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ABSTRACT

Though denoising diffusion probabilistic models (DDPMs) have achieved remark-
able generation results, the low sampling efficiency of DDPMs still limits further
applications. Since DDPMs can be formulated as diffusion ordinary differential
equations (ODEs), various fast sampling methods can be derived from solving dif-
fusion ODEs. However, we notice that previous fast sampling methods with fixed
analytical form are not able to robust with the various error patterns in the noise
estimated from pretrained diffusion models. In this work, we construct an error-
robust Adams solver (ERA-Solver), which utilizes the implicit Adams numerical
method that consists of a predictor and a corrector. Different from the traditional
predictor based on explicit Adams methods, we leverage a Lagrange interpolation
function as the predictor, which is further enhanced with an error-robust strategy to
adaptively select the Lagrange bases with lower errors in the estimated noise. The
proposed solver can be directly applied to any pretrained diffusion models, without
extra training. Experiments on Cifar10, CelebA, LSUN-Church, and ImageNet 64
× 64 (conditional) datasets demonstrate that our proposed ERA-Solver achieves
3.54, 5.06, 5.02, and 5.11 Frechet Inception Distance (FID) for image generation,
with only 10 network evaluations.

1 INTRODUCTION

In recent years, denoising diffusion probabilistic models (DDPMs) Ho et al. (2020) have been proven
to have potential in data generation tasks such as text-to-image generationPoole et al. (2022); Gu
et al. (2022); Kim & Ye (2021); Chen et al. (2022), speech synthesisHuang et al. (2021); Lam et al.
(2022); Leng et al. (2022), and 3D generation Poole et al. (2022); Lin et al. (2023); Wang et al. (2023).
They build a diffusion process to add noise into the sample and a denoising process to remove noise
from the sample gradually. Compared with generative adversarial networks (GANs)Goodfellow
et al. (2014) and variational auto-encoders (VAEs)Child (2021), DDPMs have achieved remarkable
generation quality. However, due to the properties of the Markov chain, the sampling process requires
hundreds or even thousands of denoising steps. Such defects limit the wide applications of diffusion
models. Thus, it is an urgent request for a fast sampling of DDPMs.

There have already existed many works for accelerating sampling speed. Some works introduced
an extra training stage, such as knowledge distillation method Salimans & Ho (2021); Meng et al.
(2022), training sampler Watson et al. (2021), or directly combining with GANs Wang et al. (2022),
to obtain a fast sampler. These methods require a cumbersome training process for each task and are
black-box samplers due to the lack of theoretical explanations. Denoising diffusion implicit model
(DDIM) Song et al. (2020a) and Score-SDESong et al. (2020b) revealed that the sampling can be
reformulated as a diffusion ordinary differential equation (ODE) solving process, which inspired
many works to design learning-free fast samplers based on numerical methods. PNDM Liu et al.
(2021) introduced high order linear multi-step method Małgorzata & Marciniak (2002), which is
also called the explicit Adams method, to sample efficiently, with a warming initialization based
on Runge-Kutta methods Butcher (1996). DPM-Solver Lu et al. (2022a) and DEIS Zhang & Chen
(2022) introduced exponential integrator from ODE literature Atkinson et al. (2011) for efficient
sampling. Based on the exponential integrator, DPM-Solver introduced a novel integration variable
to derive a fast numerical solver of diffusion ODE, and DEIS utilized the Lagrange interpolation
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Figure 1: Generated samples of ERA-Solver and previous fast sampling methods on text-to-image
latent diffusion model Rombach et al. (2022) and unconditional pixel-space diffusion model Dhariwal
& Nichol (2021).

method. DPM-Solver++ Lu et al. (2022b) is proposed to improve DPM-Solver by combing linear
multi-step methods Małgorzata & Marciniak (2002).

The existing fast sampling methods Liu et al. (2021); Lu et al. (2022a); Song et al. (2020a); Zhang
& Chen (2022); Lu et al. (2022b); Zhao et al. (2023) all consist of fixed analytical forms to ensure
sampling convergence. For example, PNDM Liu et al. (2021) consists of the analytic form with fixed
coefficients as formulated in Eq. 7. However, we notice that the noise estimated from the diffusion
model is not accurate enough and the error exists at almost every time t, especially when time t
approaches 0, as shown in Fig. 2 (b). This phenomenon can be attributed to the training scheme of
DDPMs. Furthermore, the trend of the estimation errors varies from the different data manifolds (Fig.
2 (b)). Thus, it limits existing fast sampling methods since the methods with fixed analytical forms
can not be robust to various errors from pretrained models and different data manifolds.

In this paper, we aim to design an error-robust numerical solver (as shown in Fig. 2 (a)) of diffusion
ODE to speed up the sampling process of DDPMs while achieving good sampling quality. To this end,
we focus on implicit Adams solver Małgorzata & Marciniak (2006), a kind of traditional numerical
ODE solver, which involves unobserved terms to achieve high-order precision and convergence. In
existing ODE literatureAtkinson et al. (2011), predictor-corrector has been introduced to perform
implicit Adams solver, which avoids solving the implicit equation. Explicit Adams usually acts
as the predictor to predict the unobserved term. However, the traditional predictor-corrector still
suffers from the inaccurate estimation of diffusion noise at each sampling step since it is composed
of fixed coefficients. Instead of utilizing explicit Adams as the predictor, we adopt the Lagrange
interpolation function Sauer & Xu (1995) that interpolates several Lagrange function bases as the
predictor. We maintain a buffer of estimated noises observed at previous sampling steps during
sampling and adaptively select those estimated noises with low estimation error as the Lagrange
function bases, to ensure accurate interpolation results and thus an accurate predictor. In this way, we
can obtain a diffusion ODE sampler with not only high convergence (thanks to the implicit Adams
methodMałgorzata & Marciniak (2006) and interpolation function) but also good error robustness
(thanks to the adaptive selection of the low error Lagrange function bases).

However, it is not easy to select noises with low estimation error as the Lagrange function bases.
That is because, unlike the training stage, there exist no reference noises at the sampling stage to
judge how accurate the estimated noise is. Thus, we further propose an approach to roughly measure
the accuracy of the estimated noise by calculating the difference between the noise obtained by the
predictor (as the prediction) and the noise observed at the previous sampling step (as the reference).
Based on this measurement, we propose a selection strategy for the buffer that adaptively introduces
estimated noises that are more accurate to construct the Lagrange function bases, so as to result in a
more accurate predictor, and thus a better ODE solver.
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Figure 2: (left) The main idea of ERA-Solver. ERA-Solver allows flexible sampling coefficients in a
unified numerical solver to be error-robust to the various error patterns on different data manifolds.
(right) The visualization of errors between the estimated noise and ground-truth noise on various
data manifolds with the same pretrained diffusion modelSong et al. (2020a). The red bar means the
statistical variance.

Our contributions can be summarized as follows:

• We point out the problem that there exist various error patterns of estimated noises when
solving diffusion ODEs on different data manifolds and contribute to an error-robust solver
(ERA-Solver) that is able to fit the error patterns.

• We explore the potential of the Implicit Adams method Małgorzata & Marciniak (2006).
Based on this, we propose the error-robust Lagrange interpolation function that selectively
interpolates several Lagrange function bases with lower errors of estimated noises to ensure
the ERA-solver is robust to the error in estimated noise.

• Comprehensive experiments on various benchmarks and pretrained diffusion models are
conducted to demonstrate the efficiency of ERA-Solver. For instance, with the pretrained
model Dhariwal & Nichol (2021) on LSUN-bedroom, ERA-Solver achieves better FID
results of 9.09, 7.28, 4.9 compared with the previous best results of 11.01, 9.28, 5.40 with 8,
10, and 20 NFEs.

