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Abstract

Recently, implicit graph neural networks (GNNs) have been proposed to capture
long-range dependencies in underlying graphs. In this paper, we introduce and
justify two weaknesses of implicit GNNs: the constrained expressiveness due to
their limited effective range for capturing long-range dependencies, and their lack
of ability to capture multiscale information on graphs at multiple resolutions. To
show the limited effective range of previous implicit GNNs, we first provide a
theoretical analysis and point out the intrinsic relationship between the effective
range and the convergence of iterative equations used in these models. To mitigate
the mentioned weaknesses, we propose a multiscale graph neural network with
implicit layers (MGNNI) which is able to model multiscale structures on graphs and
has an expanded effective range for capturing long-range dependencies. We conduct
comprehensive experiments for both node classification and graph classification to
show that MGNNI outperforms representative baselines and has a better ability for
multiscale modeling and capturing of long-range dependencies.

1 Introduction

In recent years, graph neural networks (GNNs) have been widely adopted on graph-related tasks,
such as node classification, link prediction, and graph classification [29]. In general, GNNs utilize
both node attributes and graph topology to produce meaningful node representations for downstream
applications. To achieve this, most modern GNNs follow a “message passing” mechanism: at
each iteration, they iteratively aggregate representations of neighboring nodes of each node with its
own representation to generate new representations. During this process, each iteration is typically
parameterized as a single-layer neural network with learnable weights. Many GNN models have been
proposed by adopting different aggregations techniques (e.g., GCN with renormalization [17], GAT
with attentive aggregations on neighbors [27], and SGC [28] using aggregations without non-linear
activation). In spite of the effectiveness achieved by the aforementioned GNNs on different tasks,
they fail to effectively capture long-range information on graphs, since a GNN with T layers can only
capture information up to T hops away.

To overcome this deficiency of previous GNNs, recent work has proposed implicit graph neural
networks [13, 20, 21] to effectively capture long-range dependencies. These implicit graph neural
networks generally define a fixed-point equation as an implicit layer for aggregation and generate
the equilibrium Z

⇤ as the node representations. To get the equilibrium, they either use an iterative
solver to solve the equation or directly obtain a closed-form solution with guaranteed convergence.
Meanwhile, they utilize implicit differentiation to achieve O(1) memory complexity when computing
the gradients during the iterations. As mentioned in Gu et al. [13], Liu et al. [20], these models can be
treated as a graph neural network with infinite layers which has the same transformation and shared
weights in each layer. This makes them able to effectively capture long-range dependencies without
excessive memory requirements as compared with previous GNNs.
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Despite the superiority of implicit GNNs shown in several applications requiring long-range informa-
tion, an important question — what the farthest range these models can capture information from
— has not been studied. Although these models are usually claimed as GNNs with infinite depth
[13, 20], in this paper, we first point out the effective range of these models (i.e., the maximum hops
they can effectively capture dependencies for each node) is actually bounded by a certain value. We
provide analyses on the intrinsic relationship between the effective range and the convergence of
the iterative equation used in implicit GNNs. Specifically, these models usually use a contraction
factor � to ensure the convergence of the iterative map [20, 21], which indeed exponentially decays
the distant information during the aggregation at the same time. This design inherently limits the
effective range of propagation and hinders their ability to capture long-range dependencies.

Besides the limited effective range, implicit GNNs also cannot effectively capture multiscale informa-
tion on graphs, i.e., graph features at various scales. In contrast, several GNNs without implicit layers
[30, 2, 1, 8] have been proposed to utilize multiscale information to improve the model capacity.
For example, Xu et al. [30] proposes JKNet which leverages different neighborhood ranges by skip
connections and adaptive aggregations of hidden representations at different layers. MixHop [1]
learns neighborhood mixing relationships by mixing hidden representations at various distances.
These explicit GNN models demonstrate the effectiveness of utilizing multiscale information from
neighbors at various scales. However, it is still not clear how to utilize multiscale information with
implicit GNNs since there are no different “layers” in implicit GNNs that can be used for capturing
multiscale information at different scales.

Motivated by the above limitations of previous implicit GNNs, we propose our multiscale graph neural
network with implicit layers (MGNNI) which brings multiscale modeling into implicit GNNs and
expands their effective range for capturing long-range dependencies. We summarize the contributions
of this work as follows:

• We introduce the concept of effective range for implicit GNNs, and provide theoretical analyses
on the effective range that previous implicit GNNs can capture distant information from. We then
point out that their effective range is limited although previous models are generally regarded as
GNNs with infinite layers.

