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Abstract

The increasing capability of large language001
models (LLMs) to generate fluent long-form002
texts is presenting new challenges in dis-003
tinguishing machine-generated outputs from004
human-written ones, which is crucial for ensur-005
ing authenticity and trustworthiness of expres-006
sions. Existing zero-shot detectors primarily007
focused on token-level distributions, which are008
vulnerable to real-world domain shifts includ-009
ing different prompting and decoding strate-010
gies, and adversarial attacks. We propose a011
more robust method that incorporates abstract012
elements—such as topic or event transitions—013
as key deciding factors to detect machine vs.014
human texts, by training a latent-space model015
on sequences of events or topics derived from016
human-written texts. On three different do-017
mains, machine generations which are orig-018
inally inseparable from humans’ on the to-019
ken level can be better distinguished with our020
latent-space model, leading to a 31% improve-021
ment over strong baselines such as DetectGPT022
(Mitchell et al., 2023; Bao et al., 2024). Our023
analysis further reveals that, unlike humans,024
modern LLMs like GPT-4 generate event trig-025
gers and their transitions differently, an inher-026
ent disparity that help our method to robustly027
detect machine-generated texts.028

1 Introduction029

In today’s digital world, large language models030

(LLMs) such as GPT-4 have transformed various031

daily tasks with their human-like text generation032

capability, such as drafting emails and essays. How-033

ever, their potential misuse poses substantial risks034

including impersonation, misinformation, and aca-035

demic dishonesty (Tang et al., 2024). This high-036

lights the need for effective detection mechanisms.037

Existing AI content detectors can be categorized038

into 1) a priori methods such as watermarking039

(Kirchenbauer et al., 2023), 2) parameterized meth-040

ods such as fine-tuned classifiers (Hu et al., 2023),041

(a) Observation Space
Typical Generation Configs Diverse Real-World Configs

Greedy 
DecodeHigher T

Paraphrase 
Attack

Complex 
Prompt

Inseparable...Find decision boundary!

(b) Latent Space

More robust. Still separable!Human Machine

Top-k sampling, 
T = 0.7

Domain Shift

Domain Shift

E.g., inferred discourse tags

E.g., tokens

Figure 1: (a) Existing zero-shot detectors that rely on
the token distributions (observation space statistics) are
not robust to various real-world scenarios such as high
decoding temperature, complex prompts, and adversar-
ial attacks. (b) Our detector with latent features (e.g.,
discourse tags) are more robust to these changes.

and 3) zero-shot methods that rely on certain sta- 042

tistical differences (Vasilatos et al., 2023; Mitchell 043

et al., 2023; Bao et al., 2024). This paper focuses 044

on the last due to its general pertinence in practice: 045

end users may still choose non-watermarked LLMs 046

outside the distribution of the fine-tuned classifiers 047

(Yang et al., 2023; Ghosal et al., 2023). 048

Existing zero-shot methods to distinguish 049

machine-generated texts (MGTs) from human- 050

written texts (HWTs) typically assume an unchang- 051

ing relationship between machine and human out- 052

puts, ignoring potential distribution shifts resulted 053

from changes in generation setups (Zellers et al., 054

2019) or adversarial attacks (Shi et al., 2024; Wang 055

et al., 2024). As is shown in Figure 1(a), prior zero- 056

shot detection methods usually assume that MGTs 057

consistently exhibit higher log-likelihood (or con- 058

ditional curvature) than HWTs. However, certain 059

changes—including increased decoding tempera- 060

ture, paraphrasing, and word substitution—can al- 061

ter the distribution of MGTs (Hans et al., 2024), 062

making MGTs and HWTs inseparable by log- 063

likelihood after domain shift. In this work, we 064
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further identify that complex prompts (e.g., ask065

to prepare an outline before generation) can alter066

the typical relationship between MGTs and HWTs.067

Consequently, when considering MGTs from di-068

verse sources in real world, existing detectors be-069

come less effective.070

Towards more robust detection, we aim to an-071

swer the research question: Is there a shared fea-072

ture among all MGTs, regardless of the genera-073

tion configurations and adversarial attacks? Wang074

et al. (2022); Deng et al. (2022) argue that machine-075

generated long texts are fluent at word level, but076

lack discourse coherence in terms of topic or event077

transitions. We hence hypothesize that MGTs and078

HWTs are more separable in such latent space079

illustrated in Figure 1(b), because those underly-080

ing features can not be easily captured by next081

token probabilities (i.e., optimization in observa-082

tion1 space). In addition, paraphrase or edit attacks083

change original texts with semantically similar yet084

lexically different alternatives. While they effec-085

tively alter token-level distributions, the high-level,086

hidden representations remain similar.087

We test our hypothesis on three writing tasks:088

creative scripts, news, and academic essays. We089

explored latent variables like part-of-speech tags,090

topics, verbs, and event sequences. Specifically, we091

first train a lightweight model (62M transformer,092

half the size of gpt-2-small) on the latent variables093

inferred from HWTs, and then compare the latent094

distributions between HWTs and MGTs at test time.095

We find detectors in observation and latent space096

exhibit complementary strengths (§ 3.2) in differ-097

entiating MGTs from various configurations. Inte-098

grating the criteria from both types yields the best099

performance.100

We explore five features to represent the under-101

lying structure, and find that event trigger derived102

from information extraction models (Peng et al.,103

2023) is the most effective in separating HWTs104

from MGTs, outperforming strong token-space de-105

tector (Bao et al., 2024) by 31% in AUROC. Our106

analysis in § 5 further reveals that LLMs such as107

GPT-4 exhibit a different preference from human108

in choosing event triggers (for creative writing)109

and event transitions (for news and science), and110

such a disparity cannot be bridged through explicit111

planning of these latent structures.112

To sum up, we identify key factors that deceive113

1We use observation, sample, and token interchangeably
throughout this paper.

