figure 2: The human performance of the 15 annotators
who annotate the most sentences.

The Seq2Seq model straightforwardly treats
GEC as a monolingual translation task (Yuan and
Briscoe, 2016). Recent work proposes to enhance
Transformer-based (Vaswani et al., 2017) Seq2Seq
EGEC models with PLMs like T5 (Rothe et al.,
2021) or BART (Katsumata and Komachi, 2020).
Unlike BERT (Devlin et al., 2019), TS5 and BART
are specifically designed for text generation. There-
fore, it is straightforward to continue training them
on GEC data. We follow these work and utilize the
recently proposed Chinese BART from Shao et al.
(2021) to initialize our Seq2Seq model.

The ensemble model. Several previous works
have proved the effectiveness of model ensemble
for CGEC (Liang et al., 2020; Hinson et al., 2020).
In this work, we clearly observe the complemen-
tary power of the above two models in fixing dif-
ferent error types (see Table 6), and thus attempt
to combine them. We adopt a simple edit-wise
vote mechanism: aggregating edits from the re-
sults of each model, and only preserving edits that
appear more than N/2 times, where N is the num-
ber of models. We experiment with two ensem-
ble settings: 1) one Seq2Edit and one Seq2Seq,
denoted as “1xSeq2Edit+1xSeq2Seq” , and 2)
three Seq2Edit and three Seq2Seq, denoted as
“3xSeq2Edit+3 xSeq2Seq”. The three Seq2Edit
models are obtained by replacing the random seed,
the same goes for the Seq2Seq.

S Experiments on Original NLPCC18

In order to show that our benchmark models are
competitive among existing CGEC models, we
conduct comparison experiments on the original
NLPCCI18 test set, where most previous CGEC
systems are tested.
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P R Fos
Trained on Lang8
YouDao (Fu et al., 2018)< 3524 18.64 2991
AliGM (Zhou et al., 2018)<$ 41.00 13.75 29.36
BLCU (Ren et al., 2018)<$ 47.63 12.56 30.57
HRG (Hinson et al., 2020)<$> 36.79 27.82 34.56
MaskGEC (Zhao and Wang, 2020)0  44.36  22.18 36.97
Our Seq2Edit 39.83 23.01 3475
Our Seq2Seq 37.67 29.88 35.80
1xSeq2Edit+1xSeq2Seq{y 58.15 1835 40.55
3xSeq2Edit+3x Seq2Seq{y 55.58 19.78 40.81

Trained on Lang8+HSK

TEA (Wang et al., 2020)Q 39.43 22.80 3441
WCDA (Tang et al., 2021)Q 4741 2372 39.51
Our Seq2Edit (BERT) 39.61 28.53 36.76
Our Seq2Edit (RoBERTa) 39.74 30.44 3754
Our Seq2Edit (MacBERT) 4046 30.73 38.05
Our Seq2Edit (StructBERT) 42.88 30.19 39.55
Our Seq2Seq 4144 32.89 39.39
1xSeq2Edit+1xSeq2Seq$y 60.72 2248 4531
3xSeq2Edit+3x Seq2Seq{> 59.38 24.18 45.99

Table 4: Performance comparison on the original
NLPCCI18 dataset (Zhao et al., 2018) using the offi-
cial word-based evaluation script. The first group lists
models that use only Lang8 for training, whereas the
second group shows those using both Lang8 and HSK
data. Models marked by < use model ensemble, and
those marked by © use data augmentation.

Training data. For the sake of easy replica-
bility, we limit our training data strictly to public
resources, i.e., the Lang8 (Zhao et al., 2018) 4 data
and the HSK (Xun, 2018) > data. We filter dupli-
cate sentences that appear in our dataset, and only
use the erroneous part for training. The final Lang8
and HSK data contains 1,092,285 and 95,320 sen-
tences, respectively. The HSK data is cleaner and
of higher quality than Lang8, but is much smaller.
Following the re-weighting procedure of Junczys-
Dowmunt et al. (2018), we duplicate the HSK data
five times, and merge them with Lang8 data.

Comparison with previous work. Table 4
shows the results. For a fair comparison, we
follow the official setting of the shared task, in-
cluding using the word-based MaxMatch scorer
(Dahlmeier and Ng, 2012) for calculating the P/R/F
values. We segment model outputs by adopting the
PKUNLP word segmentation (WS) tool provided
by the shared task organizers (Zhao et al., 2018).

When using only Lang8 for training, our single
Seq2Seq model is already quite competitive. It
only underperforms MaskGEC (Zhao and Wang,
2020) by 1 Fy 5 score, which additionally uses data

*nttp://tcci.ccf.org.cn/conference/2018/
taskdata.php
Shttp://hsk.blcu.edu.cn

augmentation. After adding the HSK data, all our
models achieve further performance-boosting by
about 4 points. Both of our single benchmark mod-
els achieve SOTA performance under this setting.