• We propose MGNNI as a new implicit GNN model with multiscale propagation to expand the
effective range and capture underlying graph information at various scales.

• We conduct comprehensive experiments with synthetic datasets and real-world datasets on both
node classification and graph classification to demonstrate that MGNNI has better performance
and a better ability to capture both long-range and multiscale information compared with other
baselines.

2 Related work

Implicit Models Implicit neural networks use implicit hidden layers which are implicitly defined:
the outputs are determined by the solutions of some underlying equations. A notable advantage
of these implicit models is that they can generally backpropagate through the fixed-point solution
using implicit differentiation to achieve constant memory complexity regardless of the “depth” of
the network. There is an emerging interest in implicit layers in recent years [4, 3, 5, 11]. To name a
few, Bai et al. [4] propose the deep equilibrium model (DEQ) demonstrating the ability of implicit
models in sequence modeling; Multiscale DEQ (MDEQ) [5] brings multiscale modeling into implicit
deep networks for image classification and semantic segmentation. Kawaguchi [15] analyses the
global convergence of deep linear implicit models and Geng et al. [11] provide a gradient estimate
for implicit models to avoid the costly exact gradient computation.

Graph Neural Networks GNNs have been widely used in different tasks for graph-structured
data. Even with different aggregation schemes (e.g., skip connection [30, 8] and attention [27]),
convolutional GNNs [17, 28, 30] generally involve finite aggregation layers (usually less than 20
layers) with different learnable weights, which makes them unable to effectively capture long-range
dependencies. Although RevGNN [19] is proposed with 1000 layers, it has to use deep reversible
architectures [12], which requires excessive amount of time for training. Inspired by implicit models
[4, 5] on image and text data, implicit graph neural networks [13, 20, 21] have been proposed to
capture long-range information with constant memory complexity. Implicit GNNs generally define an
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aggregation equation and obtain the fixed-point solution of the equation as the outputs. In particular,
Gu et al. [13] propose IGNN where they ensure the well-poseness and use iterative solvers to obtain
fixed-point solutions. Liu et al. [20] propose EIGNN as a linear implicit GNNs where a closed-form
solution is derived. Park et al. [21] construct an input-dependent linear iterative map for predicting the
properties of a graph system. However, these implicit GNNs cannot model multiscale information in
underlying graphs. In contrast, several explicit GNNs, such as JKNet [30], MixHop [1], and N-GCN
[2], have shown that multiscale information is helpful to improve the model capability. To fill the gap,
our model MGNNI brings multiscale modeling to implicit GNNs.

3 Preliminaries

A graph is represented as G = (V, E) which contains the node set V with n nodes and the edge set
E . In practice, graph neural networks take the adjacency matrix A 2 Rn⇥n and the node feature
matrix X 2 Rm⇥n of G as input data. For simplicity, considering unweighted adjacency matrix A,
then Ai,j = 1 if (i, j) 2 E , for any two nodes i, j 2 V; otherwise Ai,j = 0. Given input graph data
(G, X), depending on different classification tasks, graph neural networks are required to provide a
prediction ŷ for a node or a graph to match the true label y.

Aggregations in GNNs GNNs typically employ a trainable aggregation process that iteratively pass
the information from each node to its adjacent nodes, followed by a non-linear activation. Without
loss of generality, a typical aggregation step at layer l can be written as follows:

Z
(l+1) = �(W (l)

Z
(l)
S + ⌦(l)

X), (1)

where Z
(l)

2 Rhl⇥n is the hidden states in the layer l which stacks the state vectors of every nodes
denoted as z

(l)
2 Rhl ; S 2 Rn⇥n is the normalized adjacency matrix; W

(l)
2 Rhl+1⇥hl and

⌦(l)
2 Rhl+1⇥m are the matrices of trainable weight parameters; � denotes a non-linear activation

function. Recently proposed GNN models use different forms of this graph aggregation process. For
example, simplified graph convolution [28] removes the non-linear activation, use only one weight
matrix W , and sets Z(0) = X and ⌦ = 0.

In addition to GNNs with explicitly defined layers, GNNs with implicit layers [13, 20, 21] also follow
a similar aggregation form, but with tied weight matrices W and ⌦ at each iteration step. For these
implicit GNNs, the aggregation step is generally changed to Z

(l+1) = �(WZ
(l)
S+⌦X). Given such

an aggregation step, implicit GNNs can be seen as iterating the aggregation step an infinite number
of times until convergences. To ensure the convergence, IGNN [13] enforces kWk1  /�pf (A)
with  2 [0, 1), where �pf is the Perron-Frobeius (PF) eigenvalue [7]. EIGNN [20] and CGS [21]
instead achieve this by introducing a contraction factor � in the aggregation step.

