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ABSTRACT

Data organized in tables are omnipresent in real-world applications. Despite their
strong performance on large-scale datasets, deep neural networks (DNNs) perform
inferior on small-scale tabular data, which hinders the wider adoption of DNNs
across domains. In this paper, we propose a holistic framework comprising a novel
neural network architecture called EXCELFORMER and two data augmentation
approaches, which achieves high-precision prediction for supervised classification
and regression tasks, particularly on small-scale tabular datasets. The core compo-
nent of EXCELFORMER is a novel semi-permeable attention coupled with a special
initialization, which explicitly diminishes the impacts of uninformative features,
thereby improving data-efficiency. The methodology insight behind two tabular
data augmentation approaches, FEAT-MIX and HID-MIX, is to increase the train-
ing samples in a way accommodating the inherent irregularities of data patterns.
Comprehensive experiments on diverse small-scale tabular datasets show that, our
EXCELFORMER consistently and substantially outperforms previous works, with
no noticeable dataset type preference. Remarkably, we find the superiority of
EXCELFORMER extends to large datasets as well.

1 INTRODUCTION

Tabular data is ubiquitous and plays a critical role in real-world applications, spanning diverse
domains such as medical trial prediction (Wu et al., 2022), market prediction (Wang et al., 2017),
and financial risk forecasting (Kim et al., 2020a). While deep neural networks (DNNs) have been
firmly established as state-of-the-art approaches in various domains, their performance on tabular
datasets, particularly on smaller-scale ones, still exhibits limitations in performance (Grinsztajn
et al., 2022). Besides, it is widely observed that no previous approaches consistently achieve strong
performances across various tabular data prediction tasks, showcasing the opportunity to construct an
effective neural networks for tabular data prediction. These issues present significant challenges and
bottlenecks in the broader adoption of neural networks on tasks that involve tables.

Why do DNNs underperform on tabular datasets, especially the small-scale ones? An obvious reason
is that DNNs have a larger hypothesis space, and thus require a large amount of data to achieve strong
performance. Another answer is: DNNs’ learning procedure exhibits rotational invariance property,
which results in its worst-case sample complexity grows at least linearly in the number of informative
features (Ng, 2004). Furthermore, tabular data inherently lack rotational invariance, and thus the
rotational invariance characteristic of DNNs does not provide advantages in this context. Conversely,
they necessitate a larger number of samples in learning to discern the original orientation of features.
On the contrary, some conventional approaches (e.g., GBDTs) are not rotationally invariant (Ng,
2004), demonstrating greater efficiency on tabular data. Hence, in cases of limited availability of data,
mitigating informative feature interference or breaking DNNs’ rotational invariance nature presents
an opportunity to enhance their performance.

To overcome such limitation of DNNs, our approach draws on insights from two key perspectives:

(P1) Improving DNNs’ data-efficiency. Due to the rotational invariance property, mitigate DNNs’
emphasis on less informative features or break their rotational invariance reduces the data requirement.

(P2) Increasing training samples. Augmenting the training dataset presents the most direct approach
to addressing the challenge of inadequate training samples.
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Motivated by this, we introduce a novel model called EXCELFORMER, which is constructed based on
the Transformer architecture (Vaswani et al., 2017). EXCELFORMER incorporates a key component
called semi-permeable attention module (SPA), which selectively permits more informative features
to gather information from less informative ones. This results in a noticeably reduced influence of
less informative features, leading to decreased data requirement according to (P1). Specially, we
introduce a new interaction-attenuation initialization approach to enhance the learning of SPA. This
initialization approach sets SPA’s parameters with minimal values, effectively attenuating tabular
data feature interactions during the initial stages of training. Consequently, this approach initializes
EXCELFORMER as a more non-rotationally invariant model (disregarding the fully connection layer
for target prediction), which helps to break the rotational invariance.

To expand the training datasets in accordance with (P2), we introduce two interpolation-based data
augmentation approaches for tabular data: FEAT-MIX and HID-MIX. Interpolation-based data
augmentation approaches, such as Mixup (Zhang et al., 2018) and its variants (Verma et al., 2019;
Uddin et al., 2020), have demonstrated their effectiveness in computer vision tasks. However, because
the target functions of tabular data are often irregular (Grinsztajn et al., 2022), simple interpolation
methods, like Mixup, tend to regularize DNNs to behave linearly in-between training examples (Zhang
et al., 2018), which is often in conflict with the irregular feature-target relation. Therefore, they often
fall short of improving and even degrading the performance of DNNs (as evidenced by the empirical
results as shown in Fig. 4). In contrast, our FEAT-MIX and HID-MIX approaches avoid such conflicts
and respectively encourage DNNs to learn independent feature transformations and to conduct sparse
feature interactions.

Technical Contributions: (i) We introduce a novel model called EXCELFORMER, incorporating a
unique semi-permeable attention module alongside a specialized interaction-attenuation initialization,
which effectively resolving the conflicts arising from the rotational invariance inherent to DNNs
and the rotational variance characteristic of tabular data. (ii) Additionally, our newly proposed data
augmentation approaches for tabular data, HID-MIX and FEAT-MIX, generate training samples to
supplement samples in a way accommodating the irregular feature-target relation of tabular data.

Practical Contributions: Experiments across various real-world small datasets confirm the su-
periority of our proposed EXCELFORMER over GBDTs and previous deep learning approaches.
Notably, (i) our EXCELFORMER, even with pre-defined hyperparameters, outperforms state-of-the-art
methods with fine-tuned hyperparameters, reducing training time consumption. (ii) The performance
of EXCELFORMER remains consistently best across subgroups of tabular datasets (e.g., classifi-
cation datasets), showing no overt dataset type preference. (iii) Surprisingly, the superiority of
EXCELFORMER extends to larger datasets, making it a versatile choice for tabular data prediction.

2 EXCELFORMER

In this section, we present the workflow of EXCELFORMER, as illustrated in Fig. 1. EXCELFORMER
includes the following key components: 1) The embedding layer featurizes and embeds tabular
features to token-level embeddings; 2) token-level embeddings were alternately processed by the
newly proposed semi-permeable attention module (SPA) and gated linear units (GLUs). 3) Finally, a
prediction head constructed by two fully connection layers was used to predict the final target. In
the following, we will introduce the novel semi-permeable attention with the interaction attenuated
initialization first and then the rest part of EXCELFORMER.

2.1 SEMI-PERMEABLE ATTENTION

As stated in (Ng, 2004), less informative features make minor contributions on target prediction
but still necessitate at least a linear increase in the requirement for training samples to learn how to
“ignore” them. Besides, DNNs may not generalize well if trained on insufficient amounts of data, and
less informative features may introduce excessive noise and impede prediction. Given the limited
availability of data on small-scale tabular datasets, our idea is to incorporate an inductive bias into
the self-attention mechanism, which selectively restricts the impacts of a feature to only those that
are less informative, thereby reducing the overall impact of uninformative features on prediction
outcomes. We propose a semi-permeable attention module (SPA), which is defined by:

z′ = softmax(
(zWq)(zWk)

T ⊕M√
d

)(zWv), (1)
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Figure 1: An illustration of our proposed EXCELFORMER model.

where z ∈ Rf×d is the input embeddings and z′ the output embeddings, Wq,Wk, Wv ∈ Rd×d are
all learnable matrices, and ⊕ is element-wise addition. M ∈ Rf×f is an unoptimizable mask, where
the element at the i-th row and j-th column is defined by:

M [i, j] =

{
−∞ I(fi) > I(fj)

0 I(fi) ≤ I(fj)
(2)

The function I(·) represents a measure of feature importance, and we use the ‘mutual information’
metric in this paper (see Appendix F for details). If the feature fi is more informative compared to fj ,
M [i, j] is set −∞ (we use −105 in implementation) and thus the (i, j) grid on the attention map is
masked. It prevents the transfer of the token embedding for the feature fj to the token representing
fi. In this way, only more informative features are permitted to propagate information to the less
informative ones, and the reverse is not allowed. By doing so, SPA still maintains interaction pathways
between any two features while constraining the impacts of less informative ones. Intuitively, when
training samples are insufficient, some feature interactions conducted by the model may be sub-
optimal, as vanilla self-attention was proved data-inefficient (Touvron et al., 2021a). When using SPA,
it can avoid the excessive impacts of a noisy feature on prediction outcomes in case some associated
interaction pathways are ill-suited. In practice, SPA is extended to a multi-head self-attention version,
with 32 heads by default.

Interaction Attenuated Initialization. Since non-rotationally invariant algorithms have been
recognized as more efficient learners for tabular data, we present a tailored initialization approach
for our semi-permeable attention to ensure that EXCELFORMER starts as a largely non-rotationally
invariant model. Notably, removing all self-attention operations from a Transformer model, features
are processed individually, which makes the Transformer model nearly non-rotationally invariant (if
we set aside the full connection layers that fuse features for target prediction). Concurrently, prior
researches have evidenced the indispensable role of feature interactions (e.g., through self-attention)
in Transformer-based models on tabular data (Gorishniy et al., 2021; Yan et al., 2023). By integrating
these insights, our proposed interaction attenuated initialization scheme initially dampens the impact
of SPA during the early stages of training, allowing essential feature interactions progressively grow
under the driving force of the data.

Our interaction attenuated initialization scheme is built upon the commonly used He’s initializa-
tion (He et al., 2015) or Xavier initialization (Glorot & Bengio, 2010), by rescaling the variance of an
initialized weight w with γ (γ → 0+) while keeping the expectation at 0:

Var(w) = γVarprev(w), (3)

where Varprev(w) denotes the weight variance used in the He’s initialization and Xavier initialization.
In this work, we set γ = 10−4. To reduce the impacts of SPA, we apply Eq. (3) to all the parameters
in the SPA module. Thus, EXCELFORMER works like a non-rotationally invariant model initially.

Actually, for a module with an additive identity shortcut like y = F(x) + x, our initialization
approach attenuates the sub-network F(x) and satisfies the property of dynamical isometry (Saxe
et al., 2014) for better trainability. Some previous work (Bachlechner et al., 2021; Touvron et al.,
2021b) suggested to rescale the F(x) path as y = ηF(x)+x, where η is a learnable scalar initialized
as 0 or a learnable diagonal matrix whose elements are of very small values. Different from these
methods, our attenuated initialization approach directly assigns minuscule values to the weights
during initialization. Our approach is better suited for the flexible learning of whether each feature
interaction pathway should be activated or not, thereby achieving sparse attention.