existing detectors in real-world scenarios. We then 114

demonstrate a significant discrepancy in hidden 115

structures between current LLMs and humans, es- 116

pecially the selection and transitions of event trig- 117

gers. Building on these insights, we propose a 118

novel detection framework that employs latent vari- 119

ables to robustly differentiate between human- and 120

machine- generated texts. 121

2 Preliminary: Fragility of Existing 122

Zero-Shot Detectors 123

In this section, we introduce two popular lines 124

of zero-shot detection methods (logit-based and 125

perturbation-based), and then illustrate how they 126

are fragile to manipulations in decoding, variations 127

in prompting style, and adversarial attacks. 128

2.1 Existing Detectors 129

Logit-Based Logit-based methods commonly 130

employ probability metrics of tokens. Irene So- 131

laiman (2019) established a strong baseline for de- 132

tecting machine-generated text through the average 133

log probability under the generative model. The 134

intuition behind is that language model text gener- 135

ation is auto-regressive; the model selects tokens 136

based on relatively higher probability at each deci- 137

sion point, resulting in MGT exhibiting a markedly 138

higher average log probability compared to HWT, 139

which becomes the foundational assumption of 140

perplexity-based detectors (Vasilatos et al., 2023; 141

Xu and Sheng, 2024) and rank-based detectors (Su 142

et al., 2023), etc. 143

Perturbation-Based Another notable hypothe- 144

sis introduced by Mitchell et al. (2023) posits and 145

verifies that MGT tends to occur in regions of neg- 146

ative curvature within the language model’s log 147

probability function. Specifically, minor edits to 148

MGT—referred to as perturbations—typically lead 149

to a lower log probability under the model than 150

the original text, whereas such rewrites of HWT 151

may result in either higher or lower log probabili- 152

ties. Bao et al. (2024) then increases its efficiency 153

and efficacy by utilizing dual models that share the 154

same tokenizer to expedite the perturbation pro- 155

cess. Given text sample x and scoring model pθ, 156

conditional probability curvature is defined as: 157

d (x, pθ, qφ) =
log pθ(x | x)− µ̃

σ̃
where, (1) 158

159
µ̃ = Ex̃∼qφ(x̃|x) [log pθ(x̃ | x)]

σ̃2 = Ex̃∼qφ(x̃|x)

[
(log pθ(x̃ | x)− µ̃)2

]
.

(2) 160
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Method for Generation Logit Based Pert. Based

Default T=0.7
Direct Generation ✓ ✓

Decoding T=1.0
Direct Generation ✓— ✓

Prompting Simple ✓— ✓—
Complex ✗ ✗
Paraphrase ✗ ✗Attack Edit ✗ ✗

Table 1: Different methods for generation and whether
existing zero-shot detectors are robust to them.

Perplexity

Distinguishable Indistinguishable

Decrease Temperature
Lower k for Top-k
Lower p for Top-p

Increase Temperature
Complex Prompt

Paraphrase Attack

HumanMachine

Figure 2: Both logit-based and perturbation-based de-
tectors are not robust to changes in decoding, variations
of prompting style, and adversarial attacks.

µ̃ denotes the expected score of samples x̃ gen-161

erated by the sampling model qφ, and σ̃2 is the162

expected variance of the scores.163

2.2 Influential factors for detection164

Despite the reported success, the robustness of the165

above methods are instinctively tied to text distri-166

bution, which are influenced by various factors,167

including but not limited to the following three168

settings (also summarized in Table 1):169

1) Decoding Settings: As is shown in Figure 2,170

Zellers et al. (2019) argues that setting a higher tem-171

perature (e.g., T=1.0), a higher k for top-k sampling172

can increase the likelihood of generating atypical173

sequences (i.e., increased perplexity), which con-174

tradicts the assumption of logit- and perturbation-175

based methods (Irene Solaiman, 2019; Vasilatos176

et al., 2023).177

2) Variations in Prompting: Changes in178

prompts can significantly influence the generation179

process and cause text distribution to be shifted as180

assessed by the proxy language model, particularly181

when the prompt is usually unknown to detectors.182

An illustrative example from Hans et al. (2024)183

using the prompt “Can you write a few sentences184

about a capybara that is an astrophysicist?” demon-185

strates how even seemingly simple prompts can186

lead to increased perplexity, as the probability that187

𝑥! 𝑥" 𝑥# 𝑥$ 𝑥% 𝑥& 𝑥'

𝑧! 𝑧" 𝑧#

Latent Space

...