Using EIGNN as an example, it defines the aggregation as an iterative mapping with a contraction
factor � as follows:

Z
(l+1) = �g(F )Z(l)

S +X, (2)
where � 2 [0, 1) and g(W ) is a bounded mapping that projects the trainable weight matrix F into a
Frobenius norm ball of radius < 1. Given the iterative mapping, implicit GNNs obtain the equilibrium
states Z⇤ = �(WZ

⇤
S + ⌦X) as the final representations by using either root-finding approaches or

closed-form solutions.

4 Effective range of previous implicit GNNs

Implicit deep learning is considered as a method to increase the effective depth of deep neural
networks [4, 24]. Previous works on implicit GNNs (including IGNN [13] and EIGNN [20]) claim
that these models can be viewed as an infinite-layer GNN. However, in this section, we point out
that the effective range within which previous implicit GNNs can capture the long-range information
is actually bounded. In other words, their abilities for capturing long-range dependencies are still
restricted. We provide analyses revealing the intrinsic relationship between the effective range and
the convergence of the iterative equation in implicit GNNs. In addition, we also provide empirical
results to support our analyses.

To investigate the effective range, we first provide an analysis on sensitivity, i.e., how changes in node
features of node p affect the equilibrium of a distant node q.
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Theorem 1. Given two nodes p and q that are h-hops apart, using Equation (2) for propagation,

if we perturb node features X:,p of node p by �X:,p 2 Rm
, the L2 norm of the change in node q’s

equilibrium k�Z
⇤
:,qk is upper bounded as follows:

k�Z
⇤
:,qk 

�
h

1� �
kg

h(F )�X:,pS
h
p,qk. (3)

The complete proof can be found in Appendix A.1.

At first glance, the norm of the change in equilibrium k�Z
⇤
:,qk would not be zero no matter how large

the distance between node p and q. However, Theorem 1 shows that k�Z
⇤
:,qk decays exponentially

with distance along the graph. Therefore, in practice, this change will fairly quickly fall below the
roundoff error in floating-point numbers or the stopping criterion in the iterative solver used to obtain
the fixed-point solution, then the change �X:,p on node p cannot affect the equilibrium of node q.
This is the intuition about what we call the effective range. To formalize it, we provide the definition
of ✓-effective range as follows:

Definition 1. For any given error parameter ✓ > 0, the ✓-effective range h is the maximum integer
such that exists some pairs of nodes p and q that are h-hop apart, when node features X:,p of node p

are perturbed by �X:,p, the L2 norm of the change in node q’s equilibrium
���Z

⇤
:,q

�� > ✓.

By Definition 1, we know that, given any h
0
> h, for all pairs of node p and q that are h

0-hop apart,
the L2 norm of the change

���Z
⇤
:,q

��  ✓, which means the equilibrium of node q cannot be affected
in practice. To analyse the ✓-effective range, we can derive the corollary of Theorem 1:

Corollary 1. With Equation (2) for propagation, given any error constant ✓ > 0, the ✓-effective

range h is upper bounded: h <
ln(✓(1��))

ln � . Therefore, if node features X:,p of node p are perturbed,

the perturbation can only affect the equilibrium of nodes which are up to
ln(✓(1��))

ln � -hop away from p.

The complete proof can be found in Appendix A.2. Note that the above analysis is directly applicable
to two recent Implicit GNN models with a contraction factor �, i.e., EIGNN [20] and CGS [21].

Asides from the above analysis, we further verify the theoretical analysis with synthetic experiments
on the same chain dataset as in EIGNN [20] and IGNN [13], where the task requires simply passing
information from one end to the other of a chain graph. See Appendix C.1 for detailed settings. We
use the basic form of EIGNN [20] with iterative methods (i.e., iterating Equation (2) to find the
equilibrium) as the model. We follow the same experimental setup in EIGNN and then perturb node
features by masking the features of the starting node p to all zeros. To support our theoretical analysis,
we investigate how the change of node q’s equilibrium (i.e., �Z

⇤
:,q) behaves as q gets farther away from

p. In Figure 1, we show that k�Z
⇤
:,qk decays as node q gets further from p in terms of the distance.

