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Abstract

Contrastive self-supervised learning has emerged as a powerful paradigm for
extracting meaningful representations without labels. While effective at captur-
ing broad categorical distinctions, current methods often struggle to preserve the
fine-grained and hierarchical relationships inherent in real-world data. From the
perspective of semantic alignment, conventional contrastive learning aligns rep-
resentations to semantic structure at a global level, treating the entire embedding
space uniformly and frequently overlooking rich local structural information. In
this paper, we propose Adaptive Multi-scale Affinity alignment (AMA-alignment), a
framework that introduces localized contrastive objectives and a dynamic multi-
scale optimization strategy to adaptively identify and refine poorly aligned regions
within the embedding space. Although our model is inherently more complex
due to its multi-scale and adaptive design, we provide the theoretical guarantees
indicating that its convergence rate remains comparable to that of standard smooth
non-convex optimization. We conduct a set of experiments on diverse benchmarks
to show that AMA-alignment can effectively preserve hierarchical structure; more-
over, AMA-alignment also outperforms existing contrastive methods on a range of
downstream tasks.

1 Introduction

Unsupervised/self-supervised learning has revolutionized the field of representation learning, achiev-
ing remarkable results across various domains with limited labeled data [1]. These approaches
uncover intrinsic data relationships, facilitating the learning of meaningful representations without
supervision. Among these methods, contrastive learning (CL) has proved to be a particularly effective
framework. By leveraging data augmentations to generate positive and negative sample pairs, CL
trains models to distinguish between similar instances (positive pairs) and dissimilar ones (negative
pairs) [7, 44]. Beyond this discriminative objective, CL can also be interpreted as an “alignment”
mechanism, encouraging the learned representations to reflect the semantic relationships implicitly
defined by the data augmentation process [43, 42].

Despite its success in capturing high-level categorical distinctions, CL often struggles to preserve the
fine-grained and hierarchical semantic relationships inherent in real-world data [1]. Such relationships
are critical for downstream tasks where subtle variations carry significant semantic differences. For
instance, while a CL model trained on the DeepFashion dataset [30] may correctly distinguish high-
level categories like upper- and lower-body garments, it often struggles with finer-grained distinctions,
failing to differentiate between t-shirts, jackets, sweaters, blouses, and vests.

To obtain fine-grained representations, recent advancements in CL mainly focus on designing stronger
augmentation strategies. These methods construct more informative positive and negative sample
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Figure 1: Illustration of multi-level contrastive learning. An ideal scenario where the learned
representations exhibit a hierarchical structure that captures both broad categorical distinctions
and fine-grained semantic relationships. Our approach identifies and optimizes local worst-case
regions (highlighted in red) where representation affinity deviates significantly from the semantic
affinity. Here, the affinity matrices Ksem

s and Krep
s represent pairwise semantic and representation

relationships, respectively, as defined in (3) and (4).

pairs by incorporating task-specific cues or leveraging multi-view inputs [29, 47, 12]. For example,
Feng et al. [12] leveraged diverse modalities and perspectives of chemical molecular data to construct
more effective positive and negative pairs. Additionally, Robinson et al. [38] proposed a method for
sampling hard negative examples, improving the quality of negative sample selection.

Our intuition for addressing these challenges originates from hierarchical clustering, as it also
aims to capture structural relationships across multiple levels of granularity. Recent theoretical
advances [48, 43, 18, 9] also reveal fundamental connections between CL and traditional clustering
methods. These studies show that contrastive objectives encourage representations to distribute
uniformly on the unit sphere Sdg−1 and naturally form category-based clusters. In the ideal case, as
illustrated in the lower half of Figure 1, such representations would reflect not only coarse categorical
structure but also fine-grained semantic hierarchies, thus resembling hierarchical clustering. For
example, sub-categories of lower-body clothing would be effectively clustered within the broader
lower-body region. However, while existing CL methods perform well in capturing broad distinctions,
they typically learn these semantic relationships at a global level, often failing to preserve the
fine-grained relationships critical for downstream tasks.

To overcome this limitation, we seek to incorporate hierarchical structure into the CL process more
directly. Hierarchical clustering [35, 36] naturally creates multi-scale region partitions using either
top-down (divisive) or bottom-up (agglomerative) strategies. However, several fundamental obstacles
hinder the direct application of conventional hierarchical clustering techniques in the CL context:
1) Classical hierarchical clustering methods rely on distances that are directly accessible, whereas
CL operates on an affinity graph Ksem (formally introduced in Sec. 2) whose edge weights are
determined by a stochastic positive pair sampling process, making them nontrivial to compute directly.
2) Unlike non-parametric clustering algorithms, which do not rely on learned feature mappings [18],
CL trains a parameterized encoder gθ(·) to produce feature embeddings to align semantic structure
Krep (see (4)), therefore requires to redesign a more appropriate optimization strategy for gθ(·). 3) In
fine-grained alignment scenarios, different local regions of the embedding space often exhibit varying
degrees of semantic misalignment [13]. Uniformly optimizing over the global affinity structure is
inefficient; in other words, it should be more effective to prioritize regions that are poorly aligned
with the underlying semantics. These limitations call for a region-aware approach that retains the
hierarchical perspective while adapting to CL’s characteristics.
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Our proposed model and contributions. The above challenges motivate the development of our
hierarchical region-aware optimization framework, which dynamically prioritizes poorly aligned
regions across multiple semantic scales. We use {1, 2, ..., S} to denote different scales, ranging
from coarse to fine-grained. At each scale s, we partition the embedding space into a set of regions
{Rsr}m

s

r=1, where ms is the number of regions at that scale. For each region Rsr, we define a
corresponding local contrastive loss Ls(θ,Rsr) (formally derived in Sec. 3.1) that measures how
well the representation preserves semantic relationships within that specific region. Specifically, we
formulate a new multi-scale optimization objective as follows:

min
θ∈Θ

∑S

s=1
max
r∈[ms]

{Ls(θ,Rsr)}. (1)

The inner maximization adaptively identifies regions with high loss values, while the outer mini-
mization over θ focuses on reducing the sum of the regional losses. We name our method adaptive
multi-scale affinity alignment (AMA-alignment) and highlight its key contributions:

• We introduce the new concept of local affinity graph and derive its associated local con-
trastive loss, specifically designed to align regional structures. We further propose a new
perspective that integrates distributionally robust optimization with local contrastive learn-
ing to adaptively refine poorly aligned regions. This framework facilitates multi-scale
representation learning and captures both coarse and fine-grained semantic structures.

• We provide a theoretical analysis of the proposed optimization objective and algorithm. In
particular, even our optimization model is more complicated due to the endowed “multi-
scale” and “adaptive” properties, the convergence rate is comparable to the standard smooth
non-convex optimization.

• We evaluate AMA-alignment on a range of benchmark datasets, demonstrating its effective-
ness in preserving semantic structure and excelling on challenging downstream benchmarks.

1.1 Other Related Works

Several studies have leveraged multi-level labels [22, 59] to learn hierarchical representations. These
methods are supervised approaches that rely on annotated data across multiple levels. In contrast,
our work focuses on unsupervised learning, consistent with conventional settings of CL algorithms.
Mo et al. [33] introduced a method that employs two types of contrastive losses at both shallow and
deep network layers, enhancing the quality of learned representations. Additionally, other works
[14, 52] have explored embedding representations in hyperbolic space to better capture hierarchical
relationships. More recently, several studies [29, 47, 12] have focused on refining data augmentation
strategies to more effectively encode semantic information, either explicitly or implicitly. Our study
demonstrates that by more effectively utilizing the semantic information inherently encoded in
augmentations, the model can capture fine-grained semantic structures more accurately through
improved optimization techniques. A more detailed discussion of related works is deferred to
Appendix A.

2 Preliminaries

2.1 Formulation for Contrastive Learning (CL)

Let X̄ denote the input dataset sampled from the natural data distribution PX̄ , and let A(·) be a
randomized data augmentation operator (e.g., cropping, color jittering). For each x̄ ∈ X̄ , we define
the conditional distribution PrA(·|x̄) as the probability density over the data space X induced by
applying A(·) to x̄. That is, PrA(x|x̄) denotes the likelihood of obtaining x as an augmented view
of x̄. By applying A(·) to all samples in X̄ , we obtain the augmented data distribution PX , whose
support set is denoted as X . Without loss of generality, we assume X is a finite set of size N ; if X is
infinite, the summations in our analysis can naturally generalize to integrals.

We model the network as Γ = h ◦ g, where g(·) : X → Z is the encoder mapping input data to
a representation space Z ⊂ Rdg , and h : Z → Y is a task-specific classifier. The encoder g(·) is
parameterized by θ ∈ Θ, where Θ denotes the parameter space. Contrastive Learning (CL) aims
to learn discriminative representations by pulling semantically similar instances closer and pushing
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dissimilar ones apart in the embedding space [44, 51, 56]. Following standard CL approaches, we
adopt the Information Noise-Contrastive Estimation (InfoNCE) objective [7, 17]:

L = E
x̄∼PX̄

[ℓcl (x̄)] , where ℓcl(x̄)=− E
xi,xj∼PrA(·|x̄)

[
log

exp (g(xi)
⊤g(xj)/τ)∑

k ̸=i exp (g(xi)
⊤g(xk)/τ)

]
. (2)

Here τ > 0 is the temperature parameter and xk is a negative sample from X . Let Z = {zi}Ni=1 ⊂ Z
denote the set of feature embeddings for the augmented datasetX , where each zi = g(xi) corresponds
to a data point xi ∈ X .

2.2 Alignment via Probabilistic Graph Coupling

We reinterpret the contrastive objective in (2) as aligning two graphs—one defined by semantic
affinities and the other by representation similarities. This insight motivates our key idea: generalizing
the global graph alignment to a hierarchical framework that captures structural correspondences
across multiple spatial scales.
Definition 1 (Semantic Affinity Matrix). The semantic affinity matrix Ksem ∈ RN×N

+ over X
quantifies the pairwise semantic proximity through augmentation co-occurrence. Specifically, for any
xi, xj ∈ X , its (i, j)-th entry is defined as:

Ksem
ij ≜ Ex̄∼PX̄

[PrA(xi|x̄) · PrA(xj |x̄)] . (3)

This matrix quantifies the joint probability that xi and xj are both generated from the same underlying
sample x̄, thereby encoding their semantic relatedness under data augmentation.
Definition 2 (Representation Affinity Matrix). The representation affinity matrix Krep ∈ RN×N

+
over Z measures pairwise similarities in the embedding space. For any xi, xj ∈ X:

Krep
ij ≜ Ker(zi, zj), where zi = g(xi), zj = g(xj), (4)

where Ker :Z×Z→R+ is a translation-invariant kernel function (e.g., Gaussian kernel) [48].

Ksem and Krep define two weighted graphs: the former reflects semantic relationships via augmenta-
tion, while the latter encodes geometric proximities in representation space. Prior research [48, 43] has
shown that CL aligns these graphs by learning representations that preserve semantic relationships.

Probabilistic Graph Coupling. To formalize this alignment process, we adopt the Probabilistic
Graph Coupling framework [48], which interprets CL as minimizing divergence between distributions
over subgraphs sampled from Ksem and Krep. These distributions reflect the structural properties of
the underlying graphs, and CL aligns them by aligning their subgraph statistics.

We restrict attention to binary directed graphs W with exactly one outgoing edge per node—mirroring
the single-positive sampling mechanism used in contrastive learning:

SW ≜ {W ∈ {0, 1}N×N | ∀i ∈ [N ],
∑N

j=1
Wij = 1}, (5)

where Wij=1 denotes a directed edge from node xi to xj . We impose this constraint as it mimics
the positive pairing mechanism in contrastive learning, where each data point selects exactly one
positive sample. Thus the InfoNCE objective can be reinterpreted as minimizing the divergence
between subgraph distributions over the constraint (5). We summarize the core idea below, and
provide a detailed discussion in Appendix B.

Given an affinity matrix K ∈ {Ksem,Krep}, as defined in Def. 1 or 2), the probability of sampling a
subgraph W under the topological constraints specified in (5) is given by:

Pr(W|K) ∝ Ω(W)
∏

(i,j)∈[N ]2
(Kij)

Wij , (6)

where Ω(W) ≜
∏N
i=1 1

(∑
jWij = 1

)
enforces the topological constraint, ensuring that each node

has exactly one outgoing edge. The core objective of contrastive learning can thus be reformulated as
minimizing the cross-entropy between the subgraph distributions induced by Ksem and Krep:

EWsem∼Pr(·|Ksem) − [log Pr(Wrep = Wsem | Krep)] . (7)
As shown in [43], minimizing (7) is equivalent to the InfoNCE loss in (2). This equivalence formally
links CL with probabilistic graph alignment.
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3 Method

This section introduces our hierarchical contrastive learning framework. We begin with a high-level
overview and then detail its two key components.

Overview. Our method performs contrastive alignment across multiple spatial granularities in a
unified and synchronous manner, as formalized in equation (1) (Sec. 1). It operates simultaneously
on: (i) global structure, by preserving high-level semantic consistency through large-scale alignment;
and (ii) local structure, by enhancing fine-grained discriminability within local neighborhoods. This
multi-scale co-optimization leads to robust representation learning that spans from global categories
to subtle intra-class variations. The framework comprises two main technical components:

1. Local Alignment (Sec. 3.1): We define local regions in the embedding space Z and align
corresponding semantic and representation affinity graphs using a novel local contrastive
loss Ls (12), which is derived by the Probabilistic Graph Coupling technique.