3



Under review as a conference paper at ICLR 2024

: sample 𝑥! : sample 𝑥"

Figure 2: kNN (k = 8) decision boundaries with
2 key features of a zoomed-in part of the Higgs
dataset. Convex combinations by vanilla Mixup
(points on the black line) of 2 samples x1 and x2

may conflict with irregular category boundaries.

synthesized 𝑥!sample 𝑥! sample 𝑥"

(b) An example of FEAT-MIX (on input data), 𝜆" =
#
$

features

features

em
b.

sample 𝑧! synthesized 𝑧!sample 𝑧"

(a) An example of HID-MIX (on feature embedding), 𝜆% =
#
$

𝑦& 𝑦# 𝑦!=
#
$
𝑦& +

&
$
𝑦#

𝑦& 𝑦# 𝑦!= !.#$!.#$!.#$!.%
&

𝑦# +
!.'$!.#

&
𝑦'

Feature Importance (𝐼): 0.1 0.1 0.1 0.1 0.40.2

Figure 3: Examples for the HID-MIX and FEAT-
MIX, where “emb.” means “embeding” dimension.

2.2 OTHER COMPONENTS OF EXCELFORMER

Feature Pre-processing. Features are pre-processed before feeding into EXCELFORMER. The
numerical features are normalized and the categorical features are converted into numerical ones
using the CatBoost Encoder implemented with the Sklearn Python package 1. This step performs
similar to previous works (e.g., Feature-Token Transformer (Gorishniy et al., 2021)).

Embedding Layer. The embedding layer transforms the input features into initial feature embedding
z(0) ∈ Rf×d (f and d are the amount of feature and embedding dimension, respectively). The
embedding zi ∈ Rd of a processed scalar feature fi is computed, by:

zi = tanh (fiWi,1 + bi,1)⊙ (fiWi,2 + bi,2), (4)

where Wi,1,Wi,2 ∈ R1×d and bi,1, bi,2 ∈ Rd are learnable parameters. Then, the initial feature
embedding z(0) are obtained by stacking zi, as z(0) = [z1, z2, z3, . . . , zf ]

T .

Gated Linear Unit Module. In addition to the SPA module, another key component of EX-
CELFORMER is the Gated Linear Unit (GLU). As discussed in (Shazeer, 2020), replacing the
point-wise feed-forward net (FFN) with the GLU module can enhance the Transformer. In our
case, using GLU, an attentive module, can facilitate the learning of the irregular feature-target
functions (Grinsztajn et al., 2022) on tabular datasets (also as shown in Fig. 2). Diverging from the
standard GLU architecture, we employ the “tanh” activation in lieu of the “sigmoid” activation for
better optimization properties (LeCun et al., 2002), as:

z′ = tanh (Linear1(z))⊙ Linear2(z), (5)

where Linear1 and Linear2 are applied onto the embedding dimension of z, ⊙ denotes element-
wise product. Please note that both the vanilla FFN and GLU employ two fully connection layers,
resulting in similar computational costs. The SPA and GLU modules are alternately stacked to form
the core structure of the EXCELFORMER model, as shown in Fig. 1.

Prediction Head. The prediction head is directly applied to the output of the topmost GLU module,
which contains two fully connection layers to separately compress the information along the token
embeddings and fuse the information from features, by:

p = ϕ(Lineard(P-ReLU(Linearf (z
(L))))), (6)

where z(L) is the input, Wf ∈ Rf×C and bf ∈ RC . For multi-classification task, C is the amount
of target categories and ϕ indicates “softmax”. For regression and binary classification tasks, then
C = 1 and ϕ is sigmoid. The fully connection layer Linearf and Lineard are applied along and
the feature dimension and the embedding dimension of z(L), respectively.

3 DATA AUGMENTATION

As mentioned in (P2), a straightforward approach to tackle data insufficiency is to create training
samples. While Mixup (Zhang et al., 2018) regularizes DNNs to favor linear behaviors between

1https://contrib.scikit-learn.org/category_encoders/catboost.html
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samples and stands as one of the most effective data augmentation methods in computer vision,
empirical evidence suggests that it does not perform optimally on tabular datasets (e.g., see Fig. 4).
This discrepancy may be due to the conflict between the model’s linear behavior and the irregularity
of target functions, as intuitively illustrated in Fig. 2. To address this challenge, we introduce two
Mixup variants, HID-MIX and FEAT-MIX, which mitigate the conflicts in creating samples.

HID-MIX. Our HID-MIX is applied to the token-level embeddings after the input samples have been
processed by the embedding layer, along with their corresponding labels. It randomly exchanges some
embedding “dimensions” between two samples (please refer to Fig. 3(a)). Let z(0)1 , z

(0)
2 ∈ Rf×d

be the token-level embeddings of two randomly selected samples, with y1 and y2 denoting their
respective labels. A new sample represented as a token-label pair (z(0)m , ym) is synthesized by:{

z(0)m = SH ⊙ z
(0)
1 + (1H − SH)⊙ z

(0)
2 ,

ym = λHy1 + (1− λH)y2,
(7)

where the matrix SH is of size f × d and is formed by stacking f identical d-dimensional binary
vectors denoted as sh: SH = [sh, sh, . . . , sh]

T . sh consists of ⌊λH × d⌋ randomly selected elements
set to 1 and the rest elements set to 0. The scalar coefficient λH for labels is sampled from the
Beta(αH , αH) distribution, where αH is a hyper-parameter. 1H is an all-one matrix with dimensions
f × d. In practice, λH is first sampled from given Beta(αH , αH) distribution. Subsequently, we
randomly select ⌊λH × d⌋ elements to construct the vector sh and the matrix SH .

Since the embedding “dimensions” from different samples may be randomly combined in training,
EXCELFORMER is encouraged to independently and equally handle various embedding dimensions.
Considering each embedding dimension as a distinct “profile” version of input data (as each em-
bedding element is projected from a scalar feature value), HID-MIX regularizes EXCELFORMER to
behave like a bagging predictor (Breiman, 1996). Therefore, HID-MIX may also help mitigate the
effects of data noise and perturbations, in addition to increasing the amount of training data.

FEAT-MIX. Our idea of FEAT-MIX is visualized as in Fig. 3. Unlike HID-MIX that operates on
the embedding dimension, our FEAT-MIX synthesizes new sample (xm, ym) by swapping parts of
features between two randomly selected samples x1, x2 ∈ Rf , and blending their labels y1 and y2
guided by feature importance, by:{

xm = sF ⊙ x1 + (1F − sF )⊙ x2,

ym = Λy1 + (1− Λ)y2,
(8)

where the vector sF and the all-one vector 1F are of size f , sF contains ⌊λF × f⌋ randomly chosen
elements set to 1 and the remaining elements set to 0. λF ∼ Beta(αF , αF ). The coefficient value, Λ,
is determined based on the contribution of x1 and x2, taking into account feature importance, by:

Λ =

∑
s
(i)
F =1

I(fi)∑f
i=1 I(fi)

, (9)

where s
(i)
F represents the i-th element of sF , and I(·) returns the feature importance using mutual

information. When disregarding feature importance, Λ = λF (assuming ⌊λF × f⌋ = λF × f ),
making FEAT-MIX degenerate into a form similar to cutmix (Yun et al., 2019). However, due to the
presence of uninformative features in tabular datasets, FEAT-MIX emerges as a more robust scheme.

As features from two distinct samples are randomly combined to create new samples, FEAT-MIX
promotes a solution with fewer feature interaction. This aligns with the functionality similar to our
Interaction Attenuated Initialization (see Sec. 2.1). We argue that FEAT-MIX not only supplements the
training dataset as a data augmentation method, but also encourages EXCELFORMER to predominantly
exhibit characteristics of a non-rotationally invariant algorithm.

4 TRAINING METHODOLOGY AND LOSS FUNCTIONS

EXCELFORMER can handle both classification and regression tasks on tabular datasets in supervised
learning. In training, our two proposed data augmentation schemes can be applied successively
by HID-MIX(Embedding Layer(FEAT-MIX(x, y))) or used independently. But, our tests suggest
that the effect of EXCELFORMER on a certain dataset could be better by using only FEAT-MIX or
HID-MIX. Thus, we use only one scheme in dealing with certain tabular datasets. The cross-entropy
loss is used for classification tasks, and the mean square error loss is for regression tasks.

5



Under review as a conference paper at ICLR 2024

Table 1: Performance evaluation across 96 small-scale tabular datasets containing fewer than 10k
samples. Each model underwent 5 independent trials, with the model’s average rank (± std) reported.
The best ranks are highlighted in bold while the runners-up are underlined. Our EXCELFORMER
consistently outperforms prior methods that undergo hyperparameter fine-tuning, regardless of
whether EXCELFORMER uses fine-tuned or default hyperparameters. “d”: using default hyper-
parameters; “t”: using tuned hyperparameters; “No DA”: neither FEAT-MIX nor HID-MIX is used.

EXCELFORMER setting: No DA (t) FEAT-MIX (d) HID-MIX (d) Mix Tuned Fully Tuned

XGboost (t) 4.20±2.76 4.21±2.70 4.29±2.73 4.34±2.73 4.28±2.77
Catboost (t) 4.61±2.73 4.57±2.69 4.63±2.68 4.66±2.61 4.64±2.68

FTT (t) 4.32±2.36 4.35±2.35 4.41±2.25 4.44±2.32 4.39±2.37
MLP (t) 5.23±2.31 5.27±2.34 5.26±2.32 5.30±2.37 5.32±2.33
DCN v2 (t) 6.01±2.78 5.96±2.75 5.99±2.27 6.03±2.74 6.02±2.73
AutoInt (t) 5.70±2.61 5.78±2.51 5.77±2.56 5.88±2.53 5.80±2.55
SAINT (t) 5.48±2.59 5.48±2.55 5.56±2.56 5.61±2.55 5.56±2.58
TransTab (d) 6.78±2.52 6.80±2.59 6.82±2.57 6.86±2.59 6.87±2.55
XTab (d) 8.56±2.20 8.68±2.19 8.67±2.19 8.67±2.19 8.71±2.14

EXCELFORMER (ours) 4.11±2.68 3.91±2.60 3.62±2.59 3.20±2.10 3.41±2.12

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUPS

Questions to Explore. In this section, we will evaluate and inspect the property of EXCELFORMER
and answer the following critical questions: (1) How does EXCELFORMER perform on small-scale
datasets? (2) Does EXCELFORMER exhibit preferences for dataset types? (3) How do the key
components in EXCELFORMER framework perform? (4) How does EXCELFORMER perform on
larger datasets? (5) We also explore the non-rotationally invariance property in Appendix B.

Implementation Details. We configure the number of SPA and GRU modules as L = 3, set the
feature embedding size to d = 256, and apply a dropout rate of 0.3 to the attention map. AdamW
optimizer (Loshchilov & Hutter, 2018) is used with default settings. The learning rate is set to 10−4

without weight decay, and αH and αF for Beta distributions are both set to 0.5. These settings are
the default hyperparameters for our EXCELFORMER. In the hyperparameter fine-tuning process, we
utilized the Optuna library (Akiba et al., 2019) for all approaches. Consistent with (Gorishniy et al.,
2021), we randomly select 80% of the data as training samples and the remaining 20% as test samples.
During training, we reserve 20% training samples for validation. To fine-tune our EXCELFORMER,
we designate two tuning configurations: “Mix Tuned” and “Fully Tuned”. “Mix Tuned” refers to only
fine-tune hyperparameters of data augmentation (for FEAT-MIX and HID-MIX), while “Fully Tuned”
optimizes all hyperparameters, including those related to data augmentation and model architecture.
A comprehensive description of all settings can be found in Appendix E. We applied early stopping
with a patience of 32 for EXCELFORMER.