2 PRELIMINARY

We review basic ideas of denoising diffusion probabilistic models (DDPMs), diffusion ordinary
differential equations (diffusion ODEs), and the existing training-free numerical methods for fast
sampling.

2.1 DENOISING DIFFUSION PROBABILISTIC MODELS

To sample from a complex data distribution q(x0), denoising diffusion probabilistic models (DDPMs)
Ho et al. (2020) introduce a forward diffusion process to gradually add noise to data and a parameter-
ized network θ to predict the noise hidden in the noisy data xt.

Forward diffusion process. The diffusion process is modeled as a transition distribution:

q(xt|xt−1) := N (xt;
√
αtxt−1, (1− αt)I), (1)

where α1, ..., αT are fixed parameters. With the transition distribution above, noisy distribution
conditioned on clean data x0 can be formulated as follows:

q(xt|x0) = N (xt;
√
αtx0, (1− αt)I), (2)

where ᾱt =
∏t

s=1 αs. When t is large enough, the Markov process will converge to a Gaussian
steady-state distribution N (0, I).

3



Under review as a conference paper at ICLR 2024

Training scheme. With the parameterized noise estimation ϵθ, the training objective of θ can be
written as following:

Lt−1 = Ex0,ϵ[ω(t)||ϵ− ϵθ(xt, t)||2]. (3)

where x0 ∼ q(x0), ϵ ∼ N (0, I), and ω(t) is a weight function that consists of the α(t).

Though DDPMs have good theoretical properties, they suffer from sampling efficiency. It usually
requires hundreds of network evaluations, which limits various downstream applications for DDPMs.
There already existed methods Watson et al. (2021); Lyu et al. (2022); Lam et al. (2022); Salimans &
Ho (2021); Meng et al. (2022) which depend on extra training stage to derive fast sampling methods.
The training-based methods usually require tremendous training costs for different data manifolds
and tasks, which inspires many works Song et al. (2020b;a); Liu et al. (2021); Lu et al. (2022a;b);
Zhang & Chen (2022) to explore a training-free sampler based on numerical methods.

2.2 NUMERICAL METHODS FOR FAST SAMPLING

Score-SDE Song et al. (2020b) demonstrated that the reverse denoising process of DDPMs can be
formulated as follows:

xti+1 =
√
ᾱti+1(

xt −
√
1− ᾱtiϵθ(xti , ti)√

ᾱti

) +
√

1− ᾱti+1 − σ2
tiϵθ(xti , ti) + σtiz, (4)

where {ti}Ni=0 is the iteration time steps we introduced for the ease of description and z is the random
Gaussian noise. t0 represents the beginning time and tN represents the end time. When σ equals 0,
the reverse process can be reformulated as a diffusion ODE Liu et al. (2021); Song et al. (2020a):

dx

dt
= −ᾱ′(t)(

x(t)

2ᾱ(t)
− ϵθ(xt, t)

2ᾱ(t)
√

1− ᾱ(t)
), (5)

where α(t) is the continuous version of {ᾱti}Ni=1. Denoising diffusion implicit model (DDIM) Song
et al. (2020a) provided a discrete form for solving the diffusion ODE above (Eq.31). Its sampling
scheme can be formulated as:

xti+1 =

√
ᾱti+1√
ᾱti

xti + (
√
1− ᾱti+1 −

√
ᾱti+1(1− ᾱti)√

ᾱti

)ϵti , (6)

where ϵti = ϵθ(xti , ti). Such a property inspires many works to introduce numerical methods, such
as Runge-Kutta Butcher (1996) method and linear multi-step method Wells (1982), to construct
efficient solvers. PNDM Liu et al. (2021) combined DDIM and explicit Adams Małgorzata &
Marciniak (2002), a kind of linear multi-step method, to derive a novel numerical solver of diffusion
ODE. The ϵti in Eq. 6 is reformulated as following:

ϵti =
1

24
(55ϵθ(xti , ti)− 59ϵθ(xti−1

, ti−1) + 37ϵθ(xti−2
, ti−2)− 9ϵθ(xti−3

, ti−3)). (7)

Different from PNDM, DPM-SolverLu et al. (2022a) applied the exponential integrator from ODE
literature Atkinson et al. (2011) and proposed a novel integration variable so as to conveniently
approximate integration, deriving a fast numerical solver with explicit analytical form. It is further
improved in DPM-Solver++ Lu et al. (2022b) by combining linear multi-step method Atkinson
et al. (2011). DEIS Zhang & Chen (2022) proposed to utilize the Lagrange interpolation function to
estimate the ϵθ(xt, t). UniPC Zhao et al. (2023) proposed a unified predictor-corrector framework for
fast sampling. More discussions can be found in Appendix. A.

Different from previous methods, we are motivated by the inaccurately estimated noises of pretrained
diffusion models across most sampling time, especially when time ti is close to 0. Furthermore, the
error patterns may vary between different data manifolds, as shown in Fig.2 (b). Previous numerical
methods with fixed analytical forms can not fit the various error patterns generally. In this paper,
we propose an error-robust solver based on implicit Adams numerical methods. It consists of the
Lagrange interpolation function with a novel selection strategy to select noises with low estimation
error to construct the interpolation function adaptively.
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Figure 3: The pipeline of ERA-Solver. The sampling scheme is based on the predictor-corrector
method for implicit Adams. Our predictor is robust to the errors of the estimated noises from
pretrained models. The sampling starts from normal Gaussian noise xt0 and performs a denoising
scheme (from xti to xti+1

) iteratively to get the final generated image.

3 ERA-SOLVER

In this section, we first point out that the error in the estimated noise ϵθ(xti , ti) by the network θ
limits the previous numerical fast samplers and introduce implicit Adams numerical solver (Sec. 3.1).
Then, we apply predictor-corrector sampling and leverage a Lagrange interpolation function as the
predictor (Sec. 3.2). We design an error distance to measure the accuracy of the estimated noise and
enhance the proposed predictor with an error-robust strategy to adaptively select the Lagrange bases
with lower noise estimation error (Sec. 3.3). The whole sampling process is shown in Fig. 3.

3.1 IMPLICIT ADAMS METHODS

The sampling of DDPMs starts from a prior noise distribution xt0 ∼ N (0, I), and iteratively denoises
xti to xti+1

until time t reaches 0. In the sampling process, the most time-consuming step is network
evaluation. Assuming we have a pretrained noise estimation model ϵθ, our goal is to achieve good
generation quality with as few evaluation times as possible.

We notice that the noise estimation error exists across almost every sampling time, especially when
time ti is close to 0. The changing trend of estimation errors may also vary between different training
manifolds, as shown in Fig. 1. Such a property can be attributed to the training scheme (Eq. 3)
of DDPMs. It limits previous numerical high-order solvers Liu et al. (2021); Lu et al. (2022a);
Song et al. (2020a); Zhang & Chen (2022) since they are all based on the fixed analytical form to
reach the sampling convergence for solving the diffusion ODE efficiently. The solver with a fixed
analytical form can not be able to fit the various estimation errors from different sampling time and
data manifolds. Thus, they may suffer from obvious estimation errors, which motivates us to explore
the error-robust numerical solver.