The model ensemble technique leads to obvious
performance gains (more than 5 points) over single
models. However, the gains from increasing the
number of component models seem rather small.

For Seq2Edit, we additionally present results
with other PLMs besides StructBERT, including
BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019), and MacBERT (Clui et al., 2020) from the
hugging face © website. All PLMs are under the
large configuration.

6 Experiments on MuCGEC

6.1 Data Splits

For hyperparameter tuning or model selection, pre-
vious work on other CGEC datasets often randomly
sample some sentence pairs from training data as
the dev set (Wang et al., 2020; Zhao and Wang,
2020; Hinson et al., 2020), which is problematic
for replicability and complicated for comparison.

In this work, we propose to provide a fixed dev
set for our newly annotated dataset, by randomly
selecting 1,125 sentences from the CGED source,
denoted as CGED-dev. The remaining 5,938 sen-
tences are used as the test set, in which each data
source has a roughly equal amount of sentences,
i.e., 1,996 sentences for NLPCC18-test, 2,000 for
CGED-test, and 1,942 for Lang8-test.

6.2 Evaluation Metrics

Problems with the word-based metric. As dis-
cussed in Section 5, previous CGEC datasets are an-
notated upon word sequences and thus adopt word-
based metrics for evaluation. Therefore, before
annotation and evaluation, each sentence should
be segmented into words using a Chinese word
segmentation (CWS) model. This introduces un-
necessary uncertainty in the evaluation procedure.
Sometimes, a correct edit may be judged as wrong
due to word boundary mismatch. Different from
English whose words are separated naturally, Chi-
nese sentences are written without any word de-
limiters, so WS models perform much worse for
Chinese than for English (Fu et al., 2020).

In view of these, we believe it is more suitable
to abandon such word-based metrics in CGEC.

*https://huggingface.co/
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NLPCC18-test CGED-test Lang8-test All-test

P R Fos P R Fos P R Fos P R Fos
Seq2Edit 50.09 32.09 45.04 | 42.87 27.69 38.64 | 39.65 21.62 33.98 | 44.11 27.18 39.22
Seq2Seq 4799 3512 4471 | 46.04 2697 40.34 | 36.10 25.01 33.16 | 43.81 28.56 39.58
IxSeq2Edit+1xSeq2Seq | 7413 24.11 5239 | 68.59 20.35 4653 | 6225 14.23 37.17 | 68.92 19.68 45.94
3xSeq2Edit+3xSeq2Seq | 72.82 2638 53.81 | 67.95 2158 47.52 | 60.65 1639 39.38 | 67.76 21.42 47.29
Human | 7577 66.15 73.63 | 74.14 64.84 7200 | 7231 6226 70.05 | 7347 63.75 71.25

Table 5: Performance of models and our annotators on MuCGEC, using the char-based metric. For calculating
the human performance, each submitted result is considered as a sample if an annotator submits multiple results.

Seq2Edit Seq2Seq Ensemble Human
Missing (29.2%) 41.09 40.93 42.25 69.72
Redundant (16.1%) 43.11 37.65 54.18 72.78
Substitution (48.9%) 35.99 39.98 47.37 71.69
‘Word-order (5.8%) 28.28 40.33 42.44 72.58

Table 6: Fp 5 scores regarding error types on All-
test. The blackened numbers in parentheses show the
proportion of each error type. “Ensemble” refers to
“3IxSeq2Edit+3xSeq2Seq”.

The char-based evaluation metric is adopted
in this work instead. First, given an input sentence
and a correction, we obtain an optimal sequence of
char-based edits that corresponds to the minimal
edit distance. There are three types of char-based
edits, including deleting a char for a redundant
error, inserting a char for a missing error, or sub-
stituting a char with another one for a substitution
error. Secondly, following the standard practice in
both EGEC and CGEC, we merge consecutive edits
of the same type as one span-level edit (Felice et al.,
2016; Hinson et al., 2020). The above two steps are
applied to both the system output sequence and all
gold-standard references, transforming them into
sets of span-level edits. Finally, we utilize the eval-
uation script from ERRANT (Bryant et al., 2017)
to calculate the P/R/F values which does not need
error-coded annotation.

6.3 Results and Analysis

Main results. Table 5 shows the char-based per-
formance of the benchmark models and our an-
notators on MuCGEC. All models are trained on
Lang8+HSK, as described in Section 4. Please
kindly note that we cannot present results of pre-
vious work in Table 4, since most of them did not
release their code.”