For example, with � = 0.5, k�Z
⇤
:,qk becomes numerically 0 when q and p are around 25 hops apart,

which indicates that node q can no longer receive any information from node p at this distance.

Figure 1: The norm of the change of
equilibrium k�Z

⇤
:,qk decays as node q

becomes further from p.

The above theoretical analysis and empirical evidences
show how different values of � can constrain the expres-
siveness of implicit GNNs, i.e., the range within which
they can effective capture long-range dependencies. In
short, smaller � results in a shorter effective range of im-
plicit GNNs. A straightforward strategy to expand the ef-
fective range is to increase � (e.g., to close to 1). However,
a large � can cause instability and difficulty for the con-
vergence of iterative mapping, which would empirically
compromise the efficiency of iterative solvers as found
in our experiments. We provides the empirical evidences
for this in Appendix B. This raises the question: how can

we capture longer range dependencies while ensuring the

convergence of the iterative mapping? Our multiscale
MGNNI approach aims to answer this question.
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5 Multiscale implicit graph neural networks

Previous implicit GNNs [13, 20, 21] propagate the information from 1-hop neighbors while applying
a decay with the contraction factor � in each iterative step (e.g., using Equation (2). As analysed in
Section 4, this design inherently limits the effective range of propagation since the information decays
exponentially as the range grows linearly. Besides the limited effective range, previous implicit GNNs
also cannot capture multiscale information on graphs similarly to explicit GNNs, such as JKNet [30]
and MixHop [1], which combine information at different scales of the graph.

Motivated by these limitations, we propose multiscale graph neural networks with implicit layers
(MGNNI) which can first expand the effective range to capture long-range dependencies and then
capture information from neighbors at various distances. MGNNI contains multiple propagation
components with different scales and learns a trainable aggregation mechanism for mixing latent
information at various scales.

5.1 The MGNNI model

A single m-scale propagation module in MGNNI model is defined as the following iterative mapping:

Z
(l+1) = �g(F )Z(l)

S
m + f(X,G), (4)

where � 2 [0, 1) and m denotes a hyperparameter for the graph scale (i.e., the power of adjacency
matrix). f(X,G) is a parameterized transformation on input features and graphs, and g(F ) is
normalized weight matrix defined as:

g(F ) =
1

kF>FkF + ✏F
F

>
F (5)

with an arbitrary small ✏F > 0. Note that in multiscale propagation, at each iterative step, the model
can capture the information along with a m-step path, while previous implicit GNNs only consider
1-hop neighbors. In this way, MGNNI is able to capture dependencies within a longer range over
iterations. Now we provide the analysis to show that the iterative mapping in MGNNI (i.e., Equation
(4)) converges to a unique equilibrium Z

⇤:
lim
l!1

Z
(h) = Z

⇤ s.t. Z
⇤ = �g(F )Z⇤

S
m + f(X,G). (6)

Theorem 2. Given the bounded damping factor � 2 [0, 1), the proposed iterative map for propagation

(i.e., Equation (4)) is a contraction mapping and the unique fixed-point solution Z
⇤

can be obtained

by iterating Equation (4).

This can be proved by using the properties of matrix vectorization and the Kronecker product with
the Banach fixed Point Theorem. The complete proof is given in Appendiex A.3.

Multiscale propagation With a set of multiple scales M = {m1, ...,mk|mi 6= mj8i, j},
we can have multiple propagation modules and obtain k equilibriums with different scales
{Z

⇤1
, Z

⇤2
, ..., Z

⇤k
}. Given those equilibriums, we propose a scale-aggregation mechanism uti-

lizing learnable attentions, as to learn the contributions of different scales for each node automatically
through the learning objective. For each node i, z⇤ti denotes t-th equilibrium in Z

⇤t and the attention
value �

t
i is defined as follows:

�
t
i = q

T tanh(Waz
⇤t
i + ba), (7)

where q is the parameterized attention weight vector, Wa and ba are the weight matrix and the bias
vector, respectively. Given attention values for different scales {�

1
, ...�

k
}, the final weights are

normalized by softmax function:

↵
t
i = softmax(�t

i ) =
exp(�t

i )Pk
j=1 exp(�

j
i )
. (8)

Larger ↵t
i indicates that the corresponding scale is more important for node i. The final embeddings

Z
0 are obtained by aggregating the equilibriums at different scales with corresponding weights:

z
0
i =

kX

t=1

↵
t
iz

⇤t
, (9)

Ŷ = fo(Z
0), (10)
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where the predictions Ŷ are generated by a problem-specific decoding function fo.