In this paper, we first explore the potential of implicit Adams solver Małgorzata & Marciniak (2006).
Different from explicit Adams (Eq. 7), implicit Adams involves the unobserved noise term, and the
ϵti in Eq. 31 is reformulated as follows:

ϵti =
1

24
(9ϵθ(xti+1 , ti+1) + 19ϵθ(xti , ti)− 5ϵθ(xti−1 , ti−1) + ϵθ(xti−2 , ti−2)). (8)

It shares the same convergence order with explicit Adams but has better stability Atkinson et al.
(2011). It can be noticed that xti+1

can be observed only when ϵti is achieved, while the ϵti contains
unobserved term ϵθ(xti+1

, ti+1), which makes it challenging to solve implicit equations and may
need more time-consuming iteration steps. This greatly limits the implicit Adams method to be a fast
solver for diffusion ODEs.

Fortunately, in numerical ODE literature, the sampling efficiency of implicit Adams can be improved
with a predictor-corrector sampling scheme Diethelm et al. (2002). Specifically, the predictor makes
a rough estimation of unobserved term ϵ̄θ(xti+1

, ti+1) and the corrector derives the precise xti+1
,

which can reformulate Eq. 8 as follows:

ϵti =
1

24
(9ϵ̄θ(xti+1

, ti+1) + 19ϵθ(xti , ti)− 5ϵθ(xti−1
, ti−1) + ϵθ(xti−2

, ti−2)). (9)
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Figure 4: ∆ϵ comparison of the error-robust selection process and fixed selection process. ∆ϵ is
calculated based on Eq. 13 instead of the training loss in Eq. 3 on Cifar10 Krizhevsky et al. (2009).
The sampling NFE is set to 20 and k is set to 5.

The traditional predictor-corrector utilizes explicit Adams (Eq. 7) to perform predictor to make xti+1

observed so as to derive ϵ̄θ(xti+1
, ti+1). However, it still consists of the fixed analytical form and

can not fit the various estimation errors at the training stage (Fig. 2).

3.2 PREDICTOR WITH LAGRANGE INTERPOLATION FUNCTION

In this paper, we propose to utilize noises observed at previous sampling steps and construct the
Lagrange interpolation function as the predictor to predict unobserved term ϵθ(xti+1

, ti+1). In this
way, we can design an adaptive strategy to select Lagrange function bases to construct the error-robust
predictor.

Specifically, we maintain a buffer about all previously estimated noises, which have been observed
and need no extra computations, and its corresponding time:

{(tn, ϵθ(xtn , tn)), n = 0, 1, .., i}. (10)

The maintained buffer is also called the Lagrange buffer in this paper. Assume that the interpo-
lation order is k, the selected function bases to construct the Lagrange function can be written as
{(tτm , ϵθ(xtτm

, tτm)),m = 0, ...k − 1}. The corresponding Lagrange interpolation function can be
formulated as:

lm(t) =

k−1∏
l=0,l ̸=m

(
t− tτl

tτm − tτl
),

Lϵ(t) =

k−1∑
m=0

lm(t) ∗ ϵθ(xtτm
, tτm),

(11)

where τl belongs to the maintained Lagrange buffer and has already been observed. At time ti+1, we
can derive an estimation about ϵθ(xti+1

, ti+1):

ϵ̄θ(xti+1
, ti+1) = Lϵ(ti+1). (12)

With this prediction, we apply the corrector process in Eq. 9 to get the ϵti and Eq. 6 to get the
denoised sample xti+1 .

It can be noticed that the proposed predictor makes use of the observed noise estimations and
involves no network evaluations. Furthermore, the Lagrange bases in the predictor can be adaptively
selected from those noise estimations with low errors, which is more error-robust. We introduce this
error-robust selection strategy in the next subsection.

3.3 ERROR-ROBUST SELECTION STRATEGY

In this part, our goal is to design an error-robust selection strategy for the maintained Lagrange buffer.
When the interpolation order is k, the intuitive selection approach is to make a fixed selection of the
last k estimated noises from the maintained Lagrange buffer, which means τm = i−m in Eq. 11.
However, we notice that the noise estimation error tends to increase as time ti approaches 0 (Fig. 2),
in which case the fixed selection strategy may aggregate the noise estimation errors from Lagrange
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Algorithm 1 ERA-Solver
1: Input: {ti}Ni=0, k, ϵθ
2: Instantiate: xt0 ∼ N (0, I), buffer Ω = ∅, ∆ϵ = λ
3: Ω = Ω ∪ {(t0, ϵθ(xt0 , t0))}
4: for i in 0, 1, · · · , N − 1 do
5: if i<k − 1 then
6: Derive xti+1 based on Eq. 6 and ϵθ(xti , ti)
7: Ω = Ω ∪ {(ti+1, ϵθ(xti+1 , ti+1))}
8: else
9: Calculate {τ̄m}k−1

m=0 via Eq. 14
10: Calculate {τm}k−1

m=0 via Eq. 15 and ∆ϵ
11: Derive Lagrange function Lϵ via Eq. 11 and τm
12: ϵ̄θ(xti+1

, ti+1)← Lϵ(ti+1)
13: Calculate ϵti via Ω, ϵ̄θ(xti+1 , ti+1), and Eq. 9
14: Derive xti+1 based on Eq. 6 and ϵti
15: Ω = Ω ∪ {(ti+1, ϵθ(xti+1 , ti+1))}
16: Update ∆ϵ via Eq. 13 and ϵ̄θ(xti+1 , ti+1)
17: end if
18: end for
19: return xtN

buffer and make the constructed Lagrange function inaccurate for prediction at time ti+1. It motivates
us to seek a reasonable measure of the error in estimated noise so as to select those noises with low
estimation error for Lagrange interpolation.

Error Measure for Estimated Noise. Since there exists no ground-truth noise in the sampling
process, it is hard to measure the error in estimated noise. To this end, we propose to utilize the
observed noise term ϵθ(xti , ti) as the target noise and the predicted noise term ϵ̄θ(xti , ti) from last
sampling step as the estimated noise to calculate the approximation error, which can be seen in Fig. 3.
It can be formulated as follows:

∆ϵ = ||ϵθ(xti , ti)− ϵ̄θ(xti , ti)||2. (13)

ϵθ(xti , ti) is observed based on xti , which is achieved via the ϵ̄θ(xti , ti) and Eq. 31. When the error
of estimated noise from pretrained models increases, it tends to be hard for ϵ̄θ(xti , ti) to approximate
ϵθ(xti , ti). As shown in Fig.4, our error measure in the sampling process shares a similar trend as
the error of estimated noises in the training process (Fig. 2), which demonstrates the rationality of the
proposed error measure. More analysis can be found in Appendix. B.2.

Selection Strategy. The high-level idea of our error-robust selection strategy is that we tend to
choose those estimated noises from the Lagrange buffer with low errors measured by Eq. 13 as the
Lagrange bases.

The selection strategy should balance the interpolation accuracy of ϵ̄θ(xti+1 , ti+1) and the error
robustness. If the selected function bases are all gathered at the beginning of the buffer, the accuracy
of ϵ̄θ(xti+1 , ti+1) will be compromised since the selected function bases are too far from the currently
estimated noise. Next, we try to utilize power function to build the selection process.

When sampling at time ti, the length of the Lagrange buffer is i+1. We initialize k indexes uniformly
to cover the whole buffer:

τ̂m = (i/k) ∗m,m = 1, 2, .., k (14)
Then we utilize the power function as an index translator. We parameterize the power function with
the error measure (Eq. 13) so that the translation of initial indexes can be formulated as:

τm = ⌊(τ̂m/i)∆ϵ/λ ∗ i⌋. (15)

where λ is a hyperparameter to adjust the scale. Theorem 1 ensures that the proposed selection
method can be robust to the changing trend of the estimation error. Furthermore, λ can be regarded as
the manifold-aware hyperparameter. We can adjust λ to make ERA-Solver fit the different estimation
error patterns. More evidence can be found in the experiment part.
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Figure 5: Generation quality measured by FID ↓ on various datasets and pretrained DPMs, varying the number
of function evaluation (NFE).