Datasets. A total of 96 small-scale datasets were employed, all of which were sourced from the
Taptap dataset benchmark2 based on the criterion of having a sample size less than 10,000. We
also excluded multi-class classification datasets due to their limited quantity and susceptibility to
evaluation biases stemming from label imbalance. We further evaluate EXCELFORMER on 21 larger
public tabular datasets, ranging in scale from over 10,000 to 581,835 samples. The detailed dataset
descriptions are provided in Appendix G.

Compared Models. We compare our new EXCELFORMER with two prominent GBDT approaches
XGboost (Chen & Guestrin, 2016) and Catboost (Prokhorenkova et al., 2018) and several repre-
sentative DNNs: FT-Transformer (FTT) (Gorishniy et al., 2021), SAINT (Somepalli et al., 2021),
Multilayer Perceptron (MLP), DCN v2 (Wang et al., 2021a), AutoInt (Song et al., 2019), and
TapPFN (Hollmann et al., 2022). We also include two pre-trained DNNs: TransTab (Wang & Sun,
2022) and XTab (Zhu et al., 2023) for reference. The implementations of XGboost and Catboost
mainly follow (Gorishniy et al., 2021). Since we aim to extensively tune XGboost and Catboost
for their best performances, we increase the number of estimators/ iterations (i.e., the number of
decision trees) from 2000 to 4096 and the number of tuning iterations from 100 to 500, which give a

2https://huggingface.co/datasets/ztphs980/taptap_datasets
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Table 2: Performance evaluation within several dataset subgroups. Performance rank within the
datasets are reported. we also present the average normalized AUC and the average normalized R2 for
classification and regression tasks within the parentheses, respectively. The best scores are in bold and
the runners-up are underlined. “(d)”: default hyperparameters; “(t)”: finely tuned hyperparameters.
On GBDT-best datasets, we only mark the top two top-performing deep learning models, as it is
unfair to compare them directly with GBDTs under this selection criterion.

Model EXCELFORMER FTT (t) XGb (t) Cat (t) MLP (t) DCNv2 (t) AutoInt (t) SAINT (t) TransTab (d) XTab (d) TabPFN (t)
Characteristics: Task Type Classification [Rank (Ave Normalized AUC)]
Proportion 51%
Setting: HID-MIX (d) 3.88 (0.79) 4.88 (0.74) 5.97 (0.63) 5.77 (0.65) 6.61 (0.60) 6.38 (0.57) 6.63 (0.56) 6.07 (0.64) 6.31 (0.64) 9.50 (0.24) 4.01 (0.78)
Setting: Mix Tuned 3.78 (0.80) 4.91 (0.73) 5.95 (0.62) 5.79 (0.64) 6.60 (0.59) 6.39 (0.56) 6.71 (0.56) 6.10 (0.63) 6.37 (0.63) 9.46 (0.24) 3.95 (0.78)
Characteristics: Task Type Regression [Rank (Ave Normalized RMSE)]
Proportion 49%
Setting: HID-MIX (d) 3.81 (0.81) 4.45 (0.78) 3.43 (0.83) 4.26 (0.80) 4.64 (0.74) 6.26 (0.52) 5.53 (0.65) 5.64 (0.66) 8.21 (0.33) 8.79 (0.20) /
Setting: Mix Tuned 3.17 (0.86) 4.49 (0.78) 3.53 (0.82) 4.28 (0.81) 4.74 (0.74) 6.32 (0.52) 5.68 (0.65) 5.72 (0.65) 8.23 (0.33) 8.83 (0.19) /
Characteristics: #. Sample ≥ 500 [Rank]
Proportion 43%
Setting: HID-MIX (d) 3.85 4.50 4.38 5.17 5.57 5.91 5.59 5.24 6.44 8.34 /
Setting: Mix Tuned 3.52 4.50 4.39 5.15 5.60 5.99 5.71 5.33 6.48 8.34 /
Characteristics: #. Sample < 500 [Rank]
Proportion 57%
Setting: HID-MIX (d) 3.45 4.34 4.22 4.23 5.02 6.05 5.90 5.79 7.10 8.92 /
Setting: Mix Tuned 3.18 4.38 4.28 4.29 5.05 6.05 5.97 5.79 7.13 8.88 /
Characteristics: #. Feature #. Feature < 8 [Rank]
Proportion 32%
Setting: HID-MIX (d) 3.45 3.84 3.98 5.08 4.23 6.32 6.16 5.32 7.52 9.10 /
Setting: Mix Tuned 3.27 3.84 4.03 5.06 4.34 6.26 6.21 5.35 7.50 9.13 /
Characteristics: #. Feature 8 ≤ #. Feature < 16 [Rank]
Proportion 38%
Setting: HID-MIX (d) 3.76 4.26 4.44 4.61 6.31 5.75 5.39 5.69 6.61 8.17 /
Setting: Mix Tuned 3.17 4.33 4.49 4.74 6.33 5.81 5.58 5.78 6.64 8.14 /
Characteristics: #. Feature #. Feature ≥ 16 [Rank]
Proportion 30%
Setting: HID-MIX (d) 3.62 5.19 4.41 4.17 5.05 5.93 5.81 5.64 6.33 8.84 /
Setting: Mix Tuned 3.17 5.22 4.48 4.14 5.05 6.05 5.90 5.69 6.45 8.84 /
Characteristics: GBDT Performance GBDT-best datasets in Classification Tasks [Rank (Ave Normalized AUC)]
Proportion 31%
Setting: HID-MIX (d) 4.63 (0.82) 4.70 (0.79) 3.50 (0.84) 3.73 (0.83) 6.50 (0.65) 6.70 (0.64) 7.27 (0.53) 7.43 (0.63) 6.27 (0.69) 10.03 (0.16) 5.23 (0.71)
Setting: Mix Tuned 3.28 (0.88) 4.63 (0.77) 3.94 (0.82) 3.81 (0.81) 6.69 (0.64) 6.97 (0.63) 7.66 (0.53) 7.41 (0.63) 6.44 (0.68) 10.09 (0.15) 5.09 (0.72)
Characteristics: GBDT Performance GBDT-best datasets in Regression Tasks [Rank (Ave Normalized RMSE)]
Proportion 47%
Setting: HID-MIX (d) 4.66 (0.70) 4.95 (0.70) 1.95 (0.89) 3.11 (0.85) 5.41 (0.64) 6.50 (0.47) 5.86 (0.58) 6.00 (0.55) 8.14 (0.28) 8.41 (0.21)
Setting: Mix Tuned 3.18 (0.82) 5.09 (0.69) 2.18 (0.87) 3.23 (0.85) 5.55 (0.63) 6.64 (0.47) 6.18 (0.57) 6.18 (0.54) 8.27 (0.27) 8.50 (0.18) /

more stringent setting and better performances. The settings for XGboost and Catboost are given
in Appendix E. We use the default hyperparameters of pretrained models, TransTab and XTab, and
fine-tune them on each dataset. They are not hyperparameter tuned, since their hyperparameter
tuning spaces are not given. For large-scale datasets, FT-Transformer, SAINT, and TapFPN were
fine-tuned based on the hyperparameters outlined in their respective papers. The architectures and
hyperparameter tuning settings of the remaining DNNs follows the paper (Gorishniy et al., 2021). On
small-scale datasets, we tuned 50 iterations for each datasets.

Evaluation metrics. For binary classification tasks, we compute the area under the ROC Curve
(AUC) for evaluation. We use accuracy (ACC) for multi-class classification tasks. In regression tasks,
we employ the negative root mean square error (nRMSE), where the negative sign is introduced to
RMSE, aligning its direction with AUC and ACC, such that higher values across all these metrics
indicate superior performance. Due to the high diversity among tabular datasets, performance ranks
are used as a comprehensive metric, and the detailed results are given in Appendix H. To aggregate
the results across datasets, we calculate the average normalized accuracy for multi-class classification
tasks, average normalized AUC for binary classification tasks and average normalized nRMSE scores
for regression tasks. The computational formula is provided in Appendix F.

5.2 RESULTS AND DISCUSSIONS

Performances on Small-Scale Datasets. To answer question (1), as depicted in Table 1, our EX-
CELFORMER consistently outperforms other models that undergo dataset-adaptive hyperparameter
tuning, regardless of whether the hyperparameters of the EXCELFORMER are tuned or not, which
underscores the superiority of our proposed EXCELFORMER. We observe that EXCELFORMER
with HID-MIX slightly outperforms that with FEAT-MIX; and if we tune hyperparameters of EX-
CELFORMER, its performance achieves further improvement. Notably, hyperparameter fine-tuning
reduces the standard deviations of performance ranks, indicating that applying hyperparameter
fine-tuning onto EXCELFORMER can yield more consistently superior results. Interestingly, while
fine-tuning all the hyperparameters (“Fully Tuned”) should result in better performance ideally, it
shows that, under the same fine-tuning iterations, “Mix Tuned” configuration performs better. This
might be attributed to the higher efficiency of finely tuning data augmentation setting. To assess the
effectiveness of our EXCELFORMER’s architecture, we conducted experiments by excluding data
augmentation (FEAT-MIX and HID-MIX) and compare it with existing works. The results show
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Table 3: Performance evaluation across 21 larger-
scale datasets, each containing more than 10,000
samples, is conducted. We report the average ranks
along with their corresponding standard deviations,
which are calculated based on the results of 5 runs
with different random seeds. EXC. defines EX-
CELFORMER. The best and second best perfor-
mances are bold and underlined.

Setting Model Rank (mean ± std)

default
XGboost 8.52 ± 1.86

hyperparameters
Catboost 7.52 ± 2.44
FTT 6.71 ± 1.74
EXC. w/ FEAT-MIX 6.62 ± 2.44
EXC. w/ HID-MIX 4.76 ± 1.95

hyperparameter
XGboost 4.29 ± 2.59
Catboost 6.24 ± 2.39

fine-tuned FT-T 5.19 ± 2.60
EXC. (Mix Tuned) 2.38 ± 1.53
EXC. (Fully Tuned) 2.05 ± 1.40

Figure 4: Ablation study. ‘Vanilla
SA’: vanilla self-attention replacing SPA;
‘No IAI’: no interaction-attenuated ini-
tialization; ‘No DA’: no HID-MIX or
FEAT-MIX; ‘Mixup’/‘CutMix’: employing
Mixup/CutMix for data augmentation.

that even without the use of FEAT-MIX and HID-MIX, EXCELFORMER still outperforms previous
approaches, underscoring the superiority of our architectural design.

