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Abstract

As generative models are increasingly trained on their own outputs, data curation
becomes the key force shaping what values persist. We formalize this recursive
loop as a two-stage game between two agents: the model Owner and the Public.
Each round, generative model outputs are filtered by both agents and returned to
the training pool, progressively amplifying curator preferences. We analyze the
dynamics under varying degrees of misalignment between the Owner and the Pub-
lic—ranging from perfect alignment to partial and fully disjoint preferences—and
show that the system converges exponentially to distinct long-run behaviours.
Finally, we establish an alignment trilemma: No Bradley–Terry alignment process
can simultaneously satisfy stability, diversity, and value alignment with both the
Owner and the Public.

1 Introduction

Generative models are increasingly trained not just on human-authored datasets, but on data
produced by earlier versions of themselves, resulting in iterative retraining or self-consuming generation
(Shumailov et al., 2023; Ferbach et al., 2024; Alemohammad et al., 2024). This process is shaped
by the interplay of two forces. First, the The Owner, typically the organization developing the
model, filters outputs based on internal criteria, often through reward models or preference tuning
(Ouyang et al., 2022; Bai et al., 2022). Second, the The Public contributes indirect supervision through
engagement metrics such as clicks or upvotes, which are increasingly treated as proxies for user
preferences (Glaese et al., 2022; Bubeck et al., 2023). Together, these forces determine what enters
the training corpus for the next generation of models. We formalize this process as a two-stage
curation game. In each round, the Owner samples outputs from the current model and selects a
preferred subset using a Bradley–Terry selection rule (Bradley and Terry, 1952). The Public then
filters this set using its own reward signals, capturing the way real-world platforms incorporate
user feedback (Kreps et al., 2024). The selected outputs are added to the training set, and the model
is retrained. Over time, this recursive loop drives the evolution of the model, with its trajectory
shaped by the degree of alignment between the Owner’s and the Public’s preferences over what
constitutes "good" data.

Our first contribution is a formal analysis of how the model’s output distribution evolves over
time under this two-stage curation process. We derive explicit update rules and characterize the
system’s long-term behavior across three alignment regimes: full alignment, partial alignment, and
complete misalignment between the Owner and the Public. In all cases, we show that the system
converges exponentially fast, either collapsing to a single point, concentrating on shared optima, or
refining within the domain of one curator. As our second contribution, we identify a fundamental
limitation that we term the alignment trilemma. We prove that no two-stage curation process based
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on Bradley–Terry selection can simultaneously guarantee (i) value alignment with both curators,
(ii) preservation output diversity, and (iii) stability with respect to the initial data distribution. This
finding aligns with classic impossibility results in social choice theory and multi-agent learning
(Arrow, 1951; Russell, 2022).

2 Mathematical Framework

Let (X , d) be a compact metric space. We consider two continuous reward functions rO, rP : X → R
for the preferences of the Owner and the Public, respectively.
Definition 1 (Optimal Sets). For any reward function r : X → R, define the optimal set:

Ar = {x ∈ X : r(x) = max
y∈X

r(y)}. (1)

We denote AO = ArO and AP = ArP for the Owner’s and Public’s optimal sets, respectively.
Definition 2 (Open Ball). For any x∗ ∈ X and ϵ > 0, define the open ball (neighborhood) around x∗ of
radius ϵ as:

Bϵ(x∗) := {x ∈ X : d(x, x∗) < ϵ}. (2)

This set contains all points in X within distance ϵ of x∗. It is used to describe local convergence and
concentration behavior.
Definition 3 (Bradley–Terry Weights, generalized from Ferbach et al. (2024)). For a probability
measure p on X , a pool size K ≥ 2, and a reward function r, define the Bradley–Terry weight as:

Hp
K,r(x) := EY1,...,YK−1∼p

 K er(x)

er(x) + ∑K−1
j=1 er(Yj)

 . (3)

Definition 4 (Alignment Types). We distinguish three alignment regimes: Perfect Alignment where
AO = AP (curators share the same optimal set); Partial Alignment where AO ∩ AP ̸= ∅, AO \ AP ̸= ∅,
and AP \ AO ̸= ∅; and Disjoint Alignment where AO ∩ AP = ∅.
Definition 5 (Misalignment Parameters). Define the reward misalignment:

∆O = min
x∈X\AO

[
max

x∗∈AO
rO(x∗)− rO(x)

]
> 0, ∆P = min

x∈X\AP

[
max

x∗∈AP
rP(x∗)− rP(x)

]
> 0. (4)

For partial alignment with shared optima Ashared = AO ∩ AP, also define:

∆O,P = min
x∈AO\AP

[
max
y∈AP

rP(y)− rP(x)
]
> 0, ∆P,O = min

x∈AP\AO

[
max
y∈AO

rO(y)− rO(x)
]
> 0. (5)

Assumption 1 (Regularity Conditions). Throughout, we assume: (i) rO, rP are continuous on X ,
(ii)AO, AP are non-empty and compact, (iii) Pool sizes K, M are sufficiently large for the large-deviation
bounds to hold.