As shown in Fig. 4, our selection strategy introduces more indexes near the beginning of the Lagrange
buffer when the error of estimated noises increases, while maintaining the most indexes near the
currently estimated point to achieve the error robustness. In this way, our selection strategy of
buffer makes our Lagrange interpolation function more accurate in an adaptive way (Fig. 4), which
contributes to an error-robust Adams solver.

3.4 OVERALL SAMPLING ALGORITHM

In this part, we summarize our sampling algorithm. Given a pretrained diffusion model ϵθ, we sample
from a prior noise xt0 ∼ N (0, I) and iteratively denoise from xti to xti+1 until time ti reaches 0 and
xtN is our final generated sample. The sampling algorithm is based on the predict-corrector method.
The k represents the Lagrange interpolation order. For the initialization of the Lagrange buffer, the
first k sampling steps are based on DDIM Song et al. (2020a) sampling scheme. The details of the
sampling process can be found in Alg. 1.

3.5 THEORETICAL ANALYSIS

Theorem 1. When k ≥ 3, ERA-Solver has a third-order local approximation error and a second-
order convergence.

Theorem 2. When the error measure ∆ϵ is large enough, the selected indexes are gathered at the
beginning, and vice versa.

Theorem 1 ensures that ERA-Solver is an efficient numerical solver. Theorem 2 ensures that the
proposed selection function contributes to an error-robust selection strategy, making ERA-Solver
achieve better generation quality. Detailed proofs of the theories above are provided in Appendix. C.

4 EXPERIMENT

In this section, we demonstrate that, as a training-free sampler, ERA-Solver is able to speed up the
sampling of pretrained diffusion models greatly. The error-robust property helps ERA-Solver achieve
better generation quality on various datasets. We adopt Frechet Inception Distance (FID) Heusel
et al. (2017) as the metric to evaluate the generation quality of all sampling methods. All experiment
results are evaluated based on 50k generated samples.
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PNDM PNDM+disturb ERA-Solver+disturb ERA-Solver+disturb
+ adjust

Figure 6: The demonstration of how ERA-Solver helps improve sampling quality. PNDM and
ERA-Solver share the same numerical method (Adams method) and the same convergence order.
However, ERA-Solver can be robust to the designed disturbing score by adjusting λ manually.

4.1 HOW ERA-SOLVER WORKS TO IMPROVE SAMPLING QUALITY

In this subsection, we discuss how ERA-Solver improves sampling quality. Different from previous
sampling methods, ERA-Solver takes the estimation error in the pretrained DPMs into consideration
and introduces ERS to be robust to the errors. Since the estimation error distribution in the pretrained
diffusion model is intractable, we manually design a disturbance score:

ϵ′tθ(xti , ti) = ϵtθ(xti , ti) + 0.01 ∗ (1.0− ti) ∗ ϵ, ϵ ∼ N (0, I) (16)
Such a disturbing noise , which tends to be strong when time t is small, acts as a simple simulation
of estimation error patterns (Fig. 2(b)). In the next, we perform sampling with the disturbing score
and the original score separately. We select PNDM Liu et al. (2021) to make a comparison with
ERA-Solver since PNDM and ERA-Solver are all based on Adams numerical methods (ERA-Solver
is based on implicit Adams, while PNDM is based on explicit Adams). We select LSUN-bedroom
as the benchmark and pretrained Guided Diffusion Dhariwal & Nichol (2021) for sampling. The
sampling results can be seen in Fig. 6, from which we can observe that PNDM can be affected by the
disturbing score, while ERA-Solver can alleviate the effect by adjusting λ. FID evaluation results can
be found in Table. 1 of Appendix.

The estimation error in the pretrained diffusion model can be regarded as an intractable disturbing
pattern, which means when adjusting λ in ERA-Solver, ERA-Solver is seeking the best sampling
coefficients to fit this error pattern.
4.2 COMPARISON WITH PREVIOUS FAST SAMPLING METHODS

The comparison results on various datasets and pretrained diffuision models are shown in Fig. 5. It
can be observed that ERA-Solver achieves FID improvement by an obvious margin at most NFEs. The
best hyperparameter λ varies between datasets and pretrained DPMs. For the sampling of ERA-Solver
in Fig. 5, we set λ = 10.0, 30.0, 1.0, 20.0, 8.0, 20.0 in order. The different best hyperparameters for
various datasets verify our analysis in Fig. 2 and Sect. 3.1 to some extent. More details are provided
in the Appendix. D.

4.3 LIMITATION

Although ERA-Solver helps improve the sampling quality, it still has limitations. Since the error-
robust Lagrange interpolation method will consider all previously estimated noises, the maintained
buffer will be long. Thus, the necessary computation time will be slightly more than other methods.
We provide the detailed computation time in the Appendix. E.4.

5 CONCLUSION

In this paper, we propose an error-robust Adams solver (ERA-Solver) that consists of a predictor
and a corrector. We leverage the Lagrange interpolation function to perform the predictor and
further propose an error measure for the sampling process and an error-robust strategy to enhance the
predictor. Experiments demonstrate that ERA-Solver achieves better generation quality on various
datasets and pretrained diffusion models at few NFEs.
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A APPENDIX

B METHOD DISCUSSION

B.1 RELATIONSHIPS WITH PREVIOUS FAST SAMPLERS

In this subsection, we highlight the contribution of ERA-Solver. The main difference between
ERA-Solver and previous numerical samplers is the perspective to improve the sampling quality. We
are motivated by the various estimation error patterns hidden in the pretrained DPMs. The fixed
sampling scheme may not fit such various error patterns caused by different data manifolds and
network architectures. The error may also limit the previous numerical solvers which depends on the
assumptions that ϵθ(xt, t) = ∇xt

log p(xt). ERA-Solver contributes to a flexible numerical sampling
framework that enables the adjustable sampling coefficients and high-order sampling convergence
(Theorem. C.1) simultaneously. Based on such a framework, the designed Error-Robust Selection
strategy can make ERA-Solver be robust to the various error patterns by adjusting its λ.

The most silimiar work with ERA-Solver is PNDM Liu et al. (2021). PNDM and ERA-Solver are
both mainly based on Adams numerical method. However, different from PNDM which involves
Explicit Adams, ERA-Solver utilizes the Implicit Adams to perform effect sampling. Furthermore,
ERA-Solver supports constructing error-robust sampling coefficients while PNDM can not. (Fig. 6).
We provide the FID evaluation results in the Table. 1.

Table 1: FID Results on LSUN-bedroom Yu et al. (2015) with pretrained Guided Diffusion model
Dhariwal & Nichol (2021). The methods are evaluated with 5000 generated samples. The ’disturb’
means the estimated noise in the sampling process is rewritten as Eq. 16.