Model Preference Inspection. To answer question (2), we divide datasets into various subgroups
according to the task type, dataset size, and the number of features, so as to examine models’ per-
formance within each subgroup. We adopt two configurations, HID-MIX (default) and Mix Tuned,
for EXCELFORMER, while all of the prior works undergo hyperparameter fine-tuning. As shown in
Table 2, EXCELFORMER with HID-MIX (default) exhibits the best performance in all subgroups
except for regression tasks, where it slightly lags behind XGboost. The Mix Tuned EXCELFORMER
significantly outperforms other models in all subgroups, indicating that EXCELFORMER does not ex-
hibit overt dataset type preferences. Apart from EXCELFORMER, runner-up positions are occupied by
TapFPN, FTT, XGboost, and Catboost. This suggests that, EXCELFORMER can achieve considerable
performances in the majority of scenarios.

To further investigate the effectiveness of our EXCELFORMER on GBDT-best datasets, we selected
datasets where XGBoost or CatBoost performed the best, excluding Excelformer. We observe that
on these datasets, our model outperforms all previous deep learning approaches. Moreover, on
GBDT-best classification datasets, Mix Tuned EXCELFORMER surpasses all both XGboost and
Catboost. On GBDT-best regression datasets, our EXCELFORMER achieves competitive results
comparable to CatBoost. On those datasets, EXCELFORMER even wins GBDTs on 11 out of 15
GBDT-best classification datasets and wins on 8 out of 22 GBDT-best regression datasets. It is
crucial to note that the comparison on GBDT-best datasets is unfair to our EXCELFORMER, and it
only serves as an observation of how our EXCELFORMER has altered the landscape of competition
between GBDTs and deep learning models. In fact, the superiority of our EXCELFORMER (refer to
Table 1 and Table 3) clearly demonstrates that EXCELFORMER has changed the situation of GBDTs’
dominance on tabular data prediction tasks.

Effect Inspection of Key Components. To answer question (3), we conducted ablation studies on the
key components of our model, namely, semi-permeable attention, interaction-attenuated initialization,
and the data augmentation approach. We also compared the performance with the versions using
vanilla Mixup (Zhang et al., 2018). As illustrated in Fig. 4, if the key components were excluded or
replaced with counterparts, we observed varying degrees of performance degradation. The results in
Table 1 indicate that HID-MIX performs slightly better than FEAT-MIX, but we found that FEAT-MIX
and HID-MIX are better suited to different datasets. Notably, the performance of Mixup was worse
than our data augmentation approach, and even worse than using no data augmentation. This suggests
the conflicts we discussed in Sec. 3 between Mixup and the irregularities of feature-target functions.
More detailed ablation studies are given in Appendix A.

Performances on Larger Datasets. To answer question (4), we conduct a comparison between
our model and three previous state-of-the-art models: XGboost, Catboost, and FTT. We excluded
other models from the comparison due to their relatively inferior performances and the significant
computational load when dealing with large-scale datasets. Each model undergoes evaluation with
two settings: using default hyperparameters and dataset-adaptive fine-tuning hyperparameters. As
depicted in Table 3, strikingly, our model outperforms the previous models under both settings,
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though it is not specifically designed for large datasets. This improvement is likely attributed to our
method’s enhanced data utilization. It is worth noting that our EXCELFORMER with HID-MIX still
achieves comparable performance to prior models that undergo hyperparameter tuning, consistent
with the findings on small-scale datasets. Different from the finding on small datasets, the Fully
Tuned EXCELFORMER outperforms the Mix Tuned version on large datasets.

6 RELATED WORKS

Supervised Tabular Data Prediction. While deep neural networks (DNNs) have proven to be
effective in computer vision (Khan et al., 2022) and natural language processing (Vaswani et al.,
2017), GBDT approaches like XGBoost continue to be the preferred choice for tabular data prediction
tasks (Katzir et al., 2020; Grinsztajn et al., 2022), particularly on smaller-scale datasets, due to
their consistently superior performance. To enhance the performance of DNNs, recent studies
have focused on developing sophisticated neural modules for (i) handling heterogeneous feature
interactions (Gorishniy et al., 2021; Chen et al., 2022; Yan et al., 2023; Chen et al., 2023), (ii) seeking
for decision paths by emulating decision-tree-like approaches (Katzir et al., 2020; Popov et al., 2019;
Arik & Pfister, 2021), or (iii) resorting to conventional approaches (Cheng et al., 2016; Guo et al.,
2017). In addition to model designs, various feature representation approaches, such as feature
embedding (Gorishniy et al., 2022; Chen et al., 2023), discretization of continuous features (Guo
et al., 2021; Wang et al., 2020), and Boolean algebra based methods (Wang et al., 2021b), were well
explored. All these efforts suggested the potentials of DNNs, but they have not yet surpassed GBDTs
in performance, especially on small-scale datasets. Moreover, there were several attempts (Wang
& Sun, 2022; Arik & Pfister, 2021; Yoon et al., 2020; Zhu et al., 2023) to apply self-supervision
learning on tabular datasets. However, many of these approaches are dataset- or domain-specific,
and transferring these models to distant domains remains challenging due to the heterogeneity
across tabular datasets. While pretrained on a substantial dataset corpus, XTap (Zhu et al., 2023)
offered only a modest performance improvement due to the limited shared knowledge across datasets.
TapPFN (Hollmann et al., 2022) concentrated on solving classification problems for small-scale
tabular datasets and achieved commendable results. However, its efficiency waned when applied to
larger datasets and regression tasks. In summary, compared to decision tree-based models, DNNs
still fall short on tabular data, especially on small-scale ones, which remains an open challenge.

Mixup and its Variants as Data Augmentation. The vanilla Mixup (Zhang et al., 2018) generates a
new data through convex interpolations of two existing data, which was proved beneficial on computer
vision tasks (Tajbakhsh et al., 2020; Touvron et al., 2021a). However, we have observed that vanilla
Mixup may conflict with irregular target patterns (please refer to Fig. 2 and Fig. 4) and typically
achieves inferior performance. ManifoldMix (Verma et al., 2019) applied convex interpolations
in the hidden states, which did not fundamentally alter the data synthesis approach of Mixup and
exhibited similar characteristics to the vanilla Mixup. The follow-up variants CutMix (Yun et al.,
2019), AttentiveMix (Walawalkar et al., 2020), SaliencyMix (Uddin et al., 2020), ResizeMix (Qin
et al., 2020), and PuzzleMix (Kim et al., 2020b) spliced image pieces spatially, preserving local image
patterns but being not directly applicable to tabular data. Kadra et al. (2021) explored various data
augmentation approaches to improve the performance of MLP on tabular data. However, these data
augmentation methods do not consistently apply effectively to various tabular datasets, necessitating
time-consuming hyperparameter fine-tuning. In contrast, this paper introduced two novel Mixup-like
data augmentation approaches for tabular data, HID-MIX and FEAT-MIX, which avoid the conflicts
encountered with Mixup and contribute to EXCELFORMER achieving superior performance.

7 CONCLUSIONS

In this paper, we developed a new neural network called EXCELFORMER, accompanied by two
data augmentation approaches HID-MIX and FEAT-MIX, for supervised prediction on small-scale
tabular datasets. The key component of EXCELFORMER is the semi-permeable attention module
(SPA), coupled with a unique interaction-attenuation initialization. This attention approach serves to
reduce the influence of uninformative features and disrupt the rotational invariance property, thereby
enhancing data utilization efficiency. Concurrently, HID-MIX and FEAT-MIX efficiently generate
new samples, collaborating with SPA to enhance the performance of EXCELFORMER. Our proposed
EXCELFORMER demonstrates superior performance compared to prior model, not only on small-scale
datasets but on larger-scale datasets as well.
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Reproducibility. 1) For a fair comparison, we used the publicly available Taptap tabular dataset
benchmark (as stated in Sec. 5.1) to assess our model. We conducted 5 runs with different random
seeds and reported the average results to mitigate random fluctuations, and std are also reported. We
presented overall scores of model (including performances rank, average normalized AUC, average
normalized nRMSE) in the main paper for comprehensive evaluation, and also provided detailed
results in Appendices for reference. 2) The hyperparameter tuning spaces for our model and compared
models are given in Sec. 5.1 and Appendix E. For compared methods, hyperparameter fine-tuning
settings primarily adhered to the specifications outlined in the original papers or previous works. Any
difference, such as increasing the number of estimators/trees for XGBoost and CatBoost to achieve
better results, are explicitly noted. 3) Our code is attached in the supplementary material.
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A ADDICTIVE EXAMINATION OF PROPOSED COMPONENTS

Additive Study for Key Components. As a supplement to the ablation study in Sec. 5.2, we
conduct an additive study to evaluate our proposed components on a vanilla Transformer. Specifically,
we present the performances of a vanilla Transformer (i) with interaction-attenuated initialization
(IAI), (ii) with semi-permeable attention (SPA), (iii) with both IAI and SPA, and EXCELFORMER
(without any data augmentation). We respectively compute the performances on classification and
regression tasks within the small-scale datasets, and the results are shown in Table 4. It is evident that
all components make positive contributions to tabular data prediction tasks.

Table 4: Additive study for the effects of interaction-attenuated initialization (IAI) and semi-permeable
attention (SPA), and the rest parts on 96 small-scale tabular datasets. “Class”: binary classification;
“Reg.”: regression. No data augmentation is used on EXCELFORMER.

Transformer Transformer + IAI Transformer + SPA Transformer + SPA + IAI Excelformer

Class (Ave Norm AUC) 0.232±0.36 0.683±0.37 0.289±0.37 0.753±0.33 0.775±0.30
Reg. (Ave Norm nRMSE) 0.138±0.30 0.738±0.25 0.751±0.26 0.766±0.35 0.911±0.16

Effects of FEAT-MIX and HID-MIX. To verify the effects of FEAT-MIX and HID-MIX, we
compare them with the feature resampling augmentation approach (Rubachev et al., 2022) on a simple
MLP implemented following (Gorishniy et al., 2021). We respectively compute the performances
on classification and regression tasks within the small-scale datasets. See Table 5, our HID-MIX
outperforms the feature resampling approach, while the resampling approach performs better than
FEAT-MIX. However, please note the significant variance (as indicated by the standard deviations),
suggesting that each data augmentation approaches excel on specific datasets.

Table 5: Comparison of performance: FEAT-MIX, Feature Resampling, and HID-MIX on a simple
MLP backbone across 96 small-scale datasets. “Class”: binary classification; “Reg.”: regression.

backbone: MLP feature resample FEAT-MIX HID-MIX no data augmentation

Class (Ave Norm AUC) 0.576±0.42 0.530±0.41 0.614±0.41 0.436±0.42
Reg. (Ave Norm nRMSE) 0.661±0.39 0.629±0.40 0.681±0.39 0.334±0.42

Class (Ave Norm AUC) 0.576±0.42 0.530±0.41 0.614±0.41 0.436±0.42
Reg. (Ave Norm nRMSE) 0.661±0.39 0.629±0.40 0.681±0.39 0.334±0.42

Comparison between FEAT-MIX and CutMix. The primary distinction between the FEAT-MIX
and CutMix approaches Yun et al. (2019) lies in whether the feature importance is considered
when synthesizing new samples. To explore this difference, we conducted experiments on several
datasets using the architecture of the EXCELFORMER as backbone. Our observations were made
on both the original tables and the tables augmented with additional columns containing Gaussian
noise. See Table 6, generally, FEAT-MIX outperforms CutMix or performs on par with CutMix on
these datasets. However, in tables with noisy columns, we only observed a slight decline in the
effectiveness of FEAT-MIX (with an improvement on the cpu dataset), while CutMix exhibited a
more significant performance drop under the influence of noisy columns. Given the prevalence of
numerous uninformative features in tabular data (Ng, 2004; Grinsztajn et al., 2022), the comparison of
their performance and performance drops with noisy data emphasizes the importance of considering
feature importance during interpolation. We find that FEAT-MIX stands out as a more resilient choice
for tabular datasets.