3 Problem Definition

We formalize a generative loop in which a model’s outputs recursively reenter the public dataset,
giving rise to a feedback-driven dynamic of curation and self-consumption. The system involves
two agents: the Public, which maintains a public dataset Dt ⊂ Rd, evolving over time, and the
Owner, who periodically curates from Dt, trains a generative model Mt, and thereby influences
future iterations of Dt+1 and Mt+1. The retraining loop proceeds as follows:
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1. Initialization: Begin with an initial public dataset D1.

2. Owner Curation: The Owner curates a subset D∗
1 ⊂ D1 using a reward function rO : Rd →

R, forming the training set for generative model M1.
3. Model Generation: The model M1 produces synthetic outputs O1 ∼ M1.

4. Public Feedback: The Public curates O1 using its own reward function rP : Rd → R,
yielding a refined dataset O∗

1 ⊂ O1.
5. Dataset Update: The public dataset is updated as D2 := D1 ∪O∗

1 .
6. Recursive Loop: In the next round, the Owner curates D∗

2 ⊂ D2, trains a new model M2,
and the process repeats.

Over time, the influence of the initial dataset D1 weakens, and the public dataset becomes domi-
nated by curated generations:

lim
t→∞

Dt ≈
t−1⋃
i=1

O∗
i . (6)

Thus, the system enters a self-consuming regime where synthetic data dominates further training. To
model this, let pt ∈ P(Rd) denote the output distribution of Mt, trained on curated data D∗

t . Each
retraining step proceeds through two curation stages governed by Bradley–Terry mechanisms.

Owner Stage. The Owner samples a pool {x1, . . . , xK} ∼ pt and selects an output according to the
Bradley–Terry selection rule using reward function rO. This reweights the original distribution via
the kernel:

Hpt
K,rO

(x) := EY1,...,YK−1∼pt

 K · erO(x)

erO(x) + ∑K−1
j=1 erO(Yj)

 . (7)

The resulting intermediate distribution is given by:
p̃t(x) = pt(x) · Hpt

K,rO
(x). (8)

Public Stage. The Public applies its own reward function rP to curate samples from p̃t, again using
a Bradley–Terry kernel with pool size M:

H p̃t
M,rP

(x) := EZ1,...,ZM−1∼ p̃t

 M · erP(x)

erP(x) + ∑M−1
j=1 erP(Zj)

 . (9)

The final post-curation distribution used for retraining is:

p̂t(x) = p̃t(x) · H p̃t
M,rP

(x). (10)

The next model Mt+1 is trained on samples drawn from p̂t, yielding an updated distribution:

pt+1(x) ∝ pt(x) · Hpt
K,rO

(x) · H p̃t
M,rP

(x), where p̃t(x) = pt(x) · Hpt
K,rO

(x). (11)

Remark 1. Note that this two-stage process recursively couples the Owner and Public. The Owner first
curates using reward rO, and the resulting intermediate distribution is then curated by the Public using rP,
forming the new training distribution pt+1. This feedback loop drives the evolution of the system.

This recursive dynamic leads to the questions studied in this work: when does the system collapse to
a degenerate point mass? When does it preserve diversity across iterations? And how do evolving
preferences or asymmetric control shape the long-run behavior of such generative feedback loops?
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4 Theoretical Analysis

Theorem 1 (Perfect Alignment: Mode Collapse). Suppose the curators have perfectly aligned preferences
with a unique shared maximizer, i.e., AO = AP = {x∗}. Then:

(i) Exponential decay outside the shared maximizer: For any ε > 0, there exist constants C1, c2 > 0
such that

pt(X \ Bε(x∗)) ≤ C1e−c2t.

(ii) Convergence to point mass: The sequence pt ⇒ δx∗ converges weakly to the Dirac delta at x∗.

Thus, perfect agreement leads not to a balanced blend of values, but to degenerate outputs. Diversity
is sacrificed for consensus. But what happens when the curators disagree, when each agent has its
own optimal region, yet there remains a nonempty set of overlap?

Partial alignment. The next regime considers the more realistic case where the Owner and the
Public share some values but diverge on others. In this scenario, we find that the model converges
to a multimodal equilibrium, concentrating only on the intersection of optimal regions. Diversity
can be preserved within this shared subset, but the eventual distribution remains sensitive to the
initial conditions, breaking any hope of global stability.
Theorem 2 (Partial Alignment: Consensus on Intersection). Suppose the curators have partially aligned
preferences with shared optima Ashared = AO ∩ AP ̸= ∅. Then:

(i) Exponential decay outside shared optima: For any ε > 0, there exist constants C3, c4 > 0 such that

pt(X \ Bε(Ashared)) ≤ C3e−c4t.

(ii) Convergence to multi-modal equilibrium: The limit p∞ = limt→∞ pt exists and is supported on
Ashared.

(iii) Characterization: On Ashared, the limiting density equals

p∞(x) =
p0(x)∫

Ashared
p0(z)dz

1Ashared(x).