Sampling method \ NFE 10 12 15

PNDM 12.58 11.73 9.48
PNDM + disturb 50.42 44.08 34.89
ERA-Solver 10.93 10.09 9.18
ERA-Solver + disturb 45.22 38.27 14.58
ERA-Solver + disturb + adjust λ 12.06 (-33.16) 11.14 (-27.13) 9.40 (-5.18)

DEIS Zhang & Chen (2022) proposed to utilize the Exponential Integrator (EI) to simplify the integral
process in diffusion ODEs and introduced the Lagrange interpolation function to approximate the
integral term. ERA-Solver also utilizes the Lagrange interpolation function. However, DEIS still can
not fit the various error patterns since its selection strategy of Lagrange bases is fixed. Different from
DEIS, the robustness of ERA-Solver to estimation errors mainly comes from the designed selection
strategy of Lagrange bases.
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UniPC Zhao et al. (2023) proposed a unified predictor-corrector sampling framework that supports
higher-order sampling convergence. However, limited by the various estimation errors in the pre-
trained DPMs, the higher-order sampling numerical convergence may not bring more sampling
quality. ERA-Solver also involves predictor-corrector methods. However, the main body of the
predictor-corrector in ERA-Solver is the estimated noise. We compare ERA-Solver and UniPC in the
Table. 5.

B.2 RATIONALTIY OF ERROR MEASURE

The estimation error can not be observed in the sampling process, which limits us to designing
an error-robust sampling scheme. To alleviate this issue, we propose an error measure ∆ϵ =
ϵ̄θ(xt, t) − ϵ̄θ(xt, t), where ϵ̄θ(xt, t) is derived by constructing Lagrange interpolation function.
Intuitively, if the currently estimated noise has large errors, the constructed Lagrange interpolation
which consists of the nearby function points is likely shares the same error. Thus, the approximation
of the Lagrange interpolation function is likely to be more inaccurate. In this way, the proposed error
measure ∆ϵ can be sensitive to the estimation errors from the training scheme. Furthermore, the
hyperparameter λ can be seen as the critical value of ∆ϵ to control the aggregation at the beginning
of the buffer. The detailed analysis can be found in Theorem. C.2.

C THEORY ANALYSIS

C.1 PROOF OF THEOREM 1

To analyze the convergence order of ERA-Solver, we first need to calculate its discretization error of
the general form. For ease of description, we rewritte xti and ᾱti as the continuous form x(t) and
α(t). We rewritte ϵθ(x(t), t) as ϵθ(t). Firstly we recall the diffusion ODE Song et al. (2020b); Liu
et al. (2021):

dx

dt
= −ᾱ′(t)(

x(t)

2ᾱ(t)
− ϵθ(t)

2ᾱ(t)
√

1− ᾱ(t)
). (17)

To solve this ODE, we utilize integral on both sides and can get the general solver as follows:

x(t+ δ)− x(t) = −
∫ t+δ

t

α′(τ)(
x(τ)

2ᾱ(τ)
− ϵθ(τ)

2ᾱ(τ)
√

1− ᾱ(τ)
)dτ. (18)

Following DEIS Zhang & Chen (2022) and DPM-Solver Lu et al. (2022a), to eliminate the integration
error caused by linear terms, we apply the Exponential Integrator (EI) so that the general solver can
be rewritten as:

x(t+ δ) = e
∫ t+δ
t

f(τ)dτx(t) +

∫ t+δ

t

G(τ)ϵθ(τ)dτ, (19)

where G(τ) = e
∫ t+δ
τ

f(τ)dτ α′(τ)

2α(τ)
√

1−α(τ)
. Next, we introduce an intermediate numerical solution

x̄(t+ δ) and it reads:

x̄(t+ δ) = e
∫ t+δ
t

f(τ)dτx(t) +

∫ t+δ

t

G(t)
1

δ
ϵθ(τ)dτ

= e
∫ t+δ
t

f(τ)dτx(t) +G(t)

∫ t+δ

t

1

δ
ϵθ(τ)dτ.

(20)

Then, we introduce the numerical solution xpndm(t+ δ) in PNDM Liu et al. (2021). It can be written
as:

xpndm(t+ δ) = e
∫ t+δ
t f(τ)dτx(t) +G(t)

1

24
(55ϵθ(t)− 59ϵθ(t− δ) + 37ϵθ(t− 2δ)− 9ϵθ(t− 3δ)).

(21)

PNDM Liu et al. (2021) has proven that it has a 3-order local approximation error. Thus, we have:

|x(t+ δ)− xpndm(t+ δ)| = O(δ3). (22)
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The intermediate numerical solution x̄(t + δ) can be transformed into PNDM by introducing the
explicit Adams numerical method Małgorzata & Marciniak (2002). We have:

x̄(t+ δ) = e
∫ t+δ
t f(τ)dτx(t) +G(t)

1

δ

∫ t+δ

t

3∑
i=0

lexp(i)ϵθ(t− iδ) +O(δ4)dτ

= e
∫ t+δ
t f(τ)dτx(t) +G(t)

1

24
(55ϵθ(t)− 59ϵθ(t− δ) + 37ϵθ(t− 2δ)− 9ϵθ(t− 3δ)) +O(δ4)

(23)

where lexp(i) is the Lagrange base derived from the function points {t− iδ, ϵθ(t− iδ))}3i=0. Thus,
it is easy to know that:

|xpndm(t+ δ)− x̄(t+ δ)| = O(δ4). (24)

If the interpolation function points include the current point (t+ δ, ϵδ(t+ δ)), the integral of Eq. 23
can be rewritten as:

x̄(t+ δ) = e
∫ t+δ
t f(τ)dτx(t) +G(t)

1

δ

∫ t+δ

t

3∑
i=0

limp(i)ϵθ(t− iδ + δ) +O(δ4)dτ

= e
∫ t+δ
t f(τ)dτx(t) +G(t)

1

24
(9ϵθ(t+ δ) + 19ϵθ(t)− 5ϵθ(t− δ) + ϵθ(t− 2δ)) +O(δ4),

(25)

where limp(i) is the Lagrange base derived from the function points {(t−(i−1)δ, ϵθ(t−(i−1)δ))}3i=0.
The fixed coefficients are derived by the implicit Adams numerical method Atkinson et al. (2011).
We term the numerical solution derived from ERA-Solver as xera(t+ δ). It reads:

xera(t+ δ) = e
∫ t+δ
t

f(τ)dτx(t) +G(t)
1

24
(9ϵ̄θ(t+ δ) + 19ϵθ(t)− 5ϵθ(t− δ) + ϵθ(t− 2δ))

= e
∫ t+δ
t

f(τ)dτx(t) +G(t)
1

24
(9ϵθ(t+ δ) + 19ϵθ(t)− 5ϵθ(t− δ) + ϵθ(t− 2δ))

+G(t)
9

24
(ϵ̄θ(t+ δ)− ϵθ(t+ δ)),

(26)

where ϵ̄θ(t+ δ) is derived from the k-order Lagrange interpolation function which is enhanced with
the error-robust selection strategy. Assuming that G(t) is bounded, we can have:

|x̄(t+ δ)− xera(t+ δ)| = |G(t)| 9
24

|ϵ̄θ(t+ δ)− ϵθ(t+ δ)|+O(δ4)

= O(δk) +O(δ4).

(27)

Finally, we can have:

|x(t+ δ)− xera(t+ δ)| ≤|x(t+ δ)− xpndm(t+ δ)|+ |xpndm(t+ δ)− x̄(t+ δ)|
+ |x̄(t+ δ)− xera(t+ δ)|

= O(δ3) +O(δ4) +O(δk)

= O(δ3) +O(δk)

(28)

Finally, we can prove that, when the Lagrange interpolation order k ≥ 3, the local approximation
error of ERA-Solver is O(δ3) and has a second-order convergence.