B ROTATIONALLY INVARIANCE EVALUATION

Here we would like to inspect if the EXCELFORMER is more non-rotationally invariant and is
more noise insensitive. We posit that the subpar performance of DNNs on small-scale datasets
(as discussed in Sec. 1) can be partially attributed to their rotational invariance property, as well
as the noise sensitivity caused by rotational invariance. Thus, we propose the semi-permeable
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Table 6: Performance comparison between CutMix and FEAT-MIX. The first three datasets are
for binary classification, with performance evaluated using the AUC (↑). The rest datasets are
for regression, assessed through nRMSE (↑).“with noise” indicates we add some noisy columns
to the table. Breast: Breast Cancer Coimbra; Diabetes: Pima-Indians-Diabetes; Campus:Campus
Recruitment; yacht: yacht_hydrodynamics.

Breast Diabetes Campus cpu fruitfly yacht

CutMix 0.702 0.822 0.972 -102.06 -16.19 -3.59
FEAT-MIX 0.713 0.837 0.980 -79.10 -15.86 -0.83
CutMix (with noise) 0.688 0.809 0.938 -115.10 -17.09 -4.40
FEAT-MIX (with noise) 0.700 0.834 0.969 -74.56 -16.60 -0.89
∆ CutMix (↓) 0.014 0.013 0.034 13.04 0.90 0.81
∆ FEAT-MIX (↓) 0.013 0.003 0.011 -4.54 0.74 0.06

(a) Rotationally invariance comparison
among various approaches

(c) Ablation study for rotationally
invariance property (on ExcelFormer)

(b) Addictive study for rotationally
invariance property (on FTT backbone)

Figure 5: Model performances under random dataset rotations. Test accuracy scores have been
normalized across datasets, and the boxes represent the distribution of scores across 20 random seeds.
XGb.: XGboost, Cat.: Catboost, EXC.: EXCELFORMER without data augmentation.

attention(SPA) with the interaction attenuated initialization (IAI) approach. Here we investigate
whether these designs resolve those issues. We assess the test performance of EXCELFORMER
(without using data augmentation) when randomly rotating the datasets. We utilize all classification
datasets consisting of numerical features and containing fewer than 300 data samples. Additionally,
we introduce f uninformative features into each dataset (assuming that the original table comprises
f features), which are generated using Gaussian noises. As depicted in Fig. 5 (a), it is evident that
after randomly rotating the datasets, XGBoost and CatBoost exhibit the most significant decline
in performances. This observation suggests that they are algorithms with a higher degree of non-
rotational invariance, aligning with the findings of (Ng, 2004). While the decline in performance
of EXCELFORMER and FTT are not as substantial as those of decision tree-based models, it is still
noticeable that EXCELFORMER’s performance decreases by a larger extent after random rotations,
compared to FTT. This observation indicates that our EXCELFORMER exhibits a higher degree of
non-rotational variance compared to counterpart FTT.

Moreover, we conducted an additive study, utilizing FTT as the backbone and incorporating our
proposed SPA and IAI on FTT. See Fig. 5(b), we find that: (i) both SPA and IAI contribute positively
to the performances of FTT. (ii) In the presence of random dataset rotations, FTT with IAI and SPA
demonstrated a more pronounced performance drop, thereby showcasing the efficacy of SPA and
IAI in enhancing the non-rotational invariance property of FTT. Additionally, see Fig. 5(c), ablation
studies on the EXCELFORMER backbone (where neither FEAT-MIX nor HID-MIX was applied) also
highlighted the value of SPA and IAI in mitigating the rotational invariance property of DNN models.
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Table 7: Performance of EXCELFORMER with other state-of-the-art models on additional 16 public
multi-class classification datasets. “(t)”: hyperparameter fine-tuning is performed. The best is marked
in bold and the second best is underlined.

Datasets XGboost (t) Catboost (t) FTT(t) MLP(t) DCNv2(t) AutoInt(t) SAINT(t) EXCELFORMER (t)

baseball 0.948 0.940 0.918 0.922 0.892 0.910 0.929 0.951
UCI-student-performance-mat 0.506 0.405 0.380 0.114 0.177 0.278 0.329 0.582
CPMP-2015-classification 0.481 0.519 0.415 0.491 0.434 0.453 0.472 0.500
arsenic-male-lung 0.743 0.789 0.725 0.798 0.798 0.798 0.798 0.798
braziltourism 0.747 0.795 0.771 0.771 0.771 0.771 0.771 0.795
segment 0.961 0.961 0.957 0.961 0.961 0.970 0.961 0.981
iris 0.833 0.967 0.867 0.667 0.900 0.933 0.867 0.967
analcatdata_broadwaymult 0.439 0.596 0.474 0.439 0.439 0.456 0.491 0.526
ipums_la_97-small 0.482 0.484 0.474 0.447 0.465 0.476 0.452 0.491
allrep 0.981 0.983 0.964 0.967 0.964 0.966 0.967 0.984
analcatdata_germangss 0.438 0.388 0.463 0.375 0.363 0.450 0.425 0.475
MyIris 0.933 0.967 0.933 0.700 0.933 0.900 0.933 0.933
JuanFeldmanIris 0.933 0.933 0.900 0.800 0.900 0.933 0.867 0.933
arrhythmia 0.778 0.744 0.656 0.644 0.656 0.667 0.656 0.722
wine-quality-red 0.653 0.672 0.556 0.588 0.594 0.594 0.547 0.597
glass 0.791 0.767 0.698 0.674 0.581 0.628 0.628 0.651

rank (±std) 3.91±2.28 2.53±1.70 5.53±1.85 6.09±1.88 5.97±1.61 4.66±1.65 5.22±1.41 2.09±1.23
average normalized ACC (±std) 0.65±0.35 0.82±0.27 0.39±0.33 0.25±0.31 0.33±0.35 0.50±0.31 0.42±0.29 0.85±0.24

C ADDITIONAL MULTI-CLASS CLASSIFICATION RESULTS

To further assess the effectiveness of EXCELFORMER in multi-class classification, we present the
performance results of EXCELFORMER alongside other models across an additional set of 16 multi-
class classification datasets, as detailed in Table 7. The corresponding performance ranks and average
normalized accuracy are also provided. It is evident from the results that our EXCELFORMER also
outperforms the compared approaches in various multi-class classification tasks.

D AVERAGE NORMALIZED SCORES ON LARGE-SCALE DATASETS

Table 8: Performance evaluation on larger-scale datasets, each containing more than 10,000 samples.
Average normalized scores of accuracy (for multi-class classification datasets), AUC (for binary-class
classification datasets), and nRMSE (for regression datasets) are used.

Setting Model binclass regression multiclass

default
XGboost 0 ± 0 0.470±0.400 0.218± 0.400

hyperparameter
Catboost 0.977±0.034 0.286±0.291 0.280±0.408
FTT 0.807±0.397 0.613±0.313 0.763±0.163
EXCELFORMER w/ FEAT-MIX 0.982±0.022 0.513±0.422 0.791±0.143
EXCELFORMER w/ HID-MIX 0.976±0.030 0.825±0.279 0.990±0.020

hyperparameter
XGboost 0.409±0.424 0.756±0.285 0.258±0.241

fine-tuned
Catboost 0.281±0.365 0.276±0.385 0.095±0.135
FT-T 0.316±0.387 0.428±0.398 0.596±0.425
EXCELFORMER (Mix Tuned) 0.526±0.413 0.865±0.150 0.735±0.286
EXCELFORMER (Fully Tuned) 0.777±0.393 0.865±0.203 0.957±0.085

E DETAILS OF HYPER-PARAMETER FINE-TUNING SETTINGS

For XGboost and Catboost, we follow the implementations and settings in (Gorishniy et al., 2021),
while increasing the number of estimators/iterations (i.e., decision trees) and the number of tuning
iterations, so as to attain better performance. For our EXCELFORMER, we apply the Optuna based
tuning (Akiba et al., 2019). The hyper-parameter search spaces of EXCELFORMER, XGboost, and
Catboost are reported in Table 9, Table 10, and Table 11, respectively. For EXCELFORMER, we tune
just 50 iterations on the configurations with regard to the data augmentation (it is marked as “Mix
Tuned”). For “Fully Tuned” version, we finely tune 50 interations on all the hyper-parameters.
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Table 9: The hyper-parameter optimization space for EXCELFORMER. The items marked with “*”
are used to obtain a “Mix Tuned” EXCELFORMER, while all the items are used to obtain a “Fully
Tuned” version.

Hyper-parameter Distribution

#. Layers L UniformInt[2, 5]
Representation size d {64, 128, 256}
#. Heads {4, 8, 16, 32}
Residual dropout rate Uniform[0, 0.5]
Learning rate LogUniform[3× 10−5, 10−3]
Weight decay {0.0, LogUniform[10−6, 10−3]}

(*) Mixup type {FEAT-MIX, HID-MIX, neither}
(*) α of Beta distribution Uniform[0.1, 3.0]

Table 10: The hyper-parameter tuning space for
XGboost.

Hyper-parameter Distribution

Booster “gbtree”
N-estimators Const(4096)
Early-stopping-rounds Const(50)
Max depth UniformInt[3, 10]
Min child weight LogUniform[10−8, 105]
Subsample Uniform[0.5, 1.0]
Learning rate LogUniform[10−5, 1]
Col sample by level Uniform[0.5, 1]
Col sample by tree Uniform[0.5, 1]
Gamma {0, LogUniform[10−8, 102]}
Lambda {0, LogUniform[10−8, 102]}
Alpha {0, LogUniform[10−8, 102]}

#. Tuning iterations 500

Table 11: The hyper-parameter tuning space for
Catboost.

Hyper-parameter Distribution

Iterations (number of trees) Const(4096)
Od pval Const(0.001)
Early-stopping-rounds Const(50)
Max depth UniformInt[3, 10]
Learning rate LogUniform[10−5, 1]
Bagging temperature Uniform[0, 1]
L2 leaf reg LogUniform[1, 10]
Leaf estimation iterations UniformInt[1, 10]

#. Tuning iterations 500

F IMPLEMENTATION DETAILS OF METRICS USED IN THIS WORK

Feature Importance. In this study, we employ Normalized Mutual Information (NMI) to assess
the importance of various features, as mutual information can capture dependencies between features
and targets. We implement NMI using the sklearn Python package. Specifically, for classification
tasks, we utilize the "feature_selection.mutual_info_classif" function, and for regression tasks, we
utilize the "feature_selection.mutual_info_regression" function.