This regime is characterized by negotiated consensus: both agents exert influence, but only where
their incentives align. The result preserves the alignment and diversity of the values, but the
long-term model depends not just on preferences, but on where the training loop began.

Disjoint alignment. Finally, we consider the adversarial case in which the Owner and the Public
have disjoint objectives. While this might suggest indecision, we show that the Owner dominates
in determining the region of support, yet the Public sculpts the fine structure within it. The result is
a refined convergence to the subset of the Owner’s optima most acceptable to the Public.
Theorem 3 (Disjoint Alignment: Owner Dominance with Public Refinement). Suppose the curators
have disjoint preferences with AO ∩ AP = ∅. Define the public-refined owner optima:

AP|O := arg max
x∈AO

rP(x)

and the public refinement misalignment:

∆P|O := min
x∈AO\AP|O

[
max

y∈AP|O
rP(y)− rP(x)

]
> 0,

4



Under review as a conference paper at COLM 2025

(i) Exponential decay outside owner optima: For any ε > 0, there exist constants C5, c6 > 0 such that

pt(X \ Bε(AO)) ≤ C5e−c6t.

(ii) Exponential decay within owner optima but outside public refinement: For any ε > 0, there exist
constants C′, c′ > 0 such that

pt(AO \ Bε(AP|O)) ≤ C′e−c′t.

(iii) Convergence to public-refined equilibrium: The limit p∞ = limt→∞ pt exists and is supported on
AP|O. Moreover, for all x ∈ AP|O:

p∞(x) =
p0(x)∫

AP|O
p0(z)dz

.

The preceding theorems classify the long-term outcomes of recursive curation under different
preference structures between the Owner and the Public. While these results reveal distinct
behaviours – collapse, consensus, or selective refinement – they also expose a deeper structural
constraint. In every alignment regime, some desirable property is sacrificed.

Part of this rigidity stems from the specific mechanism through which preferences are operational-
ized. In our framework, both curators apply a Bradley–Terry-style selection rule, which ranks
samples by exponentiated rewards and samples proportionally, introducing a form of soft argmax
pressure that amplifies reward peaks and suppresses tail mass. As a result, even moderate dis-
agreement between curators is not gracefully negotiated but structurally constrained. The recursive
loop becomes brittle: alignment forces mode collapse, diversity induces instability, and asymmetric
preferences devolve into winner-takes-all equilibria. This leads to our impossibility result: no recur-
sive generative loop governed by two Bradley–Terry-based curators can simultaneously achieve
diversity, stability, and value alignment.
Theorem 4 (Fundamental Alignment Trilemma). Let (pt)t≥0 be the sequence of model output distribu-
tions generated by the two-curator loop on a compact space X with continuous rewards rO, rP : X →R and
sufficiently large pool sizes K, M. Define the following desirable properties:

(i) Value Alignment: The weak limit p∞ assigns positive probability to at least one maximizer of rO and to
at least one maximizer of rP.

(ii) Diversity: p∞ has strictly positive Shannon entropy H(p∞) = −
∫
X p∞(x) log p∞(x) dx > 0.

(iii) Stability: The sequence (pt) converges to a unique limit independent of the initial distribution p0.

Then no recursive curation system can satisfy all three properties simultaneously; at most two can hold for
any given alignment regime.

5 Conclusion

We modeled recursive training of generative models as a two-agent game between the Owner
and the Public, each applying their own reward-guided selection. We revealed how seemingly
benign curation mechanisms can lead to sharp long-term effects: collapse, stagnation, or selective
convergence. Even in the absence of noise or adversaries, recursive curation faces hard constraints:
no selection mechanism based on Bradley–Terry-style rewards can achieve stability, diversity, and
mutual value alignment at once. Future work might therefore explore alternative mechanisms to
purely reward-maximizing feedback loops, such as smoothing kernels, entropy-aware filtering, or
explicit negotiation between curators, that resist collapse while supporting pluralistic values.
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A Proofs

A.1 Perfect Alignment

Theorem 5 (Perfect Alignment, Mode Collapse). Suppose the curators have perfectly aligned preferences
with a unique shared maximizer, i.e., AO = AP = {x⋆}. Then:

Fix any buffer parameter δ with
0 < δ < 1

2 ∆O,
and choose η > 0 so small that

rO(x) ≤ rO(x⋆)− (∆O − δ) ∀ x /∈ Bη(x⋆),

where
Bη(x⋆) = { x ∈ X : d(x, x⋆) < η}.

for every measurable A ⊆ X , starting from any p0 such that

vmin = p0
(

Bη(x⋆)
)
> 0.

Then there exists a threshold K0 ∈ N and constants C > 0, ρ ∈ (0, 1), both depending only on ∆O, δ, η, vmin
and rO, such that for all K ≥ K0 and all t ≥ 0:

1. Exponential decay outside the maximizer.

pt
(
X \ Bη(x⋆)

)
≤ C ρt.

2. Weak convergence to the maximizer.

pt ⇒ δx⋆ as t → ∞.

To prove this theorem, we establish several key lemmas that build upon each other.