5.2 Expanded range via multiscale propagation

In multiscale propagation, nodes receive information from further m-hop neighbors rather than only
immediate neighbors, which enlarges the effective range of message passing. It is similar with a
larger receptive field in convolutional neural networks. We prove that the effective range for receiving
distant information is enlarged by using multiscale propagation.
Theorem 3. Given two nodes p and q are h-hop apart, using propagation with m-hop neighbors (i.e.,

Equation (4)), if we perturb node features X:,p of node p by �X:,p 2 Rm
, the L2 norm of the change

in node q’s equilibrium k�Z
⇤
:,qk is upper bounded as follows:

k�Z
⇤
:,qk 

�
h
m

1� �
kg

h
m (F )�X:,pS

h
p,qk. (11)

The complete proof is provided in Appendix A.5.

Similar to Corollary 1, we analyse the effective range of multiscale propagation by considering when
the change in the equilibrium of node q becomes smaller than a certain numerical error.
Corollary 2. Using propagation with m-hop neighbors (i.e., Equation (4), given any small error

constant ✓, the ✓-effective range h <
m ln(✓(1��))

ln � . Hence, the perturbation on node features of node

p can affect the equilibrium of nodes which are located up to
m ln(✓(1��))

ln � -hop away from p.

This is the corollary of Theorem 3. The proof is given in Appendix A.5. Under the same condition,
the effective range is expanded by using multiscale propagation to consider m-hop neighbors in a
propagation step.

5.3 Training MGNNI

To train MGNNI, we can simply iterate Equation (4) until it converges to the equilibrium Z
⇤ for

the forward pass. We do not use closed-form solutions as in Liu et al. [20] since it would slow the
training with large graphs and a large number of node features. For backward pass, given a loss
`, we can use implicit differentiation to compute the gradients of trainable parameters by directly
differentiating through the equilibrium Z

⇤ by:
@`

@(·)
=

@`

@Z⇤ (I � J'(Z
⇤))�1 @'(Z⇤

, X,G)

@(·)
, (12)

where Z
⇤ = '(Z⇤

, X,G) = �g(F )Z⇤
S
m + f(X,G) and J'(Z⇤) = @'(Z⇤,X,G)

@Z⇤ . We provide the
complete derivation in Appendix A.6. One of advantages of directly differentiating through Z

⇤ is that
the memory consumption is only one layer regardless the number of iterative steps in forward pass.
In contrast, differentiating over iterative steps requires large memory to store intermediate variables.

Note that (I � J'(Z⇤))�1 in Equation (12) is expensive to compute due to the computation of the
Jacobian J'(Z⇤) and the inverse. However, we can solve a linear equation with a Vector-Jacobian
product (VJP) to achieve cheaper computation of @`

@Z⇤ (I � J'(Z⇤))�1:

u
T = u

T
J'(Z

⇤) +
@`

@Z⇤ . (13)

Note that, the VJP u
T
J'(Z⇤) can be efficiently computed by automatic differentiation packages (e.g.,

PyTorch [22]) without forming the Jacobian. Subsequently, the gradients @`
@(·) can be obtained.

5.4 Discussion and comparison with previous implicit GNNs

In general, compared to previous implicit GNNs (i.e., IGNN [13], EIGNN [20], and CGS [21]), our
model MGNNI brings multiscale modeling to implicit GNNs, which allows the model to capture
graph information of different granularities. The multiscale idea has shown its effectiveness on
explicit GNN models, such as N-GCN [2], JKNet [30], and MixHop [1]. However, to our knowledge,
there is no previous implicit GNNs able to capture graph information at various scales. Specifically,
MGNNI essentially has multiple implicit layers with different focuses on various scales coexisting
side by side.
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Computational complexity MGNNI has similar time complexity with IGNN and CGS as they
all use iterative methods to iterate Equation (4) until convergence. The asymptotic time complexity
is O(K(h2

n+ hn
2)) where h is the number of hidden units after the input transformation f(X,G)

and K is the number of iterations in an iterative method. In contrast, EIGNN costs O(n3) to
conduct eigendecomposition for the adjacency S, which is costly and prohibitive for large graphs.
Additionally, for training, it requires O(h3

i + h
2
in) to get the closed-form solution and O(h3

i ) to
conduct eigendecomposition for the weights, where hi is the number of input features. Comparing
MGNNI and EIGNN, MGNNI is more efficient on large graphs as it utilizes iterative solvers for
fixed-point solutions, whereas EIGNN requires eigendecomposition to get closed-form solutions.