Figure 4: Generative process with latent variables.

“capybara being astrophysicist” is very low. 188

In addition, we investigate a planning-based 189

prompting strategy, which emulates human drafting 190

processes and has been widely adopted in neural 191

long-text generation (Yao et al., 2019; Tian and 192

Peng, 2022; Yang et al., 2022) for improved co- 193

herence. Our experiments in Table 2 reveal that 194

multiple steps of planning, expansion, and revision 195

(referred to as complex chains of prompt, shown 196

in Figure 2) results in a significantly higher down- 197

stream text perplexity than direct generation (no 198

chain of prompt) and one step of planning (simple 199

chains of prompt). 200

3) Paraphrase/Edit Attacks: Rephrasing a por- 201

tion of words (termed edit attack) or sentences 202

(termed paraphrase attack) of the original article 203

can dramatically alter the text distribution, too 204

(Ghosal et al., 2023; Sadasivan et al., 2023; Shi 205

et al., 2024). Such attacks disrupts the original auto- 206

regressive properties, increases output perplexity, 207

and changes text distribution to the indistinguish- 208

able region in Figure 2. 209

3 Machine-Content Detection with Latent 210

Variables 211

In § 3.1, we formulate the next-token-prediction 212

process with latent variables and introduce a neural 213

model to learn the distributions of these variable. 214

Next, in § 3.2, we propose a simple but effective 215

method to combine the benefits of existing sample- 216

space detectors with our latent model. 217

3.1 Generative Process with Hidden Variables 218

Formulation Following Deng et al. (2022), we 219

introduce a next-word prediction model that also 220

models underlying structures using latent variables 221

(z ∈ Z), with the generated output as observed 222

variables (x ∈ X ) shown in Figure 4: 223

P (x) =
∑
z

P (z)P (x | z) (3) 224

Given a single text sequence x sampled from x ∼ 225

Px(x), we infer the latent sequence z from x with 226
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Sample Space Curvature + Latent Space PPL = Dual Criterion
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Figure 3: Left and middle: kernel density plots of the sample-space curvature and latent space PPL across five
test sets in the news domain. These include human-written texts (collected from multiple sources) and machine-
generated texts under four different configurations. The plots reveal complementary strengths: 1) the sample-space
curvature only effectively distinguishes machine outputs generated from typical settings but fail to identify outputs
generated with complex prompts or after paraphrasing/edit attacks; 2) the latent-space PPL excels at distinguishing
those non-standard settings. Right: considering both criteria leads to the most robust detection performance.

a learned posterior function Pz(z | x)2, also called227

a critic model. We can evaluate the negative log-228

likelihood (latent NLL) and perplexity (Latent PPL)229

of the inferred latent variables with:230

Latent NLL(z) = −Ez∼Pz(z|x) logPz(z)

Latent PPL(z) = exp
1

m
Latent NLL(z)

(4)231

where m is the length of the latent sequence, z.232

Choice of latent variables We study the impact233

of the choice of the critic model, Pz(z | x). With-234

out losing generality, the latent variables can be235

anything that captures the high-level underlying236

structures of a long-form text, such as topic or event237

transitions. We experiment with five different vari-238

ables that are relatively easy to obtain, including the239

part-of-speech tags, nouns or verbs as the approx-240

imation of topics, event types, and event triggers,241

all of which can be obtained using off-the-shelf242

extraction models (Bird et al., 2009; Peng et al.,243

2023). We show the results of event triggers, the244

best performing latent variable, in § 4.3 and report245

the full results in § 5.1.246

Latent-Space Language Model Given a critic247

model Pz(z | x) and a distribution of x, we have to248

learn Pz(z) to obtain Latent PPL. Concretely, we249

train a reduced-scale transformer on sequences of250

latent variables inferred only from human-written251

texts. At the test time, we can then compare the252

latent PPL from two distributions: human-written253

and machine-generated.254

2If Pz(z | x) = 1[z = x] or z is the same as x, then
Latent PPL is the same as text perplexity.

Algorithm 1 Dual Criterion Process (Sequential)
Input:

X - List of sample space curv.
Y - List of latent space PPL

Output:
combined - List ▷ requires continuous
criteria rather than binary outcomes.

Begin
0: init combine as empty list
1: for (x, y) in X,Y do
2: if Confidence(x = machine) > 95% then
3: combined.add(max(Y ))
4: else
5: combined.add(y)
6: return combined
End

3.2 Dual Criterion Process 255

Latent variables contribute to machine-content 256

detection by complementing the strengths of 257

observation-space detectors. We illustrate this 258

by examining the distributions of HWTs and and 259

MGTs under four different configurations in Fig- 260

ure 3. The figure reveals that 1) the sample-space 261

curvature (Mitchell et al., 2023) only distinguishes 262

machine outputs from standard settings (no chain, 263

T=0.7) but fails for those outputs from complex 264

prompts or altered by paraphrasing and editing at- 265

tacks. Conversely, 2) the latent-space PPL excels at 266

identifying texts generated under these challenging 267

conditions but is less successful in distinguishing 268

machine outputs under typical settings. 269

Towards more robust detection, we propose to 270

combine both metrics. Follow existing setups 271

(Mitchell et al., 2023; Bao et al., 2024) which report 272

detection accuracy using AUROC3, we require a 273

3Area under the True Positive Rate (y-axis) against False
Positive Rate (x-axis)
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continuous criterion rather than a mere binary clas-274