Lemma 1 (Upper Bounds on Bradley-Terry Weights Away from x⋆). Fix a parameter 0 < δ < 1
2 ∆O,

by continuity of rO choose η > 0 such that

(outer gap) rO(x) ≤ rO(x⋆)− ∆O + δ, ∀x /∈ Bη(x⋆), (12)

(inner gap) rO(x) ≥ rO(x⋆)− δ/2, ∀x ∈ Bη(x⋆). (13)

Set
vmin := v0, K0 :=

⌈
8

(∆O−δ)vmin

⌉
+ 1, CO :=

4
vmin

+ 1.

Then, for every pool size K ≥ K0, for every round t ≥ 0, and for every x /∈ Bη(x⋆),

Hpt
K,rO

(x) ≤ CO e−(∆O− 3
2 δ). (14)

Proof. Let B := Bη(x⋆) and define the in–buffer mass vt := pt(B).

We show that the probability mass inside the fixed buffer B := Bη(x⋆) does not decrease over time
under the Bradley–Terry selection dynamics. We have

H(x) := Hpt
K,rO

(x), Zt =
∫

X
pt(z) H(z) dz. (15)
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The update rule is

pt+1(x) =
pt(x) H(x)

Zt
, so vt+1 =

∫
B

pt(x) H(x) dx∫
B

pt(z) H(z) dz +
∫

X\B
pt(z) H(z) dz

. (16)

By the inner/outer gap in Eq.(13),

rO(x) ≥ rO(y) for every x ∈ B, y /∈ B. (17)

Since H is monotonically increasing in rO,

H(x) ≥ H(y) (x ∈ B, y /∈ B). (18)

Define

Hinf = inf
x∈B

H(x), Hsup = sup
y/∈B

H(y). (19)

Then 0 < Hsup ≤ Hinf.

Set

F =
∫

B
pt(x) H(x) dx, G =

∫
X\B

pt(x) H(x) dx, so vt+1 =
F

F + G
. (20)

Using the uniform bounds:

F ≥ Hinf vt, G ≤ Hsup (1 − vt). (21)

Comparing vt+1 to vt,

vt+1 ≥ Hinf vt

Hinf vt + Hsup (1 − vt)
=

vt

vt + α (1 − vt)
, with α :=

Hsup

Hinf
≤ 1. (22)

Define fα(v) :=
v

v + α(1 − v)
. We have,

fα(v)− v =
(1 − α) v (1 − v)

v + α(1 − v)
≥ 0 for 0 ≤ v ≤ 1, 0 < α ≤ 1, (23)

so fα(v) ≥ v. Therefore vt+1 ≥ vt.

By induction,

vt ≥ v0 =: vmin > 0 for all t ≥ 0. (24)

Thus, the probability mass that pt assigns to the buffer B never decreases.

Fix x /∈ B at round t and let the K − 1 competitors be Y1, . . . , YK−1
i.i.d.∼ pt. Define the count of

“in–buffer” competitors

NB :=
K−1

∑
j=1

1{Yj ∈ B}, E[NB] = (K − 1)vt ≥ (K − 1)vmin. (25)
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(i) A high–probability event. By the Chernoff lower–tail bound,

Pr
[

NB < 1
2 (K − 1)vmin

]
≤ exp

[
− 1

8 (K − 1)vmin

]
. (26)

Choose the pool–size threshold

K0 ≥ 8
(∆O − δ) vmin

, (27)

and restrict to K ≥ K0; then

Pr
[
NB < 1

2 (K − 1)vmin
]
≤ e−(∆O−δ). (28)

(ii) Bounding the Bradley–Terry ratio on the good event. Let

E :=
{

NB ≥ 1
2 (K − 1)vmin

}
. (29)

On E there are at least 1
2 (K − 1)vmin competitors in B, each satisfying rO(Yj) ≥ rO(x⋆)− δ

2 , while
rO(x) ≤ rO(x⋆)− (∆O − δ). Hence

K−1

∑
j=1

erO(Yj) ≥ 1
2 (K − 1)vmin e rO(x⋆)−δ/2, erO(x) ≤ e rO(x⋆)−(∆O−δ). (30)

Therefore, on E,

Hpt ,K,rO(x) =
K erO(x)

erO(x) + ∑K−1
j=1 erO(Yj)

≤ 2K
(K − 1)vmin

exp
[
−
(
∆O − 3

2 δ
)]

≤ 4
vmin

exp
[
−
(
∆O − 3

2 δ
)]

.

(31)

(iii) Averaging over E and its complement. On Ec the trivial bound H(x) ≤ 1 holds, and Pr(Ec) ≤
e−(∆O−δ). Taking expectations,

E
[
Hpt ,K,rO(x)

]
≤ 4

vmin
e−(∆O− 3

2 δ) + e−(∆O−δ) ≤
(

4
vmin

+ 1
)

e−(∆O− 3
2 δ). (32)

Define the constant CO := 4
vmin

+ 1. Because the final bound is deterministic, it holds pointwise:

Hpt ,K,rO(x) ≤ CO exp
[
−
(
∆O − 3

2 δ
)]

for all x /∈ B, t ≥ 0. (33)

Lemma 2 (Buffer mass is bounded below). Let B := Bη(x⋆) be the fixed buffer introduced in Lemma 1.
For every round t ≥ 0 the buffer mass

vt = pt(B)

obeys the uniform lower bound
vt ≥ vmin.