The above analysis of computational complexity mainly considers the process of propagation. Here,
we discuss the time complexity of some additional operations in these implicit GNNs, e.g., the
attention mechanism in MGNNI and the projection on the weight matrix in IGNN, which generally
cost much less time compared with the main propagation process. The attention mechanism used in
MGNNI has the time complexity O(h0

hn+ hn) (according to Equation (7)), where h0 is the number
of hidden units in the attention module. Similarly, IGNN also has some additional operations, e.g., it
requires a projection of the weight matrix W in each training iteration to ensure the well-posedness
condition kWk1  /�pf(A). It needs O(n2) to get and modify the maximum row sum of W (i.e.,
kWk1). Overall, MGNNI has the same level of time complexity compared with IGNN and CGS.

6 Experiments

In this section, we show that MGNNI can effectively capture long-range dependencies and mixed
graph information at various scales. Therefore, MGNNI provides better performance on both node
classification and graph classification compared with representative baselines. Specifically, we
conduct the experiments1 on 7 datasets for node classification (including 1 synthetic and 6 real-world
datasets: Color-counting, Cornell, Texas, Wisconsin, Chameleon, Squirrel, PPI) and 6 datasets
(MUTAG, PTC, PROTEINS, NCI1, IMDB-Binary, IMDB-Multi) for graph classification. As we
follow the same experimental settings on some datasets, we reuse the results of some baselines from
literatures. Descriptions of datasets and experimental settings are detailed in Appendix C.

6.1 Experiments with synthetic datasets

Figure 2: Averaged accuracies on color-
counting dataset.

Color-counting dataset We construct the synthetic
dataset for node classification. The graph contains sev-
eral chains and some nodes on each chain have different
colors. The color information is encoded in node fea-
tures. The nodes on the same chain share the same la-
bel which is the majority color appeared on this chain.
The model is supposed to predict the majority color on
a chain, which requires the model able to capture the
long-range dependencies and also count the occurrence
of each color. In Figure 2, we compare MGNNI with
different scales against previous implicit GNN models
(i.e., IGNN, EIGNN, and CGS). MGNNI (M={1,4,8}) de-
notes that three scales with m=1, m=4, and m=8 are used.
MGNNI with higher exponents (i.e., M={1,4,8}) generally
performs better than IGNN and CGS, which indicates that
multiscale propagation with higher-hop neighbors can effectively expand the effective range for
long-range dependencies. Note that MGNNI (M={1}) can be regarded as MGNNI with only single
scale. It is outperformed by MGNNI (M={1,4,8}), which again shows the effectiveness of multiscale
propagation. MGNNI (M={1}), IGNN and CGS are all outperformed by EIGNN, suggesting that
implicit GNNs with iterative solvers may still suffer from approximation error issues. We also provide
the comparison between MGNNI and representative explicit GNNs in Appendix C.1 (See Figure
5). It further demonstrates the superiority of MGNNI over explicit GNNs in terms of the ability of
capturing long-range dependencies.

1The implementation can be found at https://github.com/liu-jc/MGNNI
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Table 1: Results on heterophilic graph datasets: mean accuracy (%) ± stdev over different data splits.
Cornell Texas Wisconsin Chameleon Squirrel

# Nodes 183 183 251 2,277 5,201
# Edges 280 295 466 31,421 198,493
# Classes 5 5 5 5 5

Geom-GCN [23] 60.81 67.57 64.12 60.90 38.14
SGC [28] 58.91 ± 3.15 58.92 ± 4.32 59.41 ± 6.39 40.63 ± 2.35 28.4 ± 1.43
GCN [17] 59.19 ± 3.51 64.05 ± 5.28 61.17 ± 4.71 42.34 ± 2.77 29.0 ± 1.10
GAT [27] 59.46 ± 6.94 61.62 ± 5.77 60.78 ± 8.27 46.03 ± 2.51 30.51 ± 1.28
APPNP [18] 63.78 ± 5.43 64.32 ± 7.03 61.57 ± 3.31 43.85 ± 2.43 30.67 ± 1.06
JKNet [30] 58.18 ± 3.87 63.78 ± 6.30 60.98 ± 2.97 44.45 ± 3.17 30.83 ± 1.65
GCNII [8] 76.75 ± 5.95 73.51 ± 9.95 78.82 ± 5.74 48.59 ± 1.88 32.20 ± 1.06
H2GCN [34] 82.22 ± 5.67 84.76 ± 5.57 85.88 ± 4.58 60.30 ± 2.31 40.75 ± 1.44