Average Normalized Scores across Datasets. To aggregate the model performances across datasets,
we calculate the average normalized scores (Wistuba et al., 2015) for AUC, accuracy, and nRMSE to
comprehensively evaluate the model performances. Specifically, we first normalize the scores among
the compared models for given datasets, and then average them across datasets. Formally, among D
involved datasets, the average normalized score sm for the model m is computed by:

s′m,d =
sm,d − mini∈M0(si,d)

maxi∈M0
(si,d)− mini∈M0

(si,d)
, sm =

∑D
d=1 s

′
m,d

D
(10)

where M0 encompasses all the models compared. The sm can be specified as AUCm, ACCm, or
nRMSEm. We calculate AUC, ACC, and nRMSE separately because these metrics correspond to
different tasks and exhibit varying sensitivities to errors.

Performance Rank. We performed 5 runs with different random seeds and calculated the average
results for each dataset. Additionally, we computed the overall rank across datasets for comparison.
Average rank is given to tied values.
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G DETAILED DESCRIPTION OF DATASETS USED

The details of the 96 used small-scale tabular datasets are summarized in Table 12 and Table 13. The
details of the 21 large-scale datasets are summarized in Table 14. We use the same train-valid-test
split for all the approaches.

H DETAILED RESULTS ON SMALL- AND LARGE- SCALE DATASETS

We present the average results (five runs averaged) of all the models for each dataset. The results
for the 96 small-scale datasets can be found in Table 15, and the performance on the 21 large-scale
datasets is provided in Table 16.
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Table 12: The details of the 96 small-scale tabular datasets used. “#. Num” and “#. Cat” denote
the numbers of numerical and categorical features, respectively. “#. Sample” presents the size of a
dataset.

Dataset #. Sample #. Feature #. Num #.Cat Task Type
Analytics Vidhya Loan Prediction 614 11 5 6 binclass
Audit Data 776 24 21 3 binclass
Automobiles 201 25 13 12 binclass
Bigg Boss India 567 21 6 15 binclass
Breast Cancer Dataset 569 30 30 0 binclass
Campus Recruitment 215 13 6 7 binclass
chronic kidney disease 400 13 9 4 binclass
House Price 506 17 14 3 binclass
Compositions of Glass 214 9 9 0 binclass
Credit Card Approval 590 15 6 9 binclass
Customer Classification 1000 11 5 6 binclass
Development Index 225 6 6 0 binclass
fitbit dataset 457 13 12 1 binclass
Horse Colic Dataset 299 27 9 18 binclass
Penguins Classified 344 6 4 2 binclass
Pima-Indians_Diabetes 768 8 8 0 binclass
Real Estate DataSet 511 13 11 2 binclass
Startup Success Prediction 923 45 9 36 binclass
Store Data Performance 135 16 7 9 binclass
The Estonia Disaster Passenger List 989 6 1 5 binclass
AAPL_stock_price_2021_2022 346 5 5 0 regression
AAPL_stock_price_2021_2022_1 347 5 5 0 regression
AAPL_stock_price_2021_2022_2 348 5 5 0 regression
analcatdata_creditscore 100 6 3 3 binclass
analcatdata_homerun 162 26 12 14 regression
analcatdata_lawsuit 264 4 3 1 binclass
analcatdata_vineyard 468 3 1 2 regression
auto_price 159 15 13 2 regression
autoPrice 159 15 14 1 regression
bodyfat 252 14 14 0 regression
boston 506 13 11 2 regression
boston_corrected 506 19 15 4 regression
Boston-house-price-data 506 13 11 2 regression
cholesterol 303 13 7 6 regression
cleveland 303 13 7 6 regression
cloud 108 5 3 2 regression
cps_85_wages 534 10 3 7 regression
cpu 209 7 5 2 regression
DEE 365 6 6 0 regression
Diabetes-Data-Set 768 8 8 0 binclass
DiabeticMellitus 281 97 6 91 binclass
disclosure_x_bias 662 3 3 0 regression
disclosure_x_noise 662 3 3 0 regression
disclosure_x_tampered 662 3 3 0 regression
disclosure_z 662 3 3 0 regression
echoMonths 130 9 7 2 regression
EgyptianSkulls 150 4 3 1 regression
ELE-1 495 2 2 0 regression
fishcatch 158 7 5 2 regression
Fish-market 159 6 5 1 regression
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Table 13: The details of the 96 small-scale tabular datasets used (continued). “#. Num” and “#. Cat”
denote the numbers of numerical and categorical features, respectively. “#. Sample” presents the size
of a dataset.

Dataset #. Sample #. Feature #. Num #.Cat Task Type
forest_fires 517 12 8 4 regression
Forest-Fire-Area 517 12 8 4 regression
fruitfly 125 4 2 2 regression
HappinessRank_2015 158 9 8 1 regression
Heart_disease_classification 296 13 7 6 binclass
hungarian 294 13 11 2 binclass
Indian-Liver-Patient-Patient 583 11 9 2 binclass
Intersectional-Bias-Assessment 1000 18 14 4 binclass
liver-disorders 345 5 5 0 regression
lowbwt 189 9 2 7 regression
lungcancer_shedden 442 23 20 3 regression
machine_cpu 209 6 6 0 regression
meta 528 21 16 5 regression
nki70.arff 144 76 72 4 binclass
no2 500 7 7 0 regression
pharynx 195 10 3 7 regression
Pima-Indians-Diabetes 768 8 8 0 binclass
pm10 500 7 7 0 regression
Pokmon-Legendary-Data 801 12 9 3 binclass
Reading_Hydro 1000 26 11 15 regression
residential_building 372 108 100 8 regression
rmftsa_ladata 508 10 10 0 regression
strikes 625 6 6 0 regression
student-grade-pass-or-fail-prediction 395 29 4 25 binclass
Swiss-banknote-conterfeit-detection 200 6 6 0 binclass
The-Estonia-Disaster-Passenger-List 989 6 1 5 binclass
The-Office-Dataset 188 10 2 8 regression
tokyo1 959 44 42 2 binclass
visualizing_environmental 111 3 3 0 regression
weather_ankara 321 9 9 0 regression
wisconsin 194 32 32 0 regression
yacht_hydrodynamics 308 6 6 0 regression
Absenteeism at work 740 20 7 13 binclass
Audit Data 776 24 21 3 binclass
Breast Cancer Coimbra 116 9 9 0 binclass
Cervical cancer (Risk Factors) 858 30 25 5 binclass
Climate Model Simulation Crashes 540 19 18 1 binclass
Early stage diabetes risk prediction 520 16 1 15 binclass
extention of Z-Alizadeh sani dataset 303 57 20 37 binclass
HCV data 615 12 11 1 binclass
Heart failure clinical records 299 12 7 5 binclass
Parkinson Dataset 240 46 44 2 binclass
QSAR Bioconcentration classes 779 11 7 4 binclass
Quality Assessment of DC 97 62 62 0 binclass
User Knowledge Modeling 258 5 5 0 binclass
Z-Alizadeh Sani 303 54 20 34 binclass
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Table 14: The details of 21 large-scale datasets used. “#. Num” and “#. Cat” denote the numbers of
numerical and categorical features, respectively. “#. Sample” presents the size of a dataset.

Dataset Abbr. Task Type #. Features #. Num #. Cat #. Sample Link

sulfur SU regression 6 6 0 10,081 https://www.openml.org/d/44145

bank-marketing BA binclass 7 7 0 10,578 https://www.openml.org/d/44126

Brazilian_houses BR regression 8 8 0 10,692 https://www.openml.org/d/44141

eye EY multiclass 26 26 0 10,936 http://www.cis.hut.fi/
eyechallenge2005

MagicTelescope MA binclass 10 10 0 13,376 https://www.openml.org/d/44125

Ailerons AI regression 33 33 0 13,750 https://www.openml.org/d/44137

pol PO regression 26 26 0 15,000 https://www.openml.org/d/722

binarized-pol BP binclass 48 48 0 15,000 https://www.openml.org/d/722

credit CR binclass 10 10 0 16,714 https://www.openml.org/d/44089

california CA regression 8 8 0 20,640 https://www.dcc.fc.up.pt/~ltorgo/
Regression/cal_housing.html

house_sales HS regression 15 15 0 21,613 https://www.openml.org/d/44144

house HO regression 16 16 0 22,784 https://www.openml.org/d/574

diamonds DI regression 6 6 0 53,940 https://www.openml.org/d/44140

helena HE multiclass 27 27 0 65,196 https://www.openml.org/d/41169

jannis JA multiclass 54 54 0 83,733 https://www.openml.org/d/41168

higgs-small HI binclass 28 28 0 98,049 https://www.openml.org/d/23512

road-safety RO binclass 32 29 3 111,762 https://www.openml.org/d/44161

medicalcharges ME regression 3 3 0 163,065 https://www.openml.org/d/44146

SGEMM_GPU_kernel_performance SG regression 9 3 6 241,600 https://www.openml.org/d/44069

covtype CO multiclass 54 54 0 581,012 https://www.openml.org/d/1596

nyc-taxi-green-dec-2016 NY regression 9 9 0 581,835 https://www.openml.org/d/44143
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Table 15: Performance of EXCELFORMER with other state-of-the-art models on 96 public small-scale
datasets. E.: EXCELFORMER; E. + F: EXCELFORMER with FEAT-MIX; E. + H: EXCELFORMER
with HID-MIX; XGb: XGboost, Cat: Catboost; FTT: FT-Transformer; TapP: TabPFN; TT: TransTab;
XT: XTab. “(d)”: using default hyperparameters; “(t)”: hyperparameter fine-tuning is performed.
“(M)”: Mix Tuned version; “(F)”: Fully Tuned version. TabPFN is designed for classification, we
mark “n/a” in regression tasks.