C.2 PROOF OF THEOREM 2

Firstly, we remove rounded symbols ⌊⌋ for ease of analysis. Then, the margin between the adjoin
selected indexes can be written as:

Dm = i ∗ (m
k

λ(ϵ)
− m+ 1

k

λ(ϵ)

), (29)

where λ(ϵ) = ∆ϵ
λ . We need to prove that when ∆ϵ is large, the indexes are concentrated on the large

time, and vice versa. The aggregation can be described by observing the monotonicity of Dm. For
example, if Dm < Dm+1, the selected indexes will be gathered at the beginning of the buffer (t is
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close to T ). Through simplification, we just need to analyse the monotonicity of the function d(m)
with respect to m:

d(m) = (m+ 1)λ(ϵ) −mλ(ϵ). (30)

We can obtain the first order derivative function as follows by taking the derivative:

d′(m) = λ(ϵ)((m+ 1)λ(ϵ)−1 −mλ(ϵ)−1). (31)

Through observation, we can notice that when λ(ϵ) > 1, d′(m) > 0, which means the margin
function d(m) is monotonically increasing with respect to m. Thus the selected indexes are more
concentrated on the beginning of buffer, when ∆ϵ is large enough (> λ). Our hyperparameter λ is
used to control the critical point of concentration.

D EXPERIMENTS DETAILS

D.1 EXPERIMENT SETTINGS

We choose the most widely-used variance preserving (VP) type DPMs Song et al. (2020b) for
experiments. We test our method for sampling based on five datasets: Cifar10 (32 × 32) Krizhevsky
et al. (2009), LSUN-Church (256 × 256), Yu et al. (2015), LSUN-Bedroom (256 × 256) Yu et al.
(2015), CelebA (64 × 64) Liu et al. (2015), and ImageNet (64 × 64) Russakovsky et al. (2014).
For pretrained DPMs, we mainly consider continuous DPM Song et al. (2020b), DDIM Song et al.
(2020a), Guided Diffusion Dhariwal & Nichol (2021), and Latent Diffusion Rombach et al. (2022)
to perform sampling. For all experiments, we evaluate ERA-Solver on NVIDIA V100 GPUs. The
computation resources are not limited since the batch size of the sampling can be tuned.

We adopt Frechet Inception Distance (FID) Heusel et al. (2017) as the evaluation metric to test
the generation quality of all sampling methods. All evaluation results are based on 50k generated
samples. Since the network evaluation operation is the main time-consuming operation, the number
of function evaluations (NFE) is introduced to align the total sampling time of different fast solvers.

D.2 SAMPLE QUALITY COMPARISON.

When compared with DEIS Zhang & Chen (2022), the FID results of DEIS in ImageNet 64 × 64,
Cifar10 (continuous-time DPM), and CelebA are cited from the original paper of DEIS, with the best
settings. The other results in LSUN-Church, and LSUN-bedroom are evaluated using the official
code integrated into diffusers von Platen et al. (2022).

We directly use the official code released in Lu et al. (2022a) to implement DPM-Solver-fast Lu et al.
(2022a) and DPM-Solver++ methods to generate the samples for evaluation. The code license is
Apache License 2.0. The other fast solvers like DEIS, and PNDM are implemented based on the
official code integrated in diffusers von Platen et al. (2022) if the FID results can not be cited from
the original paper. Their sampling setting is the default. Note that the PNDM method integrated in
diffusers is a little different from the method Liu et al. (2021)in the paper, which can be seen as the
improved version.

The FID results of other methods like Analytic-DDIM in Cifar10 (discrete-time DPM Song et al.
(2020a)) and Celeba ((discrete-time DPM Song et al. (2020a))) are directly cited from the paper
pf DPM-Solver Lu et al. (2022a). The FID results of other methods like FON in LSUN-church
(discrete-time DPM Song et al. (2020a)) are directly cited from the paper pf PNDM Liu et al. (2021).

For the timestep scheme, we use ’linear’ and ’logSNR’. ’linear’ timestep scheme constructs {ti}Ni=1
by uniformly sampling from [tN , 1]. ’logSNR’ timestep Lu et al. (2022a) scheme utilizes λi = log αi

σi

as the unit of sampling timesteps and constructs {λi}Ni=1 by uniformly sampling from [λ(tN ), 1]. tN
is the minimum sampling time.

Cifar10. We use the checkpoints of both the discrete-time diffusion models Song et al. (2020a)
and continuous-time diffusion models Song et al. (2020b) for comparisons. The comparison results
are shown in Tab. 2 and Tab. 3. Following DPM-Solver, we provide results based on two settings of
the minimum sampling time tN . The timestep scheme is set to ’logSNR’. On discrete-time diffusion
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models, ERA-Solver achieves better generation quality in most NFEs, specifically when NFE is
small. On continuous-time diffusion models, the improvement of ERA-Solver is more obvious. ERA-
Solver has better generation results on all NFEs. The Lagrange interpolation order k to 4 and the
hyperparameter λ are set to 5.0 for the discrete-time diffusion model and 10 for the continuous-time
diffusion model.

LSUN-bedroom. We use the pretrained checkpoint provided by Dhariwal & Nichol (2021) of the
discrete-time diffusion model. The comparison results are shown in Tab. 5. The minimum sampling
time tN is set to 1e− 4 for all experiments. The timestep scheme is set to ’linear’. From the table,
we can observe that ERA-Solver has better sampling quality on all NFEs. The improvement margin
is more obvious when NFE is small. The Lagrange interpolation order k to 4 and the hyperparameter
λ is set to 1.0 for the discrete-time diffusion model.

LSUN-church. We use the pretrained checkpoint provided by DDIM Song et al. (2020a) of the
discrete-time diffusion model and Latent Diffusion Rombach et al. (2022). The comparison results are
shown in Tab. 7 and Tab. 6. The minimum sampling time tN is set to 1e− 4 for all experiments. The
timestep scheme is set to ’linear’. From the two tables, we can observe that ERA-Solver has better
sampling quality on most NFEs. The Lagrange interpolation order k is set to 4 for two pretrained
models. The hyperparameter λ is set to 5.0 for the DDIM diffusion model and set to 20.0 for the
Latent Diffusion model.

CelebA We use the pretrained checkpoint provided by DDIM Song et al. (2020a) of the discrete-
time diffusion model. The comparison results are shown in Tab. 4. The minimum sampling time tN
is set to 1e− 4 for all experiments. The timestep scheme is set to ’logSNR’. From the table, we can
observe that ERA-Solver has better sampling quality on most NFEs. The Lagrange interpolation
order k to 4 and the hyperparameter λ is set to 30 for the discrete-time diffusion model.

ImageNet (64 × 64) We use the pretrained checkpoint provided by Guided Diffusion Dhariwal
& Nichol (2021) of the discrete-time diffusion model. The comparison results are shown in Tab. 8.
The minimum sampling time tN is set to 1e− 4 for all experiments. The timestep scheme is set to
’logSNR’. From the table, we can observe that ERA-Solver has better sampling quality on most NFEs.
The Lagrange interpolation order k to 4 and the hyperparameter λ is set to 20.0 for the discrete-time
diffusion model.