2. Adaptive Refinement (Sec. 3.2): We introduce the adaptive multi-scale alignment algorithm
that aggregates local losses across scales using a distributionally robust optimization (DRO)
scheme, which dynamically prioritizes challenging regions.

3.1 Local Contrastive Learning Loss

We first describe how to locally align semantic and representation affinities. Extending the affinity-
based interpretation of the InfoNCE loss (2), we develop a localized version that aligns affinity graphs
within small, spatially defined regions.

Local affinity graph. In contrastive learning, the input space X is mapped and normalized into
a unit hypersphere embedding space Z ⊂ Sdg−1 ⊂ Rdg via a trainable encoder g(·) [51]. To
capture structure at multiple spatial resolutions, we introduce S levels of granularity. Each scale s is
associated with an angular radius ιs > 0 that defines the size of local regions. At scale s, we define
ms local regions Rs(θ) = {Rs(θ, zsr)}m

s

r=1, each centered at an anchor point zsr ∈ Z . For brevity, we
denote the r-th region at scale s by Rsr. Given anchor zsr and radius ιs, the local region is defined as:

Rsr = {z ∈ Z | ∠(z, zsr) ≤ ιs} , (8)

where ∠(·, ·) is the angular distance (i.e., the arc-cosine of the normalized dot product). This region
captures points most similar to the anchor under the current embedding, naturally adapting to local
data geometry. To build intuition, a coarse scale (large ιs) may group together all clothing items,
whereas a finer scale (small ιs) could isolate specific categories such as jeans, skirts, or shorts.

Let XRs
r
⊆ X denote the subset of samples whose embeddings fall inside region Rsr, indexed by

IRs
r
. That is, XRs

r
= X[IRs

r
] with |XRs

r
| = N ′. We define the local affinity matrices Ksem

s ,Krep
s ∈

RN
′×N ′

+ as submatrices of the global affinity matrices Ksem and Krep (see Def. 1 and 2):

Ksem
s ≜ Ksem[IRs

r
, IRs

r
], Krep

s ≜ Krep[IRs
r
, IRs

r
]. (9)

Since Ksem and Krep are symmetric, the index set IRs
r

applies to both rows and columns. When the
specific region r is not of primary interest, we omit the region index for notational simplicity.

Local contrastive loss. To align Ksem
s and K

rep
s , we again employ the probabilistic graph coupling

framework. Similar to (7), this alignment is achieved by minimizing the cross-entropy between
the distributions of subgraphs Wsem

s and Wrep
s sampled from Ksem

s and Krep
s , respectively. These

subgraphs follow the constraint defined in (5), ensuring each node has exactly one outgoing edge.
This leads to the following distribution over sampled subgraphs:

Proposition 3.1. Let Ws be a subgraph sampled from Ks (represents either Ksem
s or Krep

s ) under
the constraint in (5). Then:

Pr(Ws|Ks) ∝ Ω(Ws)
∏

(i,j)∈[N ′]2
(Ks,ij)

Ws,ij , (10)

where Ω(Ws)≜
∏
i 1(
∑
jWs,ij=1) enforces the one-outgoing-edge constraint (5).
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Equation (10) serves as the localized counterpart of the global formulation in (6), extending the
probabilistic graph coupling to the region-specific setting. To further formalize the concept of learning
within localized regions, we introduce a restricted augmentation distribution that limits sampling to
examples whose representations lie within a specific region:

Prsr(x|x̄) =

{
PrA(x|x̄)

χs
r

, if g(x) ∈ Rsr,

0, otherwise,
(11)

where the normalization constant χsr =
∫
x∈X 1g(x)∈Rs

r
PrA(x|x̄)dx ensures that PrA(·|x̄) defines a

valid probability distribution. This formulation constrains the augmentation process to operate only
within the local regions Rsr.

Similar to the InfoNCE loss, following the probabilistic graph coupling framework, we minimize the
cross-entropy between the subgraph distributions over the local affinity matrices Ksem

s and K
rep
s , and

derive the local contrastive loss as shown in (12):

Ls = Ex̄∼PX̄
[ℓscl(x̄)] , where ℓscl(x̄)=− E

xi,xj∼Prsr(·|x̄)

[
log

exp (z⊤i zj/τ)∑
k ̸=i 1

s
r(xk) exp (z

⊤
i zk/τ)

]
. (12)

Here, τ is the temperature parameter, zi = g(xi) and zj = g(xj) are embeddings produced by the
encoder g, and 1sr(xk) = 1g(xk)∈Rs

r
ensures negatives are drawn from the local region. We have the

following lemma:
Lemma 3.2. Minimizing the cross-entropy between the subgraph distributions induced by Ksem

s and
Krep
s , under the structural constraint in (5), is equivalent to minimizing the (12).

This lemma confirms that the local loss in (12) is theoretically grounded in the same probabilistic
framework as the global contrastive loss (2), but adapted to align affinity structure within localized
regions. A full proof is provided in Appendix C.
Remark 1. The formulation of Ls is non-trivial. A naive approach might define a local contrastive
loss by restricting positive pairs to lie within the local region Rsr, such as:

ℓ̃scl(x̄)=− E
xi,xj∼Prsr(·|x̄)

[
log

exp (z⊤i zj/τ)∑
k ̸=i exp (z

⊤
i zk/τ)

]
. (13)

However, the sampling distribution implied by (13), exp(z⊤i zj/τ)∑
k ̸=i exp(z

⊤
i zk/τ)

, does not reflect the true

edge sampling probability in the underlying subgraph, i.e., Pr(Wrep
s,ij = 1) ̸= exp(z⊤i zj/τ)∑

k ̸=i exp(z
⊤
i zk/τ)

.
Therefore, using (13) does not ensure the alignment between local and global affinities, violating
the alignment principle of CL. For example, this formulation would distort the global structure by
inappropriately pushing all representations z′ /∈ Rsr maximally away from representations z ∈ Rsr.

3.2 Adaptive Multi-scale Optimization for Affinity Alignment

Building on the local contrastive loss (12) in Sec. 3.1, we now describe how these losses are integrated
into a unified optimization process that emphasizes difficult regions across multiple semantic scales.
Our key insight is that not all regions require equal attention during training. In real-world datasets,
semantic misalignment often occurs heterogeneously—certain neighborhoods in the embedding space
may already adequately preserve semantic relationships, while others exhibit significant distortions.
For instance, in fashion datasets, the boundary between "formal shirts" and "casual shirts" might be
more challenging to delineate than the distinction between "shirts" and "pants", and thus it requires
more effort to design an appropriate optimization strategy.

We formalize this intuition through a novel adaptive multi-scale optimization framework that dynami-
cally prioritizes poorly aligned regions while maintaining coordination across scales. Our objective,
introduced in equation (1), employs a nested min-max structure that adaptively allocates the focus
of current computational stage towards the most challenging regions. For analytical clarity and to
facilitate tractable optimization, we present the following equivalent reformulation of (1) using a
convex combination of region-wise losses:

min
θ∈Θ

∑S

s=1
max

qs∈∆ms

∑ms

r=1
qsr · Ls(θ,Rsr). (14)
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where qs = (qs1, ..., q
s
ms) lies within the probability simplex ∆ms ≜ {qs |

∑ms

i=1 q
s
i = 1, qsi ≥ 0}

and represents the adaptive weighting over regions at scale s. The inner maximization identifies
regions with high loss values, while the outer minimization over θ directs learning to reduce regional
losses. This formulation is partially inspired by the distributionally robust optimization (DRO) [40,
58], and we leave the discussion on DRO to Sec. 3.3.

As introduced in Sec. 3.1, our framework operates across S levels of spatial granularity. Each scale s
is characterized by its angular radius ιs, which determines the size of local regions. At each scale, we
define ms regions Rs(θ) = {Rsr}m

s

r=1 partitioning the embedding space Z according to (8). Finer
scales (small ιs) yield more focused regions, while coarser scales (large ιs) group semantically
broader patterns. This hierarchical partitioning can be efficiently implemented through spherical
k-means clustering on the unit hypersphere. Due to the limited space, we provide our implementation
details in Appendix. F.

However, directly optimizing this min-max objective (14) brings two key challenges: (1) due to the
non-convexity of Ls(θ,Rsr) w.r.t. θ and the nested min-max structure, the standard convergence
guarantees cannot be easily obtained; (2) the inner maximization over qs may lead to degenerate
solutions that excessively concentrate on a single region, resulting in unstable training dynamics. To
address these challenges, we introduce an entropy regularization term and reformulate the objective
in (14) as:

F (θ) = min
θ∈Θ

S∑
s=1

(
max

qs∈∆ms

ms∑
r=1

qsr · Ls(θ,Rsr)− ρKL(qs)
)
, (15)

where KL(qs) =
∑ms

r=1 q
s
r log

(
ms qsr

)
is the KL divergence between qs and the uniform distribu-

tion, and ρ > 0 is a regularization parameter controlling the strength of the entropic penalty.

Benefits of KL Term in (15). The KL regularization term ρ
∑ms

i=1 q
s
r log(m

sqsr) in (15) serves
three critical functions: 1) It ensures strong concavity in qs, which is essential for proving convergence
in the non-convex setting for our AMA-alignment algorithm, as established in Theorem D.10.
2) It prevents the weight distribution from collapsing to the simplex boundary, stabilizing the
optimization dynamics and improving convergence behavior. 3) It enables a closed-form update
for qs via exponential weights (see (17)), avoiding iterative gradient ascent and facilitating efficient
implementation.

Algorithm 1 Adaptive Multi-scale Affinity Alignment (AMA-alignment) for Hierarchical CL

Input: Dataset X , encoder g(·), scale radius {ιs}Ss=1, iterations T , learning rate ηθ,t, regularization
ρ

Output: Optimized parameters θ
1: Initialize θ0 from base model
2: Pre-train encoder g(·) with standard contrastive loss L for N0 epochs
3: Generate partitions {Rsr}m

s

r=1 for each scale s (detailed in Appendix F)
4: For each scale s ∈ [S], initialize qs = [1/ms, . . . , 1/ms]T

5: for t = 1 to T do
6: for each scale s ∈ [S] do
7: Compute region losses {Ls(θt, Rsr)}m

s

r=1
8: Compute optimal weights qs(θt) by (17)
9: end for

10: Compute total gradient gt by (16)
11: Update encoder: θt+1 = θt − ηθ,tgt
12: end for
13: return θT

Sketch of Algorithm 1. Our AMA-alignment method is outlined in Algorithm 1. The training begins
with a pre-training phase using the global contrastive loss L for N0 epochs, which can be interpreted
as optimizing at the global scale (s = 0). After this initialization, the model proceeds to jointly
optimize affinity alignment across multiple spatial scales, refining both global and local semantic
structures. Each iteration involves two key steps: updating encoder parameters θ (Algorithm 1, lines
7−8) and adaptively adjusting region weights qst (Algorithm 1, line 10):
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Updating Encoder Parameters (θ): The encoder parameters are updated via gradient descent at each
iteration t. The gradient estimator gt is computed using the current region weights qst :

θt+1 = θt − ηθ,tgt, where gt =

S∑
s=1

ms∑
r=1

qst,r∇Ls(θt, Rsr). (16)

Here, ηθ,t is the learning rate for the encoder parameters.

Updating Region Weights (qs): The region weights are then adaptively updated based on the new
encoder parameter θt+1. This step follows the standard stochastic mirror ascent procedure, which
solves a regularized inner optimization problem as formulated in (36) (see Appendix D.1) and admits
a unique closed-form solution given in (17). For notational simplicity, we define a time-dependent
coefficient γt = 1 + ρ, ηq,t. The updated weight for each region r is then given by

qst+1,r =
(qst,r)

1/γt exp
(
ηq,t

γt
Ls(θt+1, R

s
r)
)

∑ms

j=1(q
s
t,j)

1/γt exp
(
ηq,t

γt
Ls(θt+1, Rsj)

) . (17)

where ηq,t controls the adaptation rate of the region weights. This update mechanism automatically
prioritizes challenging regions by assigning them higher weights. Regions with higher loss values
receive greater attention in subsequent optimization steps, dynamically focusing computational
resources on the most difficult regions.

Theorem 3.3 (Convergence Rate (Informal)). Under the smoothness assumption of the objective,
suppose the learning rates are set as ηθ,t = α√

t
for parameter updates and ηq,t = η0

t for region
weight updates, where α, η0 > 0 are constants. Then Algorithm 1 achieves the following convergence
rate: 1

T

∑T
t=1 E[∥∇F (θt)∥2] ≤

C√
T

, where F (θ) is the overall DRO objective in (15) and C is a
constant independent of T .