9
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Lemma 3 (Uniform lower bound inside the buffer). For every round t, every pool size K ≥ 1, and every
x ∈ Bη(x⋆),

Hpt
K,rO

(x) ≥ 1
K

e−δ/2.

Proof. Inside the buffer Bη(x⋆) we have rO(x) ≥ rO(x⋆)− δ/2. Hence

erO(x) ≥ e rO(x⋆)−δ/2. (34)

For any specific competitor multiset {Y1, . . . , YK−1} we bound the denominator of the Bradley–Terry
fraction:

erO(x) +
K−1

∑
j=1

erO(Yj) ≤ erO(x⋆) + (K − 1) erO(x⋆) = K erO(x⋆). (35)

Therefore, conditional on those Yj,

erO(x)

erO(x) + ∑K−1
j=1 erO(Yj)

≥ e rO(x⋆)−δ/2

K erO(x⋆)
=

1
K

e−δ/2. (36)

Since this bound holds for every configuration of Y1:K−1, taking the expectation over the competitor
draw preserves it:

Hpt
K,rO

(x) = EY1:K−1

[ erO(x)

erO(x) + ∑K−1
j=1 erO(Yj)

]
≥ 1

K
e−δ/2. (37)

Proposition 6 (One–step contraction inequality). Fix δ ∈
(
0, 1

2 ∆O
)

and let K≥K0. Define

ρ =
K CO
vmin

exp
[
−
(
∆O − δ

)]
. (38)

Then, for every round t ≥ 0,

mt+1 ≤ ρ mt. (39)

Proof. Set H(x) := Hpt
K,rO

(x) and Zt :=
∫
X pt(z)H(z) dz. Decompose

Zt =
∫

B
pt(z)H(z) dz︸ ︷︷ ︸
inside buffer

+
∫
X\B

pt(z)H(z) dz︸ ︷︷ ︸
outside buffer

. (40)

Lemma 2 ensures pt(B) ≥ vmin. Lemma 3 gives H(z) ≥ e−δ/2/K for all z ∈ B. Hence

Zt ≥
e−δ/2

K
vmin. (41)
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Lemma 1 yields, for all x /∈ B,

H(x) ≤ CO e−(∆O− 3
2 δ). (42)

Therefore ∫
X\B

pt(x)H(x) dx ≤ CO e−(∆O− 3
2 δ) mt. (43)

Because

mt+1 =
[
numerator

]/
Zt, (44)

the bounds (41)–(43) give

mt+1 ≤ CO e−(∆O− 3
2 δ)

(e−δ/2/K) vmin
mt

(
K CO
vmin

)
exp

[
−(∆O − 2δ)

]
mt = ρ mt, (45)

Now, we’re ready to prove Theorem 5.

Proof of Theorem 5. By Proposition 6, for any ε > 0, the mass outside Bε(x⋆) decays exponentially.
This establishes the first part of the theorem with C = m0 and c = − log ρ > 0.

For weak convergence, we show that for every bounded continuous function f : X → R,

lim
t→∞

∫
X

f (x)pt(x)dx = f (x⋆).

Let M = supx∈X | f (x)| < ∞ since f is bounded, and fix arbitrary η > 0.

By continuity of f at x⋆, there exists ε > 0 such that for all x ∈ B = Bε(x⋆),

| f (x)− f (x⋆)| < η

2
. (46)

Now write ∫
X

f (x) pt(x) dx =
∫

B
f (x) pt(x) dx +

∫
X\B

f (x) pt(x) dx. (47)
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Then,∣∣∣∣∫X f (x) pt(x) dx − f (x⋆)
∣∣∣∣ = ∣∣∣∣∫B

( f (x)− f (x⋆)) pt(x) dx +
∫
X\B

( f (x)− f (x⋆)) pt(x) dx
∣∣∣∣ (48)

≤
∣∣∣∣∫B

( f (x)− f (x⋆)) pt(x) dx
∣∣∣∣+ ∣∣∣∣∫X\B

( f (x)− f (x⋆)) pt(x) dx
∣∣∣∣ (49)

≤
∫

B
| f (x)− f (x⋆)| pt(x) dx +

∫
X\B

| f (x)− f (x⋆)| pt(x) dx (50)

≤ sup
x∈B

| f (x)− f (x⋆)|
∫

B
pt(x) dx + sup

x∈X\B
| f (x)− f (x⋆)|

∫
X\B

pt(x) dx

(51)

≤ η

2
· 1 + 2M · mt, (52)

where mt =
∫
X\B pt(x) dx is the “outside mass” and we used | f (x)− f (x⋆)| ≤ 2M everywhere.