Table 2: FID results based on Cifar10 dataset and discrete-time diffusion model Song et al. (2020a).
Sampling method \ NFE 8 10 12 15 20 40

DDPMHo et al. (2020) \ 278.67 246.29 197.63 137.34 \
Analytic-DDPM Bao et al. (2022) \ 35.03 27.69 20.82 15.35 \
Analytic-DDIM Bao et al. (2022) \ 14.74 11.68 9.16 7.20 \
DDIM Song et al. (2020a) 19.23 13.58 11.02 8.92 6.94 4.92
PNDM Liu et al. (2021) 9.65 8.28 6.39 5.39 4.67 3.53
DEIS Zhang & Chen (2022) 15.35 11.35 9.53 5.56 4.60 3.60
DPM-Solver++ Lu et al. (2022b) 14.41 10.88 9.17 5.65 4.67 3.66
DPM-Solver-fast Lu et al. (2022a) (tN = 10−3) 28.94 6.37 4.65 3.78 4.28 3.80
DPM-Solver-fast Lu et al. (2022a) (tN = 10−4) 80.06 11.32 7.31 4.75 3.80 3.51

ERA-Solver (tN = 10−3, λ = 5.0) 9.63 5.14 4.38 3.86 3.79 3.97
ERA-Solver (tN = 10−4, λ = 5.0) 13.01 6.16 4.84 4.2 3.84 3.45

E ABLATION ANALYSIS.

In this part, we conduct ablation experiments to demonstrate the effectiveness of the proposed
selection strategy of Lagrange bases and the error measure.
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Table 3: FID results based on Cifar10 dataset and continuous-time diffusion model Song et al.
(2020b).

Sampling method \ NFE 8 10 12 15 20 40

PNDM Liu et al. (2021) 9.15 7.25 6.40 5.20 4.26 2.94
DPM-Solver++ Lu et al. (2022b) 9.45 6.06 4.73 3.89 3.39 3.02
DPM-Solver-fast Lu et al. (2022a) (tN = 10−3) 24.64 4.96 3.99 3.05 3.16 2.78
DPM-Solver-fast Lu et al. (2022a) (tN = 10−4) 62.83 7.76 5.60 3.79 2.97 2.73
DEIS Zhang & Chen (2022) \ 4.17 \ \ 3.33 2.99

ERA-Solver (tN = 10−3, λ = 10.0) 6.19 3.54 3.09 2.79 2.81 2.92
ERA-Solver (tN = 10−4, λ = 10.0) 9.98 4.46 3.48 3.02 2.76 2.67

Table 4: FID Results on CelebA Liu et al. (2015) with pretrained discrete-time diffusion model Song
et al. (2020a).

Sampling method \ NFE 8 10 12 15 20 40

DDIM Song et al. (2020a) 46.44 13.4 13.23 11.63 9.62 6.87
Analytic-DDPM Bao et al. (2022) \ 28.99 25.27 21.80 18.14 \
Analytic-DDIM Bao et al. (2022) \ 15.62 13.90 12.29 10.45 \
PNDM Liu et al. (2021) 10.73 9.75 9.02 9.11 7.25 5.25
DPM-Solver-fast Lu et al. (2022a) 59.13 6.92 4.20 3.05 2.82 2.71
DPM-Solver++ Lu et al. (2022b) 15.64 14.16 12.76 8.36 6.49 4.52
DEIS Zhang & Chen (2022) \ 6.95 \ \ 3.41 2.95

ERA-Solver (λ = 30.0) 8.76 5.06 3.67 2.99 2.75 2.69

E.1 EFFECTS OF THE SELECTION STRATEGY

To verify the selection strategy, we replace our error-robust selection strategy (ERS) with the fixed
selection strategy (fixed) that fixedly selects the last k estimated noises previously saved in the
Lagrange buffer at every sampling step. We select Cifar10 and LSUN-church datasets for evaluation.
We use the pretrained checkpoints of discrete-time diffusion models provided by Song et al. (2020a).
The results are shown in Tab. 9 and Tab. 10. From the table, we can see that our selection strategy
achieves better generation results in general on various Lagrange order k settings. Furthermore,
we can obverse that when the Lagrange order k is high, the effect of ERS is more obvious. It
demonstrates the potential of the proposed error-robust selection strategy.

We further visualize the comparison results in Fig. 7(b). The results in Fig. 7(b) are achieved
based on 5-order Lagrange interpolation methods. High-order interpolation methods may cause the
Runge phenomenon Fornberg & Zuev (2007) and bring the oscillation errors of functions. Thus,
the top results in Fig. 7(b) exist obvious artifacts. We designed it to better demonstrate the effect
of our proposed ERS. It implies that ERS can even be robust to the oscillation errors of the Runge
phenomenon partially.

Table 5: FID Results on LSUN-bedroom Yu et al. (2015) with pretrained discrete-time diffusion
model Dhariwal & Nichol (2021).

Sampling method \ NFE 8 10 12 15 20

PNDM Liu et al. (2021) 11.01 9.28 8.36 7.08 5.54
DEIS Zhang & Chen (2022) 11.47 9.43 8.56 6.34 5.4
DPM-Solver++ Lu et al. (2022b) 11.36 9.75 8.87 7.88 6.04
UniPC Zhao et al. (2023) 11.15 9.90 9.07 7.98 6.78

ERA-Solver (λ = 1.0) 9.09 7.28 6.93 6.25 4.9
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Table 6: FID Results on LSUN-church Yu et al. (2015) with pretrained latent diffusion model
Rombach et al. (2022).

Sampling method \ NFE 8 10 12 15 20

PNDM Liu et al. (2021) 7.09 5.29 4.87 4.37 4.45
DPM-Solver++ Lu et al. (2022b) 7.59 5.43 4.65 7.49 6.55
DEIS Zhang & Chen (2022) 8.89 6.23 5.13 4.68 4.75

ERA-Solver (λ=20.0) 6.56 5.02 4.61 4.15 4.21

Table 7: FID Results on LSUN-church Yu et al. (2015) with pretrained discrete-time diffusion model
Song et al. (2020a).

Sampling method \ NFE 8 10 12 15 20

DDIM Song et al. (2020a) 25.40 19.62 15.77 13.31 11.75
FON Liu et al. (2021) \ \ \ 21.32 10.3
PNDM Liu et al. (2021) 14.49 11.76 10.41 9.51 9.1
DPM-Solver-2 Lu et al. (2022a) 238.23 23.01 16.56 13.68 11.59
DPM-Solver-fast Lu et al. (2022a) 140.50 19.81 13.35 11.52 10.64
DPM-Solver++ Lu et al. (2022b) 12.84 10.41 9.32 12.68 13.04
DEIS Zhang & Chen (2022) 14.35 11.35 9.93 10.21 10.16

ERA-Solver (λ=5.0) 13.15 9.42 8.15 7.41 7.39

Table 8: FID Results on ImageNet 64 × 64 with pretrained Guided Diffusion model Dhariwal &
Nichol (2021).

Sampling method \ NFE 8 10 12 15 20

PNDM Liu et al. (2021) 24.59 13.65 11.26 8.11 6.35
DPM-Solver-fast Lu et al. (2022a) 9.83 6.74 5.32 4.16 3.37
DPM-Solver++ Lu et al. (2022b) 9.60 6.18 4.89 3.87 3.23
DEIS Zhang & Chen (2022) \ 6.65 3.99 \ 3.21

ERA-Solver (λ = 20.0) 9.30 5.11 3.91 3.24 2.89
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Table 11: Ablation experiments of different prediction types. ’uniform’ means the strategy of selecting
k Lagrange bases from the buffer with moderate spacing. FID Results are evaluated on Cifar10 Yu
et al. (2015) and pretrained continuous-time diffusion model Song et al. (2020b).