IGNN [13] 61.35 ± 4.84 58.37 ± 5.82 53.53 ± 6.49 41.38 ± 2.53 24.99 ± 2.11
EIGNN [20] 85.13 ± 5.57 84.60 ± 5.41 86.86 ± 5.54 62.92 ± 1.59 46.37 ± 1.39
CGS [21] 68.11 ± 9.41 62.97 ± 9.23 63.53 ± 9.81 40.57 ± 1.61 31.78 ± 0.89

MGNNI 85.95 ± 6.10 84.86 ± 5.91 86.67 ± 4.31 63.93 ± 2.21 54.50 ± 2.10

Besides the experiments on Color-counting dataset, following Liu et al. [20], we also conduct
synthetic experiments on Chains dataset. MGNNI and EIGNN both maintain 100% test accuracy,
demonstrating the advantages of capturing long-range dependencies. The results and detailed analyses
can be found in Appendix C.1 and Figure 4.

6.2 Experiments with real-world datasets

Node classification Apart from the synthetic experiments, following Pei et al. [23], we also conduct
experiments on 5 heterophilic datasets (Cornell, Texas, Wisconsin, Chameleon, and Squirrel) for
node classification. On heterophilic graphs, the nodes with different class labels tend to be connected,
which requires models to aggregation information from distant nodes. These graph datasets are
web-page graphs of the corresponding universities or the corresponding Wikipedia pages. We use the
standard train/test/val splits as in Pei et al. [23]. See the detailed setting in Appendix C.2.

The results are shown in Table 1. MGNNI generally achieves the best performance on most datasets.
Comparing MGNNI and EIGNN, MGNNI provides better results, especially on Chameleon and
Squirrel, which indicates that MGNNI has the superior ability of capturing long-range dependencies
and multiscale information. Among implicit GNN baselines, EIGNN outperforms IGNN and CGS,
which might be attributed to the less approximation error in the closed-form solution of EIGNN.
Among explicit GNN baselines, H2GCN and GCNII are usually better than others, suggesting that
the aggregation design in H2GCN and deeper models with residual connections are helpful on
heterophilic graphs.

Table 2: Multi-label node classifi-
cation on PPI: Micro-F1 (%).

Method Micro-F1

GCN [17] 59.2
GraphSAGE [14] 78.6
SSE [9] 83.6
GAT [27] 97.3
JKNet [30] 97.6

IGNN [13] 97.6
EIGNN [20] 98.0

MGNNI 98.7

In addition, we also evaluate MGNNI on Protein-Protein Inter-
action (PPI) dataset which have multiple graphs. On each graph,
proteins are presented as nodes and edges are formed if there is
an interaction between two proteins. The task is to predict node
labels on multi-label multi-graph inductive setting. The same
train/val/test split are used as in Hamilton et al. [14]. Table 2
reports the micro-F1 scores of MGNNI against other baseline
models. Compared to IGNN and EIGNN, MGNNI achieves
1.1% and 0.7% absolute improvement respectively by effec-
tively capturing underlying multiscale information and long-
range dependencies between proteins. Unlike IGNN having 4
implicit layers sequentially stacked, on PPI dataset, MGNNI re-
sorts to parallel equilibrium layers with different scales, which
makes MGNNI more efficient than IGNN. We report the effi-
ciency comparison between MGNNI and other implicit GNNs
in Appendix C.4.
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Table 3: Mean accuracy (%) ± stdev over 10 folds on real-world datasets for graph classification.
MUTAG PTC PROTEINS NCI1 IMDB-B IMDB-M

# Graphs 188 344 1113 4110 1000 1500
Avg # Nodes 17.9 25.5 39.1 29.8 19.8 13.0
# Classes 2 2 2 2 2 3

GCN [17] 85.6 ± 5.8 64.2 ± 4.3 76.0 ± 3.2 80.2 ± 2.0 - -
GIN [31] 89.0 ± 6.0 63.7 ± 8.2 75.9 ± 3.8 82.7 ± 1.6 75.1 ± 5.1 52.3 ± 2.8
DGCNN [33] 85.8 58.6 75.5 74.4 70.0 47.8
FDGNN [10] 88.5 ± 3.8 63.4 ± 5.4 76.8 ±2.9 77.8 ± 1.6 72.4 ± 3.6 50.0 ± 1.3