We analyze Algorithm 1 in a stochastic optimization setting, where both the region-level loss (lines
7–8) and the gradient gt (line 10) are computed via stochastic approximations. To ensure stable
training under this noise, we update the region weights qs(θt) recursively using a moving-average
rule (17), rather than solving the inner maximization exactly—despite it admitting a closed-form.
Under mild assumptions (e.g., bounded gradients/losses and the model smoothness), our algorithm
converges at a rate comparable to standard smooth non-convex methods, despite the multi-scale
structure and adaptive updates. The full proof of Theorem D.10 is provided in Appendix D.

3.3 Some More Discussions

Discussion of relations to Group DRO methods [40] Our approach is partly inspired by group
DRO method but with following differences: 1) Hierarchical, data-driven grouping: Our method
dynamically forms groups based on local neighborhoods in the evolving embedding space rather
than fixed, predefined partitions; 2) Region-specific loss: We employ specialized losses derived
from the affinity-based interpretation of InfoNCE, aligning representations based on semantic and
geometric structure rather than generic empirical risks. 3) Non-convex convergence guarantees:
Our analysis establishes convergence in the challenging non-convex optimization settings typical of
deep contrastive learning, unlike prior work [39, 58] that focused primarily on convex settings.

Analyzing the Optimization Dynamics of AMA-alignment. Previous theoretical work [45]
interprets contrastive learning (CL) as a two-player coordinate-wise optimization game between
model parameters and sample-pair weights—an interpretation that encompasses classical strategies
like hard negative mining[38]. AMA-alignment generalizes this view into a hierarchical three-player
optimization framework. In addition to the standard optimization over model parameters and pairwise
affinities, we introduce a third axis: region-level importance weights that adaptively prioritize difficult
semantic regions across multiple spatial scales. This additional layer of adaptivity enables AMA-
alignment to capture both local semantic granularity and global representational structure. We
formally analyze this three-level coordinate-wise optimization dynamics in SectionE.
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4 Experiments

We evaluate the proposed AMA-alignment framework on multiple benchmarks to assess its ability
to capture fine-grained and hierarchical semantic structures. We compare against state-of-the-art
contrastive learning (CL) baselines in both unsupervised and supervised settings.

4.1 Experimental Setup

Datasets. We experiment on diverse datasets with inherent hierarchical or fine-grained semantics:
(1) DeepFashion [30], a fine-grained clothing dataset; (2) iNaturalist [49], with taxonomic labels;
(3) CIFAR-100 [24], grouped into superclasses; and (4) ModelNet40 [54], a 3D object classification
dataset. (5) BuImg [34], a breast cancer diagnosis ultrasound images dataset.

Baselines. We compare with popular CL methods including SimCLR [7], MoCo [8], HardNeg [38],
and α-CL [45]. In supervised settings, we compare with Cross-Entropy, SupCon [23], Guided-
Proto [25], and HiMulConE [59]. Unless otherwise specified, we train ResNet-50 [16] as backbone.
All models are implemented with PyTorch on a single NVIDIA RTX 6000 Ada GPU. The model is
optimized using the AdamW optimizer [31]. Additional experimental details are in Appendix G.

4.2 Experimental Results

Table 1 shows the classification results. AMA-alignment consistently outperforms existing CL
methods, with substantial gains on fine-grained benchmarks. On DeepFashion, we observe over 7%
improvement, highlighting AMA’s ability to capture subtle semantics. Performance on iNaturalist
also improves notably, especially in tail classes.

Table 1: Accuracy on downstream classification tasks. AMA-alignment significantly improves
fine-grained performance.

Method DeepFashion ModelNet iNat ImageNet
SimCLR [7] 70.3 79.3 54.0 69.5
MoCo-v2 [8] 70.8 79.6 55.3 68.1
HardNeg [38] 70.9 79.8 55.8 70.4
α-CL [45] 71.7 79.6 56.1 70.2
AMA-alignment (ours) 75.8 80.6 57.2 73.3

Hierarchical Representation Quality To assess the preservation of semantic hierarchies in learned
representations, we employ two metrics: (1) Hierarchical Clustering Normalized Mutual Information
(HC-NMI) [10], and (2) Intra-class Variance Reduction (IVR). As summarized in Table 2, AMA-
alignment achieves superior alignment with ground-truth hierarchies, demonstrating its effectiveness
in modeling multi-scale structures.

Table 2: Hierarchical alignment results in DeepFashion. Higher HC-NMI and lower IVR indicate
better semantic structure preservation.

Method HC-NMI ↑ IVR ↓

SimCLR [7] 0.52 0.134
HardNeg [38] 0.56 0.119
α-CL [45] 0.59 0.114
AMA-alignment (ours) 0.66 0.091

Ablation Study. We conduct ablation studies to examine the contributions of the key components
in AMA-alignment, as summarized in Table 3. Starting from a global-only contrastive learning (CL)
baseline, we progressively introduce multi-scale partitioning and local contrast loss. The results show
that both components are essential for achieving robust alignment performance.
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Specifically, incorporating the multi-scale local contrastive loss (+ Multi-scale) improves accuracy
across all benchmarks, indicating that modeling representations at different semantic granularities
might benefit global consistency. In contrast, if we use an adaptive weighting mechanism (+ Adaptive)
but implemented via the heuristic loss given in (13), the performance degrades. Unlike the proposed
local contrastive loss in (12), this formulation does not restrict negatives to local regions, thereby
distorting the affinity structure and degrading performance, as discussed in Remark 1.

In contrast, our AMA-alignment employs the principled local contrastive loss in (12), which rigor-
ously aligns the semantic affinity matrix Ksem and the representation affinity matrix Krep through
probabilistic graph coupling. This theoretically grounded formulation ensures that both the global
and local alignment objectives work coherently in synergy.

Table 3: Ablation study on DeepFashion.
Accuracy (%) DeepFashion iNat ImageNet
Global-only CL 70.2 54.0 69.5
+ Multi-scale (fixed weights) 72.3 55.9 70.2
+ Adaptive (using (13)) 67.3 50.4 67.8
AMA-alignment 75.8 57.2 73.3

5 Conclusion

We propose a novel hierarchical contrastive learning framework that aligns local affinity structures
across multiple scales. By introducing local contrastive objectives and applying a distributionally
robust optimization strategy, our method dynamically identifies and refines semantically challenging
regions in the representation space. The theoretical analysis establishes convergence guarantees,
and extensive experiments showcase its superior performance in capturing hierarchical semantics
compared to existing methods. This work advances contrastive methods beyond global alignment,
enabling more interpretable and task-specific representations in complex domains.
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(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our model and data do not pose high misuse risks requiring safeguards.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: the third-party datasets and code used are properly cited with licenses.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]

Justification: does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: does not involve human subjects

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification: No LLMs were used as a part of the core methodology.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Other Related Works

There are two key areas of research closely related to our contribution:

Multi-level Representative Learning Several studies have leveraged multi-level labels [22, 59] to
learn hierarchical representations, which are supervised learning approaches requiring multi-level
labeled data. In contrast, our work focuses on unsupervised learning, aligning with the conventional
settings of CL algorithms. Mo et al. [33] proposed to use two types of contrastive losses at shallow
and deep network layers, enhancing the quality of learned representations. Additionally, other works
[14, 52] embedded representations into hyperbolic space to better model hierarchical relationships. A
number of recent studies [29, 47, 12] focused on refining augmentation strategies to better encode
semantic information, either directly or indirectly. Our study demonstrates that by more effectively
utilizing the semantics encoded in augmentations, we can capture fine-grained semantic structures
more accurately through improved optimization techniques.

In the field of manifold learning, Fang and Saad [11] developed a multilevel framework that improves
computational efficiency through graph coarsening and multi-scale refinement. Huang et al. [20]
introduced a multi-view clustering approach that employs topological manifold learning to better
capture the intrinsic nonlinear data relationships.

Distributional Robustness Distributional robustness [26, 41] addresses the challenge of model
performance under distribution shifts by optimizing for worst-case performance across possible
distributions. This concept is extended to group distributional robustness optimization (group-
DRO) [40], which focuses on maintaining consistent performance across subgroups, including
underrepresented ones. Recent work by [46] employs logits adjustment to balance performance
across diverse data groups.

B Probabilistic Graph Coupling and Its Equivalence to InfoNCE

In this section, we first introduce the foundational concepts of the Probabilistic Graph Coupling
Framework, as primarily discussed in Sec. 2.2. We then demonstrate how the InfoNCE loss can
be interpreted within this framework. Although the detailed exposition is provided in [48, 43], we
include a summary here for completeness and to lay the groundwork for the theoretical analysis in
Sec. 3.1.

B.1 Graph-Based Probabilistic Modeling

Directly comparing and aligning the affinity matrices Ksem and Krep is computationally challenging
due to the potentially infinite number of edges in the corresponding graphs. To address this, the
probabilistic graph coupling framework [48] reformulates the problem by defining probability distri-
butions over unweighted directed subgraphs. Specifically, it introduces posterior distributions over
binary adjacency graphs Wsem,Wrep ∈ {0, 1}N×N , each sampled according to the affinities Ksem

and Krep, respectively. The comparison is then framed as minimizing the cross-entropy (7) between
these posterior distributions (see (6)), offering a more tractable and principled approach to aligning
complex graphs.

Properties of the Subgraph Probabilistic Distribution Pr(W|K) Consider a graph with an
affinity matrix denoted by K ∈ RN×N

+ (either Ksem or Krep, as defined in Definition 1 and 2). From
K, we sample a subgraph W (can refer to the aforementioned Wsem or Wrep) under the topological
constraints specified in (5). For clarity, we restate the constraint as follows:

SW ≜ {W ∈ {0, 1}N×N | ∀i ∈ [N ],
∑

j
Wij = 1},

where Wij = 1 indicates the presence of a directed edge from node i to node j. This formulation
restricts the subgraphs to binary directed graphs, where each node has exactly one outgoing edge.

Van Assel et al. [48] demonstrates that the posterior probability of sampling a subgraph W is given
by the distribution in (6), namely:

Pr(W|K) ∝ Ω(W)
∏

(i,j)∈[N ]2
(Kij)

Wij ,
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where Ω(W) ≜
∏
i 1

(∑
jWij = 1

)
enforces the topological constraint, ensuring that each node

has exactly one outgoing edge.

Given the unitary out-degree filter described above, let Wi and Ki denote the i-th rows of W and
K, respectively. The distribution Pr(W;K) satisfies the following property: for W ∼ Pr(·;K), we
have

Wi ∼ Multinomial
(
1,Ki/

∑
j
Kij

)
, ∀i ∈ [N ], (18)

where the Multinomial(1, ·) distribution produces a one-hot vector by drawing a single sample
according to the normalized weights in Ki. In other words, each node selects exactly one outgoing
edge, with probabilities proportional to its affinities. Moreover, the rows Wi and Wi′ are independent
for any i, i′ ∈ [N ].

B.2 Connecting Probabilistic Graph Coupling with InfoNCE

According to (3) in Definition 1, the adjacency matrix Ksem represents the semantic relationships
between data points in the augmented data space X . For the subgraph Wsem sampled from the
semantic affinity matrix Ksem, based on (18), the probability that there is an edge from i to j is given
by:

Pr
(
Wsem

ij = 1 | Ksem
)
∝ Ksem

ij = Ex̄∼PX̄
[PrA(xi|x̄) PrA(xj |x̄)] , (19)

where PrA(x|x̄) denotes the augmentation likelihood of x given the natural data point x̄.

Now we consider the embedding space. The set of feature embeddings corresponding to the aug-
mented dataset X is represented as Z ⊂ Z , with each embedding zi = g(xi) representing the data
point xi ∈ X . According to (4) in Definition 2, for any zi, zj ∈ Z, the matrix element is defined as:

Krep
ij ≜ Ker(zi, zj), where zi = g(xi), zj = g(xj).

Here Ker(·, ·) is a kernel function. In this work, we use a translation-invariant kernel [48] (e.g.,
Gaussian kernel).

For the subgraph Wrep sampled from the representation affinity matrix Krep, based on (18), the
probability that there is an edge from i to j is given by:

Pr
(
W

rep
ij = 1 | Krep

)
=

Krep
ij

∥Krep
i ∥1

=
Ker(zi, zj)∑
k ̸=i Ker(zi, zk)

, (20)

The cross-entropy between Wsem and Wrep in (7) is decomposed into individual contributions of
edges:

−
N∑
i=1

N∑
j ̸=i

Pr
(
Wsem

ij = 1 | Ksem
)
log
(
Pr
(
Wrep

ij = 1 | Krep
))

(21)

=− Ex̄∼PX̄
Exi,xj∼PrA(·|x̄)

[
log

Ker(zi, zj)∑
k ̸=i Ker(zi, zk)

]
. (22)

The (22) is obtained by substituting (19) and (20) into (21). If we take the kernel Ker(·, ·) to a
Gaussian kernel, namely Ker(zi, zj) = exp(−∥zi − zj∥2/τ) , we can rewrite the cross-entropy (7)
as:

−Ex̄∼PX̄
Exi,xj∼PrA(·|x̄)

[
log

exp (g(xi)
⊤g(xj)/τ)∑

k ̸=i exp (g(xi)
⊤g(xk)/τ)

]
+ const, (23)

which aligns precisely with the InfoNCE loss (2).