By the Proposition 6, mt → 0 as t → ∞. Therefore, there exists T such that for all t ≥ T, 2Mmt < η/2.
Thus, for all t ≥ T, ∣∣∣∣∫X f (x) pt(x) dx − f (x⋆)

∣∣∣∣ < η

2
+

η

2
= η. (53)

Since η > 0 was arbitrary, this proves

lim
t→∞

∫
X

f (x) pt(x) dx = f (x⋆). (54)

Hence pt ⇒ δx⋆ in the weak sense.

A.2 Partial Alignment

Theorem 7 (Partial Alignment: Consensus on Intersection). Suppose the curators have partially aligned
preferences with shared optima Ashared = AO ∩ AP ̸= ∅. Then:

1. Exponential decay outside shared optima: For any ε > 0, there exist constants C, c > 0 such
that

pt(X \ Bε(Ashared)) ≤ Ce−ct

2. Convergence to multi-modal equilibrium: The limit p∞ = limt→∞ pt exists and is supported
on Ashared

3. Characterization: On Ashared, the limiting density equals

p∞(x) =
p0(x)∫

Ashared
p0(z)dz

1Ashared(x)

We establish the result through a sequence of lemmas that characterize the behavior of the Bradley-
Terry weights on different regions of the space.

12
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Lemma 4 (Constant Weights on Shared Optima). For all t ≥ 0 and all x, x′ ∈ Ashared:

Hpt
K,rO

(x) = Hpt
K,rO

(x′), H p̃t
M,rP

(x) = H p̃t
M,rP

(x′)

Proof. Fix x ∈ Ashared. Since rO(x) = maxy∈X rO(y), for any competitor y we have rO(y)− rO(x) ≤
0. The Bradley-Terry weight becomes:

Hpt
K,rO

(x) = Ey1,...,yK−1∼pt

[
K

1 + ∑K−1
j=1 exp(rO(yj)− rO(x))

]
The inner expression depends on the competitors y1, . . . , yK−1 but not on which specific maximizer
x ∈ Ashared we choose. Therefore, Hpt

K,rO
(x) is constant on Ashared. The same argument applies to

H p̃t
M,rP

.

Lemma 5 (Uniform Suppression Outside Shared Optima). Define ρ := K
1+(K−1)e−∆ · M

1+(M−1)e−∆ < 1.
Then for all t ≥ 0 and x /∈ Ashared:

Hpt
K,rO

(x) · H p̃t
M,rP

(x) ≤ ρ

Proof. We consider three cases:

Case 1: x ∈ AO \ AP. Here rO(x) = rmax
O , so x is favored by the Owner. However, by the uniform

gap assumption, rP(x) ≤ rmax
P − ∆. Since rP(y) ≤ rmax

P for all y ∈ X :

rP(y)− rP(x) ≥ −∆ =⇒ exp(rP(y)− rP(x)) ≥ e−∆ (55)

Applying this to the Bradley-Terry kernel:

H p̃t
M,rP

(x) = Ey1,...,yM−1∼ p̃t

[
M

1 + ∑M−1
j=1 exp(rP(yj)− rP(x))

]
≤ M

1 + (M − 1)e−∆ (56)

Case 2: x ∈ AP \ AO. Symmetrically, Hpt
K,rO

(x) ≤ K
1+(K−1)e−∆ .

Case 3: x /∈ AO ∪AP. Both bounds apply, yielding the product ρ < 1.

Proposition 8 (Evolution of Probability Mass). Define Ft(x) := Hpt
K,rO

(x) · H p̃t
M,rP

(x). There exists
Ct > 0 such that Ft(x) = Ct for all x ∈ Ashared, and Ct ≥ 1 for all t.

Proof. By Lemma 4, Ft is constant on Ashared. Since both curators assign maximum weight to shared
optima, and for x ∈ Ashared we have both Hpt

K,rO
(x) ≥ 1 and H p̃t

M,rP
(x) ≥ 1, we obtain Ct ≥ 1.

Lemma 6 (Bounds on Normalizing Constant). Let St :=
∫
Ashared

ptdλ and Zt :=
∫
X pt(z)Ft(z)dλ(z).

Then:

St ≤ Zt ≤ CtSt + ρ(1 − St) (57)

In particular, Zt ≥ St.

13
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Proof. We have:

Zt =
∫
Ashared

pt(x)Ctdλ(x) +
∫
X\Ashared

pt(x)Ft(x)dλ(x) (58)

= CtSt +
∫
X\Ashared

pt(x)Ft(x)dλ(x) (59)

≥ CtSt ≥ St (60)

where the last inequality uses Ct ≥ 1 from Proposition 8.

Proposition 9 (Exponential Decay of Outside Mass). Let Ot := 1 − St =
∫
X\Ashared

ptdλ. There exist
constants γ ∈ (0, 1) and u0 > 0 such that if O0 ≤ u0, then:

Ot ≤ γt (61)

for all t ≥ 0.