Datasets E.+F (d) E.+H (d) E. (MT) E.(FT) FTT (t) XGb (t) Cat (t) MLP (t) DCNv2 (t) AutoInt(t) SAINT (t) TT (d) XT(d) TapP(t)
Analytics Vidhya Loan Prediction 0.7449 0.7421 0.7421 0.7421 0.7285 0.7486 0.7045 0.7359 0.7464 0.7350 0.7505 0.7291 0.7240 0.7331
Audit Data 0.9984 0.9905 0.9991 0.9941 0.9993 0.9995 1.0000 0.9936 0.9990 0.9983 0.9995 0.9983 0.9822 0.9998
Automobiles 0.9774 0.9798 0.9869 0.9750 0.9583 0.9679 0.9726 0.9512 0.9226 0.9726 0.9536 0.9679 0.9545 0.9845
Bigg Boss India 1.0000 1.0000 0.9861 0.9861 0.9799 1.0000 0.9861 0.9954 0.9985 0.9059 0.9753 1.0000 0.9769 1.0000
Breast Cancer Dataset 0.9970 0.9937 0.9921 0.9944 0.9841 0.9914 0.9851 0.9917 0.9828 0.9795 0.9828 0.9970 0.9927 0.9916
Campus Recruitment 0.9795 0.9846 0.9795 0.9487 0.9487 0.9795 0.9667 0.9256 0.9103 0.9744 0.9590 0.9436 0.9232 0.9821
chronic kidney disease 0.9993 1.0000 0.9967 0.9960 0.9960 0.9900 0.9940 0.9907 0.9767 0.9893 0.9853 0.9947 0.9973 0.9993
House Price 0.8904 0.9015 0.9015 0.8983 0.9011 0.8818 0.8977 0.9026 0.8924 0.9013 0.9054 0.8971 0.8863 0.9007
Compositions of Glass 0.8976 0.8595 0.8976 0.9238 0.8595 0.8655 0.9024 0.8167 0.9000 0.6929 0.7929 0.7929 0.7976 0.8905
Credit Card Approval 0.9583 0.9719 0.9680 0.9701 0.9607 0.9595 0.9680 0.9447 0.9478 0.9550 0.9550 0.9662 0.9376 0.9553
Customer Classification 0.5792 0.5719 0.5280 0.6014 0.5951 0.4727 0.5802 0.5376 0.6417 0.5952 0.6348 0.6125 0.6134 0.6229
Development Index 1.0000 0.9671 1.0000 1.0000 0.9815 0.9259 0.9805 0.9588 0.9362 0.9633 1.0000 0.9856 0.9210 0.9856
fitbit dataset 0.7991 0.8216 0.8092 0.8025 0.8154 0.8138 0.7975 0.8073 0.8101 0.7628 0.7939 0.8164 0.7847 0.8914
Horse Colic Dataset 0.7523 0.7477 0.7373 0.7407 0.6921 0.6921 0.7269 0.7025 0.6169 0.6038 0.7083 0.7199 0.6905 0.7346
Penguins Classified 0.9991 0.9991 0.9991 1.0000 1.0000 0.9966 0.9944 0.9983 0.9983 0.9954 1.0000 0.9940 0.9872 0.9983
Pima-Indians_Diabetes 0.8367 0.8330 0.8154 0.8148 0.8048 0.7887 0.7667 0.8222 0.8069 0.7987 0.8096 0.8135 0.7546 0.8181
Real Estate DataSet 0.9176 0.8894 0.9041 0.9176 0.9045 0.9010 0.9167 0.8621 0.8760 0.9014 0.8945 0.8883 0.8471 0.9029
Startup Success Prediction 0.9938 0.9914 0.8397 0.8445 0.8464 0.9937 0.7277 0.8373 0.7701 0.8456 0.8363 0.8204 0.8371 0.8428
Store Data Performance 0.7632 0.7632 0.6908 0.7566 0.6382 0.6316 0.7829 0.6447 0.6711 0.7627 0.6184 0.6645 0.6513 0.8487
The Estonia Disaster Passenger List 0.7572 0.7559 0.7708 0.7713 0.7546 0.7499 0.7379 0.7464 0.7401 0.7379 0.7436 0.7505 0.7248 0.7518
analcatdata_creditscore 1.0000 1.0000 1.0000 1.0000 1.0000 0.9400 0.9667 1.0000 0.9200 0.9667 0.8533 1.0000 0.8467 1.0000
analcatdata_lawsuit 1.0000 1.0000 1.0000 1.0000 1.0000 0.9949 1.0000 1.0000 0.9898 0.9541 0.9847 0.9796 0.9395 1.0000
Diabetes-Data-Set 0.8356 0.8337 0.8248 0.8294 0.8241 0.7852 0.7754 0.8215 0.7954 0.8311 0.8257 0.8120 0.7903 0.8152
DiabeticMellitus 0.9878 0.9865 0.9865 0.9865 0.9784 0.9743 0.9493 0.7405 0.8242 0.8932 0.9239 0.9041 0.7346 0.9405
Heart_disease_classification 0.8984 0.9096 0.9152 0.9241 0.9342 0.8990 0.9018 0.8984 0.9342 0.9241 0.9174 0.9107 0.9152 0.9252
hungarian 0.8446 0.8596 0.8596 0.8484 0.8822 0.8578 0.8910 0.9273 0.9060 0.8534 0.9261 0.8985 0.9273 0.8722
Indian-Liver-Patient-Patient 0.7133 0.6984 0.7197 0.7232 0.7551 0.7399 0.7206 0.7116 0.7310 0.7133 0.7254 0.7332 0.6935 0.7381
Intersectional-Bias-Assessment 0.9953 0.9958 0.9960 0.9979 0.9916 0.9925 0.9977 0.9956 0.9944 0.9962 0.9982 0.9942 0.9736 0.9965
nki70.arff 0.8158 0.9263 0.8867 0.8737 0.6263 0.8526 0.8526 0.6842 0.6684 0.8105 0.8353 0.8263 0.8263 0.9216
Pima-Indians-Diabetes 0.8356 0.8337 0.8109 0.8052 0.8494 0.8140 0.7528 0.7974 0.7931 0.7638 0.7806 0.8141 0.7903 0.8152
Pokmon-Legendary-Data 0.9767 0.9888 0.9981 0.9869 0.9679 0.9504 0.9840 0.9203 0.9412 0.9917 0.9772 0.9810 0.9679 0.9801
student-grade-pass-or-fail-prediction 0.9898 0.9884 1.0000 1.0000 0.9710 1.0000 1.0000 0.9771 0.8211 0.9993 0.9608 0.9898 0.8494 0.9601
Swiss-banknote-conterfeit-detection 0.9925 0.9950 1.0000 1.0000 0.9975 1.0000 1.0000 1.0000 0.9975 1.0000 1.0000 1.0000 0.9450 1.0000
The-Estonia-Disaster-Passenger-List 0.7572 0.7559 0.7555 0.7585 0.7719 0.7723 0.7366 0.7485 0.7530 0.7390 0.7433 0.7464 0.6948 0.7518
tokyo1 0.9715 0.9740 0.9696 0.9702 0.9692 0.9706 0.9536 0.9716 0.9727 0.9665 0.9653 0.9595 0.9596 0.9705
Absenteeism at work 0.8579 0.8665 0.8669 0.8921 0.8281 0.8402 0.8145 0.8278 0.7973 0.8299 0.8119 0.8352 0.7713 0.8339
Audit Data 0.9984 0.9905 0.9995 0.9995 1.0000 1.0000 1.0000 0.9934 0.9967 0.9991 0.9995 0.9967 0.9822 0.9998
Breast Cancer Coimbra 0.7133 0.7622 0.9276 0.7483 0.7483 0.7762 0.7692 0.6993 0.7168 0.6503 0.6434 0.6923 0.6224 0.5923
Cervical cancer (Risk Factors) 0.7137 0.6431 0.6431 0.5415 0.6194 0.6039 0.7165 0.5680 0.5867 0.5720 0.4839 0.5268 0.5353 0.9798
Climate Model Simulation Crashes 0.9574 0.9776 0.9742 0.9776 0.9192 0.9529 0.9832 0.9439 0.9439 0.8563 0.9733 0.7957 0.7677 0.9973
Early stage diabetes risk prediction 0.9906 0.9684 0.9746 0.9820 0.9793 0.9969 0.9906 0.9957 0.9973 0.9984 0.9980 0.9922 0.9109 0.9629
extention of Z-Alizadeh sani dataset 0.9638 0.9651 0.9651 0.9121 0.9638 0.9606 0.9509 0.9522 0.9651 0.9457 0.9574 0.9134 0.8416 1.0000
HCV data 0.9982 0.9942 0.9965 0.9988 0.9982 0.9924 0.9930 0.9714 1.0000 0.9982 1.0000 0.9977 0.9523 0.8511
Heart failure clinical records 0.8652 0.8883 0.8806 0.8922 0.9127 0.8633 0.8177 0.8370 0.8395 0.8691 0.8203 0.8588 0.7918 0.9214
Parkinson Dataset 0.9167 0.9253 0.9392 0.9253 0.9306 0.8559 0.9071 0.9201 0.9253 0.9253 0.9201 0.9132 0.8941 0.9121
QSAR Bioconcentration classes 0.7721 0.8331 0.8314 0.8454 0.8796 0.8308 0.8363 0.8419 0.8640 0.8242 0.8162 0.8293 0.8079 0.8613
Quality Assessment of DC 0.5490 0.5294 0.5294 0.8235 0.3922 0.6078 0.9412 0.7451 0.7451 0.2941 0.1961 0.4314 0.3922 0.3137
User Knowledge Modeling 0.9771 0.9771 0.9771 0.9559 0.9902 0.9330 0.9673 0.9641 0.9559 0.9673 0.9739 0.8713 0.8547 0.9886
Z-Alizadeh Sani 0.8385 0.8863 0.8863 0.8618 0.8773 0.8424 0.8863 0.8618 0.8760 0.8450 0.8734 0.8592 0.8041 0.8527
AAPL_stock_price_2021_2022 -2.4201 -0.8485 -1.1187 -0.6742 -1.0613 -0.4714 -1.2488 -0.3812 -2.9911 -1.1469 -1.2134 -3.7808 -3.2483 n/a
AAPL_stock_price_2021_2022_1 -1.3351 -0.7599 -0.3584 -0.3108 -0.6781 -0.7711 -1.4369 -0.7036 -1.2721 -1.0302 -2.4377 -2.7802 -2.5602 n/a
AAPL_stock_price_2021_2022_2 -1.4472 -0.5832 -0.3367 -0.3141 -0.4005 -0.7059 -0.9954 -0.2768 -1.2930 -0.9359 -2.2318 -2.8244 -2.4182 n/a
analcatdata_homerun -0.7584 -0.9188 -0.7432 -0.7514 -0.7456 -0.8075 -0.7366 -0.7425 -0.7731 -0.7706 -0.7452 -0.7574 -0.8417 n/a
analcatdata_vineyard -2.9582 -2.7122 -3.0034 -2.6116 -2.4820 -2.1594 -2.3821 -2.4549 -2.4602 -2.4509 -2.4403 -3.5946 -3.7126 n/a
auto_price -1751.0 -2103.5 -1830.7 -2463.1 -2244.8 -1720.8 -1935.9 -2702.4 -2503.7 -2020.4 -2905.1 -3100.4 -3031.4 n/a
autoPrice -1751.0 -2103.5 -1676.9 -1831.3 -2341.8 -1659.6 -1977.4 -2623.2 -4026.9 -1840.2 -3104.0 -3093.8 -2969.5 n/a
bodyfat -1.0621 -0.7597 -0.8297 -0.5658 -0.5431 -0.8420 -1.1247 -1.6816 -3.9424 -1.7095 -1.4271 -4.0332 -4.3167 n/a
boston -2.7724 -2.9132 -3.0481 -3.2503 -4.2412 -3.0366 -3.5042 -3.6890 -4.0360 -4.2976 -4.5132 -4.9288 -4.6731 n/a
boston_corrected -3.0906 -3.6336 -3.3379 -3.3726 -3.3748 -3.2464 -3.6352 -3.4099 -3.4520 -3.2328 -3.8338 -5.5182 -5.7764 n/a
Boston-house-price-data -3.1074 -2.9132 -3.0481 -3.9133 -3.4856 -3.1320 -3.5397 -4.4732 -5.6720 -4.1353 -3.9253 -4.7881 -4.6171 n/a
cholesterol -63.898 -63.607 -62.204 -61.527 -61.702 -60.718 -61.791 -62.238 -61.145 -62.760 -62.621 -61.434 -64.213 n/a
cleveland -0.8839 -0.8765 -0.8686 -0.8853 -0.9944 -0.8863 -0.8918 -0.9546 -0.9936 -0.9455 -0.8704 -1.1198 -1.2134 n/a
cloud -0.5701 -0.6858 -0.4539 -0.6851 -0.4608 -0.2720 -0.3458 -0.6079 -0.6326 -0.8258 -0.7637 -0.9437 -1.0297 n/a
cps_85_wages -4.3197 -4.4261 -4.2873 -4.3968 -4.2237 -4.6278 -4.6009 -4.4570 -4.4097 -4.2979 -4.4403 -4.7683 -4.8651 n/a
cpu -79.104 -76.943 -76.402 -91.466 -95.975 -62.504 -104.760 -74.299 -68.783 -122.468 -123.213 -137.357 -131.2979 n/a
DEE -0.4023 -0.4255 -0.4294 -0.4278 -0.3863 -0.4051 -0.4239 -0.3814 -0.8244 -0.4174 -0.4296 -0.6657 -0.4780 n/a
disclosure_x_bias -21921 -21743 -21919 -21876 -21807 -22587 -21853 -22022 -21878 -21912 -22159 -22481 -23453 n/a
disclosure_x_noise -26993 -27266 -26843 -26919 -27196 -26943 -27438 -26992 -27944 -27232 -27010 -27412 -27078 n/a
disclosure_x_tampered -27168 -27275 -27824 -27062 -27245 -27318 -27647 -27180 -27227 -27984 -27114 -27347 -27018 n/a
disclosure_z -21506 -21374 -21496 -21477 -21791 -21911 -21815 -21753 -30624 -21764 -21804 -22272 -23509 n/a
echoMonths -8.8668 -9.4200 -10.1428 -9.9251 -11.5086 -12.6059 -10.4651 -11.1439 -12.4521 -10.1922 -9.5287 -13.5465 -14.0546 n/a
EgyptianSkulls -1425.98 -1393.52 -1403.98 -1403.98 -1360.73 -1460.25 -1487.83 -1519.55 -1243.86 -1480.12 -1603.05 -1575.59 -1669.02 n/a
ELE-1 -736.04 -736.25 -758.72 -749.40 -749.72 -770.96 -782.94 -761.12 -739.36 -779.54 -737.94 -838.68 -816.96 n/a
fishcatch -50.863 -46.911 -86.628 -76.929 -66.500 -79.260 -102.405 -126.658 -89.525 -155.355 -149.660 -180.285 -205.606 n/a
Fish-market -72.073 -70.419 -76.484 -80.037 -88.557 -63.291 -70.877 -112.847 -64.847 -128.376 -69.060 -153.163 -172.934 n/a
forest_fires -109.375 -109.339 -108.763 -107.853 -109.139 -108.803 -107.700 -108.925 -108.707 -108.573 -109.064 -108.921 -108.578 n/a
Forest-Fire-Area -109.375 -109.339 -108.988 -107.538 -109.026 -108.803 -106.091 -108.945 -109.292 -109.428 -109.349 -109.015 -108.578 n/a
fruitfly -15.856 -15.752 -15.858 -15.732 -16.438 -20.724 -16.224 -16.251 -18.620 -17.561 -16.023 -15.829 -21.850 n/a
HappinessRank_2015 -0.1402 -0.0753 -0.0640 -0.0753 -0.0800 -0.0856 -0.1765 -0.2066 -0.1220 -0.3450 -0.2596 -0.9244 -1.2549 n/a
liver-disorders -3.1001 -2.9445 -2.9602 -3.0291 -3.2481 -3.0613 -2.9170 -2.9184 -3.5018 -3.1161 -3.0200 -2.8904 -3.2965 n/a
lowbwt -419.24 -421.87 -417.13 -419.41 -451.40 -422.76 -443.85 -447.74 -486.07 -406.45 -420.31 -501.78 -580.11 n/a
lungcancer_shedden -2.8148 -2.5672 -2.6234 -2.6200 -2.7049 -2.7345 -2.5833 -2.5232 -2.5298 -2.8645 -2.5481 -2.8069 -3.4472 n/a
machine_cpu -71.259 -85.958 -90.238 -82.287 -92.617 -78.152 -107.735 -73.420 -89.281 -125.633 -129.315 -187.953 -177.951 n/a
meta -153.09 -162.95 -142.67 -128.98 -164.11 -147.92 -236.52 -141.32 -142.79 -237.33 -146.03 -192.56 -273.34 n/a
no2 -0.5015 -0.4864 -0.4972 -0.4967 -0.4948 -0.4912 -0.5082 -0.5289 -0.5212 -0.5127 -0.4985 -0.6629 -0.7692 n/a
pharynx -286.57 -281.51 -277.71 -273.68 -310.59 -279.05 -277.78 -337.05 -492.43 -270.79 -282.70 -328.23 -391.29 n/a
pm10 -0.7670 -0.7650 -0.7267 -0.8022 -0.8010 -0.7487 -0.7331 -0.8141 -0.9794 -0.7942 -0.8064 -0.8130 -0.9376 n/a
Reading_Hydro -0.0039 -0.0037 -0.0040 -0.0039 -0.0038 -0.0036 -0.0037 -0.0039 -0.0041 -0.0042 -0.0047 -0.0188 -0.0081 n/a
residential_building -351.46 -210.01 -168.25 -196.44 -237.14 -200.64 -306.75 -533.02 -723.89 -533.37 -526.71 -584.36 -643.16 n/a
rmftsa_ladata -2.0287 -1.8550 -1.8238 -2.0475 -2.0305 -2.0150 -1.8144 -2.0999 -2.4473 -2.3571 -2.0216 -2.5843 -2.5447 n/a
strikes -586.03 -592.41 -587.24 -604.66 -604.16 -592.34 -588.58 -620.24 -660.56 -589.25 -599.57 -615.12 -637.11 n/a
The-Office-Dataset -0.3876 -0.4189 -0.3654 -0.4127 -0.4152 -0.3350 -0.3730 -0.4256 -0.4068 -0.4148 -0.4843 -0.5396 -0.5697 n/a
visualizing_environmental -2.5584 -2.8069 -3.0343 -3.4924 -2.8716 -2.3128 -2.8110 -2.5520 -2.9296 -3.1022 -2.7731 -3.4982 -3.8523 n/a
weather_ankara -1.7222 -1.3999 -1.5609 -1.4824 -1.5756 -1.8900 -1.5884 -2.0655 -2.6293 -1.9707 -2.3743 -3.3254 -2.9359 n/a
wisconsin -36.915 -37.548 -38.315 -38.603 -36.128 -35.500 -35.720 -34.429 -75.613 -34.541 -37.677 -37.229 -51.180 n/a
yacht_hydrodynamics -0.8310 -0.9270 -0.7151 -1.0738 -1.0881 -0.7432 -1.0243 -1.2074 -1.2786 -2.3096 -4.4713 -5.1386 -6.5417 n/a
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Table 16: Performance of EXCELFORMER with other state-of-the-art models on 21 public large-scale
datasets. EXC.: EXCELFORMER; EXC. + F: EXCELFORMER with FEAT-MIX; EXC. + H: EX-
CELFORMER with HID-MIX; XGb: XGboost, Cat: Catboost; “(d)”: using default hyperparameters;
“(t)”: hyperparameter fine-tuning is performed. “(M)”: Mix Tuned; “(F)”: Fully Tuned.