Thus, minimizing (23) matches the InfoNCE objective, thereby establishing a theoretical equivalence
between contrastive learning objective and probabilistic graph alignment.
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C Omitted Proofs in Sec. 3.1

In this section, we provide proofs for Proposition 3.1 and Lemma 3.2 in Sec. 3.1. Our goal is to
formally establish the connection between (i) the local contrastive objective and the KL divergence
over subgraph distributions, and (ii) the subgraph sampling probabilities and row-wise independence,
which underpins our localized probabilistic alignment framework.

Proof of Proposition 3.1. This result is a direct consequence of the probabilistic graph coupling
framework described in Van Assel et al. [48], Tan et al. [43]. Under the constraint

∑
jWij = 1 for

all i, each row of W defines a multinomial distribution over neighbors. We use Wi· to denote the
i-th row of matrix W, then the full sampling distribution factorizes row-wise:

Pr(W | Ks) =

N ′∏
i=1

Pr(Wi· | Ks,i·) =

N ′∏
i=1

Multinomial
(
1;Ks,i·/

∑
j
Ks,ij

)
, (24)

which corresponds to drawing one outgoing edge from each node independently, proportional to the
row-wise kernel similarity.

Lemma C.1 (Restatement of Lemma 3.2). Let Wsem
s and Wrep

s be subgraphs sampled from Ksem
s

and Krep
s , respectively, subject to the topological constraints in (5). Minimizing the cross-entropy

between the distributions of these subgraphs, i.e.,

min
g(·)

−EWsem
s ∼Pr(·|Ksem

s )

[
log Pr(Wrep

s = Wsem
s | Krep

s )
]

(25)

is equivalent to minimizing the local contrastive loss Ls defined in (12).

Proof. Recall that the local region Rsr(θ, zanc) = {z ∈ Sdg−1 : z⊤zanc ≤ rs} selects points whose
representations lie within a hyperspherical cap centered at zanc. Let IRs

r
denote the indices of points

in X falling within region Rsr. Then the local semantic affinity matrix Ksem
s is the submatrix of Ksem

restricted to IRs
r
× IRs

r
, and similarly for the representation affinity matrix Krep

s .

We sample subgraphs Wsem
s from Ksem

s and W
rep
s from K

rep
s , each subject to the topological

constraints:

Wsem
s ∈ SWsem

s , Wrep
s ∈ SWrep

s , (26)

where SWs ≜
{
Ws∈{0, 1}N

′×N ′
|
∑N ′

j=1
Ws,ij=1,∀i

}
for Ws∈{Wsem

s ,Wrep
s }, (27)

where SWs denotes the set of admissible sampled graphs from Ks ∈{Ksem
s ,Krep

s }. That is, each
node i has exactly one outgoing edge in both sampled graphs Wsem

s and Wrep
s respectively.

By Proposition 3.1, the probability of subgraph Wsem
s given Ksem

s factorizes row-by-row:

Pr(Wsem
s | Ksem

s ) ∝
N ′∏
i=1

N ′∏
j=1

(
Ksem
s,ij

)Wsem
s,ij

, with the constraint
N ′∑
j=1

Wsem
s,ij = 1, ∀i. (28)

Specifically, Wsem
s,ij = 1 means node i connects to node j. The same holds for Wrep

s ∼ Pr(· | Krep
s ).

Using the factorized form (28) for both subgraph distributions, we decompose the cross-entropy (7)
sum over all i (rows) and j (possible targets of node i),

−
N∑
i=1

N∑
j ̸=i

Pr
(
Wsem

s,ij = 1 | Ksem
s

)
log
(
Pr
(
Wrep

s,ij = 1 | Krep
s

))
. (29)

According to Definition 1, we have Pr
(
Wsem

ij = 1 | Ksem
)
= Ex̄∼PX̄

[PrA(xi|x̄) · PrA(xj |x̄)]. By
the definition of Prsr in (11), we have

Pr
(
Wsem

s,ij = 1 | Ksem
s

)
∝ Ex̄∼PX̄

[Prsr(xi|x̄) · Pr
s
r(xj |x̄)] . (30)
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Further, the probability that the sampled graph W
rep
s,ij has node i connecting to node j under Krep

s is
given by

Pr
(
W

rep
s,ij = 1

∣∣∣ Krep
s

)
=

Krep
s,ij∑

k ̸=i 1g(xi),g(xk)∈Rs
r

(
Krep
s,ik

) . (31)

Similar with Appendix B.2, if we take the kernel Ker(·, ·) to a Gaussian kernel, namely Ker(zi, zj) =
exp(−∥zi − zj∥2/τ), we can rewrite the above probability (31) as

Pr
(
W

rep
s,ij = 1 | Krep

s

)
=

exp
(
z⊤i zj/τ

)∑
k ̸=i 1g(xi),g(xk)∈Rs

r

(
exp(z⊤i zk/τ)

) , (32)

where 1g(xi),g(xk)∈Rs
r

is the indicator function ensures that g(xi) and g(xk) lie in Rsr. Finally, we
can derive the cross-entropy by inserting (30) and (32) into (29),

− E
x̄∼PX̄

E
xi,xj∼Prsr(·|x̄)

[
log

exp (z⊤i zj/τ)∑
k ̸=i 1

s
r(xk)

(
exp(z⊤i zk/τ)

)]+ const,

which exactly matches the local contrastive loss Ls in (12) up to a constant. Thus, minimizing the
cross-entropy between local subgraph distributions is equivalent to minimizing the local contrastive
loss.

D Theoretical Analysis for AMA-alignment

In this section, we establish the convergence rate of our proposed method: AMA-alignment (Algo-
rithm 1).

Overview of the analysis. We begin by formalizing the multi-scale min–max alignment objective
and deriving the closed-form solution for the inner weight maximization. Based on this formulation,
we justify the update rules for both the weight vector q and the model parameters θ used in Algorithm 1
(Sec. D.1). Next, we introduce the boundedness and smoothness assumptions required for the
theoretical analysis. We prove that the optimal weight q∗ is Lipschitz continuous w.r.t. θ. Based on
these, we further show that the overall objective function is smooth (Sec. D.2). We then analyze the
recursive exponentiated gradient updates (17), demonstrating that they track the optimal weights with
anO(1/t) error rate under stochastic updates. Finally, by quantifying the gradient approximation error
and applying a single-step descent lemma, we telescope the inequalities to establish the O(1/

√
T )

convergence rate (Sec. D.4).

D.1 Problem Formulation and Basic Properties

In this section, we introduce the overall min–max structure of our adaptive multi-scale alignment
objective. We first formalize the outer minimization over the encoder parameters θ and the inner
maximization over region-weight distributions qs (35). The algorithmic procedures are based on two
technical results: (i) the closed-form solution of the inner maximization (Proposition D.1) and (ii) the
gradient formula for the AMA-alignment objective (34) (Lemma D.2).

D.1.1 Restate of Algorithm 1 and Setup for Analysis

We study the following multi-scale min–max formulation:

min
θ∈Θ

S∑
s=1

max
qs∈∆ms

{ ms∑
r=1

qsr Ls(θ,Rsr)− ρKL(qs∥u)
}
, (33)

where Ls(θ,Rsr) denotes the local contrastive loss at region Rsr, and the KL term regularizes the
weight distribution qs against the uniform distribution u. The full objective is

F (θ) =

S∑
s=1

F s(θ), (34)
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where for each scale s, the scale-specific objective is

F s(θ) = max
qs∈∆ms

hs(θ,qs), hs(θ,qs) :=

ms∑
r=1

qsrLs(θ,Rsr)− ρKL(qs∥u). (35)

Although the inner maximizer qs,∗(θ) in (35) admits a closed-form expression, this optimal solution
depends on the current encoder parameters θ, which vary across iterations. Furthermore, in a
stochastic setting, we only observe noisy estimates of the true loss vector (we denote L̂s(θt, Rsr) the
estimate of Ls(θt, Rsr)). A naive update that directly computes the closed-form solution based on a
noisy loss estimate for a moving target θt would be unstable.

For both stability and efficiency, we therefore adopt a stochastic mirror ascent scheme. This approach
smoothly tracks the moving optimum by regularizing the update step, keeping the new weight
distribution qst+1 close to the previous one qst . This leads to the following regularized optimization
problem for updating the weights from iteration t to t+ 1:

qst+1 ∈ argmax
qs∈∆ms

{∑
r

qsrL̂s(θt+1, R
s
r)− ρKL(qs∥u)− 1

ηq,t
KL(qs∥qst )

}
. (36)

This step both exploits the new loss signal from the updated parameters θt+1 and ensures a stable
evolution of the weights.

The update rules in Algorithm 1 are summarized as follows.
Updating Encoder Parameters (θ): The encoder is updated via stochastic gradient descent using the
weights from the beginning of the iteration.

θt+1 = θt − ηθ,t gt, where gt =

S∑
s=1

ms∑
r=1

qst,r∇L̂s(θt, Rsr). (37)

Updating Region Weights (qs): After updating θt to θt+1, the region weights are updated by solving
the mirror ascent problem (36). As established in Proposition D.1, this yields the closed-form
solution:

qst+1,r =

(
qst,r

)1/γt
exp
(
ηq,t

γt
L̂s(θt+1, R

s
r)
)

∑ms

j=1

(
qst,j
)1/γt

exp
(
ηq,t

γt
L̂s(θt+1, Rsj)

) , (38)

where γt = 1 + ρ ηq,t. These two updates for θ and {qs} alternate until convergence.

Proposition D.1 (Closed-form solution for regularized mirror ascent update). For the update step
from iteration t to t+ 1, the optimal solution qst+1 to the regularized mirror ascent problem defined
in (36) is given by (38). Moreover, for any ρ > 0 and ηq,t > 0, this solution is unique and strictly
positive (i.e., qst+1 ∈ interior(∆ms)).

Proof. The objective in (36) is strictly concave in qs because both −ρKL(qs∥u) and
− 1
ηq,t

KL(qs∥qst ) are strictly concave in qs on the simplex, and the remaining term is linear; hence
the maximizer is unique.

To find this solution, we form the Lagrangian, incorporating the simplex constraint
∑ms

r=1 q
s
r = 1:

Lagrangian(qs, λ) =

ms∑
r=1

qsrL̂s(θt+1, R
s
r)− ρ

ms∑
r=1

qsr log(m
sqsr)

− 1
ηq,t

ms∑
r=1

qsr log
(

qs
r

qs
t,r

)
+ λ

(
1−

ms∑
r=1

qsr

)
.

Setting the derivative with respect to qsr to zero yields the KKT condition:

L̂s(θt+1, R
s
r)− ρ(log(msqsr) + 1)− 1

ηq,t

(
log
(

qs
r

qs
t,r

)
+ 1
)
− λ = 0.
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We collect terms involving log(qsr) and rearrange:(
ρ+ 1

ηq,t

)
log(qsr) = L̂s(θt+1, R

s
r) +

1
ηq,t

log(qst,r)− ρ log(ms)− C(λ),

where C(λ) = ρ+ 1/ηq,t + λ groups all terms independent of the index r. Let γt = 1 + ρηq,t. The
term on the left is (γt/ηq,t). Multiplying by ηq,t/γt isolates log(qsr):

log(qsr) =
ηq,t

γt
L̂s(θt+1, R

s
r) +

1
γt

log(qst,r)− C ′(λ),

where C ′(λ) is another constant absorbing λ, ρ, and ms. Exponentiating both sides gives

qsr = exp(−C ′(λ)) · (qst,r)1/γt · exp
(
ηq,t

γt
L̂s(θt+1, R

s
r)
)
.

The term exp(−C ′(λ)) acts as a normalization constant, which is determined by the constraint∑ms

k=1 q
s
k = 1. Substituting the expression for qsr into this constraint and solving for the constant

immediately yields the closed form in (38) for qst+1,r.

Since ρ > 0, ηq,t > 0, and by induction qst,r > 0, the numerator of (38) is strictly positive for all r.
This ensures that the solution qst+1 is unique and lies in the interior of the simplex. By strict concavity
and Slater’s condition, the KKT conditions are necessary and sufficient, completing the proof.

Next, we justify the form of the outer update in (16) as the following lemma.
Lemma D.2 (Gradient of the Objective Function). If Ls(θ,Rsr) is continuously differentiable with
respect to θ for each region r, and ρ > 0, then F s(θ) (35) is differentiable with ∇θF

s(θ) =∑ms

r=1 q
s,∗
r (θ)∇θLs(θ,Rsr) and F (θ) (34) is differentiable and its gradient is given by:

∇θF (θ) =

S∑
s=1

∇θF
s(θ) =

S∑
s=1

ms∑
r=1

qs,∗r (θ)∇θLs(θ,Rsr) (39)

where qs,∗(θ) is the unique optimal distribution characterized in Proposition D.1.

Proof. The result follows from a direct application of Danskin’s theorem for max-functions with
regularization. We verify that all necessary conditions are satisfied:

(i) Compactness of the constraint set: The probability simplex ∆ms is compact.

(ii) Continuity and differentiability: The objective function hs(θ,qs) defined in (35) is continuous
in the pair (θ,q) and continuously differentiable in θ for each fixed q, as Ls(θ,Rsr) is continuously
differentiable in θ by assumption.

(iii) Uniqueness of maximizer: As established in Proposition D.1, for each fixed θ, the KL-
regularization term ensures that the maximizer qs,∗(θ) is unique and lies in the interior of ∆ms .