sification outcome. Therefore, we consider both275

metrics in a sequential order, first based on the con-276

fidence level of the sample-space detector. The277

detailed procedure is described in Algorithm 1.278

4 Experimental Results279

4.1 Dataset280

Human Text Following previous setups (Bao281

et al., 2024; Mitchell et al., 2023), we collect texts282

from similar domains that cover a variety of LLM283

use-cases. We use recent movie synopses from284

Wikipedia to represent creative writing, New York285

Times and BBC articles to represent news, and286

the introduction sections of Arxiv papers from287

three disciplines: economy, quantitative biology,288

and computer science, to represent academic es-289

says. We crawled the latest human-written texts290

ourselves and intentionally avoided using common291

datasets such as Reddit WritingPrompt (Fan et al.,292

2018), XSum (Narayan et al., 2018) and PubMed293

(Jin et al., 2019) to avoid data contamination in294

recent LLMs such as Llama3 and GPT-4.295

Machine Text On all above domains, we col-296

lect machine outputs from two sources: Llama3297

(AI@Meta, 2024) that represents open-source298

LLMs and GPT-4 (Achiam et al., 2023) that repre-299

sents proprietary models. We test the following and300

variations in prompts. No Chain: Directly generate301

the output given the task instruction and generating302

seed (including the title, first sentence, topic, etc.).303

We compare sampling with decoding temperature304

T=0.7 and T=1.0. Simple Chain: First write an305

outline given the task instruction and generating306

seed, then expand the outline to an complete arti-307

cle. Complex Chain: Identify illogical and vague308

descriptions and revise the original generation of309

simple chain. We use a decoding temperature of310

1.0 unless otherwise specified.311

We also implement popular attack methods on312

texts generated by complex chain to increase the313

difficulty of detection task: Edit (Shi et al., 2024):314

Randomly replace 40% adjectives, adverbials and315

20% verbs (about 15% in total) with their syn-316

onyms. Paraphrase (Sadasivan et al., 2023): Ran-317

domly paraphrase 40% sentences while maintain-318

ing the overall coherence by keeping the proper319

nouns and writing style unchanged.320

Inferring Events as Latent Variable We ex-321

tract event types and triggers through OmniEvent’s322

model (Peng et al., 2023) under the MAVEN 323

schema (Wang et al., 2020) for news and movie. 324

We used GPT-4 for few-shot event extraction in 325

academic essays due to the absence of a special- 326

ized model. Further details on our data collection, 327

prompting, attack strategies, and event extraction 328

models are provided in Appendix A. 329

4.2 Compared Models 330

Sample-Space Baselines We mainly compare 331

our method with the state-of-the-art detection sys- 332

tem, Fast-DetectGPT (Bao et al., 2024), which uti- 333

lizes the conditional probability curvature (Sample 334

Curv.) using a GPT-Neo-2.7b model (Black et al., 335

2021). It outperforms the well-known DetectGPT 336

(Mitchell et al., 2023) by 29%. In addition, we com- 337

pare with the popular token perplexity (Sample 338

PPL) on several pretrained LLMs including gpt2- 339

medium, gpt2-large (Radford et al., 2019), GPT- 340

Neo-2.7b, and Llama3-8b (AI@Meta, 2024), and 341

find similar accuracy despite of model sizes. To 342

be consistent with the model used in Sample Curv., 343

we picked GPT-Neo-2.7b. 344

Latent Model Since our latent sequences are 345

much shorter than the observed texts, we train a 346

lightweight transformer from scratch on sequences 347

of latent variables inferred solely from HWTs. We 348

began with a gpt2-medium-sized transformer and 349

performed grid search to decrease parameter size 350

by half every iteration. We continued to reduce the 351

model size until a noticeable decrease on a held-out 352

development set was observed. The model configu- 353

ration is a randomly initialized transformer with 12 354

heads, 12 layers, and 384 embedding dimensions. 355

We still consider our detector as “zero-shot” as it is 356

not trained on negative samples at all. 357

Domain Adaptation To ensure a fair compari- 358

son, we performed domain adaptation (DA) by fine- 359

tuning all sample-space detectors for one epoch 360

on the same dataset of human texts on which our 361

latent model is trained. However, we found that 362

such domain-adaptation resulted in decreased per- 363

formance at test time, possibly due to over-fitting. 364

Consequently, we used the pre-trained LMs with- 365

out DA and report their detection accuracy. 366

4.3 Main Results 367

We report the detection performances of all com- 368

pared models in Table 2. We first evaluate their ac- 369

curacy on six individual sets of MGTs and HWTs 370

(the first six rows in Table 2), and visualize their 371
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Source of
Machine Output

MOVIE NEWS ARXIV
Sample Latent Dual Sample Latent Dual Sample Latent Dual

PPL Curv. PPL Crit. PPL Curv. PPL Crit. PPL Curv. PPL Crit.