IGNN [13] 89.3 ± 6.7 70.1 ± 5.6 77.7 ± 3.4 80.5 ± 1.9 - -
EIGNN [20] 88.9 ± 1.1 69.8 ± 5.3 75.9 ± 6.4 77.5 ± 2.2 72.3 ± 4.3 52.1 ± 2.9
CGS [21] 89.4 ± 5.6 64.7 ± 6.4 76.3 ± 6.3 77.2 ± 2.0 73.1 ± 3.3 51.1 ± 2.2

MGNNI 91.9 ± 5.5 72.1 ± 2.8 79.2 ± 2.9 78.9 ± 2.1 75.8 ± 3.4 53.5 ± 2.8

Graph classification Besides node classification, we conduct experiments on graph classification
tasks, using four bioinformatics datasets (MUTAG, PTC, PROTEINS, NCI) [32] and two social-
network datasets (IMDB-Binary and IMDB-Multi). 10-fold Cross-validation is conducted as [31]
and the averaged accuracies with standard deviations are reported in Table 3. The results of baselines
are borrowed from Gu et al. [13] and Park et al. [21]. In general, compared with other implicit and
explicit baseline models, MGNNI achieves the best performance on 3 out of 4 bioinformatics datasets
and both two social-network datasets. This shows that the ability to capture long-range dependencies
and multiscale information is helpful for graph classification and can be generalized to test graphs in
the inductive setting.

6.3 Ablation Study

Table 4: Performance of different scales.

Scales PPI Chameleon Texas

{1} 98.35 61.46 81.35
{2} 94.62 58.24 82.97
{3} 88.56 56.07 83.78

{1,2} 98.67 63.93 83.24
{1,2,3} 98.74 63.75 84.86

To further investigate the effectiveness of multiscale mod-
eling and the contributions of different scales, we conduct
the ablation study using different MGNNI variants with
various scale combinations. As shown in Table 4, com-
pared to variants with a single scale (i.e., {1}, {2} and {3}),
multiscale variants generally achieve better performance
on all three datasets. This verifies that multiscale model-
ing is effective and plays an important role in capturing
graph information at various scales. Comparing variants
with a single scale, the variant utilizing 1-hop propagation
performs best on PPI and Chameleon, whereas the variant
with only 3-hop propagation obtains the best performance on Texas. This demonstrates that informa-
tion at a certain scale can be more important than others on graphs with different properties. Merely
considering 1-hop propagation as in previous implicit GNNs might lead to sub-optimal performance.

Figure 3: Attention weights of nodes at different
scales on PPI and Chameleon.

Besides the overall performance of different vari-
ants, in Figure 3, we also demonstrate the at-
tention values of 100 randomly sampled nodes
using MGNNI with scales {1, 2, 3} on PPI and
Chameleon. Most of the nodes on chameleon tend
to have high attention weights on the first scale and
rarely have attentions on the third scale, whereas
some nodes on PPI have relatively higher atten-
tion values on the third scale than on the first scale.
Moreover, compared to Chameleon, there are more
nodes on PPI prefer the second and the third scale.
These phenomena verify the effectiveness of the at-
tention module in MGNNI, and show that different
nodes might prefer information at different scales
according to the graph property. Additionally, we also conduct the ablation study on the effect of the
attention mechanism in MGNNI (see Appendix C.5).
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7 Conclusion

In this paper, we provide theoretical analyses on the constrained expressiveness of previous implicit
GNNs due to the limited effective range for capturing distant information. We propose MGNNI which
has an expanded effective range and the ability to learn mixing graph information at various scales.
With synthetic experiments, we show that MGNNI with a large effective range has a better capacity
to capture long-range dependencies. On various real-world datasets for both node classification and
graph classification, MGNNI demonstrates superior performances compared with representative
baselines, showing the effectiveness of multiscale modeling. Furthermore, the ablation study also
shows that MGNNI allows different nodes to have different scale preferences, which plays an
important role in adaptively capturing graph information at various scales.

Although MGNNI has the advantages of capturing multiscale graph information, MGNNI also has
the limitation on potential approximation errors introduced in the iterative method as IGNN and
CGS. EIGNN gets rid of these errors by using a closed-form solution with eigendecomposition
which prohibits its usage on large graphs. How to mitigate approximation errors while ensuring the
scalability on large graphs could be an interesting topic for future work.
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