Since all conditions are satisfied, Danskin’s theorem implies that F s(θ) is differentiable and its
gradient equals the partial gradient of hs (defined in (35)) with respect to θ evaluated at the optimal
point:

∇θF
s(θ) = ∇θh

s(θ,qs,∗(θ))

= ∇θ

( ms∑
r=1

qs,∗r (θ)Ls(θ,Rsr)− ρKL(qs,∗(θ)∥u)
)

=

ms∑
r=1

qs,∗r (θ)∇θLs(θ,Rsr) (40)

The KL-regularization term vanishes in the gradient computation because it depends on θ only
through qs,∗(θ), and the envelope theorem accounts for these implicit dependencies.

This elegant formula enables efficient gradient computation without requiring the derivative of
qs,∗(θ) with respect to θ, which would be computationally intensive. For the full model with multiple
scenarios, the gradient of the overall objective F (θ) =

∑S
s=1 F

s(θ) (34) is simply:

∇F (θ) =
S∑
s=1

∇F s(θ) =
S∑
s=1

ms∑
r=1

qs,∗r (θ)∇θLs(θ,Rsr)
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D.2 Key Assumptions and Properties of the Adaptive Weight Model

We now state the technical assumptions underlying our convergence analysis, which include bound-
edness and smoothness conditions (Assumptions 1–4). Under these assumptions, we establish two
fundamental properties: (i) the Lipschitz continuity of the optimal weight mapping θ 7→ qs,∗(θ)
(Lemma D.3), and (ii) the smoothness of the composite objective F (θ) (Lemma D.4). Together, these
results guarantee that the interaction between the inner maximization and the outer minimization
remains stable and analytically tractable. Unless otherwise specified, all vector norms are Euclidean
and all matrix norms are spectral.
Assumption 1 (Gradient Boundedness). For all θ∈Θ, scales s, and regions Rsr, ∥∇θLs(θ,Rsr)∥≤G.
Assumption 2 (Loss Boundedness). For all θ ∈ Θ, regions Rsr, and scales s, there exists a constant
Lmax such that 0 ≤ Ls(θ,Rsr) ≤ Lmax.
Assumption 3 (Smoothness). For each scale s and region r, Ls(θ,Rsr) is L-smooth in θ:
∥∇θLs(θ1, Rsr)−∇θLs(θ2, Rsr)∥ ≤ L∥θ1 − θ2∥ for all θ1, θ2 ∈ Θ.
Assumption 4 (Two-Batch Sampling). At each iteration t, we use two independent mini-batches:
one for computing the region loss estimates to update the weights qs(θt), and another for computing
unbiased stochastic gradients ∇L̂s(θt, Rsr). For constants σ2

L and σ2
g ,

the stochastic loss satisfy:

E[L̂s(θt, Rsr)] = Ls(θt, Rsr); E[|L̂s(θt, Rsr)− Ls(θt, Rsr)|] ≤ σL; (41)

the stochastic gradients satisfy:

E[∇L̂s(θt, Rsr)] = ∇Ls(θt, Rsr); E[∥∇L̂s(θt, Rsr)−∇Ls(θt, Rsr)∥2] ≤ σ2
g . (42)

Remark 2. In practice, a single minibatch is often reused for both the weight update and the gradient
step. Although this induces a mild statistical dependence between qs(θt) and the gradient estimator,
our experiments show no degradation in convergence. For theoretical rigor, we adhere to the two-batch
model in our theoretical development.
Lemma D.3 (Lipschitz Continuity of Optimal Weights). Under Assumptions 1–3, the map θ 7→
qs,∗(θ) that gives the unique solution to the inner maximization in (35) is Lipschitz continuous.
Specifically, for any θ1, θ2 ∈ Θ:

∥qs,∗(θ1)− qs,∗(θ2)∥ ≤ G
√
ms

ρ
∥θ1 − θ2∥. (43)

Proof. The function hs(θ,qs) defined in (35) is ρ-strongly concave with respect to qs due to the
KL-divergence term. Thus, for any fixed θ, there exists a unique maximizer qs,∗(θ). This mapping is
differentiable, and we can analyze its Jacobian ∂qs,∗

∂θ by applying the implicit function theorem to the
Karush-Kuhn-Tucker (KKT) conditions.

The KKT condition for the inner maximization problem is ∇qh
s(θ,qs,∗(θ)) + λ1 = 0, where λ is

the Lagrange multiplier for the constraint
∑
r q

s
r = 1. Differentiating this system with respect to θ

yields:

∇2
θqh

s(θ,qs,∗) +∇2
qqh

s(θ,qs,∗) · ∂q
s,∗

∂θ
+
∂λ

∂θ
1 = 0. (44)

Let P = I− 1
ms11

T be the projection matrix onto the tangent space of the simplex, {v ∈ Rms |1T v =

0}. Since 1Tqs,∗(θ) = 1 for all θ, its derivative ∂qs,∗

∂θ lies in this tangent space, meaning P ∂qs,∗

∂θ =
∂qs,∗

∂θ . Projecting (44) with P eliminates the Lagrange multiplier term (as P1 = 0):

P∇2
θqh

s(θ,qs,∗) + P∇2
qqh

s(θ,qs,∗)
∂qs,∗

∂θ
= 0.

Since ∂qs,∗

∂θ is already in the tangent space, we can write P∇2
qqh

sP ∂qs,∗

∂θ and rearrange to solve for
the Jacobian:

∂qs,∗

∂θ
= −

(
P∇2

qqh
sP
)†
P∇2

θqh
s,

28



where (·)† denotes the pseudoinverse, which acts as the inverse on the tangent space.

We now bound the norms of the two matrix terms.

(1) Hessian Term: The Hessian of hs with respect to qs is ∇2
qqh

s = −ρ diag(1/qs,∗1 , . . . , 1/qs,∗ms).
Due to ρ-strong concavity, the projected negative Hessian is positive definite on the tangent space
with its smallest eigenvalue being at least ρ. Thus, the operator norm of its inverse on this subspace is
bounded: ∥∥∥(P∇2

qqh
sP
)†∥∥∥ ≤ 1

ρ
.

(2) Mixed-Derivative Term: The mixed derivative is the Jacobian matrix whose r-th row is
∇θLs(θ,Rsr). We can bound its Frobenius norm using Assumption 1:

∥∇2
θqh

s∥ ≤ ∥∇2
θqh

s∥F =

(
ms∑
r=1

∥∇θLs(θ,Rsr)∥2
)1/2

≤

(
ms∑
r=1

G2

)1/2

= G
√
ms.

Combining these bounds and using ∥P∥ ≤ 1, we get:∥∥∥∥∂qs,∗∂θ

∥∥∥∥ ≤
∥∥∥(P∇2

qqh
sP
)†∥∥∥ · ∥P∥ · ∥∇2

θqh
s∥ ≤ 1

ρ
· 1 ·G

√
ms =

G
√
ms

ρ
.

By the Mean Value Theorem, for any θ1, θ2 ∈ Θ, there exists some θ̃ on the line segment between
them such that:

∥qs,∗(θ1)− qs,∗(θ2)∥ ≤
∥∥∥∥∂qs,∗∂θ

∣∣∣∣
θ=θ̃

∥∥∥∥ ∥θ1 − θ2∥ ≤ G
√
ms

ρ
∥θ1 − θ2∥.

This establishes the Lipschitz continuity of qs,∗(θ) with constant Lq = G
√
ms

ρ .

Lemma D.4 (Smoothness of F (θ) in (34)). Under Assumptions 1–3, let M = maxsm
s. Each

function F s(θ) is LF s-smooth with a constant LF s ≤ L + MG2

ρ . The overall objective F (θ) =∑S
s=1 F

s(θ) is LF -smooth with LF ≤ S(L+ MG2

ρ ).

Proof. For any θ1, θ2 ∈ Θ, by Lemma D.2, we have:

∥∇θF
s(θ1)−∇θF

s(θ2)∥ =
∥∥ ms∑
r=1

qs,∗r (θ1)∇θLs(θ1, Rsr)−
ms∑
r=1

qs,∗r (θ2)∇θLs(θ2, Rsr)
∥∥

=
∥∥ ms∑
r=1

qs,∗r (θ1)∇θLs(θ1, Rsr)−
ms∑
r=1

qs,∗r (θ1)∇θLs(θ2, Rsr)

+

ms∑
r=1

qs,∗r (θ1)∇θLs(θ2, Rsr)−
ms∑
r=1

qs,∗r (θ2)∇θLs(θ2, Rsr)
∥∥

≤
∥∥ ms∑
r=1

qs,∗r (θ1)(∇θLs(θ1, Rsr)−∇θLs(θ2, Rsr))
∥∥

+
∥∥ ms∑
r=1

(qs,∗r (θ1)− qs,∗r (θ2))∇θLs(θ2, Rsr)
∥∥ (45)

For the first term, by Assumption 3 and the fact that
∑ms

r=1 q
s,∗
r (θ1) = 1:∥∥∥ ms∑

r=1

qs,∗r (θ1)(∇θLs(θ1, Rsr)−∇θLs(θ2, Rsr))
∥∥∥ ≤

ms∑
r=1

qs,∗r (θ1)L∥θ1 − θ2∥ = L∥θ1 − θ2∥ (46)

For the second term, by Lemma D.3 and Assumption 1:
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ms∑
r=1

|qs,∗r (θ1)− qs,∗r (θ2)| · ∥∇θLs(θ2, Rsr)∥ ≤ G · ∥qs,∗(θ1)− qs,∗(θ2)∥1

≤ G ·
√
ms∥qs,∗(θ1)− qs,∗(θ2)∥2 ≤ G ·

√
ms

(
G
√
ms

ρ
∥θ1 − θ2∥

)
=
msG2

ρ
∥θ1 − θ2∥.

Combining the two bounds and using ms ≤M :

∥∇θF
s(θ1)−∇θF

s(θ2)∥ ≤
(
L+

msG2

ρ

)
∥θ1 − θ2∥ ≤

(
L+

MG2

ρ

)
∥θ1 − θ2∥.

This establishes that each F s(θ) is smooth with a constant LF s ≤ L + MG2

ρ . Since F (θ) =∑S
s=1 F

s(θ), the smoothness of the sum is the sum of the smoothness constants (by triangle inequal-
ity), so F (θ) is LF -smooth with LF =

∑
s LF s ≤ S(L+ MG2

ρ ).

D.3 Analysis of Stochastic Weight Updates

We analyze the recursive stochastic exponentiated–gradient (EG) updates for the region–weight
distributions qs defined in (36). Our goal is to show that, despite stochastic noise and the slow drift of
the encoder parameters θt, the iterates qst track the instantaneous maximizer qs,∗(θt) with vanishing
error. In particular, we establish an O(1/t) rate for the expected tracking error E[KL(qs,∗(θt)∥qst )].
For simplicity we fix a scale s and drop the superscript for qst . At iteration t, the inner maximization
problem is

max
q∈∆m

{ m∑
r=1

qr Ls(θt, Rsr) − ρKL(q∥u)
}
, (47)

whose unique solution is the Gibbs distribution q∗
t = softmax(Ls(θt, ·)/ρ) (Proposition D.1).

Algorithm 1 updates qt via the stochastic mirror–ascent step

qt ∈ argmax
q∈∆m

{ m∑
r=1

qr L̂s(θt−1, R
s
r) − ρKL(q∥u)− 1

ηq,t−1
KL(q∥qt−1)

}
, (48)

where L̂s(θt−1, R
s
r) is an unbiased estimate of Ls(θt−1, R

s
r) (Assumption 4). We will show that under

the usual bounded-gradient and smoothness assumptions, and with θt itself updated by stochastic
gradient descent, the mean squared ℓ1–tracking error E∥qt − q∗(θt)∥21 decays as O(1/t).
Theorem D.5 (Tracking Error of Weight Updates). Under Assumptions 1–3, run the region weight
updates (48) (whose closed-form is (38) as established in Proposition D.1). Then there exists a
constant Cq depending only on η0, α,G, ρ, Lmax, σ such that

E
∥∥qt − q∗(θt)

∥∥2
1

≤ Cq

t
,

where q∗(θ) = argmaxq∈∆m
{
∑
r qr Ls(θ,Rr)− ρKL(q∥u)}.