1-Complex Chain 0.84−−→ 0.53
==

0.99−−→ 0.98 0.88−−→ 0.73−−→ 0.97−−→ 0.96 0.81←−− 0.80−−→ 0.78−−→ 0.79
2-Paraphrase 0.95−−→ 0.65←−− 0.99−−→ 0.99 0.97−−→ 0.53

==
0.97−−→ 0.97 0.53−−→ 0.52

==
0.88−−→ 0.87

3-Edit 0.97−−→ 0.73←−− 0.99−−→ 0.99 0.99−−→ 0.62←−− 0.97−−→ 0.97 0.80−−→ 0.73←−− 0.90−−→ 0.88
4-Simple Chain 0.66−−→ 0.56

==
0.98−−→ 0.97 0.70−−→ 0.86−−→ 0.95−−→ 0.96 0.91←−− 0.90←−− 0.73−−→ 0.80

5-No Chain 0.54
==

0.75−−→ 0.96−−→ 0.95 0.88←−− 0.99−−→ 0.83−−→ 0.99 0.90←−− 0.95−−→ 0.71−−→ 0.86
6-No Chain (T=0.7)

0.98←−− 0.99−−→ 0.94−−→ 0.99 0.94←−− 0.99−−→ 0.80−−→ 0.99 0.98←−− 0.99−−→ 0.61−−→ 0.78

Mixture 0.642 0.646 0.976 0.972 0.565 0.750 0.912 0.969 0.653 0.734 0.768 0.861

Table 2: First 6 rows: Relative position (indicated by arrows) and the detection accuracy (measured in AUROC)
of individual distributions of MGTs and HWTs. Note that the directions of arrows are more important than the
numerical values. An arrow pointing to the right (→), left (←), or equality (=) signifies that the machine distribution
is to the right of, to the left of, or close to the human distribution. Neither of the sample-space detectors are robust,
as is indicated by a mixture of arrows types. Last row: Detection accuracy of a mixture of the all distributions of
MGTs described above and HWTs, which better reflects real-world black-box scenarios. We use boldface to denote
the best performance and underscore the second best.
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Figure 5: 2D density clouds. For better readability, we only show four sets of machine generated outputs.

distributions in Figure 5. Across the three domains372

of movie, news, and science, neither of the sample-373

space detectors demonstrate robustness to all gen-374

eration configurations or attacks, as is reflected by375

the variability in arrow directions—right, left, and376

equal. Consequently, when facing a mixture of all377

six sets of MGTs that better reflects the real-world378

black-box settings (the last row in Table 2), sample-379

spaces detectors achieve only 60% to 70% accuracy.380

On the other hand, our latent-space detector consis-381

tently place machine outputs in a separable space382

(i.e., consistently to the right of human distribu-383

tions), greatly surpassing the baselines. Our dual384

criterion process which takes advantage of both the385

sample-space curvature and latent PPL achieves386

the highest detection accuracy.387

We also observe that the latent-space model388

demonstrates superior performance in narrative do-389

mains (e.g., movie and news) compared to scien-390

tific domains. This can be attributed to two factors.391

First, narratives fundamentally rely on events as392

their central structural elements (Verhoeven and 393

Stromqvist, 2004; Keven, 2016), whereas scientific 394

writing focuses more on factual information and 395

technical descriptions, which may not align as per- 396

fectly with the event-centric nature of our latent 397

representation. Second, we find the current event 398

extraction model less reliable on scientific texts. 399

This limitation can lead to error propagation during 400

both training and testing phases. Therefore, we 401

encourage future research to develop specialized 402

methods for extracting alternative discourse struc- 403

tures from academic writings, which may improve 404

the accuracy of detection in scientific domains. 405

5 Further Analysis 406

5.1 What is the best choice of latent variables? 407

We report the detection accuracy of five differ- 408

ent latent variables: part-of-speech tags, nouns or 409

verbs, event types, and event triggers in Table 3. 410

We find that using parts of speech (which repre- 411

sents the inner-sentence coherence) as the underly- 412
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MOVIE NEWS ARXIV Avg Relative

Sample Curv. 0.65 0.77 0.73 0.72 -

Pos Tag 0.53 0.79 0.65 0.66 - 8%
Verbs 0.80 0.64 0.78 0.74 + 4%
Nouns 0.78 0.51 0.66 0.65 - 9%
Event Type 0.85 0.75 0.73 0.78 + 9%
Event Trigger 0.98 0.91 0.77 0.89 + 24%

Table 3: Detection accuracy (measured in AUROC)
and relative performance change using models trained
on different latent variables. We highlight the best in
boldface and second best in underline. For ARXIV, we
posit that the higher accuracy with verb sequences is due
to the errors of events extracted from scientific writings.