Method\ NFE 8 10 12 15 20 40

ERA-Solver (ϵ prediction)
fixed 12.39 6.81 4.37 3.28 2.81 .62
uniform 10.18 5.77 4.85 4.27 3.54 2.94
ERS 9.98 4.46 3.48 3.02 2.76 2.67

ERA-Solver (x0 prediction) fixed (error-robust) 15.74 7.48 3.90 3.23 2.87 2.66
uniform 62.71 27.16 15.39 7.85 4.74 2.98

E.2 EFFECTS OF THE ERROR MEASURE

To verify the proposed error measure ∆ϵ in the sampling process, we parameterize the power function
(Eq. 15 in the main paper) with various constants instead of our error measure. We conduct ablation
experiments on Cifar10 and discrete-time checkpoint Song et al. (2020a) and the comparison results
are shown in Fig. 7(a).

Table 9: Ablations of ERS on Cifar10
Method\ NFE 10 15 20

ERA-Solver-3 fixed 5.95 4.62 4.24
ERS 5.79 4.31 4.07

ERA-Solver-4 fixed 6.4 4.46 4.1
ERS 5.14 3.86 3.79

ERA-Solver-5 fixed 17.21 15.11 17.47
ERS 6.26 3.73 3.69

ERA-Solver-6 fixed 36.34 51.58 83.39
ERS 19.26 4.16 3.73

Table 10: Ablations of ERS on LSUN-church
Method\ NFE 10 15 20

ERA-Solver-3 fixed 9.83 8.52 8.72
ERS 10.2 8.03 7.63

ERA-Solver-4 fixed 10.56 8.72 8.99
ERS 9.42 7.41 7.39

ERA-Solver-5 fixed 26.7 30.36 31.58
ERS 10.85 7.48 7.28

ERA-Solver-6 fixed 63.91 191.69 315.6
ERS 13.79 8.41 7.41

E.3 EFFECTS ON OTHER PREDICTION TYPES

The motivation and results are mainly based on the noise prediction model. In this part, we explore
the performance of ERA-Solver on x0 prediction diffusion model Kingma et al. (2021). The x0

prediction model can be seen as a simple linear transformation of the ϵ prediction model, which
reparameterizes the model prediction as xθ = (xt − σtϵθ)/αt Kingma et al. (2021).

Firstly, we want to claim that our error-robust selection aims to select the predictions with lower errors
when the current error increases. Benny & Wolf (2022) has demonstrated that x0 prediction diffusion
model has completely opposite error changing trends compared with ϵ prediction diffusion models.
When sampling time t approaches 0, the error of x0 prediction will become small. That means, the
error-robust strategy for the x0 prediction diffusion model turns out to be the fixed selection strategy,
which fixedly selects the last k predictions at every sampling step since the predictions at the end of
the buffer have already owned the lowest errors.

We conduct ablation experiments on Cifar10 and continuous-time pretrained diffusion models. We
further introduce the uniform selection strategy (∆ϵ

λ of Eq. 17 in the main paper is changed to be 1),
which uniformly selects k estimated noises previously saved in the Lagrange buffer at every sampling
step, for reference. The results are shown in Tab. 11. From the table, we can observe that the uniform
selection strategy performs worse than the fixed selection strategy when the prediction type is x0 and
performs better than the fixed selection strategy when the prediction type is ϵ. This phenomenon
indicates that different error trends have different optimal selection strategies.

We can also obverse that ERA-Solver based on the noise prediction model achieves better sampling
quality than that based on the data prediction model, which means that our designed error-robust
selection strategy for the noise prediction model is still worthy.
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Figure 7: (left) Ablation results of error-aware scale (∆ϵ/λ in Eq. 15) and constant scale (replace ∆ϵ/λ with
a constant) based on the 3-order Lagrange interpolation function and 5000 generated samples. (right) Ablated
visualization results of fixed selection strategy and error-robust selection strategy.

Table 12: Computation time per sample of sampling on Guided Diffusion Dhariwal & Nichol (2021),
varying different solvers and NFE.

Sampling Method \ NFE 8 10 12 15 20

PNDM Liu et al. (2021) 0.388 0.482 0.581 0.723 0.966
DPM-Solver++ Lu et al. (2022a) 0.401 0.490 0.592 0.738 0.980
DEIS Zhang & Chen (2022) 0.396 0.488 0.589 0.734 0.978
ERA-Solver 0.413 0.512 0.617 0.792 1.062

E.4 TECHNOLOGY LIMITATION

In this part, we describe the limitation of ERA-Solver. Since Error-Robust Selection strategy tends to
take all previous estimated noises into consideration, the maintained buffer will be longer. Thus, the
computation time will be slightly more than other methods. We provide the computation time per
sample in the Table. 12.

In practical scenarios like Stable Diffusion, ERA-Solver can already generate realistic samples when
NFE is around 20 (Fig. 11, Fig. 9, and Fig. 10). Thus, the negative impact of computing time and
memory cost can be limited.

Although there exists limitation, ERA-Solver is ensured to bring sampling quality improvement. For
example, in Table. 3 and Table. 5, ERA-Solver with NFE 10 can outperform previous methods with
NFE 12 (3.54 vs 3.99, 7.28 vs 8.36), while the computing time of ERA-solver with NFE 10 is lower
than previous methods with NFE 12 (0.512 vs 0.581).

F QUALITATIVE RESULTS

F.1 RESULTS ON UNCONDITIONAL DIFFUSION MODEL

We sample and visualize the generated samples from the discrete-time diffusion model Dhariwal &
Nichol (2021) pretrained on LSUN-church. We select PNDM Liu et al. (2021), DPM-Solver++ Lu
et al. (2022b), and DEIS Zhang & Chen (2022) to compare with ERA-Solver. For ERA-Solver, the
Lagrange order k is set to 4, and hyperparameter λ is set to 1. We align the sampling NFE and the
random seed for a fair comparison. The comparison results are shown in Fig. 8. From Fig. 8, we can
observe that ERA-Solver can generate more natural textures than other fast solvers, specifically when
NFE is small.
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F.2 RESULTS ON THE TEXT-TO-IMAGE DIFFUSION MODEL

In this part, we sample from the large-scale latent diffusion model, i.e., Stable Diffusion Rombach
et al. (2022) with different fast solvers and ERA-Solver. We select PNDM and DPM-Solver++
for comparison, the codes of which are all applied from diffusers von Platen et al. (2022). For
ERA-Solver, we set k = 4 and λ = 10.0. It can be observed that ERA-Solver can generate promising
images when NFE is 15, which is faster than DPM-Solver++ and PNDM. It demonstrates that
ERA-Solver can be extended to various generative applications and has the potential to promote the
progress of the art creation industry. The comparison results are shown in Fig. 9, Fig. 10, and Fig. 11.
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Figure 8: Generation quality comparison based on 5, 8, and 10 NFEs. The error of estimated noises
tends to appear at ti close to 0 with high-frequency information generated. Our ERA-Solver is robust
to the error so as to generate natural textures while DPM-Solver-fast fails.
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Figure 9: Samples using the pretrained Stable-Diffusion Rombach et al. (2022) with a classifier-free
guidance scale 7.5 (the default setting), varying different solvers and NFEs. The main part of the
input prompt is: “Cute and adorable ferret wizard, wearing coat and suit”.
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Figure 10: Samples using the pretrained Stable-Diffusion Rombach et al. (2022) with a classifier-free
guidance scale 7.5 (the default setting), varying different solvers and NFEs. The main part of the
input prompt is: “A beautiful mansion beside a waterfall in the woods”.
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Figure 11: Samples using the pretrained Stable-Diffusion Rombach et al. (2022) with a classifier-free
guidance scale 7.5 (the default setting), varying different solvers and NFEs. The main part of the
input prompt is: “A beautiful castle beside a waterfall in the woods”.
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