The proof proceeds in three steps: (i) a one-step KL-descent bound for the exponentiated update; (ii) a
‘three-point’ decomposition to relate KL(q∗(θt−1)∥qt) to KL(q∗(θt−1)∥qt−1); and (iii) casting the
result as a scalar recursion and invoking a standard O(1/t) lemma, followed by Pinsker’s inequality.
Lemma D.6 (One-Step Contraction). Let q∗

t−1 = softmax(Ls(θt−1, ·)/ρ). Under Assumptions 2
and 4, for any t such that ηq,t−1ρ ≤ 1/2, we have

E
[
KL(q∗

t−1∥qt)
∣∣ Ft−1

]
≤ (1− ηq,t−1ρ)KL(q∗

t−1∥qt−1) + C0 η
2
q,t−1mσ

2
L, (49)

where C0 > 0 is an absolute constant.
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Proof. Define the composite objective ht−1(q) =
∑
r qr Ls(θt−1, R

s
r) − ρKL(q∥u), which is

ρ-strongly concave w.r.t. the KL divergence. The mirror-ascent step (48) satisfies the following
inequality for a ρ-strongly concave objective [37]:

(1 + ηq,t−1ρ)KL(q∗
t−1∥qt) ≤ KL(q∗

t−1∥qt−1) + ηq,t−1 ⟨L̂s(θt−1, ·)− Ls(θt−1, ·), qt − q∗
t−1⟩.
(50)

Let ξt−1 denote the zero–mean noise vector. Taking conditional expectation and applying the
standard bound E[⟨ξt−1,qt − q∗

t−1⟩ | Ft−1] ≤ (ηq,t−1/2)E[∥ξt−1∥2∞ | Ft−1], together with
E[∥ξt−1∥2∞] ≤ mσ2

L (Assumption 4), yields

(1 + ηq,t−1ρ)E[KL(q∗
t−1∥qt) | Ft−1] ≤ KL(q∗

t−1∥qt−1) +
1
2η

2
q,t−1mσ

2
L. (51)

Dividing both sides by (1 + ηq,t−1ρ) and using 1/(1 + x) ≤ 1− x+ x2 for x ≥ 0, we obtain

E[KL(q∗
t−1∥qt) | Ft−1] ≤ (1− ηq,t−1ρ+ (ηq,t−1ρ)

2)KL(q∗
t−1∥qt−1) +

η2q,t−1mσ
2
L

2(1 + ηq,t−1ρ)
.

Since both q∗
t−1 and qt−1 lie in the interior of the m-simplex and each coordinate of q∗

t−1is lower-
bounded by γ > 0 (from the softmax parameterization), we have KL(q∗

t−1∥qt−1) ≤ log(1/γ) ≤
logm+∆/ρ, which is a constant independent of t.

Thus, the (ηq,t−1ρ)
2KL(. . . ) term is O(η2q,t−1). By combining all O(η2q,t−1) terms, we can find an

absolute constant C0 > 0 such that for t large enough, the bound (49) holds.

Proposition D.7 (Property of Bregman Divergences [28]). Let ψ(q) =
∑
r qr log qr be the negative

entropy function. The KL divergence Dψ(p, q) = KL(p∥q) is the Bregman divergence induced by ψ
and satisfies the following three-point identity:

Dψ(a, c) = Dψ(a, b) +Dψ(b, c) + ⟨a− b,∇ψ(c)−∇ψ(b)⟩ (52)

where ∇ψ(q) = log q + 1.

Proof of Theorem D.5. Let

At := E[KL(q∗
t ∥qt)], at := E[KL(q∗

t−1∥qt)].

From Lemma D.6, taking total expectation and using ηq,t−1 = η0/(t− 1) gives

at ≤ (1− η0ρ
t−1 )At−1 +O(t−2). (53)

Using the Bregman three–point identity,

KL(q∗
t ∥qt) = KL(q∗

t ∥q∗
t−1) +KL(q∗

t−1∥qt) + ⟨q∗
t − q∗

t−1, logqt − logq∗
t−1⟩. (54)

The drift term KL(q∗
t ∥q∗

t−1) and the cross-term’s dependence on θ are both bounded by the move-
ment of θt. By Lemma D.3 (Lipschitz continuity of q∗) and E∥θt − θt−1∥2 = η2θ,t−1E[∥gt−1∥2] =
O(1/t2), we have:

E[KL(q∗
t ∥q∗

t−1)] = O(1/t2), (55)

and for the cross term, by Young’s inequality:

E[⟨q∗
t − q∗

t−1, logqt − logq∗
t−1⟩] ≤ E

[
2δ

γ2
KL(q∗

t−1∥qt) + Cδ∥θt − θt−1∥2
]

≤ 2δ

γ2
at +O(1/t2). (56)

Taking total expectation of (54) and combining terms gives:

At ≤ (1 + 2δ
γ2 ) at +O(1/t2). (57)

Substituting (53) into (57) yields

At ≤ (1 + 2δ
γ2 )
[
(1− η0ρ

t−1 )At−1 +O(t−2)
]
+O(t−2). (58)
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Choosing δ > 0 sufficiently small such that c > 1 (which is possible as η0ρ > 1), we get the
recursion:

At ≤
(
1− c

t

)
At−1 +O(1/t2). (59)

This standard recursion, with a contraction factor (1− c/t) and an error term O(1/t2), implies that
the sequence At satisfies

At := E[KL(q∗
t ∥qt)] ≤ O(1/t). (60)

Finally, by Pinsker’s inequality, this implies a bounded L2
1 error:

E[∥qt − q∗
t ∥21] ≤ 2E[KL(q∗

t ∥qt)] ≤ O(1/t). (61)

This proves the claim.

D.4 Convergence Guarantees for AMA-alignment (Proof for Theorem D.10)

In this section, we bring together all previously established ingredients—objective smoothness
(Lemma D.4 in Sec. D.3), weight-tracking error (Theorem D.5 in Sec. D.2), and gradient approxima-
tion bounds—to prove the global convergence rate. We first quantify the error introduced by using
qs(θt) instead of qs,∗(θt) in the descent step (Lemma D.8), and then derive a single-step descent
inequality (Theorem D.9). Summing these inequalities via Abel’s lemma yields the final O(1/

√
T )

convergence guarantee for non-convex stochastic optimization (Theorem D.10).

Lemma D.8 (Gradient Approximation Error). Let gt =
∑S
s=1

∑ms

r=1 q
s
r(θt)∇L̂s(θt, Rsr) be the

gradient used in Algorithm 1, and let ∇F (θt) =
∑S
s=1

∑ms

r=1 q
s,∗
r (θt)∇Ls(θt, Rsr) be the true

gradient of the objective. Under Assumptions 1–4, the gradient approximation error satisfies:

E[∥gt −∇F (θt)∥2] ≤ 2Sσ2
g + 2G2

∑S

s=1
E[∥qs(θt)− qs,∗(θt)∥21] (62)

where σ2
g is the variance from stochastic gradient estimation.

Proof. We decompose the error into two components:

gt −∇F (θt) =
S∑
s=1

ms∑
r=1

qsr(θt)∇L̂s(θt, Rsr)−
S∑
s=1

ms∑
r=1

qs,∗r (θt)∇Ls(θt, Rsr) (63)

=

S∑
s=1

ms∑
r=1

qsr(θt)(∇L̂s(θt, Rsr)−∇Ls(θt, Rsr))︸ ︷︷ ︸
(A)

+

S∑
s=1

ms∑
r=1

(qsr(θt)− qs,∗r (θt))∇Ls(θt, Rsr)︸ ︷︷ ︸
(B)

(64)

Using the inequality ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2:

E[∥gt −∇F (θt)∥2] ≤ 2E[∥A∥2] + 2E[∥B∥2] (65)

For term (A), using Assumption 4 and the independence of the stochastic gradients from the weights
(due to two-batch sampling):

E[∥A∥2] = E
[∥∥∥ S∑

s=1

ms∑
r=1

qsr(θt)(∇L̂s −∇Ls)
∥∥∥2] = S∑

s=1

ms∑
r=1

(qsr(θt))
2E[∥∇L̂s −∇Ls∥2]

≤ σ2
g

S∑
s=1

ms∑
r=1

(qsr(θt))
2 ≤ σ2

g

S∑
s=1

1 = Sσ2
g (66)

For term (B), accounting for non-orthogonal gradients and using Cauchy-Schwarz:
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E[∥B∥2] = E
[∥∥∥ S∑

s=1

ms∑
r=1

(
qsr(θt)− qs,∗r (θt)

)
∇Ls(θt, Rsr)

∥∥∥2]
≤

S∑
s=1

E
( ms∑
r=1

∣∣qsr(θt)− qs,∗r (θt)
∣∣ ∥∇Ls(θt, Rsr)∥

)2
≤ G2

S∑
s=1

E[∥qs(θt)− qs,∗(θt)∥21]. (67)

Combining (66), (67) with (65):

E[∥gt −∇F (θt)∥2] ≤ 2Sσ2
g + 2G2

∑S

s=1
E[∥qs(θt)− qs,∗(θt)∥21]

Theorem D.9 (Single-Step Progress). Under Assumptions 1–4, with learning rate ηθ,t < 2
LF

where

LF = S · (L+
√
MG2

ρ ) is the smoothness constant from Lemma D.4, a single step of Algorithm 1
satisfies:

E[F (θt+1)|θt] ≤ F (θt)− ηθ,t

(
1− LF ηθ,t

2

)
∥∇F (θt)∥2

+
LF η

2
θ,t

2

(
2Sσ2

g + 2G2
S∑
s=1

E[∥qs(θt)− qs,∗(θt)∥21|θt]
)

(68)

Proof. By the LF -smoothness of F (θ) from Lemma D.4:

F (θt+1) ≤ F (θt) + ⟨∇F (θt), θt+1 − θt⟩+
LF
2

∥θt+1 − θt∥2 (69)

= F (θt)− ηθ,t⟨∇F (θt), gt⟩+
LF η

2
θ,t

2
∥gt∥2 (70)

Using gt = ∇F (θt) + (gt −∇F (θt)) and taking the conditional expectation:

E[F (θt+1)|θt] ≤ F (θt)− ηθ,t⟨∇F (θt),∇F (θt)⟩ − ηθ,t

〈
∇F (θt),E

[
gt −∇F (θt)|θt

]〉
(71)

+
LF η

2
θ,t

2
E
[
∥∇F (θt) + (gt −∇F (θt))∥2|θt

]
(72)

By the two-batch sampling (Assumption 4), E[gt −∇F (θt)|θt] = 0. Expanding the squared norm:

E[F (θt+1)|θt] ≤ F (θt)− ηθ,t∥∇F (θt)∥2 (73)

+
LF η

2
θ,t

2

(
∥∇F (θt)∥2 + E[∥gt −∇F (θt)∥2|θt]

)
(74)

Applying Lemma D.8 and rearranging:

E[F (θt+1)|θt] ≤ F (θt)− ηθ,t∥∇F (θt)∥2 +
LF η

2
θ,t

2
∥∇F (θt)∥2 (75)

+
LF η

2
θ,t

2

(
2Sσ2

g + 2G2
S∑
s=1

E[∥qs(θt)− qs,∗(θt)∥21|θt]
)

(76)

= F (θt)− ηθ,t

(
1− LF ηθ,t

2

)
∥∇F (θt)∥2 (77)

+
LF η

2
θ,t

2

(
2Sσ2

g + 2G2
S∑
s=1

E[∥qs(θt)− qs,∗(θt)∥21|θt]
)

(78)
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Theorem D.10 (Convergence Rate). Under Assumptions 1–4, using parameter step sizes ηθ,t = α√
t

with α ∈ (0, 2
LF

) and weight step sizes ηq,t = η0
t with η0 > 0, Algorithm 1 achieves:

1

T

T∑
t=1

E[∥∇F (θt)∥2] ≤
C

cαα
√
T

(79)

where C is a constant that depends on the initial suboptimality gap F (θ1)− F ∗, the gradient bound
G. Here, F ∗ = infθ∈Θ F (θ), and cα = 1− LFα

2 > 0.

Proof. From Theorem D.9 with ηθ,t = α√
t
:

E[F (θt+1)] ≤ E[F (θt)]−
α√
t

(
1− LFα

2
√
t

)
E[∥∇F (θt)∥2] (80)

+
LFα

2

2t

(
2Sσ2

g + 2G2
S∑
s=1

E[∥qs(θt)− qs,∗(θt)∥21]

)
(81)

For t ≥ t0 = ⌈ L2
Fα

2

4(1−cα)2 ⌉, we have 1− LFα
2
√
t
≥ cα. Using this and Theorem D.5:

E[F (θt+1)] ≤ E[F (θt)]−
cαα√
t
E[∥∇F (θt)∥2] +

LFα
2

2t

(
2Sσ2

g + 2G2S
Cq

t

)
(82)

Rearranging:

cαα√
t
E[∥∇F (θt)∥2] ≤ E[F (θt)]− E[F (θt+1)] +

SLFα
2σ2

g

t
+
LFα

2G2SCq

t2
(83)

Multiplying by
√
t and summing from t = t0 to T :

cαα

T∑
t=t0

E[∥∇F (θt)∥2] ≤
T∑
t=t0

√
t(E[F (θt)]− E[F (θt+1)])

+ SLFα
2σ2

g

T∑
t=t0

√
t

t
+ LFα

2G2SCq

T∑
t=t0

√
t

t2
. (84)

Using Abel’s summation for the first term:
T∑
t=t0

√
t(E[F (θt)]− E[F (θt+1)]) =

√
t0E[F (θt0)]−

√
TE[F (θT+1)]

+

T∑
t=t0+1

E[F (θt)](
√
t−

√
t− 1). (85)

For the remaining terms in (84), we use the bounds
∑T
t=t0

√
t
t =

∑T
t=t0

1√
t
≤ 2

√
T and

∑T
t=t0

√
t
t2 =∑T

t=t0
1
t3/2

≤
∫∞
t0−1

dx
x3/2 = 2√

t0−1
= O(1).