ing hidden structures leads to decreased accuracy.413

This also supports the claim that current LLMs414

already generate locally human-like texts. On dis-415

course structures, only events are indicative of the416

deviations observed between LLMs and humans.417

Event types, ranking as the second most effective418

indicator, provide a richer analysis beyond mere419

word forms (e.g. verbs and nouns) and syntactic420

functions (e.g. parts of speech). However, event421

types might be too generic and cannot capture the422

finer semantic differences as well as event triggers.423

5.2 Event choice v.s. Event transition424

A natural follow-up question is “How much differ-425

ence comes from event choices versus event tran-426

sitions?” To answer this, we build Bag-Of-Words427

(BOW) models using the event triggers extracted428

from the test set, and visualize the PCA-reduced429

features in Figure 6. We compare the detection430

performance using three methods in Table 4: 1) the431

principle component of the BOW features (BOW-432

PC), 2) randomly shuffled event triggers (Sequence433

Sf.), and 3) ordered event triggers (Sequence).434

Event transition is crucial, but the extent de-435

pends on task creativity. When event triggers436

are randomly shuffled or reduced to their princi-437

ple component, the loss of sequential information438

impairs the detector’s ability to distinguish text439

origins. This highlights the critical role of event440

transitions in maintaining an article’s coherence441

and authenticity. However, the amount of decrease442

are still domain dependent. In movies, the choice443

of events itself already plays a decisive role (over444

94%). This suggest that LLMs use a distinct list445

of events triggers from humans in highly creative446

writing tasks such as movie. Conversely, in less447

open-ended domains like news and science, the448

choice of event triggers is less distinct and the tran-449

sition between event triggers contributes more to 450

authenticity. This indicates that while LLMs have 451

learned the appropriate event triggers, they have 452

not yet mastered the most logical flow of event tran- 453

sitions. To sum up, MGTs are farther away from 454

HWTs on highly creative generation tasks. 455

5.3 Does explicit structure-aware planning 456

make our detector less effective? 457

We utilize the differences of latent-structures be- 458

tween MGTs and HWTs. If models are explicitly 459

instructed to elaborate on the underlying structures 460

before auto-regressive generation, would our detec- 461

tion method remain effective? The two prompting 462

methods (i.e., simple chain and complex chain) 463

we employed in § 4.1 are designed to answer this 464

question by integrating a preliminary planning and 465

revision stage before or after text generation. 466

We emphasize that current models are unable 467

to mimic human-like discourse authenticity even 468

when instructed to plan on these structures. A com- 469

parison of line 1, 4, and 5 in Table 2 reveals that de- 470

spite the addition of a planning and revision stage, 471

models still struggle to replicate the human-like 472

flow in event arrangement. This finding with pre- 473

vious critiques the current LLMs are poor in mim- 474

icking human high-level structures (Deng et al., 475

2022). One possible reason is that most LLMs are 476

trained to optimize for local coherence and fluency, 477

rather than an overarching, discourse-level logic. 478

For example, the planning mechanism employed 479

by LLMs usually involve skeletal outlines or lists 480

of keypoints that tend to prioritize surface-level co- 481

herence instead of the depth in thought. In contrast, 482

human writers often plan their articles with a con- 483

scious awareness of theme and plot development 484

that are inherently challenging for current LLMs. 485

6 Related Work 486

6.1 MGT Detection 487

In aspects of ownership and usability, detectors 488

can be roughly divided into a priori and post- 489

hoc categories. A priori method involves proac- 490

tive involvement of the model’s generation pro- 491

cess through techniques like watermarking (Ghosal 492

et al., 2023). For example, Kirchenbauer et al. 493

(2023) encourage the sampling of tokens from a 494

pre-determined category (a green list), and this spe- 495

cial token distribution can be utilized for detection. 496

Christ et al. (2023) minimizes the distance between 497

the watermarked and original distribution, making 498

7
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Figure 6: Bag-Of-Words feature of human and machine latent variables, reduced via PCA.

Movie News Arxiv

BOW - PC 0.945 0.731 0.705
Sequence Sf. 0.953 0.801 0.744
Sequence 0.976 (↑3.3%) 0.912 (↑24.8%) 0.768 (↑8.9%)

Table 4: Detection accuracy (measured in AUROC)
of two latent methods that only consider the choices
of event triggers (BOW-PC and Sequence Sf.) and our
best latent model that includes both the choices and
transitions (Sequence).