Datasets XGb (d) Cat (d) FTT (d) EXC. + F (d) EXC. + H (d) XGb (t) Cat (t) FTT (t) EXC. (M) EXC. (F)
SU -0.02025 -0.01994 -0.01825 -0.01840 -0.01740 -0.01770 -0.02200 -0.01920 -0.01730 -0.01610
BA 80.25 89.20 88.26 89.00 88.65 88.97 89.16 88.64 89.21 89.16
BR -0.07667 -0.07655 -0.07390 -0.11230 -0.06960 -0.07690 -0.09310 -0.07940 -0.06270 -0.06410
EY 69.97 69.85 71.06 71.44 72.09 72.88 72.41 71.73 74.14 78.94
MA 86.21 93.83 93.66 93.38 93.66 93.69 93.66 93.69 94.04 94.11
AI -0.0001669 -0.0001652 -0.0001637 -0.0001689 -0.0001627 -0.0001605 -0.0001616 -0.0001641 -0.0001615 -0.0001612
PO -5.342 -6.495 -4.675 -5.694 -2.862 -4.331 -4.622 -2.705 -2.629 -2.636
BP 99.13 99.95 99.13 99.94 99.95 99.96 99.95 99.97 99.93 99.96
CR 76.55 85.15 85.22 85.23 85.22 85.11 85.12 85.19 85.26 85.36
CA -0.4707 -0.4573 -0.4657 -0.4331 -0.4587 -0.4359 -0.4359 -0.4679 -0.4316 -0.4336
HS -0.1815 -0.1790 -0.1740 -0.1835 -0.1773 -0.1707 -0.1746 -0.1734 -0.1726 -0.1727
HO -3.368 -3.258 -3.208 -3.305 -3.147 -3.139 -3.279 -3.142 -3.159 -3.214
DI -0.2372 -0.2395 -0.2378 -0.2368 -0.2387 -0.2353 -0.2362 -0.2389 -0.2359 -0.2358
HE 35.02 37.77 37.38 37.22 38.20 37.39 37.81 38.86 38.65 38.61
JA 71.62 71.92 72.67 72.51 72.79 72.45 71.97 73.15 73.15 73.55
HI 71.59 80.31 80.65 80.60 80.75 80.28 80.22 80.71 80.88 81.22
RO 80.42 87.98 88.51 88.65 88.15 90.48 89.55 89.29 89.33 89.27
ME -0.0819 -0.0835 -0.0845 -0.0821 -0.0808 -0.0820 -0.0829 -0.0811 -0.0809 -0.0808
SG -0.01658 -0.03377 -0.01866 -0.01587 -0.01531 -0.01635 -0.02038 -0.01644 -0.01465 -0.01454
CO 96.42 92.13 96.71 97.38 97.17 96.92 96.25 97.00 97.43 97.43
NY -0.3805 -0.4459 -0.4135 -0.3887 -0.3930 -0.3683 -0.3808 -0.4248 -0.3710 -0.3625
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