Since F ∗ = inf
θ∈Θ

F (θ), we have E[F (θT+1)] ≥ F ∗, E[F (θt)] ≥ F ∗, and
√
t−

√
t− 1 > 0:

cαα
∑T

t=t0
E[∥∇F (θt)∥2]

≤
√
t0E[F (θt0)]−

√
TF ∗ + F ∗

T∑
t=t0+1

(
√
t−

√
t− 1) + 2LFα

2σ2
g

√
T +O(1)

=
√
t0E[F (θt0)]−

√
TF ∗ + F ∗(

√
T −

√
t0) + 2SLFα

2σ2
g

√
T +O(1)

=
√
t0(E[F (θt0)]− F ∗) + 2SLFα

2σ2
g

√
T +O(1)

≤2SLFα
2σ2

g

√
T +O(1) (86)
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Dividing by cαα(T − t0 + 1) and using T − t0 + 1 ≈ T for large T :

1

T − t0 + 1

T∑
t=t0

E[∥∇F (θt)∥2] ≤
2SLFασ

2
g

√
T

cαT
+
O(1)

cααT

=
2SLFασ

2
g

cα
√
T

+
O(1)

cααT
(87)

Including the initial t0 − 1 iterations and using the boundedness of gradients (Assumption 1):

1

T

T∑
t=1

E[∥∇F (θt)∥2] ≤
t0 − 1

T
G2 +

T − t0 + 1

T

1

T − t0 + 1

T∑
t=t0

E[∥∇F (θt)∥2]

≤ O(1)

T
+

2SLFασ
2
g

cα
√
T

+
O(1)

cααT
(88)

For large T , since 1√
T

dominates 1
T , we have:

1

T

T∑
t=1

E[∥∇F (θt)∥2] ≤
C

cαα
√
T
, (89)

where C is a constant. This establishes a convergence rate of O(1/
√
T ) for the average squared

gradient norm, which is optimal for non-convex stochastic optimization.

Remark 3. In Algorithm 1, the weight step size ηq can be implemented either as a constant (for
simple implementation) or using a decreasing schedule ηq,t = η0

t (for theoretical guarantees). Our
convergence analysis shows that with appropriate step size schedules, our method achieves the
optimal O(1/

√
T ) rate for non-convex stochastic optimization, with all error terms vanishing as T

increases.

E Gradient Analysis: A Hierarchical Optimization View

In this section, we examine the optimization dynamics of our AMA-alignment framework by analyz-
ing its gradient structure. We extend the coordinate-wise optimization interpretation of contrastive
learning [45] and demonstrate how AMA-alignment introduces a novel third level of adaptation
through region-wise weighting. This view reveals the distinct mechanisms by which our method
emphasizes both fine-grained alignment and difficult semantic regions across scales.

E.1 Why Gradient Analysis?

Gradient-based analysis offers valuable insight into how contrastive learning adjusts representations
during training. Prior work [45] interprets the InfoNCE loss as a two-player game:

• A max-player updates the encoder parameters θ to improve representations.
• A min-player adaptively reweights negative pairs through a soft importance weighting

function α.

This perspective explains how methods like hard negative mining operate by emphasizing certain
negatives via α.

In AMA-alignment, we introduce a third optimization axis—region-level importance weights
qs—which prioritizes regions of semantic misalignment. This leads to a hierarchical three-player
game, where the gradient reflects contributions from individual sample pairs, localized regions, and
semantic scales.

E.2 Local loss: pair–wise gradient inside a region

We begin with the gradient of the local contrastive loss Ls(θ,Rsr) for a region Rsr at scale s. Recall
that this loss encourages representations within Rsr to align with the corresponding semantic affinities
(see (12)).
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Let (xi, xj) denote a positive sample pair drawn from Prsr(·|x̄), and let xk represent a negative sample
within the same region Rsr. We define the squared pairwise distances as d2(zi, zj) = ∥zi − zj∥2 =
∥g(xi)− g(xj)∥2, and similarly, d2(zi, zk) = ∥zi − zk∥2. Then, the gradient of the local loss in (12)
can be expressed as follows.

Lemma E.1 (Local Contrastive Gradient). The gradient of the local contrastive loss Ls(θ,Rsr) with
respect to parameters θ is given by:

∂Ls(θ,Rsr)
∂θ

= E
x̄∼PX̄

[
E

(xi,xj)∼Prsr(·|x̄)

[ ∑
k ̸=i,k∈Rs

r

αsik∇θd
2(zi, zk)− βsi∇θd

2(zi, zj)
]]
, (90)

where:

• αsik =
exp(z⊤i zk/τ)∑

l̸=i,l∈Rs
r
exp(z⊤i zl/τ)

1Rs
r
(xk) is the importance weight for negative pair (xi, xk)

• βsi =
∑
k ̸=i,k∈Rs

r
αsik is the aggregate negative importance

• 1Rs
r
(xk) indicates whether sample xk falls within region Rsr

Proof. We start with the formulation of local contrastive loss in terms of functions ϕ and ψ as defined
in [45]. Specifically, if we take ϕ(x) = τ log (ϵ+ x) and ψ(x) = expx/τ , we can express the local
contrastive loss as:

Ls = Lsϕ,ψ = E
x̄∼PX̄

[
E

xi,xj∼Prsr(·|x̄)

[
ϕ(ξij)

]]
= E
x̄∼PX̄

[
E

xi,xj∼Prsr(·|x̄)

[
ϕ
( ∑
k ̸=i, k∈Rs

r

ψ
(
d2ij − d2ik

))]]
(91)

To compute the gradient, we apply the chain rule to Lsϕ,ψ . Let ξij =
∑
k ̸=i, k∈Rs

r
ψ
(
d2ij − d2ik

)
, then:

∂Lsϕ,ψ
∂θ

= E
x̄∼PX̄

[
E

xi,xj∼Prsr(·|x̄)

[
ϕ′(ξij)

∂ξij
∂θ

]]
(92)

Further applying the chain rule to ξij :

∂ξij
∂θ

=
∑

k ̸=i, k∈Rs
r

ψ′(d2ij − d2ik)
∂(d2ij − d2ik)

∂θ
=

∑
k ̸=i, k∈Rs

r

ψ′(d2ij − d2ik)

(
∂d2ij
∂θ

− ∂d2ik
∂θ

)
(93)

Substituting back and using the specific form of ϕ and ψ, we obtain:

∂Lsϕ,ψ
∂θ

= E
x̄∼PX̄

[
E

xi,xj∼Prsr(·|x̄)

[
ϕ′(ξij)

∑
k ̸=i, k∈Rs

r

ψ′(d2ij − d2ik)(∇θd
2(zi, zj)−∇θd

2(zi, zk))
]]

(94)

With our choice of ϕ and ψ, we have ϕ′(ξij) = τ
ϵ+ξij

and ψ′(x) = 1
τ exp(x/τ). This yields:

αsik = ϕ′(ξij) · ψ′(d2ij − d2ik) · τ =
τ

ϵ+ ξij
· 1
τ
exp((d2ij − d2ik)/τ) · τ

=
exp((d2ij − d2ik)/τ)

ϵ+
∑
l ̸=i, l∈Rs

r
exp((d2ij − d2il)/τ)

(95)

As ϵ→ 0 and considering that d2ij = −2z⊤i zj + ∥zi∥2 + ∥zj∥2, we can simplify it to:

αsik =
exp(z⊤i zk/τ)∑

l ̸=i,l∈Rs
r
exp(z⊤i zl/τ)

1
s(xi, xk) (96)
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Let βsi =
∑

k ̸=i,k∈Rs
r

αsik. Rearranging terms, we arrive at the final gradient expression:

∂Ls

∂θ
= E
x̄∼PX̄

[
E

xi,xj∼Prsr(·|x̄)

[ ∑
k ̸=i,k∈Rs

r

αsik∇θd
2(zi, zk)− βsi∇θd

2(zi, zj)
]]

(97)

This completes the proof.

Intuitively, this gradient structure reveals two competing forces within each local region:

1. The first term pushes dissimilar samples apart, with weights αsik that emphasize hard
negatives

2. The second term pulls similar samples together with strength proportional to βsi

Unlike traditional contrastive learning, our approach restricts these forces to operate within se-
mantically coherent regions Rsr, preserving local structure while preventing inappropriate global
repulsion.

E.3 Global objective: aggregating regions and scales

Building on the local gradient structure, we now characterize the overall gradient of our AMA-
alignment approach:
Proposition E.2 (AMA-alignment Gradient). The gradient of the AMA-alignment objective F (θ) in
Equation (15) is:

∇θF (θ) =

S∑
s=1

ms∑
r=1

qs,∗r E
x̄∼PX̄

[
E

xi,xj∼Prsr(·|x̄)

[ ∑
k ̸=i, k∈Rs

r

αsik∇θd
2(zi, zk)−βsi∇θd

2(zi, zj)
]]
, (98)

where qs,∗r are the region importance weights that adaptively emphasize challenging regions.

Proof. By Lemma D.2, we have ∇θF (θ) =
∑S
s=1

∑ms

r=1 q
s,∗
r (θ)∇θLs(θ,Rsr). Then substitute the

local loss gradient in Lemma E.1 completes the proof.

This gradient formulation reveals how AMA-alignment integrates information across multiple scales
and regions. The region weights qs,∗r act as attention mechanisms, focusing optimization efforts on
regions where representation and semantic affinities are most misaligned.

Three-Level Hierarchical Coordinate Optimization. Our AMA-alignment framework extends
the traditional two-player game [45] of contrastive learning to a three-level hierarchical optimization.
The proof follows similar analytical principles as established by Tian [45] and is therefore omitted
for brevity.
Proposition E.3 (Hierarchical Coordinate Optimization). AMA-alignment implements a three-level
coordinate-wise optimization procedure:

(Region weights) qs,∗(θt) = arg max
qs∈∆ms

{ ms∑
r=1

qsrLs(θt, Rsr)− ρKL(qs)
}

(99)

(Pair weights) αs(θt) =
{ exp(z⊤i zk/τ)∑

l ̸=i,l∈Rs
r
exp(z⊤i zl/τ)

1Rs
r
(xk)

}
i,k

(100)

(Parameters) θt+1 = θt − ηθ,t

S∑
s=1

ms∑
r=1

qs,∗r (θt)∇θLs(θt, Rsr) (101)

This hierarchical structure involves three coordinating players:

1. Parameter optimizer (θ): Updates model parameters to optimize representations across all
scales

2. Local affinity optimizer (αs): Assigns importance to sample pairs within local regions
3. Region importance optimizer (qs): Adaptively weights regions based on optimization

difficulty
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Comparison to Hard Negative Mining Hard negative mining methods [38] modify αik globally
to emphasize difficult negatives. In contrast:

• Hard negative mining: Applies globally, adjusts pairwise αik over the full sample space.
Hard negative mining methods adjust sample-pair weights αik to emphasize challenging
samples. For example, methods like [38] use modified weights:

αHN
ik =

exp(−(1 + γ)d2ik/τ)∑
k′ ̸=i exp(−(1 + γ)d2ik′/τ)

, (102)

where γ > 0 controls the emphasis on hard negatives.
• AMA-alignment: Operates locally, adds a region-level attention mechanism qs,∗r that

adaptively prioritizes semantic regions across scales.

The two approaches are orthogonal and potentially complementary. While hard negative mining em-
phasizes difficult samples, AMA-alignment emphasizes difficult regions—offering a new dimension
of adaptivity.

F Implementation Details

Unsupervised Region Construction. In unsupervised settings where no labels are available, we
construct hierarchical region partitions via an iterative clustering procedure directly within the
representation space Z . In a MoCo v2 implementation [8], for instance, we cluster the embeddings
from the momentum encoder’s queue, which maintains a large and diverse collection of recent
representations. We then perform Spherical K-means clustering on this subset to partition the
embedding space. To establish the hierarchical structure, this clustering process is repeated for each
scale s ∈ {1, . . . , S}, employing a varying number of clusters, ms, for each. Specifically, a smaller
number of clusters (e.g., ms = 5) defines the coarser scales that capture broad categorical divisions,
while a larger number (e.g., ms = 100) constitutes the finer-grained partitions. The resulting cluster
centroids are designated as the anchor points {zsr}, with each cluster of embeddings forming a distinct
region Rs

r. Subsequently, any given embedding z ∈ Z is assigned to the region corresponding to
its nearest anchor point in terms of angular distance, consistent with the definition in Sec. 3.1. This
set of multi-scale partitions is held static for the duration of an epoch, providing a stable structural
scaffold against which local affinity alignment is optimized.

Supervised Region Construction. In supervised settings where labels are available, we leverage
class information to guide the construction of regions. Specifically, we compute the centroid of the
embeddings within each class cluster and use these centroids as the anchor points zsr ∈ Z . Each
sample is then assigned to the closest anchor (in angular distance), forming a set of semantically
meaningful regions. When the available label hierarchy is shallow (e.g., only superclass annotations
are provided), we follow the same hierarchical random sampling procedure used in the unsupervised
setting to further subdivide regions into finer-grained partitions.

G Experimental Results

We evaluate the proposed AMA-alignment framework on multiple benchmarks to assess its ability
to capture fine-grained semantic structures. We compare against state-of-the-art contrastive learning
(CL) baselines in both unsupervised and supervised settings. Here is the code.