The overall trend of performance is basically
consistent with those on the original NLPCC18

"BLCU (Ren et al., 2018) did release code, but its perfor-
mance is much lower than the SOTA.
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Figure 3: Effect of reference number on Fj 5.

dataset in Table 4. First, the Seq2Seq and Seq2Edit
models perform quite closely on Fjp 5, but clearly
exhibit divergent strength in precision and recall,
giving a strong motivation for combining them.
Secondly, the model ensemble approach improves
performance by a very large margin, as expected.

One interesting observation is that on MuCGEC,
“3xSeq2Edit+3 xSeq2Seq” substantially outper-
forms “1xSeq2Edit+1 xSeq2Seq” on All-test and
all three subsets. In contrast, the improvement is
only modest on the original NLPCC18 test data.
We suspect this may indicate that a multi-reference
dataset can more accurately evaluate model per-
formance. However, it may require further human
investigation for more insights.

Finally, there is still a huge performance gap
between models and humans, indicating that the
CGEC research still has a long way to go.

Performance on four error types. Table 6
shows more fine-grained evaluation results on four
error types. The word-order errors can be identified
by heuristic rules following Hinson et al. (2020).

It is clear that the Seq2Edit model is better at
handling redundant errors, whereas the Seq2Seq
model is superior in dealing with substitution and
word-order errors. For missing errors, the two per-
form similarly well.

These phenomena are quite interesting and can



be understood after considering the underlying
model architectures. On the one hand, to correct
redundant errors, the Seq2Edit model only needs
to perform a fixed deletion operation, which is a
much more implicit choice for the Seq2Seq model,
since its goal is to rewrite the whole sentence. On
the other hand, the Seq2Seq is suitable to substitute
or reorder words due to its natural capability of uti-
lizing language model information, especially with
the enhancement of BART (Lewis et al., 2020).
Again, the model ensemble approach substan-
tially improves performance on all error types. The
ensemble model is closest to the human on redun-
dant errors, probably because they are the easiest
to correct. The largest gap occurs in word-order
errors, which require global structure knowledge
to correct and are extremely challenging.
Influence of the number of references. To un-
derstand the impact of the number of references
on performance evaluation, we deliberately reduce
the available reference number in our dataset. For
example, when the maximum number of references
is limited to 2, we remove all extra references if a
sentence has more than 2 gold-standard references.
The results on MuCGEC are shown in Figure 3.
When the maximum number of references in-
creases, the performance of both models and hu-
mans increases continuously, especially for hu-
mans. As only a few sentences have more than
3 references, the improvement is quite slight when
the maximum number of references increases from
3 to All. This trend suggests that compared with
single-reference datasets, a multi-reference dataset
reduces the risk of underestimating performance,
and thus is more reliable for model evaluation.

7 Related Work

EGEC resources. There is a lot of work on
EGEC data construction. As the two earliest EGEC
datasets, FCE (Yannakoudakis et al., 2011) and NU-
CLE (Dahlmeier et al., 2013) adopt the error-coded
annotation paradigm. In contrast, JFLEG (Napoles
et al., 2017) collects sentences from TOFEL exams
and adopts the direct rewriting paradigm. W&I
(Bryant et al., 2019) also chooses the direct rewrit-
ing paradigm, and for each original sentence addi-
tionally provides the language proficiency level of
the writer. All four datasets are composed of es-
says from non-native English speakers and provide
multiple references.

Recently, researchers start to annotate small-

scale EGEC data for texts written by native English
speakers, including AESW (Daudaravicius et al.,
2016), LOCNESS (Bryant et al., 2019), GMEG
(Napoles et al., 2019) and CWEB (Flachs et al.,
2020). In the future, we plan to extend this work to
texts written by native Chinese speakers.

CGEC resources. Compared with EGEC,
progress in CGEC data construction largely lags
behind. As thoroughly discussed in Section 1,
NLPCC18 (Zhao et al., 2018) and CGED (Rao
et al., 2018, 2020) are the only two evaluation
datasets for CGEC research. Besides them, there
are also a few resources for training CGEC models,
e.g., Lang8 corpus (Zhao et al., 2018) and HSK
corpus (Xun, 2018).

Recent progress in CGEC. In the NLPCC-
2018 shared task (Zhao et al., 2018), many systems
adopt Seq2Seq models, based on RNN/CNN. Re-
cent work mainly utilizes Transformer (Wang et al.,
2020; Zhao and Wang, 2020; Tang et al., 2021).
Hinson et al. (2020) first employ a Seq2Edit model
for CGEC, and achieve comparable performance
with the Seq2Seq counterparts. Some systems in
the CGED-2020 shared task (Rao et al., 2020) di-
rectly employ the open-source Seq2Edit model, i.e.,
GECToR (Liang et al., 2020; Fang et al., 2020). Be-
sides the above two mainstream models, Li and Shi
(2021) for the first time apply a non-autoregressive
neural machine translation model to CGEC.