the watermark both undetectable and unbiased in499

expectation. Despite the effectiveness of such tech-500

niques, users may still opt for non-watermarked501

model like GPT-4, underscoring the need for ro-502

bust post-hoc detection methods (Yang et al., 2023).503

Post-hoc method involves fine-tuning classifiers504

on corpora of positive and negative samples (HWTs505

and MGT) (Chen et al., 2023; Liu et al., 2019) and506

zero-shot detection. These former classifiers often507

struggle with out-of-distribution data (Zhang et al.,508

2023) and are sensitive to data quality (Liang et al.,509

2023). The variety of existing LLMs makes it less510

practical to curate a universal training dataset (Bhat-511

tacharjee et al., 2023). The zero-shot detectors per-512

form the task through a statistical approach. As is513

introduced in § 2, Su et al. (2023); Gehrmann et al.514

(2019); Mitchell et al. (2023); Bao et al. (2024)515

employ statistics like probability, entropy and cur-516

vature. We focus on zero-shot detection because517

it is generalizable to diverse domains and do not518

require access to the source model.519

6.2 Attacks to Zero-Shot Detection520

Attacks can occur pre-, post-, or during text gen-521

eration (Wang et al., 2024), which we considered522

in our experiments (§ 4.1). Pre-generation attacks523

involve manipulating prompts to produce outputs524

that are inherently harder to detect, such as adver-525

sarial searches to known detectors (Shi et al., 2024).526

Post-generation attacks replace text segments with527

lexically or semantically similar alternatives, such528

as typos, filled mask, synonyms, and rephrased 529

sentences (Shi et al., 2024; Sadasivan et al., 2023). 530

On-generation attacks (Wang et al., 2024) involve 531

decoding with intentional perturbations like typos 532

or emojis, which are later removed to alter the text’s 533

statistical distribution, impairing detection perfor- 534

mance. Additionally, Zhang et al. (2023) explores 535

how shifts in topic can impact detector efficacy. 536

6.3 Latent Features for Language Modeling 537

Current LLMs excel at generating locally fluent 538

sentences, yet they often fail to maintain the long- 539

form coherence, which requires awareness of con- 540

necting diverse ideas logically (Lin et al., 2021). 541

Bowman et al. (2016) introduced latent variable 542

models to improve the structural understanding of 543

long texts. Following this, Contrastive Predictive 544

Coding (CPC) (Oord et al., 2018) was proposed 545

to learn unconditioned latent dynamics implicitly, 546

which Wang et al. (2022) further refined with the in- 547

troduction of Brownian bridge to impose structured, 548

goal-oriented dynamics within the latent space of 549

texts. Novel evaluations for long-form coherence 550

include model criticism based on latent structures 551

such as section labels in Wikipedia (Deng et al., 552

2022). Sheng et al. (2024) created a coherence 553

assessment metric grounded in Brownian bridge 554

theory (Horne et al., 2007). Owning to the lack 555

of reliable methods for inferring completely unob- 556

servable features from texts, we constrain our latent 557

variables to more accessible ones such as events. 558

7 Conclusion 559

We propose a novel zero-shot detection framework 560

that employs latent features such as sequences of 561

events. Our method leverages the limitations of 562

current LLMs in replicating authentic human-like 563

discourse, despite their ability to generate locally 564

convincing language. Experimental results demon- 565

strate that our detector is highly robust across vari- 566

ous real-world generation settings and attacks. 567
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Limitations568

We discuss the limitations. First, our approach in-569

volves inferring discourse features, which are more570

sparse than tokens, hence is restricted to detect-571

ing long-form texts. Additionally, the detection572

accuracy is reliant on the performance of an ex-573

ternal inference model, which, in our case, is the574

event extractor. We find the existing event extrac-575

tion models are less accurate on scientific texts,576

which can lead to error propagation during both577

training and testing phases. We also encourage fu-578

ture research to develop specialized methods for579

extracting alternative discourse structures from aca-580

demic writings, which could enhance the accuracy581

of machine detection in scientific domains.582
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A Datasets811