Datasets and Experimental Setup We conduct experiments mainly on five public datasets: Deep-
Fashion [30], a clothing dataset with fine-grained annotations suitable for constructing hierarchical
category labels; iNaturalist (iNat) [49], a long-tailed dataset with taxonomic hierarchies (species →
genus → family); CIFAR-100 [24], consisting of 100 classes grouped into 20 superclasses; Model-
Net40 [54], comprising 3183 CAD models from 40 object categories; and BuImg [34], an ultrasound
dataset for breast cancer diagnosis.

We adopt the well-known SimCLR [7], MoCo-v2 [8], HardNeg [38] and α-CL [45] as unsupervised
CL baselines. We also consider the supervised scenarios and adopt the popular baselines SupCon [23],
Guided-proto [25] and HiMulConE [59].
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The models are trained using ResNet-50 [16] as the backbone and evaluated via linear probing (unless
otherwise specified). Training is conducted for 200 epochs using AdamW optimizer [31], with weight
decay 5× 10−6, and learning rate initialized at 0.01. Part of the implementation details is provided
in Appendix F.

G.1 Downstream Performance

Table 4 shows classification results (evaluated by linear probing). AMA-alignment consistently
outperforms existing CL methods, with substantial gains on fine-grained benchmarks. On Deep-
Fashion, we observe over 5% improvement, highlighting AMA’s ability to capture subtle semantics.
Performance on other datasets also improves notably, especially in tail classes as shown in Table 5.

Table 4: Top-1 accuracy on downstream tasks using linear probing. AMA-alignment outperforms
over prior methods, highlighting its strength in fine-grained representation learning.

Method DeepFashion ModelNet iNat ImageNet
SimCLR [7] 70.3 79.3 54.0 69.5
MoCo-v2 [8] 70.8 79.6 55.3 68.1
HardNeg [38] 70.9 79.8 55.8 70.4
α-CL [45] 71.7 79.6 56.1 70.2
AMA-alignment (ours) 75.8 80.6 57.2 73.3

We further evaluate AMA-alignment on BuImg [34], a challenging breast ultrasound dataset for cancer
diagnosis. This dataset contains ultrasound images annotated with both binary classification labels
(benign/malignant) and more fine-grained BI-RADS (Breast Imaging-Reporting and Data System)
categorizations from 1 to 4, where higher numbers indicate greater likelihood of malignancy. Each
image was independently labeled by two experienced radiologists, providing a natural multi-scale
hierarchy for evaluation - a coarse binary classification and a finer four-level BI-RADS categorization.

For medical applications, Area Under the ROC Curve (AUC) is a more appropriate evaluation metric
than accuracy, as it better represents performance across different decision thresholds, which is
critical in clinical settings where the cost of false negatives and false positives differs significantly.
Table 5 shows that AMA-alignment significantly outperforms existing contrastive learning methods
across all BI-RADS categories, with particularly notable improvements in the challenging borderline
categories (BI-RADS 3 and 4) where clinical decision-making is most difficult.

Table 5: AUC scores for BI-RADS classification on the BuImg breast ultrasound dataset. AMA-
alignment shows substantial improvement in distinguishing between clinically challenging borderline
cases.

Method BI-RADS 1 BI-RADS 2 BI-RADS 3 BI-RADS 4
SimCLR [7] 0.898 0.811 0.756 0.662
MoCo-v2 [8] 0.910 0.821 0.768 0.675
α-CL [45] 0.912 0.827 0.806 0.681
SupCon [23] 0.942 0.877 0.817 0.693
AMA-alignment (ours) 0.956 0.883 0.844 0.735

The substantial improvement in AUC scores demonstrates AMA-alignment’s ability to capture
clinically relevant features across different levels of diagnostic certainty. This is particularly important
in medical imaging applications where hierarchical structures often naturally exist (from normal to
definitely abnormal, with gradations in between). The multi-scale nature of our approach enables the
model to simultaneously learn discriminative features for the overall benign/malignant classification
while also capturing the nuanced differences between adjacent BI-RADS categories. Notably, AMA-
alignment achieved 0.735 AUC on BI-RADS 4, representing a 4.2% improvement over supervised
contrastive learning, highlighting its effectiveness in the challenging "probably benign" category
where misdiagnosis risks are highest.
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Hierarchical Representation Quality To assess the preservation of semantic hierarchies in learned
representations, we employ two metrics: (1) Hierarchical Clustering Normalized Mutual Information
(HC-NMI) [10], and (2) Intra-class Variance Reduction (IVR). As summarized in Table 6, AMA-
alignment achieves superior alignment with ground-truth hierarchies, demonstrating its effectiveness
in modeling multi-scale structures.

Table 6: Hierarchical alignment results in DeepFashion. Higher HC-NMI and lower IVR indicate
better semantic structure preservation.

Method HC-NMI ↑ IVR ↓

SimCLR [7] 0.52 0.134
HardNeg [38] 0.56 0.119
α-CL [45] 0.59 0.114
AMA-alignment (ours) 0.66 0.091

G.2 Comparison with Previous Deep Clustering Methods

To further evaluate the clustering capability of AMA-alignment, we compare it with a comprehensive
set of classical and deep clustering methods on three challenging benchmarks: CIFAR-10, CIFAR-
100, and Tiny-ImageNet. The baselines include traditional clustering techniques (e.g., K-means [32],
Spectral Clustering (SC) [15], NFM [3]), autoencoder-based methods (e.g., AE [2], DAE [50],
DEC [55]), and recent deep clustering models (e.g., JULE [57], DAC [6], IIC [21], DCCM [53],
PICA [19], ConCluster [27]).

Table 7 presents clustering performance in terms of Normalized Mutual Information (NMI), Accuracy
(ACC), and Adjusted Rand Index (ARI). While ConCluster [27] achieves the highest NMI and ARI
on CIFAR-10 and CIFAR-100, our AMA-alignment surpasses all methods in accuracy (ACC) on
every dataset (we evaluate the accuracy of our method by linear probing). This demonstrates that
the representations learned by AMA-alignment are more aligned with semantic ground-truth labels,
even though our approach is primarily designed for hierarchical contrastive learning rather than
clustering-specific optimization.

Notably, AMA-alignment exhibits particularly strong performance on Tiny-ImageNet, where it
achieves a significant gain in clustering accuracy, highlighting its potential in handling hierarchical
structures, which classical clustering methods often fail to capture. Overall, these results validate the
effectiveness of AMA-alignment not only in representation learning but also in clustering, especially
in scenarios where multi-scale semantics are crucial.

Table 7: Clustering performance on various datasets. Best results are shown in bold, and second-
best results are underlined. Although AMA-alignment is not specialized for clustering tasks like
ConCluster, it still achieves competitive results, ranking second in clustering metrics. AMA-alignment
significantly outperforms deep clustering methods in linear probing accuracy.

Metrics CIFAR-10 CIFAR-100 Tiny-ImageNet
NMI ACC ARI NMI ACC ARI NMI ACC ARI

K-means 0.087 0.229 0.049 0.084 0.130 0.028 0.065 0.025 0.005
SC 0.103 0.247 0.085 0.090 0.136 0.022 0.063 0.022 0.004
NMF 0.081 0.190 0.034 0.079 0.118 0.026 0.072 0.029 0.005
AE 0.239 0.314 0.169 0.100 0.165 0.048 0.131 0.041 0.007
DAE 0.251 0.297 0.163 0.111 0.151 0.046 0.127 0.039 0.007
DEC 0.257 0.301 0.161 0.136 0.185 0.050 0.115 0.037 0.007
JULE 0.192 0.272 0.138 0.103 0.137 0.038 0.102 0.033 0.006
DAC 0.396 0.522 0.306 0.185 0.238 0.088 0.066 0.017 0.006
DCCM 0.496 0.623 0.408 0.285 0.327 0.173 0.224 0.108 0.038
IIC – 0.617 – – 0.257 – – – –
PICA 0.591 0.696 0.512 0.310 0.307 0.171 0.277 0.098 0.040
ConCluster 0.705 0.790 0.637 0.431 0.429 0.266 0.340 0.140 0.071
AMA-alignment 0.652 0.837 0.572 0.368 0.708 0.244 0.285 0.627 0.065
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Supervised Extension AMA-alignment is compatible with supervised training. As shown in
Table 8, it achieves strong performance across datasets, outperforming previous supervised methods
such as SupCon and Guided-Proto.

Table 8: Top-1 accuracy in supervised settings.

Method ImageNet DeepFashion iNat ModelNet40
Cross Entropy 77.60 72.44 56.86 81.31
SupCon [23] 78.70 72.82 57.28 81.60
HiMulConE [59] 79.14 73.21 59.40 88.46
Guided-Proto [25] 76.60 72.61 57.33 83.49
AMA-alignment (ours) 79.39 74.17 59.35 89.26

G.3 Ablation Study

We conduct ablation studies on the key components of AMA-alignment in Table 9. Both multi-scale
partitioning and local contrastive loss are essential; removing either results in a performance drop.

Specifically, incorporating the multi-scale local contrastive loss (+ Multi-scale) improves accuracy
compared with Global-only CL, indicating that modeling representations at different semantic
granularities might benefit global consistency. In contrast, if we use an adaptive weighting mechanism
(+ Adaptive) but implemented via the heuristic loss given in (13), the performance degrades. Unlike
the proposed local contrastive loss in (12), this formulation does not restrict negatives to local regions,
thereby distorting the affinity structure and degrading performance, as discussed in Remark 1.

In contrast, our AMA-alignment employs the principled local contrastive loss in (12), which rigor-
ously aligns the semantic affinity matrix Ksem and the representation affinity matrix Krep through
probabilistic graph coupling. This theoretically grounded formulation ensures that both the global
and local alignment objectives work coherently in synergy.

Table 9: Ablation study on Various Datasets.

Accuracy (%) DeepFashion iNat ImageNet
Global-only CL 70.2 54.0 69.5
+ Multi-scale (fixed weights) 72.3 55.9 70.2
+ Adaptive (w/o (12)) 67.3 50.4 67.8
AMA-alignment (ours) 75.8 57.2 73.3

Table 10: Linear probing accuracy and normalized training time for various configurations on
DeepFashion. When {ms = 1}Ss=1, our method reduces to the classical contrastive learning frame-
work [17].

Configuration {ms}Ss=1 linear probing accuracy Normalized Time
{1, 1, 1} (reduced to MoCo) 0.703 1
{3, 6, 12} 0.741 1.31
{5, 10, 20} 0.758 1.34
{8, 16, 24} 0.743 1.41

G.4 Additional Experiments

Fine-tuning pre-trained DINO. To further validate the generality of our method, we applied AMA
alignment to a pre-trained DINO model [5] or SwAV model [4]. We fine-tuned the model for 10
epochs using our adaptive multi-scale strategy with negligible additional cost (only ∼1.05× longer
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Table 11: Fine-tuning DINO with AMA alignment on ImageNet.
Method Linear probe (%) k-NN (%)

ResNet-50 backbone
SwAV 75.3 65.7
DINO 75.3 67.5
Ours (fine-tuned) 77.4 68.3

ViT-S backbone
SwAV 73.5 66.3
DINO 77.0 74.5
Ours (fine-tuned) 77.8 74.7

per epoch). This fine-tuning yields consistent improvements on both ResNet-50 and ViT-S backbones,
evaluated by ImageNet linear probing and k-NN classification:

The results indicate that AMA can effectively enhance pre-trained representations with minimal
computational overhead, improving both linear and non-parametric metrics.

Results with ViT-B/16 backbone. We also evaluated our method using the ViT-B/16 transformer
backbone under the same training settings. Table 12 summarizes the results across four datasets,
showing that the proposed adaptive multi-scale alignment consistently boosts performance across
both natural and geometric domains.

Table 12: Comparison using ViT-B/16 backbone on multiple datasets (%).
Method DeepFashion ModelNet iNaturalist ImageNet

SimCLR 72.1 78.8 56.7 71.8
MoCo-v2 72.5 79.1 57.9 70.4
HardNeg 72.8 79.5 58.4 72.0
α-CL 73.4 79.2 58.8 72.6
HyperbolicCL 75.2 79.5 58.1 72.9
AMA-alignment (ours) 77.2 79.5 60.1 74.2

Results on BI-RADS classification. We also extended our evaluation to the BI-RADS mammogra-
phy dataset to assess the effectiveness of AMA in a medical imaging context. As shown in Table 13,
our method achieves the highest accuracy across all four BI-RADS categories, demonstrating im-
proved discriminative ability in fine-grained and imbalanced medical image scenarios.

Table 13: Comparison on BI-RADS dataset (%).
Method BI-RADS 1 BI-RADS 2 BI-RADS 3 BI-RADS 4

SimCLR 83.5 75.0 70.7 61.5
MoCo-v2 84.7 76.1 71.2 62.3
α-CL 84.5 76.5 74.5 63.5
SupCon 83.5 80.9 75.5 64.1
HyperbolicCL 88.1 81.2 70.4 60.1
AMA-alignment (ours) 89.8 84.7 78.4 66.4

These results further demonstrate the robustness and versatility of the proposed alignment strategy
across architectures, domains, and scales.
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