Besides modeling optimization, techniques like
data augmentation (Zhao and Wang, 2020; Tang
et al., 2021) and model ensemble (Hinson et al.,
2020) have also been proved very useful for CGEC.

8 Conclusions

This paper presents our newly annotated evaluation
dataset for CGEC, consisting of 7,063 sentences
written by CSL learners. Compared with existing
CGEC datasets, ours can support more reliable eval-
uation due to three important features: 1) providing
multiple references; 2) covering three different text
sources; 3) adopting more strict quality control (i.e.,
annotation guidelines and workflow).

After describing the data construction process,
we perform detailed analyses of our data. Then,
we adopt two mainstream and competitive CGEC
models, i.e., Seq2Seq and Seq2Edit, and carry out
benchmark experiments. We also propose to adopt
char-based evaluation metrics, which are more suit-
able than word-based ones. In summary, we believe
this work will promote future research in CGEC.
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A Interface

The annotation interface is shown in Figure 4. An-
notators can use it to correct assigned sentences.
Given an annotation task, this interface presents
a potentially wrong sentence and a text input box.
The original sentence is copied into the text in-
put box, and the annotator can directly modify it.
Considering the existence of multiple acceptable
corrections, we also provide a button to allow an-
notators to add additional text input boxes. For
exceptional cases, some special tags can be used,
such as ERROR FREE and NOT ANNOTATABLE.

The review interface is shown in Figure 5. It is
used by expert annotators to judge whether a cor-
rection is acceptable. All corrections of a sentence
will be shown on the screen, and reviewers can
click a check box to mark each of them as correct
or false. The text input box in the annotation inter-
face is also available here, thus allowing reviewers
to supplement extra valid corrections.

B Hyperparameters

Table 7 shows the detailed hyperparameters for
training our two benchmark models. The results of
all single models are averaged over 3 runs, and the
results of the ensemble models are just calculated
from a single run.
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Annotation System

Help
Annotation
Study
Problems

Information

annotator_1 Hello! You are annotating Task: 18

Original Sentence :

annotator 1

RiE, tNRMERNEMIINEERIL, AN TEIMIIRERZIL, tATRE R (HRER,

Corrections :

fI1ROMEHE

A, tRMERRREMNNRERZIL, RN TREMINRERIL, MINRESRSRM

4

Add a ® Annotatable  © Not Annotatable

correction

Delete a
correction

‘ Submit

Figure 4: The screenshot of the annotation interface.

Annotation System

Help
Annotation
Study
Review
Problems

Information

reviewer_1 Hello! You are reviewing Task: 2

Original Sentence:

MEABRERA R B R EENEERE, RERBMRBRALN TIFN.

Corrections :

MEABRBIAT R B IR LEAIHECRE, RERSNUIRA BTN,
® Correct © Wrong

M URBAHER N R ENEECRE, RERBMRBACESTETN,
® Correct © Wrong

M AIRBLA” BB IR EERIHEBCRE, FHEHE AR S HBIRIF.,
® Correct © Wrong

Add a ® Annotatable O Not Annotatable

correction

Delete a
correction

‘ Submit ‘

Figure 5: The screenshot of the review interface.
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Configurations

Values

Seq2Seq

Model architecture
Pretrained model
Number of epochs
Devices
Batch size per GPU
Optimizer
Learning rate
Learning rate scheduler
Gradient accumulation steps
Warmup updates
Warmup init learning rate
Dropout
Gradient clipping
Loss function
Beam size
GPU hours

BART (Lewis et al., 2020)

Chinese-BART-Large (Shao et al., 2021)

20
8 Nvidia V100 GPU (32GB)
32

Adam (81 = 0.9, B2 = 0.999, € = 1 x 10~%) (Kingma and Ba, 2014)

3x107°
Polynomial
4
1000
1x1077
0.3
1.0

Label smoothed cross entropy (label-smoothing=0.1) (Szegedy et al., 2016)

12
About 20 hours

Seq2Edit

Model architecture
Pretrained model
Number of max epochs
Number of cold epochs
Devices
Optimizer
Cold learning rate
Learning rate
Batch size
Loss function
GPU hours

GECToR (Omelianchuk et al., 2020)
Chinese-Struct-Bert-Large (Wang et al., 2019)

20
2
1 Nvidia V100 GPU (32GB)

Adam () = 0.9, B2 = 0.999, € = 1 x 10~®) (Kingma and Ba, 2014)

1x1073
1x107°
128
Cross entropy
About 10 hours

Table 7: Hyperparameter values of our benchmark models.
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