Proof. Using the update equation and Lemma 5:

Ot+1 =
∫
X\Ashared

pt+1(x)dλ(x) =
1
Zt

∫
X\Ashared

pt(x)Ft(x)dλ(x) ≤ ρOt

Zt
≤ ρOt

St
=

ρOt

1 − Ot
(62)

Define g(u) := ρu
1−u . For u < ρ

1+ρ , we have g(u) < u. Let γ := sup0≤u≤u0

g(u)
u < 1 for some

u0 < ρ
1+ρ . Then for all O0 ≤ u0:

Ot+1 ≤ γOt (63)

Iterating gives Ot ≤ γtO0 ≤ γt.

Lemma 7 (Preservation of Density Ratios). For any x, x′ ∈ Ashared and all t ≥ 0:

pt(x)
pt(x′)

=
p0(x)
p0(x′)

(64)

Proof. On Ashared, the update simplifies to pt+1(x) = Ct
Zt

pt(x). Define αt := Ct
Zt

. For any x, x′ ∈
Ashared:

pt+1(x)
pt+1(x′)

=
αt pt(x)
αt pt(x′)

=
pt(x)
pt(x′)

(65)

By induction, this ratio is preserved from t = 0.

Proof of Theorem 7. By Proposition 9, for any ϵ > 0, since Ashared is closed in the compact space X :∫
X\Bϵ(Ashared)

pt(x)dλ(x) ≤ Ot ≤ γt = et log γ (66)

Setting C = 1 and c = − log γ > 0 gives the exponential decay.

Since Ot → 0, we have St → 1. The sequence {pt} is tight (being probability measures on a compact
space). Any weak limit point p∗ must satisfy:

14
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• supp(p∗) ⊆ Ashared (since Ot → 0)

• On Ashared, p∗(x) ∝ p0(x) (by Lemma 7)

Since the limit is unique, p∞ := limt→∞ pt exists and p∞ is a probability measure supported on
Ashared with p∞(x) ∝ p0(x) for x ∈ Ashared, normalization gives:

p∞(x) =
p0(x)∫

Ashared
p0(z)dλ(z)

1Ashared
(x) (67)

A.3 Disjoint Alignment

Theorem 10 (Disjoint Alignment: Owner Dominance with Public Refinement). Suppose the curators
have disjoint preferences with AO ∩ AP = ∅. Define the public-refined owner optima:

AP|O := arg max
x∈AO

rP(x)

and the public refinement gap:

∆P|O := min
x∈AO\AP|O

[
max

y∈AP|O
rP(y)− rP(x)

]
> 0

Then with all constants already declared

v∗ := p0
(

Bη(x⋆)
)
, CO :=

4
v∗

+ 1, K0 :=
⌈ 8
(∆O − δ)v∗

⌉
+ 1, 0 < δ < 1

2 ∆O.

we have:

1. Exponential decay outside owner optima: For any ε > 0, there exist constants C, c > 0 such
that

pt(X \ Bε(AO)) ≤ Ce−ct

2. Exponential decay within owner optima but outside public refinement: For any ε > 0, there
exist constants C′, c′ > 0 such that

pt(AO \ Bε(AP|O)) ≤ C′e−c′t

3. Convergence to public-refined equilibrium: The limit p∞ = limt→∞ pt exists and is supported
on AP|O. Moreover, for all x ∈ AP|O:

p∞(x) =
p0(x)∫

AP|O
p0(z)dz

We establish this result through a series of lemmas that characterize the two-stage suppression
mechanism.
Lemma 8 (Constant Weights Within Owner Optima). For all t ≥ 0 and all x, x′ ∈ AO:

Hpt
K,rO

(x) = Hpt
K,rO

(x′)

15
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Proof. Since all elements of AO share the same maximal owner reward, the Bradley-Terry weights
depend only on the distribution of competitors, not on which specific maximizer is chosen. Thus
Hpt

K,rO
(x) = WO

t for some constant WO
t on AO.

Lemma 9 (Public Stage Refinement Within AO). Define σ := M[1 + (M − 1)e−∆P|O ]−1 < 1. Then for
all x ∈ AO \ AP|O:

H p̃t
M,rP

(x) ≤ σ

while for all y ∈ AP|O:

H p̃t
M,rP

(y) ≥ 1

Proof. For x ∈ AO \ AP|O, we have rP(x) ≤ maxy∈AP|O rP(y)− ∆P|O. Thus for any competitor z:

rP(z)− rP(x) ≥ −∆P|O =⇒ exp(rP(z)− rP(x)) ≥ e−∆P|O (68)

Therefore:

H p̃t
M,rP

(x) = EY1,...,YM−1∼ p̃t

[
M

1 + ∑M−1
j=1 exp(rP(Yj)− rP(x))

]
≤ σ (69)

For y ∈ AP|O, since rP(y) = maxz∈AO rP(z), the weight is at least 1.

Lemma 10 (Two-Stage Contraction Factors). Define the combined weight Ft(x) := Hpt
K,rO

(x) · H p̃t
M,rP

(x).
Then:

• For x /∈ AO: Ft(x) ≤ CO e−(∆O− 3
2 δ)

• For x ∈ AO \ AP|O: Ft(x) = WO
t σ

• For x ∈ AP|O: Ft(x) = WO
t

where WO
t ≥ 1 is the constant from Lemma 8.