We describe how we created human and machine812

text dataset in more detail. The statistics summary813

of dataset is shown in Table 5.814

A.1 Collecting Human Texts815

Considering any existing text from internet can be816

the training data of current LLMs, we crawled the817

latest texts to avoid LLMs memorizing them when818

performing detection.819

For Movie, we crawl the recent English-820

language films category on Wikipedia4. To in-821

crease the quality of synopses, we remove those822

with fewer than 25 sentences. To minimize the risk823

of model memorization, we filter out well-known824

movies using the lengths of Wikipedia pages as an825

approximate indicator of popularity.826

For News articles, we collected all news arti-827

cles from the main page of The New York Times5828

published from 2024-04-09 to 2024-05-18 cover-829

ing mainly politics, business and editorials news.830

The test data are a mix of New York Times from831

the same source and BBC6, the latter of which we832

consider as out-of-distribution to increase the task833

difficulty.834

For Arxiv paper, we downloaded 419 economy,835

666 quantitive biology and 782 computer science836

published from 2023-06 to 2024-04 using its offi-837

cial API. We then extracted the introduction section838

in plain text from TeX source code of each paper839

using GPT-3.5.840

A.2 Collecting Machine Texts841

All human and machine outputs have roughly the842

same length. For each human text in test set, we843

generate a paired machine-generated text.844

Variations in Prompts For whole text genera-845

tion, we use pure sampling at temperature T = 1.0846

as default. To further avoid data contamination, we847

first let the model to rephrase the titles and initial848

settings, termed as generating seed, by altering all849

the unique identifiers such as proper nouns. Then,850

we use the three prompting strategies described in §851

4.1 to collect machine generated texts from the gen-852

erating seeds. More concretely, No Chain directly853

complete the whole texts.Simple Chain mimics the854

human-like plan-write process, by first generating855

4https://en.m.wikipedia.org/wiki/Category:2020s_English-
language_films

5www.nytimes.com/section/us
6https://www.bbc.com/news/us-canada

an structured outlines and then expanding it to the 856

whole texts. Complex Chain add revision steps on 857

top of Simple Chain, to add more details in the out- 858

line and fix any illogical and vague descriptions in 859

original output. The complex chain prompt used to 860

generate scientific essays is shown in Figure 7. 861

Attack For both paraphrasing and edit attacks, 862

we introduce adversarial searches to known detec- 863

tors (Shi et al., 2024). Overall, our approach first 864

generates multiple substitutions for all candidate 865

segments that can be replaced by substitutions with- 866

out changing the meaning drastically. Then we 867

randomly sample substitutions with certain proba- 868

bility to produce candidates. Finally, GPT-2-XL is 869

used to calculate and select the text with the highest 870

perplexity to gain the maximum attack efficiency 871

at a fixed replacement ratio. For Paraphrase, the 872

segment is sentence level. We generate 2 to 5 sub- 873

stitutions for each sentence while keeping every 874

proper noun and overall writing styles. Then, we 875

generate candidates through replacing 40% original 876

sentences. For Edit, the segment is word level. We 877

generate 2 to 5 context-based synonyms for each 878

adjective, adverbial and verb as replacing them 879

would not affect the semantics severely. Then, we 880

generate candidates through replacing 40% adjec- 881

tives, adverbials and 20% verbs (about 15% of total 882

words). The prompt used for attacks is shown in 883

Figure 8. 884

A.3 Event annotation 885

For news and movie, we employed the off-the-shelf 886

T5 model from OmniEvent (Peng et al., 2023), 887

which is trained on multiple dataset including 888

ACE057, MAVEN (Wang et al., 2020), etc. We 889

use this model under MAVEN schema, which de- 890

fines 168 event types that cover various general 891

scenarios useful for our analysis. Owning to the 892

fact that there are no event extraction model spe- 893

cialized in scientific writing domain, we prompt 894

GPT-4 to extract, as is shown in Figure 9. Addition- 895

ally, we employ SpaCy’s lemmatization pipeline to 896

standardize the form of all event triggers. 897

7https://catalog.ldc.upenn.edu/LDC2006T06
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Main Tasks Source Event Extraction
Model

Length
(Words)

Length
(Events) Train Size Test Size

Creative
writing

Movie synopsis
(from Wikipedia)

OmniEvent
(Peng et al., 2023) 673 86 720 150

News NYT and BBC OmniEvent 1024 (truncated) 92 795 218

Academic
essay

Arxiv (introduction
of computer science,
economy, and
quantitative bio)

Few-Shot GPT-4 796 66 1,680 187

Table 5: The statistics of our human data. Note that for news articles, word length is truncated to max sequence
length of GPT-2.

1 <−− Create Consice Outline −−>
2 User: Create a simple outline structure for writing the introduction section of an academic paper based on the

given title and first sentence . Each line is a key component and its explanation . The paper domain is "{
domain}", title is "{ rephrased_title }" and first sentence is "{ rephrased_first_sentence }" .

3

4 Assistant : "{ concise_outline }"
5

6 <−− Expand Outline −−>
7 User: Based on the given simple outline of writing the introduction section of an academic paper , expand on the

key points outlined , providing bullet points of clear , well−developed arguments, data , context , etc . that
strengthen the introduction . The paper domain is "{domain}", title is "{ rephrased_title }" and the outline
is "{ concise_outline }" .

8

9 Assistant : "{expanded_outline}"
10

11 <−− Draft Paper −−>
12 User: Build upon the given bullet points to write a comprehensive and logically structured introduction that

frames the paper ' s arguments and significance . Your output should be the introduction section of an
academic paper generated in about 50 sentences . The paper domain is "{domain}", title is "{ rephrased_title }
" and the outline is "{expanded_outline}" .

13

14 Assistant : "{ paper_draft }"
15

16 <−− Refine Paper −−>
17 User: Based on the given outline , reexamine the flow of the draft introduction to ensure that it logically

progresses from general context to specific research questions , effectively setting up the research
framework. Strengthen transitions between ideas , ensure coherence in the presentation of arguments, and
align the structure with academic standards for introductions . Your output should be the introduction
section of an academic paper generated in about 30 sentences . The paper domain is "{domain}", title is "{
rephrased_title }" , the given outline is "{expanded_outline}" and the draft is "{ paper_draft }" .

18

19 Assistant : "{ refined_draft }"

Figure 7: Complex chain prompt used for generating scientific essays.

1 <−− Edit Attack −−>
2 User: Given the sentence and words within , for each of words, given two to five substitution words that do not

change the meaning of the sentence . Only generate substutions when a word is general but not proper word.
Return each general word and its substitutions in one line , in the format of ' word: substitution 1,
substitution 2, ...'. sentence : "{sentence}" ; words: "{words}"

3

4 Assistant : {Word substituions }
5

6 <−− Paraphrase Attack −−>
7 User: Please paraphrase the highlighted sentence (wrapped by '**' ) in the below text in 2 − 5 ways. You should

keep all proper words and style of the original text in your paraphrased sentences . Your should directly
output paraphrase splitted by linebreak without '**'.\ n\nText: "{ text }"

8

9 Assistant : {Sentence substitutions }

Figure 8: Prompt for edit and paraphrase attack.
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1 User:
2 Task: For each sentence in input , extract all the major event triggers . Your output should only be a valid JSON

string that is a list of dictionary . Each dictionary contains two fileds : ' sentence ' and ' triggers '.
3

4 Examples: "{examples}"
5

6 Now extract all major event triggers in the following input : "{ input_sentence }"
7

8 Assistant : { extracted_events }

Figure 9: Prompt for event annotation using GPT-4.
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