Proof. Combines Lemmas 1, 8, and 9.

Proposition 11 (Exponential Decay of Outside Mass). Let mt := pt(X \ AO). There exist constants
C′

0 > 0 and ρ ∈ (0, 1) such that:

mt ≤ C′
0ρt (70)

Proof. Using the update equation and Lemma 10:

mt+1 =
∫

X\AO

pt+1(x)dx =
1
Zt

∫
X\AO

pt(x)Ft(x)dx ≤ CO e−(∆O− 3
2 δ)

Zt
mt (71)

Since Zt ≥
∫

AP|O
pt(x)Ft(x)dx = WO

t pt(AP|O) ≥ WO
t (1 − mt − bt) where bt := pt(AO \ AP|O), and

using WO
t ≥ 1, we obtain the contraction mt+1 ≤ ρmt with ρ = CO e−(∆O− 3

2 δ) < 1.
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Proposition 12 (Exponential Decay Within Owner Optima). Let bt := pt(AO \ AP|O). Then:

bt ≤ b0σt

Proof. Using the decomposition AO = AP|O∪(AO \ AP|O) and Lemma 10:

bt+1 =
1
Zt

∫
AO\AP|O

pt(x)Ft(x)dx =
WO

t σ

Zt
bt (72)

Since Zt ≥ WO
t pt(AP|O) = WO

t (1 − mt − bt) ≥ WO
t (1 − bt) for large t (as mt → 0), we have:

bt+1 ≤ WO
t σ

WO
t (1 − bt)

bt =
σbt

1 − bt
(73)

Following the analysis in Proposition 5, this yields bt ≤ b0σt.

Lemma 11 (Preservation of Density Ratios on AP|O). For any x, x′ ∈ AP|O and all t ≥ 0:

pt(x)
pt(x′)

=
p0(x)
p0(x′)

Proof. On AP|O, both stages apply constant weights: Ft(x) = WO
t for all x ∈ AP|O. Thus:

pt+1(x)
pt+1(x′)

=
pt(x)Ft(x)/Zt

pt(x′)Ft(x′)/Zt
=

pt(x)
pt(x′)

The result follows by induction.

Proof of Theorem 10. By Proposition 11, for any ε > 0:

pt(X \ Bε(AO)) ≤ mt ≤ C0ρt = Ce−ct (74)

with C = C0 and c = − log ρ > 0.

By Proposition 12, for any ε > 0:

pt(AO \ Bε(AP|O)) ≤ bt ≤ b0σt = C′e−c′t (75)

with C′ = b0 and c′ = − log σ > 0.

Since mt + bt → 0, we have pt(AP|O) → 1. The sequence {pt} is tight. Any weak limit point p∗
must satisfy:

• supp(p∗) ⊆ AP|O (by Parts 1-2)

• On AP|O: p∗(x) ∝ p0(x) (by Lemma 11)

Since the limit is unique, p∞ = limt→∞ pt exists and:

p∞(x) =
p0(x)∫

AP|O
p0(z)dz

1AP|O(x) (76)
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A.4 Fundamental Alignment Trilemma

Theorem 13 (Fundamental Alignment Trilemma). Let (pt)t≥0 be the sequence of model output distribu-
tions generated by the two-curator loop on a compact space X with continuous rewards rO, rP : X →R and
sufficiently large pool sizes K, M. Define the following desirable properties:

(i) Value Alignment: The weak limit p∞ assigns positive probability to at least one maximizer of rO and to
at least one maximizer of rP.

(ii) Diversity: p∞ has strictly positive Shannon entropy H(p∞) = −
∫
X p∞(x) log p∞(x) dx > 0.

(iii) Stability: The sequence (pt) converges to a unique limit that is independent of the initial distribution
p0.

Then no recursive curation system can satisfy all three properties simultaneously; at most two can hold for
any given alignment regime.

Proof. Let AO = arg max rO and AP = arg max rP.

Case 1: Perfect alignment (AO = AP = {x∗}). By Theorem 5, the process collapses exponentially to
the point mass δx∗ . This satisfies Value Alignment and Stability, but the entropy is zero, so Diversity
fails.

Case 2: Partial alignment (AO ∩ AP ̸= ∅ and AO ̸= AP). Theorem 7 shows that pt converges to a
measure supported on Ashared = AO ∩ AP with weights proportional to p0. Hence Value Alignment
and Diversity hold, but the limit depends on p0, so Stability fails.

Case 3: Disjoint alignment (AO ∩ AP = ∅). Theorem 10 states that pt converges to a distribution
supported on the public-refined owner set AP|O ⊆ AO, with density proportional to p0. Con-
sequently Value Alignment fails because p∞(AP) = 0, and Stability fails because the limit still
depends on p0. Diversity can hold (provided |AP|O| > 1), but at least one of the other two properties
is violated.

In each exhaustive regime at least one property is violated, so the three properties cannot hold
simultaneously. Therefore, any recursive two-curator curation system must sacrifice at least one of
Value Alignment, Diversity, or Stability.
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